Enthalpy and Heat-Capacity Standard Reference Material: Synthetic Sapphire (α -Al₂O₃) from 10 to 2250 K

D. A. Ditmars,* S. Ishihara,† S. S. Chang,** G. Bernstein,*

National Bureau of Standards, Washington, DC 20234

and

E. D. West

Calorimetrics, Inc., P.O. Box 4146, Boulder, CO 80302

October 14, 1981

Heretofore unpublished enthalpy data which were used in the derivation of smooth enthalpy and heat-capacity data for NBS SRM 720 (α -Al₂O₃, heat eapacity and enthalpy standard) are presented along with some details of the high-temperature experiments. Recent NBS low-temperature measurements on SRM 720 are smoothed by a least-squares spline technique and a revised table of certified values for enthalpy and heat capacity of α -Al₂O₃ from 10 K to near the melting point (2250 K) is presented.

Key words: Aluminum oxide; corundum; drop ealorimetry; enthalpy; heat capacity; high temperature; Standard Reference Material; synthetic sapphire.

1. Introduction

Standard Reference Material 720 (α -Al₂O₃) has been offered by the NBS Office of Standard Reference Materials since 1970 [1]¹ as a heat-capacity and enthalpy standard certified in the temperature range 273.15 K to 2250 K. The relative enthalpy data, whose smoothed representation appears in [1], were obtained in two different types of drop calorimeter: a Bunsen ice calorimeter was used from 273.15 K to 1173.15 K [2] and an adiabatic receiving calorimeter from 1173.15 K to 2250 K. The smoothed relative enthalpy values of [1] rely as well for the absolute ice-point enthalpy (H_{273.15} K – H_{0 K}) upon a much earlier low-temperature heat-capacity study [3] on the "Calorimetry Conference Sample" of pure α -Al₂O₃.

A detailed presentation of the original ice-calorimeter enthalpy data along with a description of the smoothing procedure used to obtain the enthalpy and hcat-capacity values appearing in [1] has been given in [2]. Unfortunately, the original receiving-calorimeter enthalpy data were never published due to the death of one of the principal experimenters and subsequent personnel changes. The present work presents this enthalpy data and describes certain aspects of the experiments in the receiving calorimeter. In addition, it documents a re-smoothing of the NBS low-temperature heat-capacity data [4] on SRM 720 obtained since 1970. New smooth heat-capacity data for SRM 720 in the temperature interval 10 K to 2250 K are presented. The present smooth enthalpy data above 273.15 K differ by less than 0.01% from the corresponding values given in [1].

2.High-Temperature Enthalpy Data, 1173 K to 2250 K

Enthalpy data above 1173.15 K were obtained by S. Ishihara in a high-temperature adiabatic receiving calorimeter. Some physical and operational details of this apparatus have been given in [5] and [6]. These experiments were carried out with the calorimeter and furnace containing purified argon gas at about 0.1 atm. pressure. The single-crystal segments of α -Al₂O₃ were contained in a molybdenum capsule (mass: 9.26727 g) with a close-fitting, though not hermetically-sealed, lid. The capsule was suspended from a doubled and twisted loop of 8-mil tungsten wire by a small tantalum hook (hook mass: 0.56097 g). Thirteen evenly-spaced temperatures from 1173 K to 2250 K were chosen, and one day's experiments

^{*} Center for Chemical Physics, National Measurement Laboratory, † Deceased.

^{**} Center for Materials Science, National Measurement Laboratory.

¹ Figures in brackets indicate literature references at the end of this paper.

Furnace		Heat to				
Temperature	Date	Calorimeter	Speeimen			
Т ₆₀	(1969)	at 298.15 K	Mass	$H_{r} - H_{298.15}$	Deviation from	1 eq. (3) of [2]
к		J	mol [*]	J mol-'	J mol ⁻¹	%
		F 5386.39	0.0295095	99871.6	+ 24.06	+ 0.024
1173.18	24 Mar.	C 2439.23				
		C 2439.35				
		F 5384.10	0.0295094	99794.3	- 53.24	- 0.053
	[F 5681.19	0.0303910	103184.8	- 0.57	-0.001
1199.25	7 Apr.	C 2545.30				
	-	C 2545.25				
		F 5680.87	0.0303914	103174.6	- 10.77	-0.010
		C 2855.86				
1299.16	4 Apr.	F 6474.38	0.0311633	116114.8	+ 41.71	+ 0.036
		F 6474.87	0.0311633	116156.8	+ 83.71	+0.072
		C 2855.04				
		C 3060.22				
1401.65	10 Mar.	F 6474.38	0.0317601	129563.7	+123.18	+0.095
	[F 7175.51	0.0317601	129553.7	+113.38	+ 0.088
		C 3060.87				
		C 3467.73				
1501.15	19 Mar.	F 7914.37	0.0311937	142549.3	+ 3.60	+ 0.003
		F 7913.75	0.0311937	142612.1	+ 66.40	+ 0.047
		C 3565.15				
		F 8441.51	0.0303913	156264.1	- 66.65	-0.043
1604.90	6 Mar.	C 3692.44				
		C 3691.51				
		F 8353.12	0.0298344	156254.7	- 76.05	- 0.049
		C 4002.05				
1702.22	4 Mar.	F 9003.15	0.0295487	169249.4	- 110.34	- 0.065
		F 9003.65	0.0295487	169251.4	-108.34	- 0.064
		C 4002.49				
		C 4461.57				
1799.86	27 Mar.	F10147.78	0.0311923	182307.8	-210.67	-0.115
		F10147.78	0.0311923	182307.8	-207.47	-0.114
		F 4461.18				
		F10946.89	0.0311712	196456.3	+ 12.42	+0.006
1902.65	17 Mar.	C 4823.11		}	ļ	
		C 4823.88				
		F10947.56	0.0311671	196479.3	+ 35.42	+0.018
		F11264.44	0.0295326	210507.7	+ 242.33	+0.115
2004.13	12 Mar.	C 5047.60				
		C 5047.53				
		F11264.44	0.0295218	210509.9	+ 244.53	+ 0.116
		C 5125.11				
2101.61	21 Apr.	F11697.26	0.0293640	223816.6	+214.15	+ 0.096
		F11692.47	0.0293223	223971.5	+ 369.05	+0.165
		C 5125.11				

TABLE 1. Heat-Content Data for α -Al₂O₃(s), SRM 720.

TABLE 1. Continued.

Furnace Temperature T ₆₈	Date (1969)	Heat to Calorimeter at 298.15 K	Specimen Mass	$H_{r} - H_{298.15}$	Deviation fror	n eq. (3) of [2]
K		J	mol ⁶	J mol ⁻¹	J mol ⁻¹	%
2203.28	16 Apr.	C F [∞] F C		237748.5 237625.0	+ 173.77 + 50.27	+0.073 +0.021
2257.11	14 Mar.	F13886.37 C 6178.35 C 6177.04 F13855.68	0.0315029 0.0313787	244676.5 244708.7	- 322.90 - 290.70	-0.132 -0.119

* "C" prefixes data for empty capsule.

"F" prefixes data for capsule and sample.

^b Molecular Weight = 101.9613.

^c Original heat and mass data are available but it was not possible to trace the corrections applied to yield the molar values (col. 5), which were used in evaluation of the smoothing function (eq. (3) of [2]).

consisted of four enthalpy measurements at a single one of these temperatures. The temperature for any particular day was chosen randomly with the aid of a table of random numbers. The first and last enthalpy measurements of a day were made on the same system (either the empty capsule or the same capsule filled with α -Al₂O₃). Experience has shown that this method of scheduling one day's experiments makes it possible to take into account small changes in the pyrometer characteristics or sample capsule mass changes due either to interaction with the sample or with the carbon atmosphere created by the induction furnace susceptor.

Results of the high-temperature measurements are given in table 1. The initial sample capsule temperatures are given in column 1. These were measured with an automatic optical pyrometer which was focused on the bottom of the sample capsule through a small aperture in the furnace susceptor. A separate output signal from the pyrometer was used to control the furnace temperature. Column 3 gives the measured heat to the calorimeter at 298.15 K. The actual terminal temperature of the ealorimeter and capsule in the equilibrating period after an experiment was usually less than 320 K. In order to reference all heat data to 298.15 K, it was necessary to add to each measured heat a correction equal to the enthalpy of the capsule (plus sample and carbon contamination, if present) at the terminal temperature of the calorimeter relative to 298.25 K. These corrections ranged from one to two percent of the measured heat. The enthalpy data necessary to calculate the corrections for carbon, tantalum, aluminum oxide, and molybdenum, were taken from references [7], [8], [9] and [2], respectively. The heat content of the aluminum oxide constituted about 55 percent of the total measured heat at all temperatures. The differing values for specimen mass (column 4) indicate that in some experiments different amounts of α -Al₂O₃ were used, though the difference can correspond to at most one or two small pieces of specimen. In the correction of specimen mass data for atmospheric buoyancy, a density of 3.97 g em⁻³ for α -Al₂O₃ was used. The molar enthalpy values in eolumn 5 were obtained from net heat values (F-C differences from column 3) by division by the applieable specimen mass (eolumn 4).

The present, high-temperature enthalpy results (table 1) and those from [2] in the range 273.15 K to 1173.15 K were represented by a single smoothing function derived by the method of least squares (eq. (3) of [2]). The last two columns of table 1 give the absolute and percent deviation of the present high-temperature data from this equation.

3. Low-Temperature Heat Capacity Data, 8.6 K to 273.15 K

Chang [4] has measured in an automated adiabatic calorimeter [10] the low-temperature heat capacity of α -Al₂O₃ chosen from the same NBS SRM 720 lot as was the material for the high-temperature measurements presented above. A piecewise representation of this low-temperature heat-capacity data, smooth in derivatives to order two, has been obtained using a least-squares spline-fitting technique. The value of this function, as well as its first and second derivatives, match precisely at 273.15 K corresponding values derived from the function [2] representing the enthalpy above 273.15 K.

FIGURE 1. Temperature ranges for spline fit of low-temperature heat-capacity data for Al_2O_3 .

The piecewise representation is illustrated in figure 1., where P1, P2, and P3 are polynomials of the form

$$\sum_{i=0}^{6} \frac{A_i}{i!} (T - T_0)^i \tag{1}$$

 T_0 is a reference temperature, different for each temperature interval.

45.0 K > T
$$\ge$$
 8.61 K; $C_p = \exp(\text{P1}) \text{ J mol}^{-1} \text{ K}^{-1}$; $T_0 =$
8.61 K

$$A_{0} = -0.5147E + 01$$

$$A_{1} = +0.34127E + 00$$

$$A_{2} = -0.333446E - 01$$

$$A_{3} = +0.450764E - 02$$

$$A_{4} = -0.51464E - 03$$

$$A_{5} = +0.397864E - 04$$

$$A_{6} = -0.152136E - 05$$
(1a)

125 K > T \ge 45.0 K; $C_P =$ P2 J mol⁻¹ K⁻¹; $T_o =$ 40.0 K

$$A_{0} = +0.6966E + 00$$

$$A_{1} = +0.59387E - 01$$

$$A_{2} = +0.40357E - 02$$

$$A_{3} = +0.95173E - 04$$

$$A_{4} = -0.35910E - 05$$

$$A_{5} = -0.6498E - 07$$

$$A_{6} = +0.4089E - 08$$
(1b)

73.15 K > T > 125 K;
$$C_{\rho} = P3 \text{ J mol}^{-1} \text{ K}^{-1}$$
; $T_{0} =$
125 K
 $A_{0} = +0.21993E + 02$
 $A_{1} = +0.38853E + 00$
 $A_{2} = +0.13955E - 02$
 $A_{3} = -0.83967E - 04$ (1c)
 $A_{4} = +0.19133E - 05$
 $A_{5} = -0.31778E - 07$
 $\lambda_{6} = +0.29562E - 09$

2

The low-temperature heat-capacity data [4] are represented by these smoothing functions with computed percent standard deviations (S_e) for each of the three fitting intervals as follows:

 $45.0 \text{ K} > T \ge 8.61 \text{ K} \text{ ; } \text{S}_{c} = 0.97$ $125.0 \text{ K} > T \ge 45.0 \text{ K} \text{ ; } \text{S}_{c} = 0.13$ $273.15 \text{ K} > T \ge 125.0 \text{ K} \text{ ; } \text{S}_{c} = 0.05$

According to Chang [4], "It is estimated that the accuracy of the smoothed (low-temperature) values are better than 0.1%at temperatures between 100 and 350 K . . . Below 100 K, the inaccuracy is estimated to become progressively larger, reaching perhaps 1% around 50 K and 10% around 10 K."

Enthalpy of SRM 720 (α-Al₂O₃), 10 K to 2250 K

Smooth heat-capacity values were computed from eqs (1), above. Below 8.6 K, a T³ dependence of heat capacity was assumed. Using these values, the heat-capacity functions were integrated to obtain the absolute enthalpy of α -Al₂O₃ in the temperature range 10 K to 273.15 K. Above 273.15 K, enthalpy and heat-capacity values were derived from the following equation (reproduced for convenience from [2]):

$$H_T - H_{273.15} = AT^{-2} + BT^{-1} + C\ln T + K + DT + ET^2 + FT^3 + GT^4 + HT^5 \,\mathrm{J} \,\mathrm{mol}^{-1} \quad (2)$$

$$A = +6.6253E + 07 \qquad E = -8.57516E - 02$$

$$B = -4.54238E + 06 \qquad F = +4.299063E - 05$$

$$C = -5.475599E + 04 \qquad G = -1.15192E - 08$$

$$K = +2.5819702E + 05 \qquad H = +1.26351E - 12$$

$$D = +2.574076E + 02$$

Table 2 presents these smooth heat-capacity and enthalpy data for α -Al₂O₃.

TABLE 2. Enthalpy and heat capacity of standard reference material 720.

Temp	$H_{\tau} - H_{\rm OK}$	C _p	Тетр.	$H_T - H_{OK}$	C_{p}
к	I mol - 16	I mol ⁻¹ K ⁻¹	к	I mol ⁻¹	I mol ~1 K -1
	•	•	440	2295,	100.6
10	0.023	0.009	450	23965	101.7
15	0.115	0.030,	460	24987	102.6 _H
20	0.364	0.0732	470	2601 _a	103.6
25	0.898	0.14	480	2705	104.4 _H
30	1.905	0.265	490	28108	105.3
35	3.64	0.443	500	29165	106.1_{3}
40	6.46	0.697	510	30230	106.9
45	10.7,	1.046	520	3130 ₃	107.64
50	17.1	1.50,	530	32383	108.35
60	38.1 ₆	2.79 ₃	540	3347 ₀	109.02
70	74.6 ₈	4.592	550	3456_{3}	109.67
80	131.7	6.90 ₁	560	3566 _a	110.2,
90	214.2	9.67 _a	570	3676,	110.8,
100	326. ₆	12.855	580	37881	111.46
110	472.4	16.34 ₇	590	3899 ₈	112.02
120	654.3	20.07	600	4012,	112.5 ₅
130	874.3	23.9 ₅	610	4124,	113.0,
140	1133.7	27.9 ₃	620	42382	113.5 ₅
150	1433.1	31.9 ₅	630	43520	114.02
160	1772. ₇	35.9 ₅	640	4466 ₃	114.40
170	2152. _o	39.9 ₀	650	4581 ₀	114.9 ₂
180	2570. ₃	43.7 ₅	660	4696,	115.3 ₅
190	3026.7	47.5 ₀	670	48117	115.76
200	3519.,	51.1 ₂	680	49276	116.16
210	4048.7	54.6_1	690	5044 ₀	116.5_{5}
220	4611. ₆	57.9 ₅	700	5160 ₇	116.92
230	5207.	61.14	720	5395 ₃	117.64
240	5833.,	64.1 _a	740	5631 ₃	118.32
250	6490. ₃	67.0 ₀	760	5868 ₅	118.96
260	7175.0	69.8 ₂	780	0107	119.5
270	7886.3	72.42	800	0340 ₈	120.14
273.15	8115.6	73.2	820	65876	120.6,
280	8622.8	74.87	840	08295	121.2_1
290 900 15	9365.2 1009	70.0	000	7916	121.7_1
290.13	10020	79.0,	000	7561	122.20
310	10106	(9.4) 915	900	7907	122.06
320	1170	01.31 93.4	920	9053	123.1
330	1264	95.2	940	8301	123.05
340	1350	87.1	080	8540	120.97
350	1438	88.8	1000	8798	124.7
360	1528	90.4	1020	9048	125.1
370	1619	91.9	1040	9299	125.5
380	1711-	93.4.	1060	9550	125.9
390	1806.	94.7-	1080	9802	126.2
400	1901.	96.0	1100	1005.	126.6
410	1998.	97.3	1120	1030	126.9.
420	2096	98.5	1140	1056	127.2
430	2195,	99.6	1160	1081	127.6

TABLE 2. Continued

Temp	$H_T \rightarrow H_{OK}$	C _p	Temp	$H_T - H_{OK}$	C _p
к	J mol-1	J mol ⁻¹ K ⁻¹	К	J mol ⁻¹	J mol ⁻¹ K ⁻¹
1180 1200 1250 1300 1350 1400 1450 1500	$\begin{array}{c} 1107_{40} \\ 1133_{00} \\ 1197_{30} \\ 1262_{00} \\ 1327_{10} \\ 1392_{40} \\ 1458_{10} \\ 1524_{10} \end{array}$	$127.9_4 \\ 128{25} \\ 129{01} \\ 129{74} \\ 130{43} \\ 131{09} \\ 131{70} \\ 132{29} \\ 132{$	1700 1750 1800 1850 1900 1950 2000 2050	$\frac{1790_{80}}{1858_{10}}$ $\frac{1925_{50}}{1993_{20}}$ $\frac{2061_{00}}{2129_{00}}$ $\frac{2197_{20}}{2265_{50}}$	134. ₃₁ 134. ₇₃ 135. ₁₃ 135. ₅₀ 135. ₈₃ 136. ₁₈ 136. ₅₀ 136. ₅₀
1550 1600	1590 ₄₀ 1657 ₀₀	132. ₈₄ 133. ₃₆	2100 2150	2334_{00} 2402_{60}	137. ₁₀ 137. ₄₁
1650	1723 ₈₀	1 33. 85	2200 2250	$\frac{2471_{40}}{2540_{30}}$	137. ₇₃ 138. ₀₆

^a Temperatures expressed on IPTS-68 seale.

^b Molecular Weight = 101.9613.

5. References

- NBS Certificato, Standard Reference Material 720, Synthetic Sapphire (Al₂O₃); August 26, 1970.
- [2] Ditmars, D. A.; Douglas, T. B., J. Res. Nat. Bur. Stand. (U.S.), 75A (Phys. and Chem.), No. 5, 401 (Sept-Oct 1971).
- [3] Furukawa, G. T.; Douglas, T. B.; McCoskey, R. E.; Ginnings, D. C., J. Res. Nat. Bur. Stand. (U.S.), 57, No. 2, 67 (1956) RP2694.
- [4] Chang, S. S., Proceedings of the Seventh Symposium on Thermophysical Properties, ASME; NBS, Gaithersburg, MD., May 10-12, 1977, 83 (1977).
- [5] West, E. D.; Ishihara, S., A ealorimetric determination of the enthalpy of graphite from 1200 to 2600 K in Advances in Thermophysical Properties at Extreme Temperatures and Pressures, p. 146, ASME, New York, (1965). See also NBS Special Publication No. 300. vol. 6, p. 220 (1970).
- [6] Ditmars, D. A.; Cezairliyan, A.; Ishihara, S.; Douglas, T. B.; NBS Special Publication 260-55 (1977).
- [7] Kelley, K. K., "Contributions to the data on theoretical metallurgy, XIII. High-temperature heat-content, heat-capacity, and entropy data for the elements and inorganic compounds," U.S. Bureau of Mines Bulletin. 584, (1960).
- [8] Sterrett, K. F.; Wallace, W. E., J. Am. Chem. Soc. 80, 3176 (1958).
- [9] Reilly, M. L.; Furukawa, G. T., Critical analysis of the heat-capacity data of the literature and evaluation of thermodynamic properties of Cr, Mo, and W from 0 to 300 K, NSRDS-NBS (to be published).
- [10] Chang, S. S., Proceedings of the Seventh Symposium on Thermophysical Properties, ASME; NBS, Gaithersburg, MD., May 10-12, 1977, 75 (1977).