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Given a finite sequence D of nonnegative integers, let M(D) denote its maximum element and SeD) its sum. 
It is known that D is realizable as a degree sequence by some graph if and only if SeD) is even, and by a loopless 
graph if and only if the even integer SeD) - 2M(D) ;;,: O. Here it is shown that if the even integer 2M(D) -
SeD) is positive, then one-half this integer is the minimum number of loops in graphs realizing D, and that the 
minimum-loop realization is unique. These results are extended to a more general loop-cost minimization problem 
in which loops incident at different vertices can have different costs. The possible numbers of loops, in graphs 
realizingD, are also determined. 
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1. Introduction 

This note deals with finite undirected graphs. Our usage of ""graph" permits both loops (edges from a vertex 
to itself) and multiple links (bundles of two or more edges with the same pair of distinct endpoints). The 
degree of vertex v in graph G, denoted dG(v), is the number of incidences upon v of edges of G; here a loop 
is considered to be twice-incident upon its single endpoint. Any enumeration of the set {vJ. of the vertices 

of G gives rise to a sequence {dc(v;)}. of nonnega!ive integers which is called a degree sequence of G; it is 

clearly unique up to permutations. 
Given any sequence D = {d,}~ of nonnegative integers. we set S(D) = 2.; di and M(D) = maxi di• If 

graph G is such that D is a degree sequence of G, we shall say that G realizes D. The theory of such realizations 
(and their analogs for directed graphs) has a considerable literature including papers [1]. [5]-[7]' on topics 
close to the present one; an extensive account is given, for example, in Chapter 6 of Chen [2]. Here we 
require only the two basic results of that theory ([3]. [7]): 

THEOREM A. Sequence D is realized by some graph G if and only ifS(D) (and hence S(D) - 2M(D) is even; 
in that case G can be chosen free of multiple links. 

THEOREM B. Sequence D is realized by some loopless graph if and only ifS(D) is even and 2M(D) '" S(D). 

Our purpose here is to provide explicit statements and a convenient reference for some elementary results, 
probably largely of "'folklore" nature, related to Theorem B. We shall detennine the possible numbers of 
loops in graphs realizing a given sequence D, and also solve an associated loop-cost minimization problem 
in which loops incident at different vertices can have different costs. 

2. Results and Analyses 

Our first objective is to round out the infonnation contained in Theorem B, by presenting the following 

result . 

... AMS Subject Classification: 05C3S, OSA17 
t Department of Mathematical Sciences, The Johns Hopkins University, Baltimore, MD 21218, and Center for Applied Mathematics, National Bureau 

of Standards, Washington, DC 20234. 
I Numbers in brackets indicate literature references at the end or the paper. 

75 



THEOREM 1. If sequence D ha. 2M(D) - SID) = 2L where L ;. a positive integer. t/len D can be realized by 
a unique graph with L loops. but not by a graph with/ewer loops. The "unique graph" has all its loops incident 
at the unique vertex of maximum degree. 

It will be convenient to base this theorem's proof on the following: 

LEMMA. With D as in Theorem 1, any graph which realizes D has at least L loops at its unique vertex of 
maximum degree. 

PROOF (of Lemma): (a) Let G be a graph which realizes D; choose the numbering so that M(D) = d,. Since 
2M(D) > S(D). v, will be the only vertex of maximum degree. Suppose G has L, loops at v,. 

(b) By Euler's handshaking lemma, the number of edges of Gis S(D)/2. Of these, the S(D)/2 - L, which 
are not loops at VI each have at least one endpoint in {vJz. and so each contributes either 1 or 2 to the sum 

~~ d, = S(D) - M(D). It follows that S(D)/2 - L, ". S(D) - M(D), yielding 

L, '" M(D) - S(D)/2 = L. 

PROOF (of Theorem 1): (a) By the Lemma, no graph which realizes D can have fewer than L loops. 

(b) Choose the numbering so that M(D) = d,. Then a graph with L loops, which realizes D, is obtained 
by placing L loops at VI and drawing di edges from VI to Vi for 2 ~ i ~ n; the correctness of this graph's 
degree at VI follows from 

L:; d, + 2L = S(D) - M(D) + 2L = M(D) = d,. 

(c) Now let G be any graph which realizes D and hOb exactly L loops; by the Lemma, all these loops are 
incident at VI' Let dt be the number of edges from VI (0 Vi in G. for 2 ~ i ::s;: n. Then on the one hand 

~~ dt = d, - 2L = ~~ d" and on the other hand dt ". d, for 2 ". i ". n. It follows that dt = d, for f. ". 
i ::s;: n, so that G coincides with the graph constructed in (b). This completes the proof of Theorem L 

We turn now to a more general problem. Suppose given a sequence C = {ct}i of nonnegative real numbers, 

and interpret Ci as the "cost" per loop incident at Vi; i.e., if graph G with vertex-set {Vi}~ has Ai loops attached 

at Vi' then the total loop-cost of G is ~~ ci Ai' We seek a graph G which realizes a given sequence D as 

degree-sequence, and does so at minimum total loop-cost. (Theorem 1 treated the special case in which all 
c, = 1.) 

By Theorem A, this problem has a solution if and only if S(D) - 2M(D) is even. When this is the case 
and 2M(D) ". S(D), it follows from Theorem B that the optimal solution is found as a loopless graph realizing 
D. The remaining possibility is resolved by the following theorem, which shows that the solution is essentially 
independent of the cost-stnwture C. 

THEOREM 2. Suppose 2M(D) - SID) = 2L where L is a positive integer. Then an optimal solution. unique if 
all Ci > 0, is given by the "unique graph" a/THEOREM 1. 

PROOF: This is an immediate consequence of the Lemma and Theorem 1. 
The uniqueness assertions in Theorems 1 and 2 bear the same relation to uniqueness results by Hakimi 

[4J. Owens and Trent [7J and Senior [8J, as do the remaining assertions of Theorems 1 and 2 to Theorem 
B. 

Finally, we wish to detennine the possible numbers of loops in graphs which realize a given sequence D. 
Theorem B and Theorem 1 specify the minimum of these numbers; it remains to specify their maximum, and 
to ascertain which values between the two can actually arise. To this end it is convenient to define, for D 
= {dJI' Odd (D) to be the cardinality of {i: d, is odd}. 
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THEOREM 3. Sequence D, with its number of positive entries different from 2 and with S(D) even, is realized 
by a graph with precisely k loops if and only if2k lies between max (0, 2M(D) - 5(D)) and 5(D) - Odd(D) 
inclusive. 
PROOF: (a) Theorems Band 1 give max(O, 2M(D) - S(D)) as the minimum possible value for 2k. 

(b) From D = {dJ'i we determine a sequence .6. = {OJ}'i of nonnegative integers as follows: by requiring 

d, = 28, + 1 if d, is odd, d, = 28, if d, is even. Then S(D) = 2S(il) + Odd(D), so that Odd(D) is even. 
Clearly any graph with vertex-set {vJ'i that realizes D can have at most 0i loops incident at Vi' thus at most 

S(il) = (S(D) - Odd(D))/2100ps in all. This upper bound is achieved by affifching 8, loops to v, for l,;;;i';;;n, 
pairing off in any way the members of the even-cardinality set {Vi: di is odd} counted by Odd(D), and joining 
the vertices in each pair by a single edge. So S(D) - Odd(D) is indeed the maximum value for 2k. 

(c) Beginning with the graph constructed in (b), repeat the following step as long as possible, producing 
a sequence of graphs each realizing D and having one fewer loop than its predecessor: if the current graph 
has three distinct vertices,vi , VP' Vq such that Vi bears a loop e and some edge e joins vp and vq• then replace 
e and e by a pair of edges from Vi to vp and to Vq respectively. 

Let G be the graph with which this process terminates and let hj be the number of loops of G at V1' (l:!S:.j:!S:.n), 
for a total of k loops. If k=O, we are done, so assume k>O. For any vertex Vj such that Aj>O, it follows from 
the construction of G that 

(*) 

It follows that there is either just one such vertex, say v., or else exactly two, say VI and V2 , with d l 2h} 
= d2 - 2h2 and with dj = 21\.1' = 0 for all j>2. The latter case is ruled out by the theorem's hypothesis 
on D. In the former case, (*) yields 

from which it readily follows that 

2d, - S(D) = 2M(D) - S(D); 

again we are done. 
It only remains to treat the exceptional case excluded by the hypothesis of Theorem 3. 

THEOREM 4. Sequence D, with exactly two positive entries and with S(D) even, is realized by a graph with 
precisely k loops if and only if2k lies between 2M(D) - 5(D) and 5(D) - Odd(D) inclusive and 2k == 2M(D) 
- 5(D) (mad 4). 

PROOF: (a) Number so that dl and d2 , with dl ~ d2 , are the two positive entries of D. Since S(D) = dl + 
d2 is even, d l and d2 have the same parity; Odd(D) is 2 or 0 according as the parity is odd or even. 

(b) The arguments in (a) and (b) of Theorem 3's proof still apply, to show that S(D) - Odd(D) and 2M(D) 
- S(D) are respectively double the maximum and minimum numbers of loops in graphs that realize D. These 
extreme values of 2k differ by 2d2 - Odd(D), a multiple of 4. 

(c) D.<;!fine .6. = {ojH as in the proof of Theorem 3. Form a graph realizing D which has 01 loops incident 

at VI' O2 loops incident at v2 , and Odd(D) edges between VI and v2 • Then repeat the following step as long 
as possible, producing a sequence of graphs each realizing D and having two fewer loops (hence, a value of 
2k less by 4) than its predecessor: if the current graph has loops at both VI and v2 , then delete 'one loop at 
each of these vertices and replace them by two new edges between VI and v2 • 

The final graph in this process has a number k of loops (all at VI) given by 

2k = 2(8, - 82 ) = d, - d2 = 2M(D) - S(D). 

Thus all values of 2k identified in Theorem 4's statement are indeed achieved. 
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(d) To show that no other values can be achieved, consider any graph realizing D, with A.j loops at Vj 

(j = 1,2) for a total of k = A.. + ~ loops. Counting the edges from v. to V2 in two different ways (by incidences 
on VJ and by incidences on v2) yields the relation d. - 2A.. = t4 - 2A.2, so that 

thus the residue of 2k (mod 4) is as stated in the theorem. 
The following observation is included for completeness. Let A.c(v) denote the number of loops incident on 

vertex v in graph G with vertex-set {vJj; then A(G) = {A.c;(v;)}i is the loop-sequence of G corresponding to 

this enumeration of the vertices. Given a pair (D,A) of sequences D = {dJi and A = {A.Ji of nonnegative 

integers, it is natural to ask whether there exists a graph G with D = D(G) and A = A(G). But this is the 
case if and only if D - 2A = {dj - 2A.Ji is the degree sequence of a loopless graph, and a necessary and 

sufficient condition for that to hold is found by applying Theorem B to D - 2A. 
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