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For the errrs in variables model X = U + V, Y = Of(U) + W, sufficient conditions are given for the L. S.

limiting estimate of I to satisfy POP < 1) = 1 or Pl/ > 1) = 1 as the sample size tends to infinity.
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The problem of linear regression when both variables are subject to error is known to be difficult, see

Madansky [1],' and Moran [2]. In particular under general conditions there is no consistent estimator for ,3

in the model (1.1), (1.2) below based upon only the first two moments of X and Y. Let

X =U+V (1.1)

Y = jf(U) + W, where (1.2)

U, V, and W are unobservable independent random variables with EV = EW =0. In addition 13 is an unknown

constant andf is a given function. We suppose that EX2 and Ey 2 are finite. This is known as the structural

form of the errors in variables problem. Since there is a great deal of confusion in the literature between the

case when U is a random variable and when U is not (the functional case), only the structural case is dealt

with directly. Parallel results for the functional case can be obtained in a straightforward manner. These

results will, however, restrict the values that a sequence of constants U. . . ., U. can take.

The least squares estimate of B is, of course,

1 = 2 Yif(X,)/X (f(X,))2 (2)

where the observable random pairs (XI, Yj) i= 1, . . , n, are independent and have the same joint distribution

as X and Y, see (1.1) and (1.2). It is well known that when 13 7 0, andf(X) = X that

P( < 1) >1 as no t. (3)

(The least squares estimate is biased toward zero.)

It is also known (see Kendall and Stuart [3]) that for f(X) = Xk, (k = 1, 2, . . .), and X and Y are normal

that result (3) holds. However until now general conditions under which (3) holds were not available. We

give sufficient conditions under which either (3) (Theorem 1) or the opposite result (Theorem 2)

P > 1) > as n -* holds. (4)

While the author has not found these two results in the literature he believes that they may be well known

by somebody.
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Figurac in brackets indicate literre references at the end of this paper
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THEOREM 1. If f(X)2 is convex and not constant a.s. then (3) holds for 1 #i 0.

PROOF:

0 Xf(U.)f(X,)
=, Y73(X,)-

1I X-Wf(X~)
1 Mm2f(xj

= off(U)f(x) + 0 (c-1/2)
7Xf(X2

Sincef2(X) is convex it follows by Jensen's inequality that

Ef(X) 2 a E(f(E[XIU]))2 = Ef(U) 2

From another application of Jensen's inequality we have

Ef(X) 2 > E(E[f(X)IU])2

(6)

(7)

In addition notice that

Ef (U)f(X) = E(f(U)EVf(X)IU)]
b e E(yj(U)hEhLf(X)iU]) -T (Erf(U)2)E(Ey.(X)eU])2)e62

by the Cauchy-Swartz inequality. Therefore by (6) and (7)

(Ef(X)2)2 > (Ef(U)f(X))2

which implies that

Ef (X)2 > Ef(U)f(X)

The theorem now follows by applying the strong law of large numbers to the terms

n in (4).

-f(U)f(X 1)
n and

If f 2 is not convex a positive 1 may be overestimated. Theorem 2 provides the necessary support for this
statement.

THEOREM 2. 1fI has two continuous derivatives and satisfies

> (f'(z))' ~~~~~~~~~~~(8)
2

for z in some interval I then there exists distributions for U, V, and W such that (4) holds.

PROOF: Following statements in the proof of Theorem I it is sufficient to show that there exists distributions
for U, V, and W such that

Ef(U)f(X) > Ef(X)2.

Sincef has two continuous derivatives it follows that

f(X) = A(U) + f'(U)V + PA(O )
2

f(X) 2 = f(U)2 + 2f(U)f'(U)V + Vf'((2)f(02) + (f'(E2))2]V2

where 6, and 02 are points between U and V.
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Take uo to be in I. Let m be any point such that

inf Af(Uoyf"(zi) _ f(z)f'(z 2 ) > (f'(Z2))2. ()
u I.+- 2

Such a point Tr exists becausef' is continuous, and (8) holds by hypothesis. Take V to have a two point
distribution

P(V='q) = P(V= - q) = 1/2.

Then

EVf(uo)f(X) - 2(X))

= f(uo)(f(u,) + ET(O) 11i ) - [f(%)2 + E(rf(62)f(62) + f'(62 )2) > 0.

Finally we note that, since this last inequality is strict, U may have uniform distribution in a narrow interval
around the chosen point U,.

EXAMPLE 1: Let f(X) = Xa, X > 0. Then, if 0! B 1/2 the conditions of Theorem 1 are satisfied. On the
other hand if at < 1/3, the conditions of Theorem 2 are satisfied. This example is important for NBS standards
work for concrete strength, see [4]. (However, the functional case is appropriate.) It is also important for
background characterization in x-ray spectroscopy.

EXAMPLE 2: The conditions of theorem 2 are not necessary. Iff(X) satisfies condition (8) for Z a rational
number in the unit interval and arbitrary elsewhere, then the proof of Theorem 2 can be used to construct
distributions such that (4) holds.

COMMENT 1: The conditions of Theorems 1 and 2 can be used to check parameters are estimated in the
new model.

X as in 1.1 (1.3)

Y' = Yajhj(U) + W (for example hj(x)=xi-')

by considering orthogonalized hj's, see Ferguson [5]. Since (X-at) 2 is always convex Theorem I holds for
the slope in the linear case when a constant term is in the model (1.1), (1.3).

COMMENT 2: While the results given here directly relate to the property of being biased toward or away
from the origin they do not relate to attenuation of slope. Attenuation requires the extra condition that

EQ'> o) I~* as n-* oc

To see that this extra condition may fail in Theorem I take

f(x) = x2 - 2cx, where c is a fixed positive constant,

P(O G U c C) = 1, and P(IVI > 4c) = 1.
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