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We consider the problem, arising in nuclear spectroscopy. of estimating peak areas in the presence of a
baseline of unknown shape. We analyze a procedure that chooses the baseline to be as smooth as is consistent
with the data and note that the estimates have a certain minimax optimality. Expressions are developed for the
systematic and random emors of the estimate, and some large sample approximations am derived. Procedures for
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1. Introduction

The estimation of peak area in the presence of a baseline of unknown shape is a common problem in

nuclear and other spectroscopies. In this paper we analyze some of the properties of a generalization of a

procedure proposed by Currie [2]' and note that the procedure has a certain minimax optimality.

We first introduce the problem and some notation. We suppose that counts are accumulated in n channels

over a length of time T, and that the total number of counts has mean p, = vT, where v = mean counting

rate per unit time. We let y, denote the proportional count in the j'b channel, i.e. the total count in the j"'

channel divided by >, and we assume that

v; = P.,.j + + Ej j =1..

Here, r = ('Y1 .. , yn)f is a vector representing a peak shape, which is assumed known (F might be

known from theory or from measurement of pure specimens, for example), P. is its unknown amplitude, which

we wish to determine, and Pi, is the unknown baseline mean in the j'" channel. The 6;s are random counting

errors with mean zero and nonsingular covariance matrix L- W-' where W is a matrix which is assumed to

be known. (In applications, W is typically estimated rather than known. An application of the 8-method [7]

to the perturbation thus introduced shows that the asymptotic means and variances are unchanged.) In vector

notation the model can be written

Y= [r:i]p + e

= AP3 + e

where Y = (yr,..., yj)T P3 = (Po, j3,,... Pj3)T and e = (e 1 . .., en)T. We note that this model is

underdetermined, and that even in the limit, with no counting error, there is no unique solution for ,4.

Currie [2] proposed estimating &5 by forcing the baseline to be as smooth as is consistent with the data (in

sense explained below), taking as measures of smoothness
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a-I
S= E (P i - 3+,)

.- 1=

or

n-2

S2= 2 (p3i - 2,Bj+1 + 13+2)
2

j=l

or generally

n-k
Sk = E (A'p$)2

J,1

where A is a differencing operator. The estimate 5 is formed by minimizing Sk subject to the constraint

(Y-Aj)TW(Y-A1) =

where the constraint c is obtained from the x2 distribution. Using the technique of Lagrange multipliers, the
solution is found to be

X = (AIWA + XUrU)-'A T WY

when X is chosen to force 1i to satisfy the constraint and Sk is expressed as

Sk = - 112311.

By considering numerical examples, Currie reached some empirical conclusions about the statistical behavior
of the method, with special attention to the bias, or systematic error, of the method.

Techniques of this kind have been used in solving ill-posed problems such as integral equations of the
first kind [1] and in smoothing data via smoothing splines [8, 11]. Motivated by such problems, Kuks and
Olman [5] and Speckman [9] have considered the problem of estimating a linear functional hTP by linear
functionals of the data, eY. Their result is the following: Consider the linear model

Y = AP3 + e

where E has a nonsingular covariance matrix a2W1, and assume that IUR111312 > a 2 for some matrix U such
that N(U) n N(A) = 4) (N(A) = null space of A). Then the estimate e~Y for which

E(CWY-hT13)2 = min max E (e4TY -hrP)2

e 11U11112 < a2

is unique and is given by

eATY= h"(ATWA + (crtLc2 )UTU)-'AT WY.

Identifying A with cr2/a 2 this solution is seen to be formally the same as the estimate proposed by Curre
for estimating the peak amplitude P.o = (1, 0 . . . 0),. An operational difference is that the minimax
theorem assumes the smoothness parameter a2 to be known, whereas Currie implicitly estimates it from the
data. It should be noted that the estimate is minimax for estimating any single linear functional but is not
generally minimax for estimating several linear functionals simultaneously [10].

In the next section we will consider the more general problem of several peaks of known shape and unknown

amplitudes, superposed on an unknown baseline (Currie considered only the single peak case). We will
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develop expressions for the bias and variance of the amplitude estimates and limiting approximations as the
expected total count j±-*w which give some insight into the properties of the method. In section 4 a procedure
for choosing A from the data is discussed and is illustrated by some simulations.

2. Bias and variance

In this section we will assume the following, multi-peak model:

Y = ,P11rl + ***+ SPj, + 82 + E

= [rdl] 1 + g

= AP + e

where Y is an n-vector, r = [ r,, . . . Ir], 2 = (021, . . ., I 2 )r is the vector of mean background
counts, Or = (PlT, p2, and E is a vector of random errors with nonsingular covariance matrix p, tW- 1. We

will derive expressions for the bias and variance of the estimate

p = (ArWA + AXUU)-IATWY

when U is of the form

U =
(A+p-A) x (nA+-p)

and thus UT1 is of the form

uTu
(A + P) . (n-p)

0 o
pxp pxn

0 U, I

(n-k)xp (n-k)xn

E Q

0 D ,
_pp nxn_

where

D = UfUl

(D is not diagonal) and A = I/Ipc2 is given. If A is estimated from the data these expressions are conditional
on A. The unconditional bias and variance are different.

We will focus attention on the estimate B, of the vector of peak amplitudes, which is of primary interest.
It is thus useful to partition the matrix (ATWA + AUTO- 1:

-= [Wr W+ADJ

= Bi
IB21

B12

B22z

From an identity for the inverse of a partitioned matrix [7],

Be] = (r Twr) -' + (r TWr)- r TWWJW+ AD - wr(r Tw') - 'rFTW - 'wr1(ruWr) -

= C0'+G-1 0TR-1 0G-0
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where G = (IrrWr), 0 = Wr, and R is the matrix given in square brackets. With this notation,

B,2 = -G-IOTR- I

B,2 = B2'1; we will not need B22 . Now,

EB = (ATWA+AUU)-lATWAI3

and

ArWAP - Frwrp, + rrwo32
[WrF ± + WBZ J

- [GP, + O± 0T
IOPI + WP2 j 

so that

E3, = (G-I+G-'OTR-iOG-I)(G3,+OT 02) - G-0TR-l (01,+W3 ).

We thus have, after simplification, an expression for the bias of B.:

B, - EB, = - G-10T[I - R-'(W - OG-'efl]j2. (1)

Note that the bias does not involve 13 and that the derivation of the bias expression has not assumed that

IL-'W-I is the true covariance matrix of the random errors. In the appendix it is shown that the bias is zero

if U112 = O.
A simple bound for the bias may be obtained as follows: from the expression above, the squared bias for

a particular component fl, say, may be written in the form

11,k -EB = =JrT12I2

Let P = U11 (UUO)- U, be the matrix which projects onto N(U1), let Q = I - P project onto N(U,), and

express PI = PB2 + QP,. Noting from above that rTQP, = 0, we may write

IrTP2 12 = rUT (U 1UD-UD B1 2

'iii tsup IrTUTR(UIUD-'U 132
(P2 : IIU,13211

2 C0
2
)

= a21J1T(ULf~l2UTI2zur

We now consider the variance of the estimate. Under the assumption that the covariance matrix of the

errors is p-'W-', it is immediate that the covariance matrix of 1 is

I = A- '(ATWA + XUTU) - lATWA(ATWA + AUU)-'

In an appendix it is shown how this matrix may be partitioned and that the covariance matrix of B, can

be expressed as

p,-F = (2)

where
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F = W-"2 [-(W-OG-'DD)R-lOEG-1

and W"2 is the symmetric square root of W.

We will now develop approximations to the bias and F., for large samples by examining their behavior as

T and thus ta-m and A-O. The expressions for 1,, and the bias both involve the matrix

I - R-'(W-OG-'OT) = I - [w+xD- wr(rrwr)-vriwv- (w- wr(r1w -'yrI )

As A-0o, RpW- Wr(rrwr)W -irTW, but this matrix is singular (the null space is spanned by r .,...,

d*. A further complication is that 1) will typically not be of full rank (for example, D may annihilate constant

and linear functions). However, our assumption that N(U) nN(A) = ¢ guarantees that D'j * 0j=1..

p and thus that the matrix R is invertible. In the appendix we prove the following:

LEMMA. Suppose the C is an nxn non-negative definite matrix with p dimensional null space spanned by

v, . . . vp. Suppose that D is another nrn non-negative definite matrix and that N(C)flN(D) = (P. Then as

A-_0

I - (C + XD)-yC = V(VTDV)-'VTD + O(X)

where V = [v ... , vj] is an nxp matrix.

Applying thislemma to the expressions for!l, and the bias of J3C, with W- WI(FWTr)- irrW corresponding

to C and r corresponding to V we have,

COROLLABY: Under the assumptions of our linear model, as X-A O -D *),

P,-E01 = - (rT&r)-'frDP,2 +o(A) (1)

1±12, = (rrDr)-1(rTDw-1D'r)(rfDr)- + 0(A). (2)

The expression for the bias is simpler to understand if we write it as

3, -e, E - [(,r)r(,r)]-' (u r)T(u432)

and keep in mind that U,, is a differencing operator. The bias is determined by the relationships of the

vectors UlrJ,, j= 1, . . ., p and U11,1. If the baseline 12 is quite smooth U1, will be small. If a particular

peak shape ri does not overlap any other peaks then the limiting (IL1 -.x) bias of the estimate of its amplitude

is simply

(U- r)(U d2) a
P li -o Pli I-U,rg112 Urj

which follows from the rule for the inverse of a partitioned matrix and the Cauchy-Schwartz inequality. The

large components of Ul7j will be those near the peak center and if the true background fez is smooth in this

region, the bias will be small.

When two peaks overlap substantially, however, the bias will typically be worse than the bias if either one

of the peaks were absent, since corresponding elements of the matrix [(Ur)r(Ujr)]-, will be large.

Finally, we note that this limiting bias does not depend on the weighting matrix W and that it depends

linearly on the baseline proportion.

The variance of the estimate p1 of a peak amplitude can also be expressed simply in the case that the

matrix W is diagonal and the peak does not overlap other peaks:

Var(fL) a (Uyr.)Tu1w- UIr(U,r.)

but in the case that there is considerable peak overlap the variance may be inflated considerably.
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It is of some interest to consider the relative size of the bins to the standard error and to understand

qualitatively how this is affected by varying the baseline amplitude. To this end we consider a single peak

model with a peak shape standardized so that yYj = I and a standard baseline profile with 2131 = 1. Any
j=i

mixture of this peakshape and background profile with peak proportion Po and background proportion I -Po

can be expressed as Por + (1- Po)P, where 0 6 pO < 1. Denoting Dr by V = (VI . . . ljV and taking
W- = diag (POyj + (1- PI)Pj). the appropriate bias (B) and standard error (a) of Pc given by the equations

above are

IB1 = (i -Po) Vip13/Viyj

r , [( 1 P.) EVAp + p% ' ... I'Fly

From these expressions we may make some observations that agree with observations made by Currie on the

basis of empirical experiments: (1) The bias is proportional to the background proportion; (2) For small values

of Po the standard error is proportional to the square root of the background proportion; (3) Since 1VpjPi is

typically less than XV~y;, the standard error increases with increasing peak area proportion.

We conclude this section with a brief consideration of the problem of mis-specification of F. Suppose that

the true peak profile is F. = r + Sr; from calculations similar to those done above for the bias, we find that

the additional bias introduced by Sr is

G-1 eT [I-R-'(w-eG-'E T )]F1rp,

which, as it-, tends to

(rFDF)-' (r TDsr),1.

In the single peak case, the Cauchy-Schwarz inequality shows that this quantity is bounded in absolute value

by pjiijU8raij/1Urli. Thus a variation Sr such that U1BF is highly correlated with UI' will give rise to a

relatively large bias proportional to the peak amplitude.

3. Choosing A

If the parameter a 2 is known, the minimax A is A = 1/1±a2
. In the absence of this knowledge, A must be

chosen from the data. In this section we discuss a class of such procedures and illustrate them with examples.

Given a non-negative definite matrix B, one might attempt to choose A to minimize

E(Y(A) -EY) TB (Y'(A) - EY) = ET,(A)

where

f(X) = A(ATWA + AUTU)-IArWY

= A(X)Y.

ETB(X) is a weighted mean-square error. This quantity may be estimated from the data by using

RSS11(A) = (Y - V(x))TB (Y-Y(A)).
= yr (I-A(A)) TB (I-A(k))Y
= Y TGY.
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The expectation of RSS1 (A) can be computed to be

ERSSB(A) = ETB(A) + pL-'tr (BW-') - 2p-1 tr (BA(A)W-')

and thus an unbiased estimate of ETB(A) is

PB(X) = RSSB(A) - pU-tr (BW-1 ) + 2pctr (BA(T)WW')

We note that if Y follows a Gaussian distribution, then

Eart(A) = 2 j.- 2tr (CO- 1)2 + 4 pt-I (AP)rGW- 1 AP

For a given B we propose choosing A to minimize fB(A) . (Similar procedures with B = I have been discussed

in [3, 6].)
If it were possible, we might choose B so that ETB(A) = E111P - pf(A)JJ2, the total mean square error of

the estimates of the peak amplitudes. However, if we write

EY= [r:i][p31P

ET,(A) may be expressed as

ETB(A) =E(Pt - 31 (A))f T BrF (p1 -

+ E(P,- I,(A))TB (P, - 0V(A))

+ 2E(p, - 01(A))TrTB (P2 - O2(A))

from which it is apparent that it is imposible to choose B so that the second two terms vanish and the first

does not.
We have experimented with three choices of B: B1 =I, B 2 =r(rrr)-lrT and B= r(F(rTr)-2rr. B2 is the

matrix which projects onto the column space of r; the motivation for choosing B2 is that P2 - P32(A) will

hopefully not be highly correlated with the columns of r and thus the second two terms will be small and

the first term will dominate. Choosing B, reduces the first term to E111P - PA(A)112 and hopefully causes the

other terms to be small. A disadvantage in using B2 or B3 is that if there are two or more peaks with
considerable overlap, the variance of ?B(X) may be rather large, causing the procedure to be rather unstable.

Currie suggests choosing A so that RSS,(A) = nij/. The motivation for this is that p,-RSS, would follow

a chi-square distribution with n degrees of freedom if EY(A) = EY and no parameters were estimated from

the data. In fact, however, parameters have been estimated from the data, although it is not clear how many

"degrees of freedom" remain, and EY(A) $ EY. Thus the application of the x2 distribution is questionable.

The procedure outlined above with B = W would choose A to minimize

Tw(A) = RSSw(X) - n&'- + 2p'-' trA(A)

which would cause RSSW(A) to be somewhat smaller than n/pt. (In a vague sense, the "degrees of freedom"

of the Chi-square statistic are reduced.)
We now briefly discuss the results of some simulations of this technique. The configurations are the

following: (1) two slightly overlapping peaks on a linear baseline, (2) the same peaks on a quadratic baseline,

(3) two highly overlapped peaks on a quadratic baseline, and (4) a single peak on a quadratic baseline which

also contains a small "unsuspected" peak obscured by the dominant peak. All the simulations were done

over a width of 20 channels with a total count it = iO. The sum of squared second differences was used

as the smoothness measure. Computations were done on the Univac 1100 at the National Bureau of Standards.

Subroutines from the IMSL library were used to generate random numbers and for matrix calculations. The

most numerically sensitive calculation is the inversion of the matrix ATWA + AUTU, which in theory is
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positive definite; however, the matrix may be for practical purposes numerically singular for very small or

very large values of A, so it is important that a good algorithm be used and that diagnostic messages be

printed when instabilities arise. (An alternative to actually forming and inverting this matrix is to simultaneously

diagonalize ATWA and U£U; having done this once, (ATWA + AUrU)-' may be computed quite rapidly for

various values of A.)

1. Two peaks on a linear baseline; the peak shapes were Gaussian with locations at channels 8 and 12

and standard deviations 1.5. Each peak contained 30 percent of the total area. The baseline was Pi =

c(l + j) where c was chosen so that the baseline area was 40 percent. For this configuration the optimal

(minimum variance unbiased) method of peak area estimation is weighted linear least squares; we are interested

in seeing what "price" has to be paid for the additional flexibility of the smoothing method in this null case.

Table la shows the bias, variance, and total mean square error of the peak area estimates for various values

of A. From the table we see that ETB decreases as A increases (for A greater than 107 numerial problems

develop). For A = 105 the variance is very close to that for the linear least squares.

TABLE i.

X Bias Pj3, Var Bias P,2 Var %, Total MSE ETB, x 10 EMR2 x lO 5 ETB, X 10

100 0 0.559(-4) 0 0.593(-4) 0.115(-3) 0.664 0.180 0.985

10' 0 .315(-4) 0 .345(-4) .660(-4) .404 .178 .975

10' 0 .108(-4) 0 .126(-4) .234(-4) .278 .176 .963

103 0 .692(-5) 0 .772(-5) .146(-4) .237 .175 .956

10' 0 .519(-5) 0 .596(-5) .111(-4) .217 .174 .952

105 0 .487(- 5) 0 .575(- 5) .106(-4) .214 .174 .951

least 0 .486(-5) 0 .575(-4) .106(-4)

squares

(XA= ) I I I

Table lb shows the results for one realization with random Poisson noise added. As stated above, the total

count was 105. PB, is minimized at A = 103 and TB2 and PB3 are minimized at A = 105. (In this and in the

later simulations in which noise was added, the weighting matrix W was estimated from the data.)

TABLE lb.

X , 012 TB, X 101 TB2X 101 TB3X x10o

10° 0.295 0.298 0.692 0.180 0.984
10' .295 .299 .515 .178 .972
102 .297 .302 .389 .173 .948
103 .299 .302 .340 .171 .942
10' .299 .300 .370 .171 .933
105 .299 .300 .381 .170 .932

2. Two peaks on a quadratic baseline-the peaks were as above and the background was Pj = c(l + j

+ j2/20) above c was chosen so that YPj = 0.4. This shape deviates only slightly from a linear baseline.

Table 2a exhibits the biases, variance, and total mean square error for various values of A; as A increases

the variance decreases and the bias increases. For this discretization the minimum total mean square error

occurs for A = 350 (MSE = .17 X 10-4). The mean square error for the least squares method is much

larger, being dominated by the bias (MSE = 0.42 x 10-3). The minima of ETBJ, ETB2 , and ETB3 occur

at A = 250, 450, and 550 respectively, over which range the MSE does not change appreciably.

Table 2b summarizes the results of a single realization with random Poisson noise. B, TB2, and TB3 are

minimized at A = 350, 250 (or 350), and 350, respectively. It is noteworthy that the estimates do not change

substantially over the tabulated range of A. Other realizations gave similar results.

For this example there is little difference in the results for B1, B2, or B 3 -any choice would give satisfactory

results. B is somewhat easier to compute.
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TABLE 2a.

Total
A Bias B, Bias 8,Var B,, Var Ou MSE x 10' ETB, x 105 ETB, x 105 ETB, x 105

50 -0.327(- 4) - 0.291(- 4) 0.144(-4) 0.169(-4) 0.312 0.304 0.174 0.949
150 - .649(-4) - .185(-4) .899(-5) .111(- 4) .201 .272 .173 .944
250 .245(- 3) .468(-3) .787(-5) .976(-5) .179 .266 .1723 .942
350 .448(-3) .750(-3) .740(- 5) .911(-5) .1727 .267 .17219 .9413
450 .658(-3) .102(- 2) .714(- 5) .868(-5) .1728 .270 .17216 .94099
550 .867(-3) .127(- 2) .696(- 5) .836(- 5) .177 .275 .17218 .94097
650 .107(-2) .151(- 2) .684(- 5) .811(- 5) .184 .281 .17225 .94117
750 .128(-2) .173(-2) .673(- 5) .791(- 5) .193 .288 .1723 .942
850 .148(- 2) .195(-2) .665(- 5) .774 - 5) .204 .296 .173 .942
950 .167(-2) .215(-2) .657(- 5) .759(- 5) .216 .304 .173 .943
least .156(- 1) .128(-1) .465(- 5) .579(- 5) 4.19

squares
(A = W

TABLE 2b.

x TB, i TBX105 TR2 X 105 TR, X 105

50 0.300 0.305 0.256 0.173 0.945
150 .299 .303 .206 .1721 .9415
250 .299 .302 .196 .17190 .9405
350 .298 .302 .195 .17190 .9404
450 .298 .301 .199 .17196 .9406
550 .298 .301 .205 .1721 .9409
650 .298 .301 .213 .1722 .9412
750 .297 .300 .222 .1723 .9416
850 .297 .300 .232 .1724 .9421
950 .297 .300 .242 .173 .943

3. Two peaks on a quadratic baseline; the peaks were
so that there was no trough between them when they were

close enough together (centers 9, 11, o = 1.5)
superimposed. The peak areas were 0.3 and 0.3

again and the baseline was as in the previous example. On a grid of A values spaced linearly by 150 the
minimum MSE occurred at A = 800 (MSE = 0.20610 X 10-4); the minimum of ETBI was at A = 350
(MSE = 0.213 X 10-4); the minimum of ETB 2 was at A = 650 (MSE = 0.20611 X 10-4); the minimum
of ETB3 was at A = 950 (MSE = 0.207 X 10-4). The MSE for a linear least squares fit was 0.241 X

o - 3
. Table 3 records the minimizing values of A for Bt, B2, and B3, and the corresponding MSE's for.

4 realizations. The results suggest that MBI may be a more stable criterion function in this situation, but we
would not wish to make a conclusion on the basis of a sample size of 4!

TABLE 3. Minimiing values of A and corresponding MSE's for four realizations.

TB, TB, TI,

I 5O(279X/0- 4) 1400(217X 10)- 1300(217xIo- 4 )
2 500(208 x 10') 3000(288 x 10-4) 2150(246 X 10-')
3 500(208 x 10-') 1100(210 x 10-" 2600(267 X 10-4)
4 950(207)x 10`) 5000(407X 10-l) 6500(501 X 10-4)

4. A single peak (center = 10, ta = 2) on a quadratic baseline with a hidden peak centered at 12 with
standard deviation 2. The peak area of the dominant peak was 0.8 and the area of the hidden peak was 0.02.
In an attempt to mimic a situation in which the hidden peak is unsuspected, a single peak model was fit.
The behaviors of ETB,, ETB2, and ETB3 were somewhat different. ETB1 had a minima at A = 10 (MSE =
0.55 X 10-4) whereas ETB2 and ETBJ had minimum at A = 104 (MSE = 0.96 X 10-4). The MSE was
minimum at A = 107 (MSE = 0.18 X 10-4). The MSE of the linear least squares procedure was 0.21 X
10-4. The reason that ETB1 was minimized for a smaller value of A is that this criterion gives greater weight
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to fitting the baseline as well as the peak than do the other two, which concentrate more on the peak. The

baseline (which includes the hidden peak) is fit well with small values of A since it is not very smooth. Since

the hidden peak has substantial correlation with the modelled peak, however, B2 and B3 fail to choose A

large enough.

On several realizations with random noise PBI achieved a minimum at small values of A and PB2 and PB3
at larger values of A. On some occasions TB2 and PB3 also had local minima at small values of A. Figure 1

shows the estimated baseline for A = 20, which was the attained minimum for TBI on a particular realization.

The unsuspected peak shows quite clearly, giving valuable diagnostic information! The estimated baseline

for the larger value of A = 104 at which TB2 and TB3 were minimized smooths over the peak (fig. 2). We

also plotted residuals on a square root scale to stabilize the variance, y; = %-Ay. Figure 3 shows

the residual plot for A = 104; there is a hint of a discrepancy near channel 12.

Estimat6d Background (A= 20)

-2!LO X 10

1.1 K 10

1.1 X10 3

1

1.9X 1-2

1.0 x 10o2

75 X 10-4

20
Channel

FIGURE 1.

Estimated Background (A= 104)

1 20
Channel

FCOURE 2.
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Rooted Residuals (A= 10 4

3.2 x 10 3 X X

-1.5 x 10 3 X X X X

. . X~~~~

-6.2x 10 '3 X

1 20
Channel

FIGURE 3.

If the hidden peak is incorporated into the model, the total MSE, ETB,, ETB2 and ETB3 are all minimized
for A - 103. The total MSE is 0.36 x 10 -4 and the individual MSE's are 0.20 X 10 -4 and 0.16 x 10- 4

for the large and small peaks respectively. The bias and variance for the small peak are 0.99 X 10-3 and
0.15 X 10-4 so that the relative error in estimating this peak area is quite large. For the linear least squares
method the total MSE is 0.13 X 10-3; the bias and variance for the small peak are .36 X 10-2 and .12
X 1o-4.

On the basis of these computations there is no clear evidence that would favor B2 or B3 over B., despite
the fact that they were designed to focus more on the peak. The last example shows that focusing on the
peak may hide unsuspected features of the baseline. The computations suggest that choosing A to minimize
TB(A) is reasonable, but they are not nearly extensive enough to give insight into the stochastic behavior of
the minimizing A.

There are many possibilities we have not investigated. Other choices of B are possible; for example B =

r1?A1Th) - rT would focus on the jth peak if there were more than one peak, B = W-l would weight the
deviations according to the variances of the observed counts; a possible advantage of this choice is that the
statistics RSSw(A) might be compared with the percentiles of a x2 distribution (above, however, we have noted
some difficulties with this procedure). Another possibility is to attempt to choose between several smoothness
criteria by computing tB(k)(A) for k = 1, 2, 3 . . K and choosing the solution corresponding to

min inf RBkI(A)

k X

4. Final Comments

The results above leave several questions unanswered and suggest problems for further research. The
following is perhaps the most immediate: in many applications the peak vector is not known exactly, but is

1 j-j
assumed to have a parametric form such as yj = y,(Ra) = -iy I, where y is a given function p, and a

are location and shape parameters and must be estimated from the data. If the peak profile r is estimated
from other experiments, for example from pure sources, the variability of the estimate will affect subsequent
analyses in which it is used. We plan to pursue the analysis of these problems in the future.

An alternative approach to the problem is to use the method of maximum likelihood with the assumption
of Poisson statistics; which might be more appropriate for small counts. The likelihood function of fS could
be maximized subject to the constraint IU1112 = a

2
. Although we conjecture that the large sample properties

of the estimates would be equivalent to the results above, the small sample properties would be different.
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Finally, we note again that in the multi-peak situation the estimates we have considered are minimax for

any single peak amplitude but are probably not jointly minimax. One might attempt to solve the simultaneous

minimax problem by numerical optimization; we conjecture that the results would not be substantially different.
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6. Appendix

Here we derive an expression for the covariance matrix of 31 and prove the lemma in section 2 of the text.

The covariance matrix of Bi is, with the notation of section 2,

pL = (A"WA + AXUU) -ATWA(ATWA+AUTU)-'

[Bit B12 G OT][ B B1
IB21 B223 106 W] LB2, B221

We are interested in Me. Multiplying through and noting that B2, = BHr

P1 = BiiGBi, + B120Bl + BIOTBT, + B,,WBT,

= B 1rrTWrB1l + B12WrB,, + B,,r1 WB,2 + Bf2WB,2

= (W"VIB1, + W1I2BT,)r (W"12rB,, + W"2BT,)

= FF .
Now, using the expressions for B,, and B52, and r = W-'E)

F = W"' (rG-t + rIG-1eTR -'G-i - R`eG-I)
- W`2 (W-' + W-'eG-teTR-l-R-l) eOG-

W- 1w 2 [I - (W-eG-1'0)R-'] eG-1 ,

which is the expression to be derived.
We now prove the lemma. The key to the proof is the fact that under the assumptions of the lemma C and

D may be simultaneously diagonalized [4]; there exists a nonsingular matrix X such that

XrCX = a
X`DX = M

where CZ and M are diagonal matrices with elements w( and IL;. From this representation we note that the

null space of C (resp. D) is spanned by those columns of X corresponding to zero diagonal elements of fi

(resp. M). The assumption of the lemma guarantees that the two null spaces contain no vectors in common.

Now expressing C and D in terms of X, 0, and M, and writing I = XX-'
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I - (C+XD)-'C = X[V-(fl+XM)-l 1 ]X 1

= XRX-1

where RX = diag [XpJ/(wi + xpJd].
We note that if j3,eN(Ul) = N(D) this representation makes it clear

column of X corresponding to Rj = 0, then
that PI is unbiased, for if xj is a

XRxX-Ixj = X -pR e; = 0
Wj +X Rj

where ej is the jph unit vector.
The diagonal elements of Rh corresponding to wj = 0 are l's, so that

XRX-' = X ( I- ±XX NX 0( °°)i
l i ' \o 0 ,,

where N, = diag [jui/(wi + XjPt)]. It is easily verified that the first matrix, call it P, on the right hand side
of the expression above has the following properties: (1) it is idempotent with range N(C); (2) Pv = 0 if
VEN(D); (3) for any vector v, (Pv)TD(f-P)v = 0. P is therefore a projection matrix which projects orthojonally
with respect to the pseudo inner-product (uv) = uTDv, and may be written

P = V(VTDV)flVTD

where V = (vl 1 .. vp) spans the null space of C. Finally noting that NX is bounded, we have

XRJX'- = P + O(X)

Finally, we note that expansions for small values of A (corresponding to large samples) or small values of
A -' (corresponding to a nearly linear background and moderate sample size) may be carried using identities
of the form

1 E2

(1 + ) .
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