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An analysis of the dynamic behavior of a single-pan mechanical balance is presented. In particular, errors 
caused by a swinging pan are analyzed in detail. Results point to a large effect which. though apparently not 
previously appreciated. is nevertheless easily verified experimentally. It is suggested that this effect can be reduced 
to insignificance in a balance whose beam is servo-controlled to an angle perpendicular to the local gravitational 
field. 
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1. Introduction 

The single-pan analytical balance has become standard equipment in laboratories performing precise mass 
determinations. The mechanical balances with which this paper is concerned include those having built-in 
dial weights, a damped beam, and an optical scale which is directly related to beam angle and which has a 
range equal to or· greater than the increment of the smallest dial. Many commercial models of this type of 
balance achieve a precision of better than 0.5 X 10-6 of maximum load. Indeed, the most precise kilogram 
comparator-an undamped version of these balances-achieves a relative precision of I X 10 -9 [I ].1 
Equations derived below also treat the case of undamped balances. 

It is a common experience of users of one-pan analytical balances that, occasionally, a badly-centered 
load will cause the pan to swing which, in turn, produces an oscillation of the optical-scale indication. When 
this occurs, one generally discards the reading and repeats the operation with more care. The question we 
posed, however, was: By what physical process does the pan-swing manifest itself as an oscillation of the 
balance beam? The answer might lead to the minimization of (he unwanted effect. 

The only previous attempt, to our knowledge, at addressing this question has been in a paper by Bowman 
and Macurdy [2]. These authors reject attempting an analytical solution to the dynamic errors associated with 
a swinging pan because such a solution would be difficult except under unrealistic conditions. Instead, they 
point out that a significant part of the dynamic swing-error is due to the centripetal acceleration of the pan. 
The maximum amplitude of this acceleration is g'Y2 for small 1 .. where g is the local acceleration of gravity 
and 1 is the peak angular amplitude of the pan swing [2]. Even qualitatively, however, this component may 
be excluded as dominant. at least on many analytical balances. The reason is that a swinging pan is seen to 
produce an oscillation in the optical indication at the same frequency as the pan oscillation, whereas the 
centripetal acceleration is modulated at twice thefrequency of the pan (i.e., the centripetal acceleration passes 
through two maxima during one complete period of pan swing). 

Our approach to obtaining a solution to the question posed above has been to generate a complete analytical 
solution to the equations of motion of an idealized single-pan balance. Our idealized balance operates with 
knives and flats acting as pivot bearings. The knives do not have perfectly sharp edges but instead have 
finite radii of curvature. This complexity was added to help elucidate the role of imperfect bearings in the 
dynamic behavior of the balance. 

While our balance model, as will be seen below, requires definite restrictions (such as small-angle motions) 
and contains some unrealistic assumptions (such as perfectly parallel knives), it nonetheless includes many 
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of the fundamental physical aspects of the problem and is amenable to analysis. Semiquantitative predictions 
of the dynamic behavior of analytical balances can be made based on solutions of the model. These predictions 
have been verified experimentally as described in section 5 below. 

2. Equations of Motion 

2.1 Method 

The equations of motion for a damped, single-pan balance will be obtained by using the Principle of Virtual 
Work and D'Alembert's Principle [3, 4]. The suspension system, the balance beam, and the counterweight 
are initially represented by point masses located at their respective centers of gravity; they will later he treated 
as distributed masses. 

The first step is to determine the coordinates of these point masses as a function of time. This information 
is used in the Principle of Virtual Work to obtain the generalized torques-and thus the balance beam stiffness 
and sensitivity expressions. The kinetic energy of the system is also obtained from the equations describing 
the locations of the point masses. The kinetic energy, the generalized torque, and a velocity-dependent 
Rayleigh dissipation function [3] are then used in accordance with D'Alembert's Principle to generate the 
equations of motion for the system. 

2.2 Coordinate System 

Figure I shows the coordinate system for the balance. Note that the z axis, which is defined to be parallel 
to the local gravitational field, arbitrarily points downward. The y axis is thus parallel to the direction that 
the plane, defined by the two knife edge contact points (P) and (C), would have if this plane were at gravitational 

f;-
Z 

(gravitational horizon) 

(8) 

FIGURE 1. The coordinate system and quantities used in the equations of 
motion. The balance beam rotates in the 1-Z plane. while the suspension 
system-load mass combination. represented by a simple pendulum. swings 
either in the %-z or the y·z plane via crossed knives at pivot point (P). The 
origin is fixed at point (e). which is the center knife contact point for 13, = o. 
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horizon; i.e., if J3y = O. The x axis is directed into the figure so that the coordinate system will be right
handed, and the origin of the balance coordinate system is fixed at point (C), which is the center knife contact 
point for J3y == O. Therefore, the balance beam swings in the y-z plane about gravitatiorial horizon. The time 
development of J3y(t) describes this motion. 

Points 1, 2, and 3 of figure 1 represent the centers of mass of the suspension system-load mass combination 
(MA), the balance beam mass (Mb), and the counterweight mass (MB ), respectively. A velocity-dependent 
damping force, Fa, is applied at point 4. The knife shown at point (P) is actually assumed to be two knives 
crossed in the same plane (see figure 5 of reference [1] or figure 3 of reference [5]). These crossed knives 
consist of a load knife, L, with a symmetry axis in the x direction and an intermediate knife, I, pointing in 
the y direction. Therefore, the suspension system is free to pivot in any direction about point (P) with an 
instantaneous angle 'Y. If the knives do not cross in the same plane, then 'the center of mass length, Lem, can 
be replaced by (Lem)", and (Lem),. (The purpose of the intermediate knife in balance design is to compensate 
for non-parallelism of the two ~ain knives [5]. In our model the main knives are assumed parallel, however. 
Thus, in our model the only effect of the intermediate knife is to allow a second degree of freedom for a 
swinging pan.) 

Normally, the suspension system would include a gimbal-like device to minimize the positional effects of 
weights on the scale pan [2]. This would involve a double pendulum on a balance beam-making the problem 
analytically intractable, and also masking the physical effects. (Actually, the gimbal often has enough friction 
to quickly dampen the suspension system motion to that of a single pendulum, so the results of this paper 
still apply to many single-pan balances.) 

We will assume the motion of the suspension system to be that of a simple pendulum. In order to gain the 
maximum physical insight, we consider its motion either to be entirely in the x-z plane or entirely in the y

Z plane. 
SI units will be used in .the derivations, with masses in kilograms, lengths in meters, forces in Newtons, 

torques in Newton-meters, and angles in radians. Note that the quantities 'Y"" 'Y" 13", eb, e8 , and :£B have 
signs associated with them-and that they are arbitrarily given positive signs in the instantaneous configuration 
at time t shown in figure 1. Small angle approximations: cos'Y = 1, cosJ3, = 1, sin'Y = 'Y, and sinJ3, = J3, 
will be' made at the appropriate places. The 'Y approximations are made because precision balances 'canno't 
function with large suspension system amplitudes, while the J3y approximations are made in order to obtain 

analytical solutions. 

2.3 Coordinates of the Balance 

2.3.1 'Y. and 13. Motions 

Assume that the center, load and intermediate knife edges are symmetrically honed cylinders such that 
they have radii of curvature Pc, PL and PI' respectively. Then, with the aid of figures 2-4, the coordinates 
of points I, 2, and 3 of figure I are: 

XI == Lemsiny. - P/'Y", 

YI - LAcosJ3y - PLsinJ3y + PcJ3" 

ZI - LAsinJ3y - PL(1 - cosJ3y) - pC<1 - cosJ3y) - pAl - cos'Y.) + Lcmcos'Y", 

X2 0 

Y2 - ebsinJ3 .. + PcJ3,. 

Z2 ebcosJ3,. - Pe(l - cosJ3,) 

X3 0 

Y3 LoeosJ3,y - ensinJ3 .. + PcJ3.r 

Z3 == LnsinJ3y + eoeosJ3. - pC<1 

where 'Y. and J3.r are functions of time. 
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FIGURE 2. Effect on balance beam of center knife rolling on its flat. The 
origin is fixed at point (C), with the positive % axis directed into the figure. 
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FIGL'RE 3. Effect on balance beam of the load knife flat rolling on the load 
knife edge. 
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FIGURE 4. Effect of the intennediate knife rolling on a flat. The positive y 

direction, pointing towards the center knife, is out of the figure. For sim. 
plicity, the edges of the crossed knives are assumed to lie in a plane. 

2.3.2 'Y. and p. Motions 

The coordinates of points 1, 2, and 3 of figure 1 are: 

XI 0 

YI - LAcos{3. - PLsin{3y - PLsin'Y .• + Pc{3y + Lcmsin'Yy 

ZI - LAsin{3y - PLCOS'Y. + PLCOS{3.y - pd1 - cos{3y) + Lcmcos'Yr 

x2 = 0 

Y2 = - t'bsin{3y + Pc{3y 

Z2 = fbCOS~y - pdl - cOS~.y) 

X3 = 0 

Y3 = LBcoS{3y - t'Bsin~. + Pc~y 
Z3 = LB sin{3y + t'aeosf3r - pdl - cos (3.). 

2.4 Principle of Virtua' Work 

The Principle of Virtual Work [3,4] states that 

3 3 

8W = 2: F; . d( = 2: [(FJ.8x, + (F;}y8y, + (F;}.&,l 
.. =1 &-1 

where Xi = X,~'Y,{3.y), Y; = Y.{'Y,f3.) and Zi = z'{'Y,{3 .. ), and i represents any of the three points shown in figure 
1. 
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(Fj)y = 0 for this problem, the expression for the virtual work reduces to 

(1) • 

where Q-y., Q-yyand Qj3, are the generalized torques for the ",(" "'(V, and ~,motions. It follows from eq (1) and 

figure 1 that 

(2) 

Analogous expressions are readily obtained for Q-y. and Q-y,. but we will only be concerned with the conse

quences of torques about the center knife, rather than about the load or intermediate knives, because we are 
interested in investigating causes of read-out fluctuations of balances. 

2.5 Generalized Torques 

Using the coordinates listed in section 2.3.1 for "'(X and ~, motions, and small angle approximations, eq 
(2) becomes 

This expression for QI3, also applies exactly for 'YJ and 13,. motions. 

2.6 Balance Beam Stiffness and Sensitivity 

Assume the balance beam is in static equilibrium; therefore, Q(3, == 0, and (3) becomes 

which is of the form t~, == K~y, where t (3, is the torque about the center knife, th~ symbol ",,, represents 

equilibrium values, and K is the balance-beam stiffness: 

(4) 

This result is the single-pan analogue to the stiffness of a two-pan balance with knives of finite radius [6, 
7). 

The balance sensitivity. S, to changes in torque is 

1 

K 
(5) 

and has the dimensions of rad/N ·m. 2 

• Note that if th~ balance h ... ideal bearings (PL = Pc = 01 and if the position of the counter-poise is adjusted SO that (. = 0, the sensitivity is 
cotr,pleteiy independent Q{ "'. ",,<I JI,. This "",ull seems to be in contradiclion 10 eq (7) of PJ and to one statement made in that paper. The fonnulation 
of 17J can be reconciled with ot.'r own if OM realizes that the roordinau JrJ~m of [7} is itself a function of MB> Hence .. for balances. whose construction is 

dooe to ideal (i . ., .• t. « (,WJ.'1,)t, •• the slatic properties /such as sensitivity) do not depend strongly on load. The dynamic properties (such as period 
of the balance' do depend otrongly on load: If a I-kg .ingle-pan mas. comparalor i. converted 10 a 2-kg comparalor by doubling Ihe mass of the counter
poise_ the sensiti.ity of Ihe balon<:e will not change appreciably provided the beam and knives do not defonn under this modification. The period of the 
.....wnped balance .. ill incre_ markffl1r. however. fA clear and succinct discus.;ion of this point can be found in section 3.A of reference [12\). 
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N~te that the balance sensitivity depends upon both fb and fe-and that in general neither their individual 
magnitudes nor signs are known. This does not matter, however, since the sensitivity is a directly measurable 
quantity. 

Equation (3) can be rewritten as QfJy = [MB8'LB - MAgLA] - KI3)'. Therefore, the effective changes in 

lever arms LA and L~ue to the knife edges roIling on their flats--enters into the quantity KI3)'; also, K and 
S will not be constant if the effective values of Pc and PL vary with 13)'. 

2.7 Kinetic Energies 

2.7.1 "I. and fl, Motions 

The kinetic energy of the system is 

(6) 

Using the coordinates listed in section 2.3.1 in eq (6), employing small angle approximations, and keeping 
only the significant terms, yields the result 

T = ~ M,4[L~{~ . .)2 + L~m{-y.)2 - 2LcmPlY.)2 

+ 2L,4Lcm 'Y.-Y.~.] + ~ Mbf~(~.)2 

+ .! MB[Li + fi] (~,)2. 2 . 

2.7.2 "I, and fl, Motions 

(7) 

When the coordinates listed in section 2.3.2 are used in eq (6), the kinetic energy expression becomes 

+ 2LALcmb. + 13,>i'.J. + 2Lcm{PC - PL)i'.~.] 

+ ~ Mbef(~.J2 + ~ MB[L~ + fi](~ .• )2 . 

2.8 Rayleigh's Dissipation Function 

(8) 

We will assume that if the balance beam is mechanically or electronically damped, that the damping force 
is proportional to the velocity. Let the damping occur at point 4 of figure 1. Then for small angles, the 
Rayleigh dissipation function [3], F, is 

1. 1 . 
F = - ad = - a!£2(1l )2 2 4 2 B t')' , (9) 

and the damping force, Fa, is 

F = a 

aF 
(10) --= 

av •• 
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2.9 D'Alembert's Principle 

2.9.1 'Y. and P, Motions 

D'Alemberts' Principle [3,4] for the equation of motion of the balance beam about the center knife may 
be written: 

d (iJT) 
-; iJ~! 

iJT iJF 
iJ/3 + -. = Qf3,. 

y iJ~:r 
(Il) 

Substituting the expressions for Qf3y' T and F given by eqs (3), (4), (7), and (9) into (Il), and replacing the 

point masses of figure 1 with distributed masses, yields the result 

Ie is the moment of inertia of the balance about point C of figure 1 when ~,. = 0; i.e., 

Ie = 11 + 12 + 13 (13) 

Ie = [MAL~] + [(Ib)"m + Mbe~] + [(JB)cm + MB(L~ + e~)] , 

where (Ib)cm and (I Btm are the respective moments of inertia of the balance beam and the counterweight about 
the x axis through the center of mass, points 2 and 3 of figure 1. The Mb€f and MB(L~ + €~) terms result 

from the parallel axis theorem. The combination of suspension system plus load acts as a point mass-as far 
as the center knife is concerned-because of the crossed knives at point P. 

Equation (12) has the form 

(14) 

Appendix A lists all algebraic substitutions used in the derivations, such as those for the coefficients b, c, 

K, d and e of (14). 
The r.h.s. terms of (12) and (14) can be explained by considering the torques about the center knife due 

to the radial and tangential accelerations of the suspension system-load mass combination about point (P') 
as shown in figure 5. The torque r~ is 

r~ = (M"aRcos-y.)( - LAcosl3y - PLsinl3,. - Pcl3J 

+ (M"a~in-y.)( - LAcos/3,. - PLsin~:r - Pe/3,) , 

(15) 

where a R = Lcm(-Y.)2 and aT = Lrm't. Note that the torque r~ is about the pivot point (0) of the center knife 

rather than about the origin (C), or about the contact point (G'); (see fig. 2). For small angles, eq (15) reduces 
to 

thus accounting for the r.h.s. terms of (12) and (14) by using Newtonian mechanics. 

2.9.2 'Y, and P. Motions 

Substituting the expressions for Qf3., T and F given by eqs (3), (4), (8) and (9) into (11), and using distributed 

masses for the balance, yields the result 
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[/c1i3,. + [ullP,. + KP,. - [MB8'L8 - MA8"L ... I 

= -[M ... L ... Lcm16,.)2 - [M ... L ... LcmK"V,. + 13,.)'1,. - [M ... Lcm(Pc - PL)h,., (16) 

which has the form 

b~,. + cJ3,. + Kf3,. - d = -e(i',.)2 - e(y,. + f3,.}Yr - h,. . (17) 

Referring to figure 5, the torques about the pivot point (0) of the knife due to the radial and tangential 
accelemtions of the suspension system-load mass combination are 

rc = (M ... a~os'Y,.)( -L .. cosf3,. -PLsinf3,. - PLsin'Y,. - PCP,.) 

+ (M .. aR"in'Y,.)[ - L .. sinf3,. - pLcos'Y,. + pLcosf3,. - Pd1 - cosf3,.) - pc] 

+ (M .. a~os'Y,.)[ -L .. sinf3,. - pLcos'Y,. + pLcosf3,. - Pe(l - cosf3,.) - pc] 

+ (M .. a,ain'Y,.)( - L .. cosf3,. - PLsinf3,. - PLsin'Y,. - Pcf3.,.) - (M .. ar)( - PL) , 

(18) 

where aR = Lcm('YT)2 and ar = Lcm'Y,.. The last term in (18) results from a torque about the center of curvature 

of the load knife due to an action-reaction force M ... ar applied to the non-slipping contact point (P'); this 
torque is tmnsmitted to point (0) because the balance beam is rigid. 

..... 
"-

~Yr.~~,: . 1"T-"~---,l-
(gravitational horizon) (e) 

-z 

F'leuRE 5. Dynamically induced forces on the swinging pendulum. These forces produce torques about the pivot 
axis of the center knife. This axis, which is in the " dired.ion, pasaes through the center of curvature of the center 

knife at point (0). 

For small angles, eq (18) becomes 

r c = - [M...L ... Lcml(i'y)2 - [M ... L ... Lcm]('Y,. + 13.,,)'1,. - [M ... Lcm{Pc - PL)h,. 

= _e(i'y)2 - e('Yy +f3y)'Y,. - h,.. 

thus accounting for the r. h.s. terms of (17). 
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The - [M .. L .. Lcm]!3,:VT = - e!3':~T tenn of (16) (which is due to M .. times the horizontal component of the 
tangential acceleration times the change in height from gravitational horizon of the load end of the balance 
beam) will later be seen to have a special significance. We will refer to this quantity (divided by Ie) as the 
Mathieu tenn. (There is also a Mathieu tenn contribution due to the horizontal component of the radial 
acceleration; but it is negligible for small angles.) The quantity [M .. Lcm{Pe - PL)lldVr will later be referred to 
as the knife-edges tenn. 

2.10 Physical Pendulum 

2.10.1 y. and Pp Motions 

We assume that the motion of the suspension system-load combination is that of a physical pendulum, and 
arbitrarily choose "Y" to be a minimum at time t = 0 and to have an amplitude 'Y,.; i.e., 

(19) 

where 

(20) 

(21) 

and 

211' 
W =-'I. p. 

'I. 

(22) 

I~ is the moment of inertia of the physical pendulum about the y axis at point (P) of figure 1, {/~)cm is the· 

moment of inertia of the suspension system-load mass combination about the y axis through the center of 
mass point 1 of figure 1, and P"Y" is the pendulum period. 

The higher order modulation tenns have been ignored in (19) because they do not significantly affect the 
balance beam motion. They could be readily obtained by considering the equations of motion about point (P) 
of figure l. 

2.10.2 "Ip and Pp Motions 

Analogous to section 2.10.1: 

(23) 

(24) 

(25) 

and 

211' 
w =-'I, p . 

.." 
(26) 

Ip and (Is)"", are the moments of inertia about the x axis through points (P) and 1, respectively of figure 1. 
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3. Solution for "If. and (3y Motions 

The equation of motion can now be expressed in final form by substituting eq (19) into (14), and by using 
the identity cos21\1-sin~ = cos21\1; it is 

.• C • K d e 
Il + _Il + _Il - - = --o2W2 cos2w t 
I-'y b I-'y b I-'y b b""'Is "'Is • (27) 

The general solution of (27) will consist of the solutions to the homogeneous equation (where the r.h.s. of 
(27) is zero), plus a particular solution. 

The homogeneous solution to this equation is easily obtained by standard techniques. The particular solution 
can be found by writing (27) in the form 

and by assuming that the solution is 

(3y = Dcoskt + Esinkt + ~y; 

which yields the results 

uwk 
D 

and 

The general solution of (27) is therefore 

ct 

(3 .• = {e -ib [A exp~t + B exp - Y - w~~t] 

d 

or (A + Bt)e -ib or 

ct 

e -ib [Acosw~. t + Bsjnw~,t]) 

(28) 

where 

w~ = Kfb, (29) 

, K t? 
w 2 =---, 

13,. b 4bz (30) 
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and 

• d [MB8'LB - MA8'L,4] 
P,. = ~ = [MA8'(PL + Pc) + M"g(eb + Pc) + MB8'(fB + Pc)] 

(31) 

The choice of terms in eq (28) arises because the balance may be overdamped, critically damped, or 
underdamped depending on whether CZl4b is greater than, equal to, or less than K. For all damping conditions 
the motion of the balance beam about the equilibrium angle P,. is modulated at an angular frequency which 

is twice that of the natural angular frequency w.,. of the physical pendulum. This modulation effect is due to 

the radial and tangential accelerations of the suspension system-load mass combination. 

4. Solution for "'I., and fl., Motions 

4.1 Equation of Motion 

The equation of motion is obtained by substituting eq (23) into (17), and by using the identity cos21J1 
sin;; = cos21J1: 

(32) 

The (~ 1,.w~, COSW.,l)P.y term of eq (32~which is the Mathieu term referred to in section 2.9.2--complicates 

the problem; yet it cannot, in general, be neglected when considering the dynamical effects of precision 
balances. Therefore, (32) will be converted to a more tractable form. 

First, we change from the time variable, t, to the dimensionless variable z by making the substitution 

W."t = 2z. (33) 

Equation (32) thus becomes 

~ + 2[~.,J ~ + ([ 4~] - 2[ -b
2e 

1 .. ] COS2Z)P. 

= [w~. ~] + [ 4 ~ 1~] cos2w."t - [4 { 1,.] cosw."t, (34) 

or 

d
2
Pr + 2 -k ~ (- -

dz2 dz + a - 2qcos2z)P" = h + fcos4z - mcos2z = J(z). (35) 

We then replace P,. with the quantity [10] 

(36) 

thus obtaining the equation of motion in final form: 

d
2
u ( --

dz2 + a - 2qcos2z)u = e,"!(z) , (37) 

34 



where 

(38) 

The quantity a is negative if the balance beam is overdamped, zero if critically damped, and positive if 
underdamped; whereas q is always a negative number. The quantities z, i(z), u(z), k, a, a, q, h, e, and m 
are all dimensionless. The general solution of (37) consists of the solutions to the homogeneous equation, 
plus a particular solution. 

4.2 Homogeneous Solutions 

The homogeneous equation 

u" + (a - 2qcos2z)u = 0 (39) 

has the canonical form of Mathieu's equation [9,10]. The reader is referred to reference [10] for an excellent 
account of how to obtain solutions to this equation. 

Figure 6 shows an isostability diagram [10] of 11 for possible solutions to eq (39). We are only interested 
in underdamped or critically damped solutions because laboratory analytical balances are seldom designed 
to operate in the overdamped mode; therefore I > > a ;;a. O. Also, the quantity q = - 2MALALcm "f/fe is 

always a very small negative real number for precision balances; so - I < < q < O. The region of interest 
for these values of a and q is indicated by an arrow in figure 6. Clearly, the solutions of (39) cannot be 
"simple" Mathieu functions of the sine or cosine types s(el)' c(eo) or c(el) [9,10], but instead are more 
complicated functions. 

a 

FIGURE 6. An isostability diagram of v for possible solutions of Mathieu's 
equation given by (39). The arrow points to the region of interest (or precision 
balances; i.e. 1 » a "" 0 and -1 « q < O. Solutions in the shaded 
region are unstable. This does not mean that an overdamped balance ~a < 01 
is mechanically unstable because u(z) is multiplied by the factJ>H-" in the 

solution for ~,. 
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Since q is small, we guess that the solution is of the Floquet fonn [9] 

. qei(V+2)z qei(V-2)z 

u = elVq 
- + , 

4(v+I) 4(v-l) 
(40) 

where v is not an integer; (i.e., u(z) is not a Mathieu function). For small values of a, v is defined by [9] 

We then use the identity eiB = cosO + i sinO in (40) to obtain the two independent solutions of eq (39); 
they are 

Ul = cosvz - qcosvzcos2z - vqsinvzsin2z 

and 

U2 = sinvz - qsinvzcos2z + vqcosvzsin2z, 

where tenns of order "if have been neglected, and 

- q 
q == 2(l-.r) , 

. v "'" Va (for a > 0), 

or 

v "",..!L (for a = 0). 
V2 

The homogeneous solution of (39) is therefore 

4.3 General Solution 

4.3.1 Particular Solution 

We must next find a particular solution, up(z), of 

u" + (a - 2qcos2z)u = ekzj(z) , 

which has the fonn of Hill's equation [10]. The solution is obtained from the expression 

where U 1 and U:z are given by eqs (41) and (42).](:) = h + fcos4z - mcos2z, and 
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(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 



(48) 

The evaluation of eq (47) is straightforward, but very lengthy; the result is included in the next subsection. 

4.3.2 Complete Solution 

The general solution to eq (35), using (36), (45), (47), and (48), has the form 

which, when using (41) and (42) is 

j3y = Ae-i.[cosvz - qcosvzcos2z - vqsinvzsin2z] 

+ Be-i.[sinvz - qsinv.rcos2z + vqcosvzsin2z1 

- v[k2~v2] { (h + ~ m) [-v + e-i.(vcosvz + ksinvz)] 

- (qh)[ -vcos2z + e-i.(vcosvzcos2z + ksinvzcos2z)] 

- (vqh)[ksin2z + e-i.(vsinvzsin2z + kCOSVZSin2z)]} 

_ 1 {( _ m _ qh - ~ t - vqh + vq t) [ - ksin2z 
~p+~-~~ 2 2 

- (v-2)cos2z + e-i.«v-2)cosvz + ksinvz)] 

+ (qm)[ -ksin2zcos2z - (V-2)cos22z + e-.b«v-2)cosvzcos2z + ksinvzcos2z)1 

+ (vqm)[ - (v - 2)sin22z + ksin2zcos2z + e - i.« v - 2)sinvzsin2z - kcosvzsin2z) J } 

- r \ ] {( -m - 'ijh - ~ t + vqh - v ~ t) [ksin2z 
2v k2 + V+2)2 2 2 

- (v+2)cos2z + e-i.«v+2)cosvz + ksinvz)] 

+ (qm)lksin2zcos2z - (V+2)cOS22z + e-i.«v+2)cosvzcos2z + ksinvzcos2z)] 

+ (vqm)[ksin2zcos2z + (v+2)sin22z + e-.l.«v+2)sinvzsin2z - kcosVzsin2z)1} 

_ _ 1 {(t + i m + v ~ m)[ -ksin4z - (v-4)cos4z 
2v(k2 + (V-4)2] 2 2 

+ e-.l.«v-4)cosvz + ksinvz)1 

- (qt)l-kcos2zsin4z - (v-4)cos2zc0s4z + e-i.«v-4)cosvzcos2z + ksinvzcos2z)] 

- (vqe)[ksin2zcos4z - (v-4)sin2zsin4z + e-i.«v-4)sinvzsin2z - kcosvzsin2z)]} 

_ _ 1 {(f + ! m - v ~ m) [ksin4z - (v+4)c0s4z 
2v[k2 + (V+4)2] 2 2 

+ e-i.«v+4)cosvz + ksinvz)} 
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(qe)[kcos2zsin4z - (v+4)cos2zcos4z + e-k.«v+4)cosvzcos2z + ksinvzcos2z)] 

_ (vqe)[ksin2zcos4z + (v+4)sin2zsin4z + e-k.«v+4)sinvzsin2z - kCosvzsin2z)]} 

1 {(_ ~ e - v ~ e)l -ksin6z - (v-6)cos6z 
2v[Jc2 + (V-6)2] 2 2 

+ e-k.«v-6)cosvz + kSinVz)]} 

2vW + \v + 6)2]' { ( - ~ e + v ~ e )lksin6z - (v+6)cos6z 

+ e-i.«v+6)cosvz + kSinVz)]}. (50) 

This is the exact solution (in reduced notation) for small angle "Ir and 13" motions. It is obviously much more 
complicated than the solution for small angle "Ix and 13. motions given by eq (28). 

It requires too many printed pages to provide an expanded form of eq (50) written in the notation of (28). 
(There are 74 terms in that notation.) However, the reader can readily transform any, term of (50) into that 
notation with the aid of Appendices A and B. Equation (50) is provided so that readers seeking solutions to 
problems similar to our own may be spared the considerable tedium of its derivation and so that the terms 
neglected in the sequel may be recovered by the interested reader. 

5. Special Cases 

5.1 A Freely-Swinging Balance 

In a completely undamped balance, k = c = 0, and w~, = wp,; so eq (28) becomes 

(51) 

Using Appendices A and B, and keeping only the largest terms, (50) becomes 

(.l _ A . [ ~ ef 2 W~ ] 
1-'. - COSWl3,t + BSInw13 t + P. - - 'Y" 2. ( 2. 2.) , . '. 2b2 W (1) - 4w 13, -y, 13, 

where b = fe, e = MALALcm and f = MAL"m(PC-PL)' Only cosine modulations of the Acoswl3,t + 

Bsinwl3.t motion appear in (51) and (52) because of the choice of the phases of the "Ix and "I. motions given 

by eqs (19) and (23), respectively. 
The c0s3w-y,t term of (52) is much smaller than the cos2w-y,t term, and is therefore negligible. There is a 

systematic error term in the equilibrium angle: -ef'Y;w~,1[2b2(1)~,(W;, - 4w~')J. This term is probably small 

for most precision balances and may in fact be an artifact of our initial neglect of terms in 'Y;. 
The size of the cosw-y.t modulation depends upon the knife edge radii Pc and PL' and also upon the value 

of 13.r. The COSW.,.1 modulations will be at a minimum for a given "Yr. when 13,. is chosen (usually via an 
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appropriate adjustment of MA) such that the Mathieu tenn contribution is nearly equal and opposite to the 
knife-edges contribution. These two tenns then nearly cancel, and one should observe pure cos2w t mod-

y, 

ulations. In most realistic cases, the knife-edges tenn can be safely ignored. (The radius of curvature of a 
good knife is usually less than 1 ~m [12].) Then the Mathieu tenn vanishes when the equilibrium position 
of the beam is parallel to the gravitational horizon (~_v = 0). Note that a test for the absence of a systematic 

error contribution to ~y does not afortiori assure a negligible knife-edges contribution to the cosw..,.t modulations 

because the error tenn goes as "Y~, whereas the modulation tenn depends upon "Y .. -and is therefore much 

larger. 

5.2 A Damped Balance 

5.2.1 Theoreticai Predictions 

We shall now investigate the motion of a damped balance at a time t which is long enough so tha 

involving the factor e-k = e- cl
/
2b become negligible; (i.e.,.a time such that, in the absence 0 

the balance beam would be at rest at the equilibrium angle P,). Equation (31) thus becomes 

and (50) becomes 

2ce 2 w3 

+ {j 1. -:[:-(-W-2-_-4-W-2-)J-"'~-+-_4c~2-W-2-=-] sin2wy.t, 

13. y. b2 y. 

cf w~. . 
- -2 1. [ ] smw~ t 6 - 2" 

( W2 - ( 2 )2 + :.. w2 
13. y. 62 y. 
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(54) 

where b = Ie. C = d~. e = MALALcm,j = MALcm(Pe-PL), and Wpy = 0 at critical damping. 

Sine modulation tenns now appear in (53) and (54) because the damping effects introduce phase shifts into 
n 

the balance beam responses to the pure cosine "Y% and "Y. motions. The sin - w..,t tenns are smaller than their - 2 
n . -2c 

equivalent cos - w..,t tenns by the ratio --, where n=2, 4, or 6. 
2 nbwy• 

The 3wy,t modulation tenns are negligibly small compared with the 2wy.t tenns-as was the case for a 

freely-swinging, undamped balance. The presence of a systematic error tenn in the equilibrium angle can, 
in principle, be tested by observing the apparent ~r values for pure "Y% and l. motions. In practice, however, 

the over-simplifications of our model may cause problems in interpreting such a test. The modulations of 
w • 

frequency.=lI2 can again be minimized by choosing a nominal value of ~. such that tenns involving the 
~ -

quantity MALALcm~r"Yr are nearly equal in magnitude and opposite in sign to the knife-edges tenns which 

include the factor M ALcm(Pe - PL)"Y y. 

5.2.2 Experimental Verification 

We have tested some of the predictions of section 5.2.1 by using a Mettler M5 balance,3 which has a 
velocity-dependent damping produced by an air-dash pot. This balance has a maximum load of 20g, an on
scale range of 20 mg, and a readability of 2 ~g. An analysis of some important features of this balance can 
be found in ref. [7]. The weighing pan is attached to the lower part of the suspension system by a hook and 
ring, so that the initial motion of the suspension system is that of a double pendulum. This motion quickly 
dampens to that of a single pendulum-which is a necessary condition for our model. The presence of the 
hook and ring, however, makes it difficult to generate pure "Y% or pure "Y. motion. We therefore temporarily 
locked the hook and ring together to provide a rigid suspension system for these tests. The tests described 
below were perfonned by gently starting the pan swinging at an amplitude of 4 ± 1 mrad about equilibrium. 

What can be inferred from eq (54) about the dynamic behavior of this balance? First, eq (54) can be 
simplified because w~ = 0 and w~ « w;: 

~_y = const. 

+ ~ ~r "Y_.[ 1 + (~y) 2] lf2 cos( wy,t + Arctan b~y) 

+ f 1r[ 1 + (~"t7r]V2 cos ( wy,t + Arctan ~y) 

_ ~ 1i [1 + (_C )2]112 COS(2W t + Arctan _c ) 
b4 ~ "t7 ~ "t7 "t7 

+ higher order terms. 

(A) 

(B) 

(C) 

(55) 

• Brand - ""' used only for lJUlllOO<!5 01 identification.. Such _ implies neither endotvment by the National Sunau of Standards nor _urance 
!hoot the equipment is the best aYailable. 
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Tenn A, the Mathieu tenn, arises from the tangential acceleration ofthe swinging pan. Tenn B is a consequence 
of having knife edges of finite radius. The last tenn considered, C, has its origin in the centripetal acceleration 
of the pan. The latter is the only tenn of importance in eq (52). 

We have made the following estimates for the balance being considered: 

e - 5 X 103 g cm2 

If I ~ 2.5 X 10- 2 g cm2 

b - 3.5 X 103 g cmz 

c - 5.5 X 103 g cmz s-1 . 

Also, w..,. was measured to be 7.8 rad/s. 

On the basis of these numbers, one may observe that tenn B always has much smaller amplitude than tenn 
C and is, therefore, al~ays masked. We are left only with terms A and C. Equation (55) predicts that tenn 
A will dominate when I~YI » 'Y. hut that term C will dominate when the inequality is reversed. Thus, under 

the condition that l~yl » "i'y we would expect an oscillation in the beam at the same frequency as the pan 

oscillation whereas the oscillation frequency of the beam should double when ~,= O. The ratio of the amplitudes 

in the two regimes is predicted to be 

4.4 ~/"i'y . (56) 

Note that this result is independent of the estimate of e given above and only weakly dependent on c and b. 
These predictions were tested in the following way. 

With the balance arrested, a load of nearly 20g was placed on the pan. When the balance was released, 
the optical scale reading was found to be near zero (i.e., ~. was near its maximum value of + 22 mrad [7]). 

Pure 'Yx motion produced a small modulation of the balance beam read-out angle, ~Y' at a frequency twice 
that of the suspension system-as predicted by eq (53f--at an amplitude of 2 ::t 1 ~g. Pure 'Y. motion 
yielded a modulation having an amplitude of 32 ::t 2 J.lg-with a frequency which was the same ~s that of 
the suspension system. The phase shift due to damping effects was too small to observe, so that this modulation 
was a nearly pure cosOl-yJ function. Our measurements could have detected a phase shift as small as -rr/6 but 

eq (55) predicts a phase shift of about -rr/16. 
We then changed the sign of ~. by adding 20 mg of tare weights, thereby moving the equilibrium of the 

beam near to the maximum on-scale reading (i.e., ~ .• near its minimum value of - 22 mrad [7J). The result 

of pure 'Y. motion at this position produced a 1800 phase shift in the cosOl-y,t modulation of ~y as predicted 

by eq (55). 

The magnitude of M.4 was then reduced by removing 10 mg so that the equilibrium position of the beam 
was at the middle of the optical scale. At this position, where the beam is nearly horizontal, the Mathieu
tenn contribution of the cosOl.."t modulation nearly vanishes. The ~, modulation now became that of the small 

cos2Ol-y,t contribution (in agreement with the case of 'Y. motion.) 

These tests clearly verify several important predictions of eqs (53) and (55). The observed ratio of amplitudes 
in the two frequency regimes is 16, which agrees satisfactorily with the value 24 predicted by (56). 

6. Conclusions 

In summation, it will be useful to recall some of the important simplifications in our mathematical model. 
All knives have been assumed to be symmetrically honed and to roll on perfect flats. The two main knives 
of the balance are assumed to contact their respective flats.in straight lines which are parallel to each other 
and to the x-y plane. Many authors have dealt with static errors which result from a violation of those conditions 
(e.g., [5, 11, 12]). An analysis of the corresponding dynamic errors is clearly beyond the scope of this paper. 
We have also chosen to look at pan oscillations in the context of the small-angle approximation of an idealized 
balance. While we believe this is appropriate, it should be mentioned that small variations in balance sensitivity 
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as a function of ~~ can be observed in many analytical balances having a large on-scale mnge [7}. Such 

behavior cannot be predicted from our equations, which ignore angular terms higher than first order. 
The above considerations serve as a caveat to the quantitative application of our results to real balances. 

Nevertheless, the solutions found have proved valuable. The question posed in the introduction has been 
answered: Two processes are important ill analyzing the effect of a swinging pan on balance read-out. One, 
which has been mentioned in the past [2]. is due to centripetal acceleration of the pan. The second-and 
often predominant-process is a more subtle effect by which the tangential acceleration of the swinging pan 
leads to a torque on the beam if the latter is not at the gravitational horizon and if the former has a component 
of motion in the y-z plane. Even a crude approximation of the tangential acceleration (e.g., a~max.) -
81) suggests that its influence will exceed th~t of the centripetal accelemtion if ~ > .y. A convincing argument. 
however, can only be advanced through the rigorous mathematical solution to the equations of motion as 
presented in section 4. 

The disappearance of this second. or "Mathieu" process when the rest-angle of the beam is near gravitational 
horizon may be used to minimize the effect. Alternatively. it may be possible to use the effect to adjust the 
beam angle in a class of experiments [13, 14, IS] where it is advantageous that the beam be parallel to 
gravitational horizon. Here the radii of the knives must be determined (under load) in a separate experiment 
[12]. 
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Appendix A. 
Algebraic substitutions and changes of variables 

This appendix lists all of the algebraic substitutions and changes of variables used in the derivations. 
Therefore. any equation given in the main text can be readily expressed in tenns of the basic quantities "{,,, 
"{y' tl,. Lem, LA' f 6• LB' ~B. f B• MA • Mb, MB , g. a, t. Pc. PL. and PI-as defined in figures 1-4. 
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K == [M,4 g(PL + pc) + Mb g(fb + pc) + MB g(fB + pc)) 
1 s==-
K 

Fa == -a;£B (3y 

Ie == MAL~ + [(lb)cm + Mbe~m) + [(lB)cm + MB(L~ + f~)) 
Ip == (lS)cm + M,4L!m 

I~ == (/~)cm + M,4L~m 
w2 = [M,4gLcm] 

Y. I~ 

w2 = [M,4gLcm] 
Y. Ip 

21T 
W =-

Y. P 
y. 

21T 
W ==-y, p 

Yv 

"'I" = -"I" cos Wy.t 

"'Iy == -'Yycosw..,,t 

b == Ie 

c == a;£i 
d == [MBgLB - M,4gL,4J 

e == M,4L,4Lcm 

f == M,4Lcm(Pe - pd 
• d [MBgLB - M"gL,4J 
f3y == ;- == [M,4g(PL + pel + M"g(t'b + pel + MBg(t'B + pel] 

'"0. = ji -:;" = ;~ 
P. 

k == 2wy• 

uwk 
D == ~-----~ [(rl - 1?)2 + U2~] 
E == u~rl - I?) 

[(rl - ~)2 + i?~] 
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w 
z = .:::xx t 

2 

_ c Cl~~ 
k--=-

- bw." leW..,. 

4w2 
- ~ a = 2 

w,., 

e ",,2 _ MALALcm ",;1; 

f = 4 b T.Y - 4 Ie Ty 

f MALem 
m = 4 b 'Yy = 4 ~ (Pc - ptl"ty 

](z) = h + fcos4z - mcos2z 

l3y = e-h u(z) 

-a _ ,.2 _ ~ [~ _ ~] = 4 w'~, 
a = ,. - w;, b 4b2 w;, 

wp, = 0 (if a = 0) 

_ q e w~, "tv 
q = 2(1 - v2) == - b (w;, - 4w'V 

w' 
v == Va == 2 ::fu (if a > 0) 

w.." 

q 4/0- • /Oe 
v == v'2 == v 2q = - v 2[; "tv (if a = 0) 

Ul = cOSVZ - q cosvz cos2z - vq sinvz sin2z 

~ = sinvz - q sinvz cos2z + vq cosvz sin2z 

? = Ul~ - ~u; = v 
vz =.w~.t 

2z = w..,,t 

- ct 
kz = 2b 

Appendix B 
An aid to identifying terms in eq (50) 

Thit appendix provides some relationships that can aid the reader in transforming the terms in eq. (SO) 
for 1y and ay motions into the notation used in (28) for 1% and 13" motions. The combination 

x y 
- +~-~---~ 

[1(1 + (1/ + n)2] W + (1/ - n)2J 
(B1) 
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often occurs in (SO), where n = 0, 2, 4 or 6. By using the common denominator 

(Bl) can be written as 

(B2) 

as 

(if X = k and Y = k); (B3) 

as 

or as 

With the help of eqs (BIHBS) and Appendix At the terms of (SO) can be expressed in the notation of 
(28). For example: 

"Jc sin2z "Jc sin2z 

2v ["k2 + (v + 2)2] - 2v[~ + (v - 2f] = 

and 
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