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Acceptance Probabilities for a Sampling Procedure
Based on the Mean and an Order Statistic

Mary C. Croarkin* and Grace L. Yang**
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A dual acceptance criterion based on the sample mean and an extreme order is used in many inspection
procedures. Computation of the acceptance probability for such a dual criterion is investigated. An ap-
proximation and a lower bound to the acceptance probability are derived and are applicable to any con-
tinuous distribution. In addition. the connection between this dual criterion and hypothesis testing of scale
and location parameters is studied. In the case of the exponential distribution the exact evaluation of the
acceptance probability yields the power of the test.

Key words: acceptance probability: compliance sampling; dual acceptance criteria; mixed sampling plan;
order statistics: statistical methods.
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1. Introduction

Suppose that a random sample of size n from a lot is measured with respect to a particular variable
and that the acceptance or rejection of the lot depends upon whether or not the measurements satisfy
certain criteria. "Lot" can refer to a group of individual items or to a specified amount of material
which can be sampled randomly.

There is widespread interest in sampling procedures that specify acceptance criteria involving the
sample mean and a proportion of defectives in the sample [1], 141 J5]. [91. [11] and 1141.1 Such a sam-
pling procedure might specify that the lot is to be accepted only if the sample mean is greater than a
value HO, say, and if no more than a specified percentage of the sample is less than a lower limit L. The
purpose of a dual acceptance criterion is to ensure, for example. that the lot is at least a stated amount.
po, of the specified variable on the average and that the number of so called "defectives" or items that
violate the lower limit is controlled. Obviously. depending on the application, the acceptance criteria
can be specified in the opposite direction: i.e., the lot is to be accepted only if the sample mean is less
than py and at least a certain percentage of the sample is greater than an upper limit U.

Specifically, let XI,--,X be a random sample of n measurements, and let Xt1p 6---6 X,,,l be the
corresponding order statistics. It is assumed that the random variables X 1,---,X, are independent and
identically distributed Iii.d.) with a probability density functionflx), and that the X!have finite mean
p and variance o2. Let X be the sample mean and Nt be the number of defectives or measurements
having values smaller than the specified (lower) limit L.

The sampling procedure to be considered is such that the lot is accepted whenever

rX >)oandNL k] (.L1)

where p( and h are specified in the sampling plan.

In terms of the order statistics, 11.1 1 is equivalent to the criterion

W Ž,uoand Xlk+1 >L] 11.2)

and the probability of accepting the lot is defined to be

Pn = PXŽ >p loo IL <]- 41.3)

The sampling procedure discussed above is a mixed variables-attributes acceptance criterion based
on one sample. There are various ways of designing a mixed sampling plan. The type studied by Schill-
ing and Dodge [19] is a double sampling procedure involving variables inspection in the first sample.
If the variables inspection does not lead to acceptance, a second sample is taken and an attribute in-
spection is conducted on the combined samples. In their work. Schilling and Dodge assume a normal
distribution with unknown mean and known variance.

We concentrate on a single sample plan where both the variables inspection as specified by the sam-
ple mean and attributes inspection as specified by k, the number of allowable defectives, are con-
ducted on the same sample. This causes difficulties in the computation of the acceptance probabilities
because of the lack of independence of the sample mean and the order statistics.

Investigations, of which we are aware, into the statistical properties of sampling procedures of this
type assume a normal distribution with unknown mean and known variance. For instance in a com-
pliance sampling application, Weed [21] simulates a two-stage procedure used in specifications for the
thickness of paving material in which both stages involve a variable and an attribute inspection. Elder
and Muse [8] develop a large sample approximation for the acceptance probability used in U.S.
Department of Agriculture inspection procedures (1.3) and compare the approximation to an exact
numerical procedure.

|Figumre in brackets indicate literature relerencas at the endol ths pape.
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It is noted that the dual sampling criterion leads to an acceptance region for testing hypotheses con-
cerning the mean p and the probability of item defectiveness simultaneously. The probability of a
defective is defined to bep = P[X 4 L1. The acceptance region in (1.1) or (1.2) may be used for testing
the null hypothesis

H0 : p = p* andp =p

versus the alternatives (1.4)

HI: 1A < y* orp >p

Through reparametrization, these hypotheses may be formulated in terms of the location and scale
parameters. Evidently, this depends on the properties of the distribution under consideration.

In the case of the normal distribution N(p, G2), the probability of a defective is

9= -(L ) (1.5)

where

0 (Z) = f exp{-u 2 /2}du.

Thus,

a = iL - j/4(p). (1.6)

Consequently, p = ' andp =p* if and only if

p = p* and a = o* = (L.-*)/0PI(p*l.

Accordingly, the hypothesis testing problem in (1.4) becomes that of testing

Ho: Pi= u* and o = o*

versus (1.7)

HI: 1 < u* or a < L<u-
0-1(p*)

Perusal of the literature turned up very few papers that are directly related to a joint test of the loca-
tion and scale parameters. Eisenberger [7] develops an asymptotic joint test for the mean and variance
of a normal distribution based on a quantile. Perng [18] develops a joint test for the location and scale
parameters of an exponential distribution based on Fisher's method of combining two test statistics.
Anderson [2] discusses the likelihood ratio test for simultaneously testing the mean and variance in
multivariate normal distributions; both one-sample and k-sample problems are considered. In a recent
paper, Perlman [17] shows that the likelihood ratio test is unbiased. None of these papers discusses the
computation of acceptance probabilities under alternative hypotheses. Also, unlike (1.7), the alter-
natives in the quoted papers are rectangular regions.

2. Scope of the Study

It is our intention to investigate the acceptance probability of a dual sampling procedure from
several aspects. The investigations are carried out for the normal distribution because of its im-
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portance in acceptance sampling and for the exponential and Weibull distributions because of their
application in modeling the life span distribution.

First, in section 3, we derive a large sample approximation P. for the acceptance probability P0 .
This is achieved by deriving the asymptotic joint distribution of vyn(X -M)/a and JVfL-np)/lnp
11-pli'e as the sample size approaches infinity. This approximation method applies to any distribu-
tion. We illustrate its use in the normal, Weibull. and exponential distributions. The results as given in
sections 3.1. 3.2, and 3.3 are compared with a simulation study.

In section 4 a lower bound Pis established for P. that amounts to assuming the independence of the
sample mean and the kth order statistic. This lower bound for finite samples provides some informa-
tion on the accuracy of the approximation. We attempt to determine under what conditions the ap-
proximation P, is a significant improvement over the lower bound. In this connection one notes that a
large sample approximation P. is derived by normalizing the sample mean as v3il(X-p)/o and the
number of defectives in the sample as iNL-np)/(npll-pl'1 /2 . If, instead, we convert NL to an order
statistic Xlk) and consider Xrkp (or X,-k~l as an extreme statistic. the normalized sample
mean X/I(X -pa and X}k) (or equivalently X, 0_k)} are asymptotically independent (The proof is given in
appendix B). This suggests that P serves as a possible approximation to P, when n is large and k is
small.

In other words, when comparing P. and P, one should keep in mind the relationship between k and
n4 namely, the ratio kh/n. In the case of P. we have NL /a - p and in the case of an extreme statistic we
have k/n - 0 as n - m. Clearly, one would expect that the lower bound P may be a reasonable ap-
proximation when A is relatively small compared with n. This is indeed confirmed in our numerical
study in section 4. The numerical studies show that P. is comparable to P for small kin and superior
to P for larger values of k/n.

Finally, in section 5 the acceptance probabilities are approximated for the normal and Weibull
distributions using a procedure proposed by Pearson and Hartley [16]. The exact acceptance prob-
abilities curves are computed for the exponential distribution.

3. Large Sample Approximation of the Joint Distribution of X and N1.

3.1 Derivation

Let X,,---1 be a random sample from the lot with pdff(x). Assunme that Xjhas a finite mean p and
variance A-.
Introducing indicator random variables I,
where

I if Xi < L (3.1.1)
I. =

0 if X > L

and letting the probability that an item violates the lower specification limit L be

p = PFIX < LI, (3.1.2)

we can write the number of (uniti lower limit violations NLin the sample as

n

NL = 2 I. 3.1.3)
i=l

Note that NVL has a binominal distribution B(n,p). and the event !NL 4 kI is equivalent to the event
IXtk+l > L]. In order to develop an approximation formula for the acceptance probability

Pa = P[fX ou NL < p
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we consider random variables W. and Yn defined as

and (3.1.4)
Y = (NL-np)/(np(ll-p)) 112 .

Let (WI., Y.) be a row vector. We prove the following result.

THEOREM 3.1. As n-> oo, the random vector (W., Y.)) converges in distribution to a bivariate nor-
mal distribution with mean (0,0)' and covariance matrix

2 = ~~~~~~~~~~(3W15)
'K7

where

Q = E (X1 -s)Ijo/(p(l-p))", 2 . (3.1.6)

PROOF: Let t1 and t 2 be arbitrarily chosen but fixed real numbers. Form the linear combination of Wn

and Y, tI W, +t 2 Yw 

Direct computation and application of the central limit theorem give

D
t1 Wn.+ t2 Y1 I N (0, t1

2 + t2
2 + t1 t2 Q) as n- 0 3

It then follows from application of the Cramer-Wold device that

(IW N(( ), x) as n *c

where >: is given in (3.1.51.

Making use of the asymptotic distribution in Theorem 3.1, we note from (3.1.4) that

X = n /2oWa+;

and

NL = (np(l-p)) 1 /2 Y+np.

Thus the random vector (X, NL' has asymptotically a bivariate normal distribution with mean and
covariance matrix r given by

u / n-~~0 E(XF-ujlj\
and = = (3.1.7)

np)E(Xj-ullIj npQ -p)

respectively.

For convenience in computation, write the acceptance probability P. as

Pa = PIX >Po]-P[X_ o, NL > k]

-PX >;A - P[W0 > \Fn(p0.- P)lo, Y,, > b?(lp( )1-p /2(k-np)]. (3.1.8)
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Making use of 13.1.7) and the continuity correction factor 0.5 for the random variable NL, we see that
for sufficiently large n, P. may be approximated by

P. = I JeXp(-z2/2)dz- I g(xyQkdxdY (3.1.91
v2n a a

where
a = \5yo-filla, (3.1.10)

b = (np(l-p))-1"2 (k +0.5-np1, (3.1.11)

g(x,yQ) = (2nS)- (1-Q2 F1 2exp(-(x 2 +y 2 - 2Qxy)/2(1-Q2)}, (3.1.12)

and Q is defined in 13.1.6).

In order to compute the P [X 3 p0 N NL 4 k] using the approximation P., we need to know the
mean p and the variance o2 of the distribution in question, the proportion defective p as defined in
(3.1.2) and the correlation coefficient e as defined in (3.1.6). The computation of the bivariate normal
term is described in more detail in Appendix A.

3.2 Normal Distribution

Assume that the sample comes from a normal distribution N(puCr2 ).
The item defective probability from (3.1.2) is

p = PP X ( L] = O{(L-MI/u}, 13.2.1)

where @{(L-p)Io} is the cdf of theN(0,1) given in 11.51.
In order to compute the approximation P. given in (3.1.9), we need to compute the correlation coef-

ficient given in 43.1.61.
The expectation E ( (X-P)I[x,<L} is evaluated as

E{(X-p)IrX<Lj} = - exp {-(L-u12/2021.

Consequently the correlation coefficient is

Q = -(2npp(1-pV)-" 2exp {-(L-') 2 /2g 2}.

In order to compare the approximation Pa in (3.1.9) with an approximation developed by Elder and
Muse [8J, the lower limit L is chosen under the assumption that P = 0, o = 1, and according to the
criterion

PINL 6 kj = I-as (3.2.2)

where 0< a <1.
Because AVL is B(np), the lower limitL is determined from

k

where p = OIL).
Values of L as tabulated by Elder and Muse for a = 0.10, 0.05, and 0.01 are shown in table I. Once
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TABLE L Lower Limits used in Computation of Acceptance ProbabilitiesforNornalDistribution

Lower LimitL

n k a=0.10 a=0.05 a=0.01

5 0 2.036 2.319 2.877
1 1.215 1.429 1.843
2 0.685 0.881 1.250

10 0 2.309 2.568 3.089
1 1.602 1.789 2.157
2 1.196 1.358 1.670

20 0 2.559 2.799 3.289
1 1.928 2.095 2.428
2 1.586 1.726 2.001

30 0 2.696 2.928 3.402
1 2.100 2.258 2.574
2 1.783 1.914 2.172

L is determined the correlation coefficient of X and NL can be evaluated as

Q = -[2np( lp)1- 1 2 exp{-L 2/2}. (3.2.4)

The'Elder-Muse approximation along with their exact results are compared with the corresponding
values of Pa in table II where L is chosen such that a = 0. 10.

The comparison with the exact values derived in [8] shows that even for small sample size P. pro-
vides an excellent approximation to the acceptance probability P., and its effectiveness increases as k
gets larger. When k = 0, the percent error in P. as compared to the exact results is approximately 3
percent. For k = 1, it is about I percent and for k = 2, it is less than 1 percent. The percentage errors
in both P. and the Elder-Muse approximation when p = 0 are shown below.

Percent Error in Approximations

k=0 k= Ik=2

Elder Elder Elder
n P Muse P Muse P. Muse

5 3.3 1.0 1.0 1.8 0.6 1.2
10 3.1 0.6 1.0 1.0 0.6 1.2
20 3.0 0.2 0.8 0.6 0.6 0.8
30 2.6 0.2 0.8 0.8 0.4 0.6

3.3 Weibull Distribution

Assume that the sample Xl,.. .,X comes from a two parameter
scale parameter A, shape parameter 6 and pdf

Weibull distribution W(AO) with

fix) = (o/A) (x/A)- 1 exp {- (xlAi°} forx > 0, A > 0, 8 > 0

The mean and variance are

and
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p = AFr1+ 1/o)

02 = A2 {r(1+2/) - [fr(1+ 1/8)]2}

(3.3.2)

(3.3.3)



respectively where F(-) is the gamma function.
For 0 < B 4 1, X has a decreasing failure rate (DFR) distribution; for 0 >s 1, X has an increasing

failure rate (IFR) distribution. For further information see Johnson and Kotz 113].
In the case of the Weibull distribution, the proportion defectivep is defined from (3.1.2) and (3.2.2)

as

p = [X < LI = I - exp {-(L/A)0 }. (3.3.4)

The expectation

EXI[X<LJ
O L

=-A f0
x(x/AM0-lexp {- (x/A)0}dx

= AI{(L/A° 0,1/0}

and I(c,d) is related to the incomplete F-function [12].
Combining (3.1.6). (3.3.4) and (3.3.5), we find that the correlation coefficient is

TABLE 11. Comparison of Approximation Pa with
Elder -Muse Values for

PIXptu *,N1 4;kwhereP(N, •k)= 0.90
for Normal Distribution N.O I)

(3.3.5)

k=0 k=l k=2
Elder Elder Elder

a 1 Exact P. Muse Exact Pa Muse Exact P. Muse

5 -. 8 0.035 0.034 0.032 0.036 0.036 0.034 0.037 0.036 0.037
-. 6 0.087 0.082 0.085 0.089 0.088 0.089 0.089 0.089 0.091
-. 4 0.180 0.168 0.181 0.184 0.181 0.188 0.185 0.184 0.189
-. 2 0.318 0.300 0.323 0.324 0.320 0.332 0.326 0.325 0.333

.0 0.488 0.472 0.493 0.496 0.491 0.505 0.499 0.496 0.505

.2 0.659 0.667 0.663 0.669 0.672 0.674 0.671 0.672 0.674

.4 0.801 0.814 0.802 0.811 0.814 0.811 0.813 0.814 0.812

.6 0.899 0.910 0.899 0.908 0.910 0.906 0.909 0.910 0.906

.8 0.956 0.963 0.955 0.962 0.963 0.959 0.963 0.963 0.959

10 -. 6 0.027 0.026 0.026 0.028 0.028 0.026 0.028 0.028 0.027
-. 4 0.098 0.091 0.097 0.100 0.098 0.099 0.101 0.101 0.101
-. 2 0.252 0.236 0.253 0.257 0.252 0.261 0.260 0.257 0.264

.0 0.480 0.465 0.483 0.490 0.485 0.495 0.494 0.491 0.500

.2 0.713 0.732 0.714 0.725 0.735 0.728 0.731 0.736 0.733

.4 0.876 0.897 0.876 0.888 0.897 0.887 0.893 0.897 0.891

.6 0.956 0.971 0.956 0.966 0.971 0.965 0.969 0.971 0.967

.8 0.956 0.994 0.985 0.992 0.994 0.991 0.993 0.994 0.993

20 -. 4 0.034 .0.032 0.034 0.035 0.034 0.034 0.036 0.035 0.034
-. 2 0.174 0.162 0.174 0.178 0.173 0.178 0.180 0.177 0.181

.0 0.474 0.460 0.475 0.483 0.479 0.486 0.488 0.485 0.492

.2 0.781 0.811 0.781 0.795 0.814 0.795 0.802 0.814 0.802

.4 0.937 0.963 0.937 0.950 0.963 0.950 0.956 0.963 0.955

.6 0.981 0.996 0.981 0.991 0.996 0.991 0.994 0.996 0.993

30 -. 4 0.013 0.012 0.013 0.013 0.013 0.013 0.014 0.014 0.013
-. 2 0.127 0.118 0.127 0.130 0.126 0.129 0.131 0.129 0.131

.0 0.470 0.458 0.471 0.479 0.476 0.480 0.484 0.482 0.487

.2 0.824 0.861 0.824 0.839 0.863 0.839 0.847 0.863 0.846
.4 0.958 0.986 0.958 0.972 0.986 0.972 0.978 0.986 0.977
.6 0.985 0.999 0.985 0.995 0.999 0.995 0.997 0.999 0.997

= 0
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e = [AI{(L/A)8 , l/1}0-p]/o(p(1-p))1/ 2

where St and a are defined by (3.3.2), and (3.3.3) respectively.
The limits of integration for the approximation (3.1.9) are

(3.3.7)
A{F(L+2/0)-[Frl+ 1/e)]2}1/2

andb as defined in (3.1.11.
As is the case in the normal distribution, the lower limit L is determined according to (3.2.3) and

(3.3.4) for specified values of k and a.
Explicitly

L = A [-log, (I-p)] /. (3.3.8)

The proportion defective p is tabulated in table Ill for a = 0.10, 0.05 and 0.01, n = 5,10, 20, 30 and
k = 0, 1, 2, 3. Corresponding lower limits L where A = I are shown in table IV.

TABLE 111. Proportion Defectives p used in Computation of
Acceptance Probabilities

Proportion Defective p

n A a0=.l0 a=0.05 ,= 0 .01

5 0 0.0208 0.0102 0.00200
I .112 .076.5 .0330
2 .247 .1890 .106
3 .416 .3425 .222

10 0 0.0105 0.00511 0.00100
l .0545 .0365 .0155
2 .1155 .0870 .0475
3 .1875 .1500 .0930

20 0 0.00525 0.00256 0.000500
1 .0269 .0180 .00759
2 .0564 .0422 .0227
3 .0902 .0713 .0435

30 0 0.00350 0.00171 0.000335
I .0178 .0120 .00500
2 .0373 .0278 .0149
3 .0594 .0468 .0285

The approximation P. is compared to a simulation study where the acceptance probability was com-
puted from 5,000 random samples. Simulation for the Weibull distribution was done by generating in-
dependent uniform random deviates Ui using a congruential random number generator and making
the transformation

X= A(-log U')1 8/

The Xi are independent W(AB) r.v.s with pdf as shown in (3.3.1).
Values of P. and simulated acceptance probabilities are tabulated in table V for Weibull distribu-

tion W(1,0) for 0 = 1,2, 3.5.

493

(3.3.6)

n1/2[y,)_AF(l+ I/ e)]



The accuracy of the approximation Pa as gauged by the simulation results is dependent on several

factors; i.e., namely, the value of the shape parameter 0; a. the probability that the sample will contain
more than the allowable number of defectives; n, the size of the sample; and k, the number of
allowable defectives or number of measurements less than the lower limitL.

The worst accuracy is for a Weibull distribution with 0 = I where a is small. a = 0.01, and n is
small, n = 5. The error is 9 percent for this case but drops to 2 percent when the sample size is in-

TABLE IV. LowcerLimms Usedin Computation of Acceptance Probabilities for WeibuliDistribution

I | k |Lower Limi 1: 

0=1 5 0 0.0210 0.0103 0.0020
5 1 .1188 .0796 .0336
5 2 .283T .2095 .1120
5 3 .5379 .4193 .2510

10 0 .0106 .0051 .0010
10 I .0560 .0372 .0156
10 2 .1227 .0910 .0487
10 3 .2076 .1625 .0976
20 0 .0053 .0026 .0005
20 1 .0273 .0182 .0076
20 2 .0581 .0431 .0230
20 3 .0945 .0740 .0445
30 0 .0035 .001 7 .0003
30 1 .0180 .0121 .0050
30 2 .0380 .0282 .0150
30 3 .0612 .0479 .0289

0=2 5 0 .1450 .1013 .0447
5 1 .3446 .2821 .1832
S 2 .5326 .457. .3347
5 3 .7334 .6475 .5010

10 0 .1027 .0716 .0316
10 1 .2367 .1928 .1250
10 2 .3503 .3017 .2206
10 3 .4557 .4031 .3124
20 0 .0726 .0506 .0224
20 1 .1651 .1348 .0873
20 2 .2409 .2076 .1515
20 3 .3075 .2720 .2109
30 0 .0592 .0414 .0183
30 1 .1340 .1099 .0T08
30 2 .1950 .1679 .1225
30 3 .2475 .2189 ITO0

0=3.5 5 0 .3317 .2702 .1694
5 1 .5441 .4852 .3791
5 2 .6977 .6398 .5351
5 3 .8376 .7801 .673T

10 0 .2724 .2216 .1390
10 1 .4390 .3904 .3047
10 2 .5492 .5042 .4216
10 3 .6382 .5950 .5144
20 0 .2233 .1818 .1140
20 1 .3573 .3181 .2482

20 2 .4434 .4013 .3402
20 3 .5097 .4752 .4109
30 O .1988 .1620 .1017
30 1 .3171 .2831 .2202
30 2 .3929 .3607 .3013
30 3 .4502 .4198 .3633
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TABLEVV Comparison of ApproximaiionPA with Simulationfor
P(X 1P4'*. NL< k) whereP(NL k)=1-a

for Weibull Distribution W(1.6).

Probability of Acceptance

__________ _____ I k 0 =0 5m=P 0.01

n ~k I Pa Sicul I P. Simul I P. Simul

0.634
.652
.664
.674
.707
.724
.734
.743
.195
.801
.807
.810
.826
.837
.838
.841

.703

.723

.736

.740

.764

.780

.794

.800

.827

.839

.848

.851

.860

.866

.867

.872

.829

.844

.855

.853

.864

.868

.884

.889

.890

.894

.899

.894

.893

.896

.894

.898

0.698
.698
.699
.702
.768
.768
.766
.767
.848
.846
.844
.843
.893
.890
.887
.886

0.663
.673
.680
.684
.755
.763
.768
.772
.828
.836
.840
.841
.872
.879
.878
.881

.720 .731

.729 .734

.733 .737

.736 .739

.788 .807

.803 .808

.808 .808

.812 .810

.865 .885

.876 .884

.884 .882

.884 .882

.897 .924

.903 .922

.909 .919

.914 .918

.864

.865

.868

.869

.931

.930

.928

.928

.968

.964

.960

.958

.974

.970

.966

.964

.859

.873

.875

.878

.911

.915

.922

.925

.938

.946

.946

.947

.938

.947

.948

.956

0.712
.-12
.711
.711
.785
.785
.785
.784
.868
.868
.867
.867
.914
.914
.914
.913

0.672
.672
.674
.675
.773
.776
.778
.779
.875
.877
.879
.878
.914
.918
.915
.917

.744

.744

.744

.744

.824

.824

.823

.823

.906.

.906

.905

.905

.946

.946

.946

.945

.880

.880

.880

.879

.951

.951

.951

.951

.990

.990

.990

.989

.998

.998

.997

.996

.738

.739

.740

.740

.822

.825

.826

.827

.903

.905

.907

.907

.947

.950

.949

.952

.872

.875

.876

.877

.942

.947

.946
.950
.983
.984
.987
.986
.984
.989
.990
.990
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0=1

8=2

0=3.5

3

a
5
3

10
10
1 0
1 0
20
20
20
20
30
30
30
30

a
5
5
3

1 0
1 0
10
10
20
20
20
20
30
30
30
30

5
5
5
5

1 0
1 0
1 0
1 0
20
20
20
20
30
30
30
30

0

2
3
0

2
3
0

2
3
0

2
3

0

2
3
0

2
3
0

2
3
0

2
3

0

2
3
0

2
3
0

2
3
0

2
3

0.645
.668
.678
.688
.705
.726
.733
.738
.775
.795
.798
.801
.815
.835
.837
.838

.681

.709

.721

.729

.743

.768

.777

.784

.810

.832

.837

.840
.844
.865
.867
.869

.801

.830

.839

.843

.853

.877

.882

.885

.882

.902

.903

.903

.887
.908
.907
.907

*#o = 0.75



creased to n = 10. For other Weibull distributions and combinations of a and n, the worst accuracies
occur when k = 0, and in this case the errors are as large as 6 percent for n = 5 and 4 percent for n =
30. However, the approximation P. works very well when k > 0. The disagreement between Pa and
the simulation is less than 1 percent for a large proportion of the points when i > 0.

3.4 Exponential Distribution

Assume that the sample Xl,...,X, 1 comes from an exponential distribution E(A43) with location
parameter P3 and scale parameter A and pdf

f(x) = (Ilk) exp{-(x--f)/k) x > 3, A > 0 3.4.1)

The mean and variance of X are given by i = A + ,3 and ,2 = A2 respectively.
We have

p = I-exp(-(L-/3)/A) (3.4.2)

and

EXI[Xc L] = Ap - (1-p)lL--/3) + Pfp. (3.4.3)

Combining (3.4.2) and 13.4.3), we get

Q = -(l-p)l /2 (L-/3)/Ap 1 2 . l3.4.4)

Using values for the proportion defective p that are given in table III, the corresponding limits L as
determined by

L = 3 - A log (l-p) (3.4.5)

are found in table VI for i = 0 and A = 0.5, 1, 2.
The values a and b appearing in the approximation P. (3.1.9) are given by

a = n1/2Ar 1 (Ho-A-f-) (3.4.6)

b = (np(l-p))- 1 /2 lI + 0.5 -np)

and e is defined by 13.4.4.)
Values of P. and simulated acceptance probabilities are tabulated in table VII for the exponential

distribution EIA,0) for A = 0.5,1,2.
The accuracy of the approximation P. is more dependent on n, the sample size and less dependent

on i, the number of allowable defectives for the exponential distribution than for Weibull distribu-
tions. The worst accuracy-is for an exponential distribution with A = 1, where i = 0 and n = 5. The
disagreement with the simulation in this case is 7 percent, dropping to I percent when the sample size
is increased to n = 10. In general, the accuracies are not dependent upon the parameter A but are
somewhat dependent upon the way in which the lower limit L is chosen, and the accuracies tend to
worsen as the probability of the sample containing more than the allowable number of defectives in-
creases. Accuracies of about 2 percent are characteristic of the results over all values of k.

4. A Lower Bound for the Acceptance Probability

A lower bound for the acceptance probability is provided by the following lemma.

LEMMA 4.1: Let X 1 ...,Xn be i.i.d random variables from a continuous distribution. Let X be the
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sample mean and X(r) be the rt' smallest order statistic of X ,...,X. . Then for arbitrarily fixed
real numbers a, b and positive integer,, I < r <ns

P[X >aX(r)>blP[X >,alP[X(r)>-bl (4.1)

P[)C < a, X (r)< b] > P[-X < a] P[X(r) < b]y (4.2)

The lemma is an easy consequence of a general theorem (Esary, Proschan, and Walkup 1101). For easy
reference, we quote the theorem below, as well as the definition of "associatedness." Random

TABLE VI. Lower Limits used in Computation of Acceptance Probabilities for Exponential Distribution

| I Lower Limit L

I_____IIt k I a0.10 j a0.05 e=0.0I

A=0.5 5 0 0.0105 0.0051 0.0010
5 l .0594 .0398 .0168
5 2 .1418 .1047 .0560
5 3 .2689 .2097 .1255

10 0 .0053 .0026 .0005
10 1 .0280 .0186 .0078
10 2 .0614 .0455 .0243
10 3 .1038 .0813 .0488
20 0 .0026 .0013 .0003
20 1 .0136 .0091 .0038
20 2 .0290 .0216 .0115
20 3 .0473 .0370 .0222
30 0 .0018 .0009 .0002
30 1 .0090 .0060 .0025
30 2 .0190 .0141 .0075
30 3 .0306 .0240 .0145

A= 1.0 5 .0210 .0103 .0020
5 l .1188 .0796 .0336
5 2 .2837 .2095 .1120
5 3 .5379 .4193 .2510

10 0 .0106 .0051 .0010
10 l .0560 .0372 .0156
10 2 .1227 .0910 .0487
10 3 .2076 .1625 .0976
20 0 .0053 .0026 .0005
20 I .0273 .0182 .0076
20 2 .0581 .0431 .0230
20 3 .0945 .0740 .0445
30 0 .0035 .0017 .0003
30 l .0180 .0121 .0050
30 2 .0380 .0282 .0150
30 3 .0612 .0479 .0289

A=2 5 0 .0420 .0205 .0040
5 l .2376 .1592 .0671
5 2 .5674 .4190 .2241
5 3 1.0757 .8386 .502 1

10 0 .0211 .0102 .0020
10 1 .1121 .0744 .0312
1 0 2 .2455 .1820 .0973
10 3 .4153 .3250 .1952
20 0 .0105 .0051 .0010
20 l .0545 .0363 .0152
20 2 .1161 .0862 .0459
20 3 .1891 .1479 .0889
30 0 .0070 .0034 .0007
30 l .0359 .0241 .0100
30 2 .0760 .0564 .0300
30 3 .1225 .0959 .0578

I
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TABLE VII. Comparison of Approximation P. with Simulation for P[X aO, N, < k1 where P. N,1 < k] = I-a
for Exponential Distribution E/ A.0)

A=0.5, M=0.25

a
5
S
5

1 0
1 0
1 0
1 0
20
20
20
20
30
30
30
30

A= 1.0, a= 0.75

5
5
5
S

1 0
N 
1 0
1 0
20
20
20
20
30
30
30
30

A=2.0, pa= 0.75

5
5
5
5

1 0
1 0
1 0
1 0
20
20
20
20
30
30
30
30

Probability of Acceptance

0.781
.804
.811
.819
.842
.862
.865
.867
.878
.898
.898
.898
.886
.906
.906
.906

.645

.668

.673

.688

.705

.726

.733

.738

.775

.795

.798

.801

.815

.835

.837

.838

.825

.846

.851

.856

.870

.889

.891

.891

.887

.906

.906

.906

.889

.909

.908

.908

0.825
.846
.857
.869
.875
.889
.893
.897
.902
.905
.907
.899
.901
.904
.903
.903

.632

.657

.665

.676

.712

.726

.734
.745
.789
.800
.804
.806
.839
.846
.842
.846

.872

.883

.891

.894

.894

.889

.898

.894

.902

.903

.905

.904

.907

.906

.902

.901

0.850
.841
.846
.847
.922
.919
.915
.913
.964
.960
.956
.953
.973
.969
.965
.962

.698

.698

.699

.702

.768

.768

.767

.767

.848

.846

.844

.843

.893

.890

.887

.886

.899

.895

.893

.892

.954

.950
.945
.942
.974
.970
.965
.962
.976
.972
.968
.965

0.853
.871
.874
.885
.929
.927
.933
.935
.948
.954
.955
.948
.952
.951
.948
.950

.651

.660

.667

.674

.754

.761

.766
.769
.846
.849
.849
.851
.890
.887
.884
.891

.915

.927

.929
.935
.944
.944
.948
.945
.952
.956
.956
.955
.956
.949
.948
.952
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0.868
.868
.867
.866
.943
.943
.942
.941
.987
.987
.986
.985
.997
.997
.996
.995

0.893
.896
.897
.899
.957
.958
.958
.956
.985
.984
.984
.984
.981
.990
.990
.989

.712

.712

.711

.711

.785

.785

.785
.784
.868
.868
.867
.867
.915
.914
.914
.913

.919

.919

.918

.916

.976

.976

.975
-974
.997
.997
.996
.995

1.000
.999
.999
.998

.686

.689

.690

.691

.776

.777

.777
.778
.873
.876
.875
.873
.920
.921
.922
.921

.950

.954
.953
.955
.987
.987
.986
.985
.991
.989
.991
.992
.990
.991
.991
.990



variables X 1 ...,Xn are said to be associated if

Cov(f(T), g(T)) > 0

for all non-decreasing functions f and g in each Xi for which EffT), Eg(T), Ef(T)g(T) exist and T
denotes {X1 ,...,X,}.

THEOREM 4.1. Let T = {Xl-,...,Xn be associated, SI = fi(T) and f; be nondecreasing for i=l,...,k.
Then

k

PIS I 1< SI,---,SI, Ad SkI > .. n P[Si -< Si] (4.3)

k
P[S1 >S ... Sk >Sk] > F1 P[Si>sJ (4.4)

i= 1

for ail SI.. "s-'k

PROOF OF LEMMA 4.1: In our case the Xi's are statistically independent and hence associated. Let
SI = X and S2 = X(,). Clearly, S1 and 52 are non-decreasing functions in each of the Xi's; hence (4.1)
and (4.2) hold. Moreover, Cov(S1 , 52) = Cov (X, X(,)) > 0. This completes the proof.

From Lemma 4. 1, we have a lower bound P to the acceptance probability

P = P[X ->a] P|Xjk+ 1l > LI < Pn= P[X_ :a, Xfk+ II>L], (4.5)

where A + I corresponds to r.
The r.v. Xfk+ ) can be transformed to a r.v. Z with Beta distribution with parameters n-k and k+ 1.

Thus

F(n+ 1) Ip
P[X~k~)>L1=PZ~l-FXL~j=~~f z-k- (l-z)kdz. (4.6)

F(k+1)FWn-h) 0

The lower bound P in (4.5) can be computed using the marginal distribution of the sample mean and
the Beta distribution.

Because the computation of the lower bound P is much easier than the computation of the accep-
tance probability P. it would be an immense simplification if the lower bound could serve as an ap-
proximation for Pn.

Therefore, it is of practical importance to determine the sample size n and values of k that are
necessary in order that the lower bound be an acceptable approximation for P.. In other words, it is of
interest to know the smallest value of n and the range of k values which makes the independence of X
and X(k+ 1) acceptable.

5. Comparison of the Exact Probability of Acceptance with the
Approximation and the Lower Bound

5.1 Acceptance Probability Curves

The acceptance probabilities computed using either simulation or numerical integration along with
the corresponding lower bound P and the approximation Pa are plotted as a function of one parameter
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of the distribution in question. This provides a comparison of the relative accuracy of P. to P as a
technique for approximating Pa. The curves are varied over n and k in order to examine the effect of
sample size and number of allowable defectives k on P., P. and P.

5.2 Normal Distribution

Assuming that XI,_., X.~ are i.i.d. N(p.1I). the acceptance probability

P.= PJ[X ,IoX(k+l I>

for L chosen according to (3.2.3) and p, = 0 was computed using a technique for simulating random
normal deviates due to Box and Muller [3]. The resulting acceptance probabilities as a function of iA

are shown as the solid line in figures 1-4.
The corresponding lower bound P was computed from (4.5) and the approximation P. was com-

puted for (3.1.9).
The relationships among the probability of acceptance P., its approximation P., and its lower

bound P as a function of sample size n and allowable number of defectives k is depicted in figures 1-4
for samples of size n = 10 and n = 30. The following convention is used for all figures; namely, P. is
shown as a solid line; P. is shown as a heavy dashed line; and P is shown as a lighter dotted line.

From figure I it is obvious that when k = 0 and n is small, P. is a better approximation to the ac-
ceptance probability than the lower bound as long as pA < 0.25. As n increases the superiority of P. to P
increases as k is allowed to become larger. For example, when k = 3 as in figure 4, the lower bound
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allowable defectives /r = 3 and n observations are drawn

does not give a satisfactory approximation for the smaller sample size, and P. is clearly preferable.
Even for n = 30, P. is at least as accurate as P over the entire range of M.

5.3 Weibull Distribution

Assuming that Xl,...,X, are i.i.d. W(1,0), and that pO = 0.75 and that L is chosen according to
(3.3.8) with 0 = 1, the acceptance probability was computed by simulation and is shown as the solid
line in figures 5-8. The corresponding lower bound P was also computed using simulation and is
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FIGURE 5. Acceptance probabilities when the number of allowable defectives k = 0 and n observations are drawn
from a Weibull distribution Wf,1 0).
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FIGURE 8. Acceptance probabilities when the number of allowable defectives k = 3 and n observations are drawn

from a Weibull distribution W191,6).

represented by the dotted line in the same figures. The approximation P. is shown by the heavy
dashed line in the figures.

The figures show that P. is not a particularly good approximation to P. when k = 0, and one would

do much better using the-lower bound P. However, P. shows the same characteristic for the Weibull
distribution as for the normal distribution; namely, that as k/n increases the accuracy of the approx-
imation increases. For n = 10 and k = 3, P. is superior to P, for n = 30, P is indistinguishable from
the simulated acceptance probability.
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5.4 Exponential Distribution

5.4.1 Comparison with a UMP Test

As discussed in section 1, we may view the problem of finding an optimal sampling procedure as a
hypothesis testing problem formulated in (1.4). In general there exists no uniformly most powerful
(UMP) test for (1.4). However, it is interesting to note that in the exponential distribution the dual ac-
ceptance criterion for k = 0 corresponds to a test which is UMP for a subset of alternatives specified
in (1.4). Specifically, suppose the sample comes from the exponential pdf given in (3.4.1).

The UMP acceptance region for testing

HO: A = A* and = Ps*

versus

HI: O<A<A*andO<P<P*

is given by

(5.4.1)

This testing problem is equivalent to testing

HO: A = A* andp = p*

versus

H1:O<A<A* andp > I-( I-P*)A*/k

where

or

A* = L + A* log (l-p*).

Under Ho, P 8*,p* [X(1) > #*1 = 1, and 80 is determined by the equation

PA*p* [X Ž jol = I-a, (5.4.2)

where a is a predetermined level of significance (Lehmann [15]).
If we set L = ,0* and k = 0, the test specified by (5.4.1) clearly is the same test specified by (1.3),

and the acceptance probability

Pn= PAP { X>HOX Xl)l > ,P*) (5.4.3)

can be computed either by the approximation shown in section 3.4 or by numerical integration using
an exact formula for the distribution of X and NL as shown in the next section.

5.4.2 Exact Distribution of X and NL

The joint distribution of X and NL can-be obtained from the order statistics.
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Let

Z, = nX0)

Zi = (n-i+ I)iX~jj-Xjj-j).

We have the pdf of Zfl>,

gj(zj) = A-1 exp {-(zj-n3)/A},z1 >(3 (5.4.4)

and for i > 2, Z; has a pdf

gj(zj) = AK1 exp (-zj/A), zg>O.

To compute the acceptance probability P. for an arbitrary k, we make use of the fact that the Z's
are independent r.v. 's, and that

s X- = Z = X- and proceed as follows:

Pn = PAp IX > yo, NL < kI
n ~~k+] II k+1lgz)Idz.=f ~-fP[ I 4i> Žnyn, I Zi/(n-i+1) >LzI,"r', zk+lI in g-zjdgdzkI

n k+1 + k+1
= f £-- | P [I zj > n 0O- I zJ I n gi(zi) dzg---dzk+I (5.4-5\

k+1 k+1
whereA = f(zl,---, zk±+ 1): zi/(n-i+ 1) > L and npAO - zi >z 0).

1 I

The expression in (5.4.5) is the exact probability of acceptance, P.

When k = 0, the computation of P. reduces to

P. = f p P I 2Z > nPO-z1] glizl~dzl+j gl(zl)dzl. (5.4.6)nL 2 Z-up, 1]g( 1)z+

Note that the sum Y = I Zi has a gamma density.

f(y) = (1/k)n-I rn-2 exp(-y/A). (5.4.7)
rUn-1)

Substituting (5.4.4) and (5.4.7) in (5.4.6) we obtain

P. =r1 J e-0 vn"2 exp{-(zl-np)/A}dvdzl + exp (-n(y0 7--f3)/A} (5.4.8)

where

a = nL
b = npO
c = (nuO-z1 )/A

The lower bound for P. is

P =fxdx | dx (5.4.9)
-/A 2n(L-p)iA
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where fix) is the pdf of the X2(2n) and g(x) is the pdf of the X2(2).

5.4.3 Acceptance probabilities

If we assume that X1 ,---,X, are i..d. E(A,O), the acceptance probability for k = 0

P= PJ[X > M0, NL < 0] = P[X > po, X111 > LI

is computed from (5.4.8) using a numerical integration technique that takes advantage of the fact that
the inner integral is an incomplete F-function. Note that y0 is determined from X2(2) according to
(5.4.2), and L is determined according to (3.4.5). The acceptance probability P. is shown as the solid
line in figure 9.
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FIGURE 9. Acceptance probabilities when the number of allowable defectives k =
from an exponential distribution Ek, 0).

"-30 r-0

0 and n observations are drawn

The acceptance probabilities fork = 1,2,3, for MO = 0.75 and L chosen according to (3.4.5) were com-
puted by simulation as were the corresponding values of P. The approximation P. was computed from
(3.4.6). Results are shown in figures 10-12.

The graphs show that P. is a better approximation to P. than the lower bound P for small sample
size where the superiority of P. over P increases as k increases. For large sample size, say n = 30, the
two methods give almost identical approximations to Pa.

Values of . used in Computation of
Acceptance Probabilities for UMP Test for

Exponential Distribution

Values of p0

n a=0.10 a=0.05 aO=0.01
5 0.48652 0.39403 0.25582
10 0.62213 0.64254 0.41302
20 0.77626 0.66273 0.55411
30 0.77431 0.71998 0.62475
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6. Synopsis

The problem of computing the acceptance probability P. has been addressed by an approximation
P. that relies on the asymptotic joint distribution of the sample mean and number of defectives in the
sample. P. has the advantage that it is applicable to any continuous distribution. It is computed using
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a N(0,1) cdf and a bivariate normal cdf which in turn can be reduced to a single variable integration.
The approximation P. compares very favorably with another published approximation for the nor-

mal distribution and with a lower bound P. Graphs of the acceptance probability as a function of one
parameter of the distribution are used to compare the relative accuracies of Pa and P. The graphs
show that for the normal distribution P. and P have comparable accuracies with k = 0. As k/n in-
creases, P. quickly becomes superior to P, and even for large n and k > 0 P, is superior. In other
words, the best results for the normal distribution are obtained with P when k = 0 and with P8 for all
other values of k.

In the case of Weibull distribution P is superior for k = 0. As k/n increases, P8 gains in accuracy,
and for large n, P continues to have an edge over Ps. The difficulty in computing P for the Weibull
distribution may make it desirable to use P. for all applications.

In the case of exponential distribution, the exact joint distribution of the sample mean and number
of defectives in the sample has been derived for k = 0. The computation of the acceptance probability
P4 in this case involves a two-variable integration. Graphs of the acceptance probabilities show that
the lower limit P gives a consistently good approximation to the acceptance probability. The approx-
imation Pa and the lower limit P have also been computed for the exponential distribution for I < k <
3. The graphs for these tests show that P is comparable or superior to Pa for large n(n id 301 with P. be-
ing somewhat superior when n is small, say n < 10.

The numerical integrations for this study were performed using the NBS software package
DATAPLOT developed by Dr. J.J. Filliben, and the graphs were prepared using the same package.
The authors wish to acknowledge the helpful suggestions for changes in the manuscript made by Dr.
P. Smith and Mrs. M. Natrella.
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8. Appendix A

The approximation Pa given in (3.1.9) involves the computation of Lla,b,Q) defined as

L(ab,Q) = f fg(zy,e0dydz.

The computation of Lla,be) can be reduced to a single variable integration. When a and b are both
positive 1181,

L(a,b,Q) = exp I- !a2+b2-2ab cos w) cosec2wjdw2n ac cosQ 2

The following recursion relations hold:

L(-ab.e) = -L(a,b,-e) + - [1-hbb)]

L(ar-b,e) = -L(a,b,-e) + 2 [1-h(a)]

L(-a,-b,e) = L(a,b,Q) + 2 Jh(a)+h(b)]
x~~~~

where hlx) = I exp(-t 2 /2)dt.

The approximation Pa can be computed for all values of a,b and e using the foregoing equations.

Pa = 4$-a)-L(a,bQa>Ob>O

P. = 4$-a) -si-b) + L(-a,b,-e), a < 0, b > 0

P. = LIa,-b,-p). a > 0. b < 0

P8 = ib) - L(-a,-b,Q), a < 0, b < 0

where Oix) = f expi-t2/2)dt.

9. Appendix B

Asymptotic independence of the sample mean and the in-k)th extreme statistic.

Let X,---, X, be i.i.d with a p.df. fix). Denote the c.d.f. of the X's by Fix). Assume that X's have a
finite mean It and finite variance o2. Let XI,) < .*. < X() be the order statistics.

The conditional density of X(, 1,---, XI. given that X(.-k) = x(nkl is given by
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A-k-I
(n-k-l)! f fixol))

JF(x(-k)n-k-

n
k! fi fi x(s)

n-k+ I

11-Flxn.-kf)l I

Clearly, given that XI.-k) = Xln-k). the joint conditional density may be regarded as the joint density
of two dependent samples IYl,---, Yn-k- _I and {W 1,---, WkI, where the Y-sample has a p.d.f.

hAx) -fix) I 2 >
Fix)J.-k))

(2)

= 0 I if x > X(n-k)

and the W-sample has a p.d.f.

(3)

ifX<XIn-k)

THEOREM. For every fixedk, I n v(X-M) is asymptotically independent of X(n-k) as n ' oo

PROOF: Rewrite X in terms of the Y's and the W's. We obtain

V\iX -p) -

a

\ - (Y- Vi -

a /-
+

iW-p) k
ov\F

+ Xln -k)-y
+V5

From (2) we have

X (n-k) °I xdF(x) JdF(x)
0 x (n-k)

EYp-y = -fxdFix)
X(n-k)

Making use of (4) and (5), and letting A be the value of EYi with XI.-k) replaced by X(.fk), we get

VWX -,/) -

a
v~---I= F -EY,) \F-a ii

a \/ni n-k-1) (A -p) iW-p k 
Vt a \a o+ a

Since k is fixed, clearly (Wi-pt) kloi O in probability as n - c. To prove the theorem we need the
following two lemmas in which we show that the second and the fourth terms tend to zero in probabili-
ty. Then the theorem follows from the fact that the first term converges in distribution to N(O,1) which
is the "unconditional" limiting distribution of v\i(X-p).
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LEMMA l.As n - o,

Xln-k) - 0 in P.

vir

PROOF: For every e > 0 and for a fixed k, it follows from the Chebychev inequality that

pI In-k)I >E <
I V

I E(max X.2 )
.nE 16j'<n

Let YV = X 12 and H(y) - P[Yj > y].

Following a proof in Chung (I960),

P[max YV > y] = I - [H(y)Jn > n[1-H(y)]
1 6j$n

and

n E imax X1 2F =
1 6jn

. W W
-1 rf {1-[H(yf]l} dy > I [1-Hy)l]dy < °
a 0 0

On the other hand,

n

cMI
'max Xj2) = I I
16jl n 0 H(y)

un-] du dy.

Since the expectation is finite, we can take the limit as a - oo under the integral sign. As a result

lim
ncc

1
a

E [max Xf21
1 6j<n

o 1
= H i

O H(j
lim un-I du dy = 0

Y) n -oo

LEMMA2. Forafixedk,06k 6n-l1

Wo

4P-FI f x dF(x) - O in P as n - x.
Xln-k)

PROOF: Since

oo

+ f--
x dF(x) = vFi Xfn-k) [1-F(Xl.-.kj

oo

f [1-Fix)] dx,
Xza-k)

we will show that each term on the right side of (8) converges in probability to zero.
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Set

xZ= 1- n-k-I

Then

R
P{(n-k-I)[1-F(X(flk)J >xl = I

i=n-k

We see that X(n-k)/V / nk- 0 in P as shown in Lemma 1 and (n-k-i II-F(X(fn-k))] converges in
distribution as shown in (10). Thus, the first term on the right side of (8) tends to zero in P.

Finally, to show that the last term in (8) tends to zero in P, write this term as

,/i-k-1 I [I-F(X) dx = v(n-k-1) (1-F(X{-k)) f ([I-FWx)]dx)1/V1-F(X(fl A)}
X(.-k) { Xln-k)

Clearly, the part in brackets tends to zero in P can be seen by the application of the L'Hospitals's
rule to it.

511

(9)

(10)( i ) Zi (I -z~n-i rea = 0
i=O



JOURNAL OF RESEARCH of the National Bureou of Stondards
Vol. 87, No. 6, November-December 1982

Mathematical Analysis for Radiometric Calorimetry
of a Radiating Sphere

L. A. Schmid*

National Bureau of Standards. Washington, DC 20234

September 15, 1982

Equations are derived from which the temperature dependence of both the specific heat and the thermal
diffusivity of a spherical sample of material can be calculated from observations of the time dependence of
the surface temperature and the time-rate of energy loss from the sample as it cools. The derivation takes
into account the nonuniformity of the interior temperature field of the sample, and the resulting equations
can be applied not only to radiative cooling, but also to any other cooling mechanism that does not violate
the assumed spherical symmetry. The analysis excludes change of phase, but it does take thermal expan-
sion into account. To permit the making of estimates necessary for the design of radiative cooling ex-
periments, a universal temperature-time cooling curve is derived for the post-transient cooling regime of a
radiating sphere of any size with arbitrary, but constant, thermal parameters.

Key words: calorimetry; Fourier equation; radiative cooling; specific heat; thermal diffusivity.

1. Introduction

The analysis presented in this paper is an outgrowth of
a proposal made by J. H. Colwell [1.2] to determine the
high-temperature values of the specific heat, thermal dif-
fusivity, and total hemispherical emissivity of a spherical
sample of refractory material by making independent
optical observations of the surface temperature of the
sample and its time-rate of energy loss as it cools by free
radiation into a cold vacuum. The original proposal was
made in the context of an experiment to be conducted on
board the space shuttle, and envisaged induction heating
of the sample. With this mode of heating, the total heat
content of the spherical sample and its interior
temperature field at the start of the observational run
would be unknown. However, after an interval on the
order of the characteristic thermal decay time of the sam-
ple, the interior temperature field would settle into the
"post-transient regime" in which the interior field would
be entirely determined by the time-dependence of the
surface-temperature. Thus, in the post-transient regime
it should, in principle, be possible to determine the
temperature dependence of the thermal parameters from

*Centwr for Chemnical Engineering, National Engineerng Labooratoy

a knowledge of the time dependence of the surface
temperature and the rate of energy loss. The determina-
tion of the emissivity is a trivial matter, since it is propor-
tional to the rate of energy loss divided by the fourth
power of the surface temperature.

Stated in mathematical terms, the cooling sample
could be regarded as mapping the temperature-
dependent specific heat and diffusivity over into the
time-dependent surface temperature and energy loss
functions, and the analytical problem then consists of in-
verting this mapping so as to be able to express the two
unknown thermal parameters in terms of the two ob-
served time functions. The first step in carrying out this
inversion, the results of which are summarized in section
2, is to find the "surface-driven solution" of the Fourier
equation for specified temperature-dependent specific
heat and thermal diffusivity. This solution is completely
specified by the time dependence of the surface
temperature, and the time rate of change of the total heat
content can be calculated from it. If this calculated rate
of change is then equated to the fourth power of the sur-
face temperature in accordance with the Stefan-
Boltzmann radiation law, a nonlinear ordinary differen-
tial equation (of infinite order) results which can be
iteratively solved (in truncated form) for the case of con-
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stant thermal parameters to yield a universal that the time dependence of the time-rate of total energy
temperature versus time dependence for the post-
transient regime. This solution, which is presented in
section 3, is useful for making the various estimates that
are necessary for the design of a radiative-cooling
calorimetry experiment. At the end of section 3 an in-
tegral equation is given that could also be used as the
basis of an iterative solution of the post-transient predic-
tive problem.

In section 4 the surface-driven solution that is sum-
marized in section 2 is inverted so as to yield expressions
for specific heat and diffusivity in terms of the observed
time-dependent surface temperature and time-rate of
energy loss. These expressions constitute the desired
solution of the calorimetric problem. The thermal
parameters are expressed both in terms of truncated ex-
pansions whose coefficients involve higher-order time
derivatives of the observed functions, as well as in terms
of integral expressions involving retrospective weighted
averages of the observed time-dependent functions. The
truncated expansions, which are easier to apply than the
integral expressions, ought to suffice for analyzing most
post-transient experiments. In fact, in many experiments
the simple approximate expressions given in eqs (44) and
(45) will be sufficiently accurate. In section 4 an estimate
of the range of validity of these simple expressions, as
well as the range of validity of the more accurate trun-
cated expansions, is given in terms of the magnitude of a
suitably scaled dimensionless temperature. The scaling
factor, which is introduced in section 3, takes the
material parameters and sphere size into account. When
these parameters have values for which the truncated ex-
pansions are not accurate, then the integral expressions
for the thermal parameters can be used as a basis for an
iterative solution of the calorimetric problem. These in-
tegral expressions could also be used to analyze a
calorimetry experiment conducted in the transient
regime, assuming that the knowledge of the surface
temperature of the sample includes an interval (on the
order of the characteristic decay time) that precedes the
commencement of the cooling observations. For exam-
ple, if a sample were held in a constant-temperature oven
(of known temperature) long enough to become isother-
mal, and then suddenly removed to commence cooling
which was observed for a time interval on the order of
the characteristic thermal decay time, the integral ex-
pressions for the thermal parameters could be used to
analyze the data.

Although the analysis of this paper was carried out
with radiative cooling in mind, only in the solution of the
predictive problem in section 3 is the radiative cooling
law invoked. In the analysis of the calorimetric problem,
the cooling law is never specified. All that is assumed is

loss by the sample is known (as is the time dependence of
the surface temperature).

The most obvious limitation of the analysis of this
paper (aside from its restriction to spherical symmetry) is
the exclusion of the possibility of phase change. That is,
the spherical sample is assumed to be either entirely solid
or entirely liquid throughout the experiment. In addition
to this limitation, the analysis incorporates two approx-
imations, the more significant being the neglect of the
spatial variation of the diffusivity in the interior of the
spherical sample. That is, the diffusivity is assumed to be
a function of the surface temperature (which is a func-
tion only of time) rather than a function of the interior
temperature (which is a function of the radial coordinate
as well as of time). It is shown in section 2 that this ap-
proximation amounts to neglecting a very small term in
the Fourier equation that has the form of an effective
heat source, but, as explained in section 5, this effective
heat source can be taken into account (if necessary) by a
simple iterative procedure. The other approximation,
whose effect is completely negligible, is the neglect of the
spatial variation of the mass density of the sample. That
is, the overall change in average density with
temperature is taken into account, but at each instant
the density throughout the sample is assumed to be
spatially constant. In other words, as in the case of dif-
fusivity, the density throughout the sample is assumed to
be a function of the surface temperature rather than of
the interior temperature.

The literature relevant to predictive solutions of the
Fourier equation is old, vast, and still growing [3,41.
However, this literature is almost exclusively devoted to
the initial-value approach to the problem which requires
that at some instant the interior temperature field must
have some exactly specified form (most commonly, a
given uniform temperature). This point of view,
however, is physically inappropriate to the calorimetric
problem because what is usually known is the history of
the environment to which the sample has been exposed
(i.e., the history of its surface temperature), and not the
interior temperature field at any instant. It is true that, if
the sample is kept in a constant-temperature oven long
enough, its interior temperature will indeed be spatially
uniform, but this is a special case. It would be physically
more natural to replace the initial specification of the in-
terior temperature field with the specification of the sur-
face temperature history back to t = --o. (It is shown in
section 2 that as a practical matter it is only necessary to
know the surface temperature during a very short period
of the past.) There is a well-known solution to the
Fourier equation (cf. for example p. 247 of Ref. [31],
which has the form of a convolution of the surface
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temperature with the well-known diffusion kernel, but
this solution is inappropriate to the calorimetry problem
because it has a singularity at the center, and so (in the
absence of a point heat source) can only be used to
describe the temperature field in an infinite medium sur-
rounding a spherical cavity.

The mathematical literature that is directly relevant to
the determination of the thermal parameters from the
observed surface temperature [5-131 unfortunately has
remained within the framework of the initial-value ap-
proach. Because an arbitrarily specified time-
dependence for the surface temperature is generally in-
consistent with a previously specified initial interior
temperature field, the problem is over-specified, and cer-
tain compatibility conditions must be satisfied before the
problem is well-posed. The derivation of these conditions
has been an important theme in this literature. (The
whole question of compatibility becomes irrelevant, of
course, when the surface-driven solution is used as the
basis of the analysis.) The thermal parameters have been
expressed most commonly as the solution of an integral
equation, but the most general case considered so far has
allowed only one of the two parameters to be an
unknown function of temperature, the other being an

unknown constant. Because these solutions are very dif-
ferent in form from the expressions given in this paper,
and because the geometry considered was planar (either
slab or semi-infinite medium) rather than spherical, no
attempt has been made to compare the results of this
paper with the previously derived expressions for the
thermal parameters.

1.1 Notation

The main analysis involves dimensionless quantities,
which are designated by bare letters, whereas the cor-
responding dimensional quantities are indicated by an
asterisk. Time-independent unit quantities (also dimen-
sional) are indicated by a caret. The relations existing
among the three types of quantities are given in table I
which also serves to define most of the notation. (A few
more symbols will be introduced as needed.) Table I also
shows how the various dimensional quantities depend on
the radius of the sphere. Because of thermal expansion,
both the dimensional radius R* and the dimensionless
radius R are variable, but the unit radius R is an ar-
bitrarily chosen constant. The R-dependence of the
various dimensionless quantities has been defined in

TABLE1. Basic Notation for Calorimetric Problem.

Dimensionless Dimensional
Quantity Symbol Symbol Remarks

Radius of sphere RWt) R* = RR
Radial distance r r* rRR 0 r < I
Gradient operator V V * RA V
Mass density Q(t Q = QR3 Q =constant

Specific heat c( c" = ca k* = Q*a*c*
Thermal conductivity k(O) k* = (k/Rk x = Oat
Thermal diffusivity a(o) = R2at k = ec
Total hemispherical
emissivity all E* = d

Linear time t t* = tj^ = 22/a
Nonlinear time urt) dT = WITt = dt*R*2
Surface temperature Tt T* = TT
Interior temperature eftrl) e* = ST (eVr=1 = T
Surface specific enthalpy h(t) h* = hA h = 6T
Interior specific

enthalpy n1t7r) ?I* = rnh (rlI = h
Total mass M* = 4fR*3Q* = (4RO3)Q =
Total enthalpy H H* = M*Pjav& = (ScTaQH H
(average specific
enthalpy)

Independent Reference Quantities: R. h, T, c, & (all constant)
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such a way that the dimensionless Fourier equation is The time-rate at which the sample exchanges energy
completely independent of the effects of thermal expan-
sion. (Cf. Sec. 2.) During an observational run, R*(t*)
can be measured optically along with T*(t*), and then
R(T*) can be calculated. When, for example, this R(T'I
is entered into the expression given in table I for a*, the
contribution to the T*-dependence of a* that results
from thermal expansion is automatically taken into ac-
count. Throughout the paper, except for section 3 that
deals with the predictive problem, it will be assumed that
R*(t*), T*(t*), and dH*/dt* are given functions of t*
resulting from the experimental observations. From
these the dimensionless functions RMO, TOt), and It) e
dHldt can be directly calculated, so it will be assumed
that these too are given functions. An overhead dot will
indicate differentiation with respect to the dimensionless
linear time t. It should usually be possible to choose the
unit time i to be a convenient multiple of some ex-
perimentally defined time interval, such as the interval
between observational readings. Differentiation with
respect to the nonlinear time coordinate T will be
designated as follows: dh/dr e H4"). Although it will
often be desirable to choose Q. &. and c to be close to the
values of '*, a*, and c* at T* = T (which means that
the corresponding dimensionless quantities will be close
to unity at the reference temperature TI, this is not
necessary.

2. Surface-Driven Solution

If the spherical sample is imagined to be immersed in
a heat reservoir of variable temperature, then changes in
the interior temperature field are driven by the pre-
scribed changes in the surface temperature. Assuming
the absence of any interior heat sources, it follows that
the interior temperature field is uniquely determined by
the past history of the surface temperature up to the
present moment. In mathematical terms, this cor-
responds to the "particular" or "driven" solution of the
Fourier equation, with the surface temperature playing
the role of the "driving function." This is not the most
general solution, because it does not include the
homogeneous solution which describes the decay of an
arbitrarily specified initial interior temperature field. It
is well known that the most slowly decaying term in the
homogeneous solution has a time dependence propor-
tional to exp(-i 2 t) where t is the dimensionless time
measured in the natural time unit defined in table I.
Neglecting the homogeneous solution amounts to assmn-
ing that the interior temperature field has been subjected
to no influences other than its external environment for a
period of time t that is long enough so that
exp(-n22 tK<1.

with its surroundings is determined by the history of the
surface temperature up to the present moment. In fact, it
is just equal to the time derivative of the total interior en-
thalpy of the sample. Thus, once the time history of the
surface temperature has been specified, the time-rate of
energy loss or gain of the sample is completely deter-
mined. The analysis of this section leads to expressions
(summarized in tables V & VI) relating the time-rate of
total energy change of the sample to the surface
temperature (or more exactly, the specific enthalpy at the
surface), and these expressions suffice for the analysis of
both the predictive and the calorimetric problems.

The dimensional Fourier equation is given in the two
forms (la) and (lb) of table II, the only difference being
the representation of the part of the heat flux that results
from radial motion caused by thermal expansion or con-
traction. In eq (Ia) it is represented in terms of the
material velocity v* at a point r* that is fixed in the
laboratory (inertial) frame, whereas in eq (I bh the motion
is taken into account by the fact that the time derivative
is taken with respect to fixed r rather than fixed r*.
where r is the dimensionless radial vector that is attached
to a particular material particle and moves with it.
Although v*. which is the material velocity associated
with thermal expansion or contraction, is negligibly
small, the point to be made is that the right-hand side of
the dimensionless Fourier equation given in eq (2) is
rigorously correct, and the fact that the time derivative is
taken at constant r rather than r* does not represent an
approximation.

In eq (3) the internal enthalpy density n is introduced
in order to replace the internal temperature 6. This
replacement is doubly advantageous: First, a com-
parison of eqs (2) and (4) shows that it reduces the
number of thermal parameters that appear in the equa-
tion. Second, the enthalpy density is really the quantity
of physical interest, because the objective of the analysis
is to integrate it over the volume of the sample in order to
arrive at an expression for the time-rate of change of the
total enthalpy (heat content) of the sample.

Equation (4a) still contains the temperature-
dependent diffusivity a(S), and this fact not only com-
plicates the equation, but also prevents it from being
universal in the sense of having the same form regardless
of the material properties of the sample. If the diffusivity
were a function only of t and not of r. it could be
eliminated from the equation by replacing the linear
dimensionless time t with the dimensionless nonlinear
time T as indicated in eq (5b). In fact, this device for
eliminating the diffusivity has been used before [5,61.
The same device would also eliminate a from the equa-
tion if it were a function of the surface temperature Tt)
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TABLE IL BAiC DifferentsalEquation .

Eq. No.

Rlaji) v*.(ktV *g*=ge**[a ae + :*** v *0*1 *c*( a e*ja

(21 V-IV ( = ec8ae/ a&t),

43) dr = c()de

(4abKcI V ta vn) = carri at8; a = k/ec: e = constant

(5ail V 2t - V * u =(ltq!arY ; dT=-aTt])'dt = a tWd

(:6abl a [ =-1- a(Y I Vn; ; V -a = qdf
a(D7

4ai2, a 7rq)5

(tahk trqlx)I,,=- = ht); (a') r

_ry = _taUi I ate) ] r2 11 }-', 'f=I a' { [II r
F' 3r a() ar SO

=i dAY =' irjj

(Sc)) Hl=r 5" = foI7 QrlFzdC/ l' gr2dr = 3 IL'nr2ir

rather than of the interior temperature tr,tK. Even in
the latter case, however, introduction of a nonlinear time
r based on a('T[tl) succeeds in eliminating most of the
a-dependence from the equation, as shown by eqs (Sal
and (6a). What remains in the equation is a very small ef-
fective heat source density term qff which has the form
of the divergence of an effective heat flux a defined in eq
(6 a). This heat flux vanishes at the surface of the sample,
and for this reason, when Gauss' theorem is applied to eq
(Sa) in order to arrive at the expression given in eq (8h)
for the time-rate of total enthalpy change, the term in-
volving a makes no contribution. Therefore, because eq
(8h) leads to the equation (eq (191 of table V) from which
the rest of the analysis follows, it is evident that, at least
to first order, the introduction of the nonlinear time r has
succeeded in reducing the problem.,to the solution of the
universal equation that results if qff = 0 in eq 7. The
analysis of this paper is based on this approximation. If
more accuracy should be required, then the solution for
tnr)TY that is given in eq l9) or eq (12) of table III could

he substituted into the right-hand side of eq l7), and an
additive correction to T could he found which in turn
would lead to an additive correction to El which could be
introduced into the calorimetric equations of section 4.
The way this would he done is explained in section 5.

The solution to eq (71 (with 0 on the right-hand side1
that satisfies the boundary condition stated in eq (8a4 can

be written in the form of eq 49) in table 1iL The
polynomials ja (rl are characterized by the property
stated in eq (1Oal', and can be generated by successive in-
tegration. The first four polynomials are given in eq (I 1),
and are plotted in figure 1. The fact that eq (91 does in-
deed satisfy eq (7) (with 0 on the right-hand side) can be
directly confirmed using the property stated in eq (:I0ai.

As indicated in eq (12), the solution can also be ex-
pressed in terms of the odd-order Bernoulli polynomials
Bz,+i()' where x = 1 (I-r). The properties of these
polynomials that are necessary to verify that eq ( 12) is in-
deed the desired solution of eq (7) are stated in eqs (131
and (14). (See for example, pp. 8/4-811 of Ref. [14] or
pp. 19, 25-29 of Ref. [I I51

An explicit expression for H° =_ dH/dr in terms of
hsn)=_duh~dT can be derived by substituting eq (121 into
the left-hand side of eq (8bY and using the relation stated
in eq (16)) of table IV between the even-order Bernoulli
numbers BZ. and the Riemann Zeta function O( nl The
resulting relation is given in eq (19) of table V. Using the
numerical values for t(2nl that are given in table IV, eq
(20) results, which can be then inverted to yield eq (21),
which will play an important role in section 4.

The expansion given in eq (191 assumes that hMTi is an
analytic function all of whose derivatives exist. If in ad-
dition it remains finite for all r, it can be shown that eq
(1%9 is equivalent to the integral equation given in eqs
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TABLE III. Surface-Driven Solution for Interior Enthalpy Density.

Eq. No

(9a,b) F,$r,T) = h(T) + 1 (-1P) pn(r) hn(T); hn)= dh/dtn
ii=1

(lOa,b) d2(rpn)/dr2 = - rp._1 or V 2Pn = - Pn-1

(Ila) pl = (1-r2)/6

(lib) P2 = (7- lOr2 + 3r4)/360

(lIel p3 = (31 - 49r2 + 21r4 - 3r 6A/15,120
Cf. Fig. 1

(lid) p4 = (381 - 620r2 + 294r4 - 60r6 + 5r8)/1,814,400 J

(12ab) n(rlr) = At) - 1I 22n+ B2^+ix) h(n)(T) ; x = ( (1-r)

(13a,b) [B2n+lix(lr=o = B2n+1(1) = 0; [Bn+l(x)lr=l = B2n+1(0) 0

Q14ab) dB2h+l(x) = _ 1 (2n+1)B2{(x). dRB2n+1 (x) = - (2n+I)(2n)B2 _1(x

dr dr2

(22a) and (23) of table VI. The kernel F of the convolu-
tion integral defined in eq 123) is an effective memory
function that weights the very recent past most heavily
and totally forgets events that happened more than hail
a natural time unit in the past. This memory function is
defined by eq (24) and is plotted in figure 2. Its argu-
ment is defined by eq (27a), and as shown in eqs 127b
and c) can be expressed in terms of 5(t) and the dif-
ference It-t' ) between the present time t and some past
time t' . Figure 2 shows that for t less than 0.1 natural
time units the simple function F defined by eq (25b) is
essentially indistinguishable from F. For larger 5, the
first term in the summation of eq (24) should serve to
represent F with sufficient accuracy for most purposes.
As eq (26) indicates, the normalization of F is such that if
h(2) is constant, then the retrospective weighted average
h(2) defined by eq (23) will just be equal to h02 ). If,
however, h02 ) varies drastically during half a natural time
unit, which could be the case when a sample first starts
to cool, then the weighted average h 21(t) will differ
markedly from the instantaneous value h02 )(t. In such a
case the integral eq (22a) will be more accurate than the
equivalent truncated expansion given in eq (20). The
series expansion (19) can be derived from the integral
equation defined by eqs (2 2a) and (23b) by expressing
h(2 )(Tr C) as a Taylor expansion about r, integrating by
parts, and making use of the definition of 4(2 n) given in

eq (15) in table IV.
Finally, it should be noted that it is evident from eq

(23b) that when h02 }(T) is differentiated with respect to T,
the differentiation can be taken inside the integration,
from which it follows that eq (22b) results from differen-
tiation of eq (22a). Obviously, an infinity of such equa-
tions can be generated by repeated differentiation.

TABLEIV. RiemnnZeta FunctionforEven-IntegerArguent.

Eq. No.

(15) O(n) =_ X Mn-2n,n1

(16) m-l[B2(X)0= (= ji2(2n)! ((2n)

2n (12n)/n 2 n C42n)

2 1/6 1.64493
4 1/90 1.08232
6 1/945 1.01734
8 1/9450 1.00407
10 1/93,555 1.00099
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TARLE V. Total Rate of Energy Loss: Differenti IRepresentation.

Eq. No.

(17ab,c) H11) dH/dT; = dH/dt; H(1 ) = H/olt)

(18ab) h1l) = C(Tr1 1
(T) = c(t)TtOt/a(t); h1n) = d-h/d9

(19) H411(T) = -6 1 (-IPn[5(2n)/n2r] h4n"(T)n 1l
(20) HI)(T) = h(1) -Lh(2) + 325 V)3- 1 h44) +15 315 1575 -

(21) h41 (T) = DU11 + 1 l2I - 525 3 + 223625 +

TABLE Vl. Total Rate of Energy Loss: ntegraRepresentation.

Eq. No.

(22ab) H =1) = I) h(2); g42)= h(2- - 13A ; etc.

(23a,b) h( fs f r(T-T') h}2)(T' )dT' = I r(4) h'2)rT-tdt
_,, ~~~~~o

(24) rF) 90 = (muW-2 exp[-(mnl2C
m(a (Cf. Fig. 2)

(25a) r(C) rwe for 04440.1

(25b) No(= 1 5 [1- 3 (2 v27;? -0

(26a,b) I r(T-T WIT' = | r(tjdC = I
L ~~~~~0

ti(27a) C =_ T-T' =f| oIa dt'

(27b) Clo; t-t') i (+>) (dna/dtnlft-t' )n
0= (n+ 1)!

(27c) Cia; t-t') = ()(t-t') - 1 d(t)(t-t' )2 + I1it(tt)2 6fltft'3- -

3. The Predictive Problem

For the purpose of estimating radiative cooling times
and the relative magnitudes of the terms in eq (21), from
which the calorimetric equations of section 4 are derived,
it is useful to solve the post-transient predictive problem
for the case of constant parameters. In such a case the
simplifications indicated in eqs (28a-d) of table VII oc-
cur. All of the equations of tables V and VI are still valid.
In particular, H = HM'1 must satisfy eq (19), but in addi-

tion it must satisfy the Stefan-Boltzmann radiation law
which means that the left-hand side of eq (19) must be
replaced by T4 multiplied by a proportionality constant
involving the Stefan-Boltzmann constant o* = 6. It is
easy to show that if the unit temperature T is defined as
shown in eq (29b), the proportionality constant on the
left side of the specialized form of eq (19) will by unity,
with the result that the equation has the form given in eq
(31). A significant feature of this equation is that it is
universal in the sense that it applies to spherical samples
of all sizes made of any material whose thermal
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tions for Predictive Problem

Eq. No.

(28a,bcd)

(29ab)

(30a,b)

(31)

(32)

(33ab)

(34a,b)

(35ab)

(36a,b)

(37)

(38)

(39)

=c= o-k=R=E R = = T= 1-,= t; i= ; h= T
A A AA

T T*/T; T- = /R52)"3 = (k*/R*o*E* 3 *)I 

ft=dH/dt =-3T4; (ab/arSr=r = (86/8r)r=l=-T4

T = 2 1 (-1)" W12n)/n 2n]dnT/dtun1l
T4=_I dT + d2 T 2 d3T + 1 d4T

3 dt 45 dt2 945 dc3 4725 dt4

dT/dt =-3T4[1-4T3 + 4 T6 + 45 Tr + ];
d2T/dt2 = 36 T7 [-T + 42 6 +, d2Hdt2 = 36T7 [1-4 5 T + 4 r +

d3 T/dt 3 = - 756 T10 [1 - '3T + ] ; d3H/dt3 = -756T: flC 6 ' T3*.]

d4T/dt 4 = 22,680 T13 - ...3 d4H/dt 4 = 22,680 T'3 -

t(T) - (T-3 -1) -4 In T + A4( - T3)
9 ~~1 5 75

(Cf. Fig. 3)
Tlt) 4 [(1 + 9t)tl- (1 + 9t)- 2 i/is 25 I
T(t) = T (t) + I f rF() T(t-t)dC]"/4
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parameters are constants. It is possible to solve this
equation by truncating it at the fourth derivative as
shown in eq (32), and solving the truncated equation for
dT/dt in terms of 7' by starting with the approximation
dT/dt -3T4 and iterating until a self-consistent set of
expressions for the first four derivatives results. These
expressions are given in eqs (33a-36a). By differentiating
eq (3 0a) and making use of eqs (33a-36a), the expres-
sions for dnH/dtn given in eqs (34b-36b) can be derived.
The 8 expressions in eqs (33-36) will be used in section 4
to estimate the range of validity of the calorimetric for-
mulas derived there. Numerical estimates indicate that
these expressions are accurate to within I % so long as T

I/2- For larger T, it would be necessary to include
higher order terms in the expansion given in eq (3.1), and
the numerical estimates indicate that for T > 3/4 the
convergence is so slow that this expansion has no prac-
tical utility. Correspondingly, the calorimetric equations
derived in section 4 that are based on eq (21), which is
derived from eq (19), cannot be expected to be accurate,
even in a post-transient experiment, if the dimensionless
surface temperature :' based on the unit temperature
defined in eq (29b) is larger than l/2. If the sphere size
and thermal parameters are such that T > /2, then it will
be necessary to use equations based on the integral equa-
tion defined by eqs (22a) and (23). In order to give a feel-
ing for what sphere sizes and which materials will satisfy
the condition I' < I/2. the dimensionless temperatures
Trmelting corresponding to the respective melting points of
tungsten (3650 K) and uranium dioxide (3150 K) .are
given in table VIII for sphere radii that approximate the
upper and lower limits that would most probably be con-
sidered for radiative-cooling calorimetry experiments. It
is evident from this chart that for most practical post-
transient experiments, it should be possible to use
calorimetric relations derived from the truncated expan-
sion given in eq (21). Only in the case of a large sample
IQ = 1 cm) of a poor thermal conductor (such as uranium
dioxide) might it be necessary to use an integral relation
in order to analyze the results of a post-transient experi-

TABLE VIII. Representaive Vabids for Unit Time and
Unit Teonperantre.

Tungsten Uranium Dioide

Ii 0.1en 1tB Im 0.1n cm Ion

tA 003 See 3 Se 2 see 200 ec
37,000 K 17,000 K 8100K 3800 K

T *meing 3650 K 3650 K 3150 K 3150K
mdiin;E~g 0.1 0.2 04 0.8

tfi 2n t-gAa"/ 3 = 
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FIGURE3. Universal temperaturetime carve for post-iransient

radiative cooling.

ment. It ought to be noted, however, that this might be
necessary even in the case of a smaller sample of a better
conductor if the observations are based on a transient-
type experiment.

A universal post-transient cooling curve can be de-
rived by integrating eq (3 3al. The result is the expression
for tlT) given in eq (37). This can be inverted to yield the
expression for Tit) given in eq (38). The cooling curve
corresponding to these expressions is plotted in figure 3.
It is evident from this curve that the slope of in T versus
In t is almost, but not quite, constant. In fact, this slight
variation in slope is related to the thermal conductivity
of the sample. It can be shown that for initial and final
temperatures Ti* and Tf*

4 In3S = t dlnt*

,n -Tl*3)

; sf (d in rem)

(40 a)

(40 bc)

This equation cannot be used for determining thermal
conductivity from observation of post-transient radia-
tive cooling, because it assumes that the specific heat is
constant throughout the cooling, whereas in all pro-
bability the In T* versus In t* curve for a real sample
would have much more curvature than the one shown
in figure 3, and most of this curvature would be caused
by the temperature dependence of the specific heat. The
real significance of eq (40) is that it (together with Fig.
3) illustrates how difficult it is to make a reliable deter-
mination of thermal conductivity (or diffusivity) from
observations of post-transient radiative cooling,
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especially when these observations are made for
temperatures near the lower end of the curve shown in
figure 3. In contrast, it is very easy to determine the
specific heat in this range since to a good approxima-
tion it will be given by c -H/T For an accurate deter-
mination of thermal conductivity it will probably be
necessary to use a sphere that is large enough so that
the dimensionless temperatures involved fall well above
those shown in figure 3. In such a case it would be
necessary to analyze the data using the integral expres-
sions given in section 4, rather than the truncated ex-
pansions.

It should be noted that when the expressions given in
eqs (3 3a-36a) are substituted into eq (9a) taking the
simplifications stated in eqs (28a-d) into account, a com-
plete solution for the interior surface-driven solution in
terms of the surface temperature 7' results. If the expres-
sion for Tot) given in eq (38) is substituted into this, an
explicit expression for the interior temperature field
e(rt) results. If it were desired to extend the validity of
this solution to values of 7' larger than l/2. this could be
done by using the integral equation given in eq (39) in
table VII as the basis for an iterative solution. Equation
(39) was derived from the integral equation defined by
eqs (2 2a) and (23), making use of eq (30a). The idea of
reducing the problem of solving for the interior
temperature field to the problem of solving an integral
equation involving only the time dependence of the sur-
face temperature is not new. It has been done for a semi-
infinite medium with a plane surface [161. The integral
equation that resulted was derived from the diffusion
convolution integral mentioned in section 1. However,
this approach is not appropriate for the present problem
because, as noted in section 1, the diffusion convolution
integral represents the temperature field in an infinite
medium surrounding a spherical cavity, rather than the
field within a finite spherical medium.

4. The Calorimetric Problem

In adapting the expressions derived in section 2 to the
problem of deducing the specific heat and the thermal
diffusivity from observational data, the choice made for
the unit temperature 1' can be arbitrary. It is not
necessary to use the unit temperature defined by eq (29b)
of table VII, although this choice is appropriate for the
purposes of designing an experiment, and for determin-
ing whether the various expressions derived, in section
4.1 from eq (21) are accurate, or whether it is necessary
to use the alternative integral relations discussed in sec-
tion 4.2.

Once it is a question of analyzing existing data,
however, it would generally be more convenient to define

A
T so that the dimensionless temperature T is close to uni-
ty. If the thermal parameters are already known for the
cold end of a post-transient cooling run, then it would be
natural to choose this cold temperature as the unit
temperature, and correspondingly the unit specific heat
and unit diffusivity would be chosen to be equal to the
known values of these parameters at this cold
temperature. If the true values are not known, then
estimates would suffice. Nowhere in the analysis is it
assumed that these estimates are close to the true values.
For example, if one were analyzing data for samples of
different materials, it might be most convenient to make
a single choice of unit quantities to be used for all of the
different materials.

In all of the expressions given below, H(t) = dH/dt
and TWt) are regarded as given functions of time that
result from independent simultaneous observations
made by two different instruments. If a reliable cooling
law exists and is known, then H can be expressed as a
function of I' and eliminated from the equations. In the
case of radiative cooling, this would require that the
temperature dependence of the total hemispherical
emissivity (T)M be known.

4.1 Truncated Expansions

The calorimetric formulas, which were the principal
objective of this analysis, are given in eqs (41) and (42) of
table IX. The expression for c follows directly from eq
(40), which is simply eq (21) of table V multiplied by aWt).
The expression for a was derived from the ratio of the
time derivative of eq (40a) to eq (4 0a) itself. Both expres-
sions for c and a have the form of a power series in an ex-
pansion parameter 4 = 1/ISa. The coefficients of these
power series are functions of the four quantities defined
in eqs (43a-d), the leading terms of which are ratios of
different time derivatives of T and H. Equations (44)
and (45) give approximate expressions for c and a that
are valid in the limiting case in which only the leading
terms in the expansions must be retained, and c and a
are essentially constant.

In the discussion that follows, it will be assumed that
the unit of diffusivity i has been chosen so that for the
data under consideration the dimensionless diffusivity a
is of order unity. Then 4 = I/15. (If a different choice of
a were made, the change in 4 would be compensated by
changes in the values of the quantities defined in eqs
(43a-d.) Because the expansion parameter 4 involves a,
and the coefficients in the expansions for c and a in-
volve c and c, it is evident that eqs (41) and (42) must be
solved iteratively, with the first iteration based on the
assumption that 4 = c = r = 0. The range of con-
vergence of this procedure can he estimated by using the
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expressions for dnT/dtn and dnH/dtn given in eqs (33- values of c and a are unity. In the chart below the
36) of table VII to evaluate all of the terms in eqs (41)
and (42). When this is done the following expressions
result:

A =-I2T31l'T3+27T6+...)
5 5

B = -2 I'T3 (I- 4T3 +-T6 +..
5 25

C =252T6(1-6T3+...)
35

Di = -7560OT9+ ...

(46a)

(46b)

(46c)

Df-AC =-63OT3+...
A-B

AD = 12,600 T6 +...
A- B

Co =HIT= I + 54 T3 + 1256

1 15 (C-AB =
a,, A-B I -6T3 +

5

When these expressions and 4 = 1/15 are substituted
into the right-hand side of eq (41 a), it reduces to I +
O(T12) which (since the left-hand side is c = 1) is just the
identity that is to be expected in view of the fact that eq
(41a) is simply a reformulation of the same equation
from which eqs (33-36) were derived. Similarly, the
right-hand side of eq (42) reduces to 1 + O(T 6). Thus (to
the accuracy of the truncation) the leading factors in eqs
(41 a) and (42), which are now expressed by eqs (48) and
(49), are just the reciprocals of the respective square
brackets on the right-hand sides of eqs (41a) and (42).
For this reason, the speed of convergence of the
calorimetric formulas can be estimated by inspecting eqs
(48) and (49). These indicate acceptably rapid con-
vergence for T < 1/2 which, of course, is the same range
of convergence that was noted in section 3 for the val-
idity of the iterative solution of the predictive problem.

In the case of the approximate limiting expressions
given in eqs (44) and (45), all of the terms of eqs (41a)
and (42) that involve 4 were thrown away, and only the
leading terms were retained. In addition, all of the terms
of eqs (43a-d) involving c and c were thrown away. The
validity of this latter approximation can be answered
only on a case-by-case basis, but the validity of ignoring
the terms involving 4 can be estimated by means of eqs
(48) and (49) since the terms involving T represent the
error in these formulas, because in this case the correct

magnitudes of the two leading error terms are listed for
several values of T.

T 4T3 SW
5 5

1/2 0.10 0.15
'A 0.013 0.019
0.1 0.0008 0.001

This chart shows that for ' < }/4, the error is less than 2
percent, and becomes increasingly smaller the smaller T'
becomes, i.e, as 7' enters the extreme post-transient
regime. Even for 7' = 1/2, the error is not so large as to
destroy the usefulness of eqs (44) and (45) for generating
the first iterative solution for cbt) and a(t) which is then
substituted into the right-hand sides of the more accurate
formulas given in eqs (41) and (42). If a4o is constant, it
follows from eq (45d) that H a exp[-lSart], so that in
the extreme post-transient regime a., can be estimated by
fitting the observed function M(t) to an exponential
decay.

It should be noted that, in order to make these
estimates, it has been necessary to define the dimen-
sionless T' in the manner indicated in eq (29) of table
VIL. This automatically takes the sphere size and ther-
mal parameters of the sample into account. However, for
an actual application of the calorimetric formulas of
table IX, it is not necessary to do this. One may use any
convenient scaling factor to define the dimensionless T.
The validity of the formulas would then be indicated
directly by the convergence behavior of the numerical
iteration process.

The solutions of eqs (41) and (42) are c(t) and a(t).
However, because Tft) is known from observation, these
solutions can be converted into cD() and alT), which are
the desired expressions for the temperature dependence
of the thermal parameters.

4.2 Integral Relations

If a numerical application of the calorimetric formulas
shows that the 43 term in eq (42) is comparable in
magnitude with the 42 term, or if the 42 term in eq 141a)
is comparable with the 4 term, this is an indication that
the neglected higher-order terms are not really negligi-
ble, and that the calculated functions alt) and cft) are not
reliable. One could, of course, include higher-order terms
in the equations, but truncation must occur at some
point, so the net result would be only a slight extension of
the range of validity of the equations. Moreover, the
higher-order terms involve higher derivatives of TWt)
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TABLE 1K Calorimetric Pro6blem Truncated Expansions.

Eq. No.

(40ab) h=ci'=Hi+ k [d4<_ 1 dIP2' + 2 dH'3)+ 
1S dt 35 dt 1575 -dt

[H(l) = ()H 2} I dI " ffl(3) - d f'2)
a a di a dt

(41ab) c= + B4- (3C) 42+ (2fD)43 +11a/ a

:(42) 1 = I C-AB 3(D-AC) 42 _2 jAD- (4 B 7A-B 7A-B

(43a) A d in h(l)/dt = din (cT/a)/dt = (IT/ + [(6Ic )c - (a)]

(43b) B d in H11 /dt = d in (if/tl/dt = (H/H) - (/a)

(43c) C a32H'3 /H'l) = (/HI - 3(ir/a) + [(&7/a) + (b/a)2]

(43d) D a3H(4 '/H'l) = (H/H) - 6(b/e) (H/H) + [l5(&/a)2 - 4( a)1e](H/HI) -[d/a) + 15(b/a)3

- lo(& a/a2 )]

(44) c3 (cg = = HIT

(45a,b) an Wz(a) -- L(A )- _ T -(45a ~ ~ ~ ~ ~ 1 A} e3 etc I A-B c=eO=0 THT 
(45c~d) = I i | T H| =_d

15 |T H I l|dt T di T

TABLE X. Calorimetric Problem: Integral Relations.

Eq. No.

(50) alt) = { [(i-H)/(fh -Hl)]- a/a I [hal/hfl

(51) h(t) =H* + { [h -H)/(h -H)]-(a/a } [(h2112 /h3

(552) h"T f m d IL_-__dt

(53) b(3) - r d I d hit'l]t
.oo dt'¶ a(t') dt' ~r 

(54) rF3 90 7 (mni- 2 exp[- (mn) 24
m l

(55) a(te)dtn = a- t)(t-t - a rt' )2 + Katgt-t )3-

(56) Crt) = h (t)/TWt)

(57a,b) c(T) = c(t[T]) ; a(eT = a(t[T])
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and HŽta, and the error involved in extracting these from The total time-rate of energy loss of the sample, which is
the experimental data becomes ever greater the higher
the order of differentiation For these reasons, it is better
to use an iterative procedure based on eqs (50.) and (SI)
of table X which involve the integrals defined in eqs (52)
and (53). These equations were derived from eqs (22a)
and (22b) of table VI. Because h(t) = cAt) Tht), eq (51) is
really an equation for c(t), but it is simpler to regard hO)
as the unknown function and, after this has been found,
to invoke eq (56) to find c(t)., and eqs57ab) to findrcMll
and a(T. 'The kernel F of the integrals is defined by eqs
(54) and (55)., but the approximation based on eq 425b)
and discussed at the end of section 2 would simplify the
calculations. Inasmuch as the temperature dependence
(and hence the time dependence) of a is usually weak,
'and (as Fig. 2 indicates) Fr will usually vanish in a time
interval that is short compared with the time required for
a to change by a significant amount, in all but the most
extreme of transient experiments it would be justified to
drop all but the first term in the expansion for Z given in
eq (55).

The iteration could be started with an e.tj calculated
from eq (45) and an hit) = Or) it) where cWt) is found
from eq (44). These approximate functions would be
substituted into the right-hand sides of eqs (50) and (51).,
which would yield new (presumably improved) approx-
imations. Questions of convergence and numerical
stability of this procedure have not yet been investigated.

5. Discussion

The foregoing analysis took the temperature
dependence of the specific heat fully into account, but
the interior spatial variation of the diffusivity was
neglected. This amounted to neglecting an effective heat
source density in the Fourier equation, but it was
pointed out in section 2 that this neglected term could be
taken into account in an iterative fashion. This would
give rise to an additive correction tdal to the interior en-
thalpy density field. It was noted in section 2 that when
Gauss' theorem is applied to the Fourier equation, the ef-
fective heat term makes no dirept contribution to the
resulting equation (eq (8b) in table II). It does make an
indirect contribution, however, in the sense that it pro-
duces an additive correction to the radial derivative of
the interior enthalpy field. Thus, eq (8b) must be re-
placed by

['aS(+ d0t)j/a lr],. - I&dH- 4dH)dT (58a)
'3

where H is given by eq (Sc) and 6dII is given by

daH= 3 I: (d17)r2dr . 58b)

to be identified with the observed energy flux, is given by
#tot = H+ 6 H. It is important to note that, in making
the correction to the calorimetric formulas of section
4, Ht., must not be substituted in place of H. The reason
for this is that these formulas were all derived from eq
(19) (or its integral equivalent given in eqs 1(22a) and 123),
which in turn was derived from eq (12)), which is a rela-
tion between the uncorrected interior enthalpy field and
the time-dependence of the surface enthalpy, which is
unaffected by the correction because the boundary con-
dition stated in eq 18a) continues to he valid. Thus the H
that appears in all of the formulas of section 4 must con-
tinue to refer to the average value of the uncorrected in-
terior enthalpy field, which means that the right way to
make the desired correction is to substitute the right-
hand side of

H = Hltot- dH (59)

wherever H appears in a formula, and to identify Hut
with the observed heat flux.

The calorimetric formulas of section 4 yield cfr) and
a(t) as continuous functions of time from which c( 71 and
a(e) are found. If, however., spline representations of
c(71 and alT) are used, then the unknowns are the spline
'coefficients, which are constant numbers. Expressions
for the coefficients as weighted integrals involving the
observed functions T(t) and l It) could be derived from
either the expansion or the integral forms of 'the
calorimetric formulas. Because the spline coefficients are
¢expressed as integrals of the observed data, there would
be an automatic smoothing, which could be ad-
vantageous in the case of noisy data.

Although the calorimetric formulas derived in section
4 were intended to be used with observational data from
a single observational run using a single sample, it would
'also be possible to use them with data from two different
runs over the same temperature range using a large and
a small sphere of the same material. The radius of the
small sphere would be made small enough so that the
observations would be in the extreme post transient
regime (T < ¼4) where the accuracy of eq 144) for c
would be good. The functional dependence for cl71
found in this way could then be substituted into the left-
hand side of eq a(4l, and data from the run with the
larger sphere could be inserted into this equation, which
would be solved for a. This two-sphere approach had
been suggested by Colwell [1,2] when he first proposed
radiometric calorimetry of freely cooling spheres.

Because the calorimetric formulas have been derived
from an analysis that did not require a knowledge of the
cooling law, but rather only the time-dependence of the
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total rate of heat loss (or gain), they could be applied to 6. References
any situation in which the interior temperature profile of
a sphere is determined by the changing temperature of
its external environment. For example, in the case of dif-
ferential scanning calorimetry, using the calorimetric
formulas would permit a determination of the thermal
parameters of a spherical sample even when the time-
rate of change of the surface temperature of the sample
(i.e., the scanning rate) was so fast that the sample in-
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It was noted in the introduction that the analysis of
this paper was the outgrowth of a proposal first made by
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tions with Dr. Colwell.
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