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Calculation of Aqueous Solubility of Organic Compounds

Yadu B. Tewari, Michele M. Miller, and Stanley P. Wasik

National Bureau of Standards, Washington, DC 20234

August 26, 1961

The aqueocus solubility of 14 organic solutes has been calculated from their octanol/water partition coefficient
and from their solute activity coefficient in octanol at infinite dilution. The solute activity coefficients were
calculated from the Flory-Huggins and Hildebrand-Scatchard (FH-HS) equations and were found to be in good
agreement with the activity coefficients determined from GC specific retention volume measurements. The cal-
culated solubilities were in good agreement with the experimental solubilities,

Key words: activity coefficients, gas chromatography, octanol/water partition coefficients, solubility parameters.

1. Introduction

The octanol/water partition coefficient, K, and the aqueous
solubility, C*, of organic compounds have been used widely
to assess and predict the fate of toxic substances in the marine
environment. Both of these quantities have been successfully
correlated with environmental partitioning phenomenon such
as bioconcentration and sorption. These two quantities are
thermodynamically related via eq (1) [1].*

;Yw
Ko.’w = J,j (1)

Yo
where v§ and vy, are the activity coefficients at infinite di-
lution based on volume fraction for the solute in water and
in n-octanol, respectively. The quantity, ¥, is generally

defined as the reciprocal of the volume fraction of the solute

. . 1 .
in water, i.e. —, and is expressed as the reciprocal of the

b

solute concentration in water (€°) times the molar volume of
the solute (V), 1/C*V.,

Hansch, Quinlan, and Lawrence [2] have developed a
method for estimating K., based on the additivity prineiple

of thermodynamic properties. On this basis group contribu-
tions to log K, or II values are defined by eq (2).

Hx = ].05 Kalw(x) - ]'Og Km’w(h) (2)

where K,,(x) is the partition coefficient of a derivative and

K,.(R) is that of the parent molecule. Despite evidence that

* Center for Chemical Physics, National Measuren_"nent Laboratory.
IFigures in brackets indicate literature references ab the end of this paper.

IT values are often not additive, usually for steric reasons but
sometimes through electronic and hydrogen bonding effects,
there are many series of compounds in which II appears to
be invariant.

Equations (1} and (2) suggest that the aqueous solubility,
C*, may be calculated from the molecular structure of the
solute provided ¥j can be estimated with seme degree of
accuracy. There are methods [3] available for calculating
5 from the solute physical properties. Because of the sim-
plicity of the calculations, the Flory-Huggins and Hildebrand-
Scatchard (FH-HS) method was chosen to evaluate v3.

According to solution theories [4], the solute activity coef-
ficient (vy,} based on mole fraction consists of an athermal
term and a thermal term. At infinite dilution, in terms of the
Flory-Huggins equation for the athermal term and the Hil-
debrand-Scatchard equation for the thermal term, this may
be expressed [5] as

1 ( 1) 14
1- =) +—
r r RT

Iny? = In— + (&' —~ ) #)

where r i the ratic of the molar volume of the solvent V' to
(]

that of the solute V, 7 ) and the & and &' are, respectively,

the solute and solvent solubility parameters, These are de-

fined [6] as

5= (AEN" _ (Am, - rT\®

where AE, and AH, are, respectively, the molar energy and
enthalpy of vaporization. At infinite dilution the volume frac-
tion activity coefficient (y5) may be expressed in terms of
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mole fraction activity coefficient {y) by the following equa-

tion [ 5, 7].
Vr
Yo = ¥x (7) ()

Now combining eq (3) and (5), the solute activity coefficient
vy may be expressed as

1 Vo,
Inyg = (1 — :) + ﬁ(a - 3)? (6)

In this paper we are concerned with estimating the solute
activity coefficients in water, vy, using eq 1, from the esti-

mated values of 43 and the experimental values of K.

Activity coefficients, vy, in octanol for a number of solutes
have also been calculated from the Flory-Huggins and Hil-
debrand-Scatchard equations and compared with the exper-
imental values obtained by the gas chromatographic (GC)
method.

2. Experimental Procedure

The stationary phase, n-octancl, used in this study was
obtained from the Aldrich Chemical Company. The purity
was checked by GC and was found to be 99 + mole %. The
stationary phase was coated onto the support material, Chro-
mosorb W-HP, 100/120 mesh, and the weight percent of
coating was determined by an ashing method [8)]. A stainless
steel column (1/8 in OD) was then packed with a known
amount of the coated support and was connected to a Hewlett-
Packard 5830A% gas chromatograph equipped with a flame
ionization detector (FID) for the determination of the solute
retention time. The temperature of the column was controlled
by circulating water through a copper tubing jacket around
the column and by a Haake Model FK temperature regulator
which regulated the water temperature to 25.0 = .05 °C.

The column inlet pressure, measured with a precalibrated
pressure gauge (range 0—15 PSI), was kept constant during
a run by regulating with a precision valve. In order to measure
the carrier gas flow rate the column was disconnected from
the FID, just before and after the experiment, and a soap
bubble flowmeter was comnected to the column outlet. The
carrier gas was presaturated with n-octanol in order to reduce
bleeding of the stationary phase.

Since the retention times decreased as the experiment pro-
gressed due to column loss of the n-octanol, toluene was used
as a reference retention time standard and injected with each

2 Certain trade names and company products are identified in order to adequately
specify the experimental procedure. In no case does such identification imply rec-
ommendation or endorsement by the National Bureau of Standards, ner does it imply
that the products are necessarily the best available for the purpose.
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solute. The measured retention times were then corrected for
bleeding using the reference solute retention time.
The solute specific retention volumes (V%) were calculated

by using the following equation [9].

twF P, — P, 2132 3 (P/P)’ -1

Vo =
£y P, T. 2 (P/P) —1

(7)

where tg, is the retention time (min), F is the carrier gas flow
rate (ml/min}, P, and P, are the column inlet and atmospheric
pressure (in Torr), P, is the saturated water vapor pressure
{in Torr) at room temperature T,(°K), and W is the weight (in
gram) of stationary phase packed in the column. The reported
specific retention volumes listed in column 1 of table 1 are
an average of 6 measurements.

3. Results and discussion

The solute activily coefficients at infinite dilution (vy) were

determined from the following equation [8].

2R _ PB

Inys = I
" T M poye T RT

X

8)

where M’ is the molecular weight of stationary phase, n-
octanol, (gfmole), P° and B are, respectively, the vapor pres-
sure (in Torr) and the gas phase second virial coefficient {ml/
mole} of the pure solute at temperature T(°K}, and R is the
gas constant. The second virial coefficients were calculated
from the McGlashan and Potter equation [10] using the con-
stants tabulated by Dreisbach [11, 12, 13] and Timmermans
[14]. These sources were also used for Antoine constants to
calculate values of P° and for constants for the law of recti-
linear diameters to compute values of molar volumes. The
solute mole fraction and volume fraction activity coefficients
listed in table 1 were calculated using equations 8 and 5. It
is estimated that the probable uncertainty in the activity coef-
ficients listed in table 1 is about 2 %.

The solute solubility parameters, 8, listed in table 1 were
caleulated from their molar enthalpies of vaporization listed
in the Dreishach compilations [11, 12, 13]; whereas the
solvent solubility parameter, 8’ was treated as an adjustable
parameter. In order to fit the experimental data of the systems
studied, two different solubility parameters (3') were used,
one for aromatie solutes (3’ = 6.71) and another for aliphatic
solutes (8" = 9.57). The solute activity coefficients calcu-
lated using equation 6 are listed in column 5 of table 1. The
agreement between the two sets of data (caleulated and ex-
perimental activity coefficients) is in general good. The av-
erage deviation is 8.7%; however, in a few systems it is as
high as 18%. These results suggest that the activity coefficient
of a system may be calculated from the knowledge of their



TABLE 1. Specific Retention Volumes (V2) and Solute Activity Coefficients in n-Octanol at 25.0 °C.

W - N % Vo) — yileale) |

Solute (ml/g) Yx {expt) (calfem®)? (cale) Yelexpt)
n-Pentane 100.6 2.62 3.59 717 4.04 —12:5
n-Hexane 312.5 2.81 3.39 7.33 3.61 —-6.5
n-Heptane 943.0 3.06 3.29 7.47 3.21 2.4
n-Octane 2793. 3.36 3.25 7.55 2.99 8.0
1-Hexene 280.5 2.54 3.19 7.38 3.40 6.6
1-Heptene — — — 7.53 3.01 —_
1-Octene 2318. 3.00 3.01 7.61 2.79 7.3
1-Nonene 1589, 3.24 2.95 7.73 2.45 16.9
Benzeune 669.9 2.07 3.67 9.20 3.94 - 7.4
Toluene 2120. 2.18 3.23 8.91 3.32 —-2.8
Ethylbenzene 5342, 2.49 3.20 8.79 3.07 4.1
o-Xylene 8317. 2.38 3.12 8.99 3.67 -17.6
m-Xylene 6763. 2.34 3.00 8.82 3.15 —-5.0
n-Propylbenzene 13854. 2.76 3.12 8.64 2.71 13.1
ISOpl’Upyl'

benzene 10623. 2.66 3.00 B.61 2.64 12.0

* 1 calorie = 4.184 Joules

physical properties using the Flory-Huggins and the Hilde-
brand-Scatchard equations.

The quantity ¥3 in eq 1 is defined as the activity coefficient
of a solute measured in octanol saturated with water. How-
ever, Purnell [15] has shown that v§, for a solute in a binary

mixture may be expressed as

Lot ©
Yo Y+ Yo

where v and ¥4’ are the solute activity coefficients at
infinite dilution in pure octanol and in pure water, respec-
tively, and &, and &,, are their volume fractions. It has been
reported [16] that at equilibrium the volume fraction of water
in octanol is 0.0414. The value of v for the solutes used in
this study vary between 380 and 63,000 while these of v3
vary between 3.00 and 3.60. Thus the ervors involved in
assuming ¥ = ¥ and y§ = +§ are minimal.

The solute activity coefficients in water, y§, listed in col-
umn 3 of table 2, were calculated using the experimental log
Koo and calculated log vg from the Flory-Huggins and Hil-
debrand-Scatchard equation. Considering that the average
standard deviation in the experimental log K, is 0.04 and
log 4 is 0.03, the agreement between the experimental log
% (listed in the last column) and the calculated log *yg is very
encouraging,.

In summary this study suggests that the solute activity
coefficient ¥§, may be calculated accurately using the Flory-
Huggins and Hildebrand-Scatchard equatiens, and the sol-
ubility of organic compounds in water may be predicted suc-
cessfully from the knowledge of their actanol/water partition

TABLE 2. Activity Coefficients and Octanel/Water Partition Coefficients at

25.0°C.
log v§ log K,.{17) log 3 Experimental

Solute calculated | Experimental | calculated 17
n-Pentane 0.61 3.62 4.23 4.19
n-Hexane 0.56 4.11 4.67 4.73
n-Heptane 0.51 4.66 5.17 5.27
n-Octane 0.48 5.18 5.66 5.80
1-Hexene .53 3.39 3.90 3.99
1-Heptene 0.43 3.99 4.47 4.58
1-Octene .45 4.57 5.02 5.24
1-Nonene 0.39 5.15 3.5 5.82
Benzene 0.60 2.13= 2.73 2,599
Toluene 0.52 2.65 3.17 3.17
Ethyl-

benzene 0.49 3.13 3.62 3.69
o-Xylene 0.56 3.13 3.69 3.60
m-Xylene 0.50 3.20 3.70 3.73
n-Propyl-

benzene 0.43 3.69 4.12 4,22
Isopropyl-

benzene 0.42 3.90 4.32 4,09

coefficients and the solute activity coefficient calculated from

the FH-HS equation.

We wish to thank Professor Daniel E. Martire, Georgetown
University, Washington, D.C., and Dr. Frederick P. Schwarz
of this division for helpful discussions of the subject material.
We also express our appreciation to the Environmental Pro-
tection Agency for financial support.
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Enthalpy and Heat-Capacity Standard Reference Material:
Synthetic Sapphire (a-Al,O,) from 10 to 2250 K
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Heretofore unpublished enthalpy data which weve used in the derivation of smoeth enthalpy and heat-capacity
data for NBS SRM 720 (a-Al,Q;, heal capacity and enthalpy standard) are presented along with some details of
the high-temperature experiments. Recent NBS low-temperature measurements on SRM 720 are smoothed by a
least-squares spline technique and a revised table of certified values for enthalpy and heat capacity of @-AlLO,
from 10 K to near the melting point (2250 K) is presented.

Key words: Aluminum oxide; eorundum; drop calorimetry; enthalpy; heat capacity; high temperature; Standard

Reference Material; synthetic sapphire.

1. Introduction

Standard Reference Material 720 (a-Al,05) has been of-
fered by the NBS Office of Standard Reference Materials since
1970 [1]* as a heat-capacity and enthalpy standard certified
in the temperature range 273.15 K to 2250 K. The relative
enthalpy data, whose smoothed representation appears in [1],
were obtained in two different types of drop calorimeter: a
Bunsen ice calorimeter was used from 273,15 K to 1173.15
K [2] and an adiabatic receiving calorimeter from 1173.15
K to 2250 K. The smoothed relative enthalpy values of [1]
rely as well for the absolute ice-point enthalpy (H,,, ,. K —
Hy ) upon a much earlier low-temperature heat-capacity study
[3} on the “Calorimetry Conference Sample” of pure a-AL0,.

A detailed presentation of the original ice-calorimeter en-
thalpy data along with a description of the smoothing pro-
cedure used to obtain the enthalpy and heat-capacity values
appearing in [1] has been given in [2]. Unfortunately, the
original receiving-calorimeter enthalpy data were never pub-
lished due to the death of one of the principal experimenters
and subsequent personnel changes.

* Center for Chemical Physics, National Measurement Laboratory.

T Deceased.

** Center for Materials Science, National Measurement Laboratory.

! Figures in brackets indicate literature references at the end of this paper.

The present work presents this enthalpy data and describes
certain aspects of the experiments in the receiving calorim-
eter. In addition, it documents a re-smoothing of the NBS
low-temperature heat-capacity data [4] on SRM 720 obtained
since 1970. New smooth heat-capacity data for SRM 720 in
the temperature interval 10 K to 2250 K are presented. The
present smooth enthalpy data above 273.15 K differ by less
than 0.01% from the corresponding values given in [1].

2.High-Temperature Enthalpy Data, 1173 K
to 2250 K

Enthalpy data above 1173.15 K were obtained by S. Ish-
ihara in a high-temperature adiabatic receiving calorimeter.
Some physical and operational details of this apparatus have
been given in [3] and [6]. These experiments were carried
out with the calorimeter and furnace containing purified argon
gas at about 0.1 atm. pressure. The single-crystal segments
of 0-Al;0,5 were contained in a molybdenum capsule (mass:
9.26727 g} with a close-fitting, though not hermetically-sealed,
lid. The capsule was suspended from a doubled and twisted
loop of 8-mil tungsten wire by a small tantalum hoeok (hook
mass: 0.56097 g), Thirteen evenly-spaced temperatures from
1173 K to 2250 K were chosen, and one day’s experiments
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TanLe 1. Heat-Content Data for a-Al04s), SRM 720.

Furnoce Heat to
Temperature Date Calorimeter Specimen
Tey (1969 at 208.15 K Mass He—Hop s Deviation from eq. (3) of {2]
K ] mol* J mol ™! J mol ! %
F 5386.3%* 0.0295095 99871.6 + 24.06 +0.024
1173.18 24 Mar. C 2439.23
C 2439.35
F 5384.10 0.0295094 99794.3 — 53.24 —0.053
F 5681.19 0.0303910 103184.8 - 0.57 -0.001
1199.25 7 Apr. € 2545.30
C 2545.25
F 5680.87 0.0303914 103174.6 - 10.77 —-0.010
C 2855.86
1299.16 4 Apr. F 6474.38 0.0311633 116114.8 + 41.71 -+0.036
F 6474.87 0.0311633 116156.8 + 83.7M +0.072
C 2855.04
C 3060.22
1401.65 10 Mar. F 6474.38 0.0317601 129563.7 +123.18 +0.095
F 7175.51 0.0317601 129553.7 +113.38 +0.088
C 3060.87
C 3467.73
1501.15 19 Mar. F 7914.37 0.0311937 142549.3 +  3.60 +0.003
F 7913.75 0.0311937 142612.1 + 66.40 +0.047
C 3565.15
F 8441.51 0.0303913 156264.1 — 66.65 —0.043
1604.90 6 Mar. C 3692.44
C 3691.51
F 8353.12 0.0208344 156254.7 — 76.05 —0.049
C 4002.05
1702.22 4 Mar. F 9003.15 0.0295487 169249.4 —110.34 —0.065
F 9003.65 0.0295487 169251.4 —108.34 —0.064
C 4002,49
C 4461.57
1799.86 27 Mar. F10147.78 0.0311923 182307.8 —210.67 —0.115
F10147.78 0.0311923 182307.8 —207.47 —-0.114
F 4461.18
F10946.89 0.0311712 196456.3 + 12,42 +0.006
1902.65 17 Mar. C 4823.11
C 4823.88
F10947.56 0.0311671 196479.3 + 35.42 +0.018
F11264.44 0.0295326 210507.7 +242.33 +0.115
2004, 13 12 Mar. C 5047.60
€ 5047.53
F11264.44 0.0295218 210509.9 +244.53 +0.116
C 512511
2101.61 21 Apr, F11697.26 0.0293640 223816.6 +214.15 +0.0%6
F11692.47 0.0293223 223971.5 +369.05 +0.165
C 5125.11
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TABLE 1. Continued.

Fumace Heat 1o
Temperature Date Calorimeter Specimen
Tes (1969) at 298.15 K Mass He—Hogp s Deviation from eq. (3) of [2]
K J ol T mol™? J mol™!? %
C
2203.28 16 Apr. Fe 237748.5 +173.77 +0.073
F 237625.0 + 50,27 +0.021
C
F13886.37 0.0315029 244676.5 —322.90 —0.132
2257.11 14 Mar. C 6178.35
C 6177.04
F13855.68 0.0313787 244708.7 —290.70 {0,119

* “C” prefixes data for empty capsule.
“F" prefixes data for capsule and sample.
b Molecular Weight = 101,9613.

* Original heat and mass data are available but it was not possible to trace the corrections applied to yield the malar values (col. 5), which were used

in evaluation of the smoothing function (eq. (3) of {2]).

consisted of four enthalpy measurements at a single one of
these temperatures. The temperature for any particular day
was chosen randomly with the aid of a table of random num-
bers. The first and last enthalpy measurements of a day were
made on the same system (either the empty capsule or the
same capsule filled with «-Al,0,). Experience has shown
that this method of scheduling one day’s experiments makes
it possible to take into account small changes in the pyrometer
characteristics or sample capsule mass changes due either to
interaction with the sample or with the carbon atmosphere
created by the induction furnace susceptor.

Results of the high-temperature measurements are given
in table 1. The initial sample capsule temperatures are given
in column 1. These were measured with an automatic optical
pyrometer which was focused on the bottom of the sample
capsule through a small aperture in the furnace susceptor. A
separate output signal from the pyrometer was used to control
the furnace temperature. Column 3 gives the measured heat
to the calorimeter at 298.15 K. The actual terminal temper-
ature of the calorimeter and capsule in the equilibrating pe-
riod after an experiment was usually less than 320 K. In order
to reference all heat data to 298.15 K, it was necessary to
add to each measured heat a correction equal to the enthalpy
of the capsule (plus sample and carbon contaminatien, if
present) at the terminal temperature of the calorimeter relative
10 298.":; K, These corrections ranged from one to two percent
of the measured heat. The enthalpy data necessary to cal-
culate the corrections for carbon, tantalum, aluminum oxide,
and molybdenum, were taken from references {7}, [8], [9]
and [2], respectively. The heat content of the aluminum oxide
constituted about 55 percent of the total measured heat at all

temperatures. The differing values for specimen mass {column
4) indicate that in some experiments different amounts of -
Al,0, were used, though the difference can correspond to at
most one or two small pieces of specimen. In the correction
of specimen mass data for atmospheric buoyancy, a density
of 3.97 g cm~3 for -Al,0, was used. The molar enthalpy
values in column 5 were obtained from net heat values (F-C
differences from column 3) by division by the applicable
specimen mass (column 4).

The present, high-temperature enthalpy results (table 1)
and those from [2] in the range 273.15 K to 1173.15 K were
represented by a single smoothing function derived by the
method of least squares (eq. (3) of [2]). The last two columns
of table 1 give the absolute and percent deviation of the
present high-temperature data from this equation.

3. Low-Temperature Heat Capacity Data, 8.6
Kto 273.15 K

Chang [4] has measured in an automated adiabatic calo-
rimeter [10] the low-temperature heat capacity of a-ALQ,
chosen from the same NBS SRM 720 lot as was the material
for the high-temperature measurements presented ahove. A
piecewise representation of this low-temperature heat-capac-
ity data, smooth in derivatives to order two, has been obtained
using a least-squares spline-fitting technique. The value of
this function, as well as its first and second derivatives, maich
precisely at 273.15 K corresponding values derived from the
function [2] representing the enthalpy above 273.15 K.
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3

P3{T)

m 1 —_———— e e e -y

125.0
T/K

FiGURE 1. Temperature ranges for spline fit of low-temperature heat-capacity
data for AL,0,.

The piecewise representation is illustrated in figure 1.,
where P1, P2, and P3 are polynomials of the form

o A A
25 T = 1) )

T, is a reference temperature, different for each temperature
interval.

450 K > T = 8.61 K; C, = exp(P1} J mol"' K~ 7, =

8.61 K
Ay = —0.5147E +01
A, = +0.34127E +00
A, = —0.333446E — 01
Ay = +0.450764E — 02 (1a)
A, = —0.51464E 03
Ay = +0.397864E — 04
A, = —0.152136E —05
125K > T>45.0K; Cpo = P2 Jmol ™' K~ T =
40.0 K
Ay = +0.6966E +00
A, = +0.59387E - 01
A, = +0.40357E — 02
Ay = +0.95173E - 04 (1b)

A, = —0.35910E —05
Ay = —0.6498E—07
Ag = +0.4089E —08

27315 K> 7T= 125K, C, = P3 Jmol ' K™1 T, =

125 K

A, = +0.21993E +02

A, = +0.38853E +00

A, = +0.13955E ~ 02

A, = —0.83967E ~04 (1c)
A, = -+0.19133E ~05

A, = —0.31778E~07

W, = +0.29562E — 09

The low-temperature heat-capacity data [4] are represented
by these smoothing functions with computed percent standard
deviations (S} for each of the three fitting intervals as follows:

450K >T=861K;S, = 0.97
1250K > 7= 450K ;S = 0.13
273.15K > T > 125.0K ; S, = 0.05

According to Chang [4], “It is estimated that the accuracy
of the smoothed (low-temperature) values are better than 0.1%
at temperatures between 100 and 350 K . . . Below 100 K,
the inaccuracy is estimated to become progressively larger,
reaching perhaps 1% around 50 K and 10% around 10 K.”

4. Enthalpy of SRM 720 {(x-Al,0,), 10 K to
2250 K

Smooth heat-capacity values were computed from eqs (1),
above. Below 8.6 K, a T? dependence of heat capacity was
assumed, Using these values, the heat-capacity functions
were integrated to obtain the absolute enthalpy of a-ALO, in
the temperature range 10 K to 273.15 K. Above 273,15 K,
enthalpy and heat-capacity values were derived from the fol-
lowing equation (reproduced for convenience from [2]):

Hy—H,n s = AT™Z2 4 BT~ +CInT + K +0T

+ ET + FP* 4+ G + HT? Jmol™'  (2)
A = +06.6253E+07 E = —8.57516F —02
B = —4.54238E +06 F = +4.299063E —05
¢ = —5.475399& 104 ¢ = —1.15192E - 08
K = +2.5819702E +05 H = +1.26351E—12
D

= +2,574076F + 02

Table 2 presents these smooth heat-capacity and enthalpy
data for a-ALO,.
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TABLE 2. Enthalpy and heat capacity of standard reference material 720,

TaBLE 2. Continued

Temp |Hr—Hoy C, Temp. | Hy—Hog C,
K Jmol™ " Jmaol=!' K-! K Jmol™! | Jmol-t K~
40 2295, 100.6,
10 0.02, 0.009, 450 2396, 101.7,
15 0.11, 0.030, 460 2498, 102.6,
20 0.36, 0.073, 470 2601, 103.6,
25 0.89, 0.14, 480 2705, 104.4,
30 1.90, 0.26, 490 2810, 105.3,
35 3.64, 0.44, 500 2916, 106.1,
40 6.46, 0.69, 510 3023, 106.9,
45 10.7, 1.04, 520 3130, 107.6,
50 17.1, 1.50, 530 3238, 108.3,
60 38.1, 2,79, 540 3347, 109.0,
70 74.6, 4.59, 550 3456, 109.6,
80 131., 6.90, 560 3566, 110.2,
90 214., 9.67, 570 3676, 110.8,
100 326., 12.85, 380 3788, 1114,
110 472., 16.34, 590 3899, 112.0,
120 654., 20.0, 600 4012, 112.5,
130 874., 23.9, 610 4124, 113.0,
140  [1133., 27.9, 620 4238, 113.5,
150 | 1433., 31.9, 630 4352, 114.0,
160 [1772., 35.9, 640 4466, 114.4,
170 | 2152, 39.9, 650 4581, 114.9,
180 | 2570., 43,7, 660 46956, 115.3,
190 |3026., 47.5, 670 4811, 115.7,
200 [3s19., 51.1, 680 4927, 116.1,
210 |4048., 54.6, 690 5044, 116.5;
220 |4611,, 57.9, 700 5160, 116.9,
230 |5207., 61.1, 720 5395, 117.6,
240 | 5833, 64.14 740 5631, 118.3,
250 | 6490., 67.0, 760 5868, 118.9,
260 |7175., 69.8, 780 6107, 119.5,
270  |7886., 2.4, 800 6346, 120.1,
273.15{ 8115., 73.2, 820 6587, 120.6,
280 | 8622., 74.8, 840 6829, 121.2,
290 |9383., 77.2, 860 7072, 121.7,
298.15| 1002, 79.0, 880 7316, 122.2,
300 | 1016, 79.4, 900 7561, 122.6,
310 | 1097, 81.5, 920 7807, 123.1,
320 | 1179, 83.4, 940 8033, 123,5,
330 | 1264, 85.3; 960 8301, 123.9,
340 | 1350, a7.1, 980 8549, 124.3,
350 [1438, 88.9, 1000 8798, 124.7,
360 11528, 90.4, 1020 9048, 125.1,
370 |1619, 91.9, 1040 9299, 125.5,
380 |1711, 93.4, 1060 9550, 125.9,
390 | 1806, 9.7, 1080 9802, 126.2,
400 | 1901, 96.0, 1100 1005, 126.6,
410 | 1998, 97.3, 1120 1030, 126,9,
420 |2096, 98.5, 1140 1056, 127.2,
430 (2195, 99.6, 1160 1081, 127.6,

Temp |Hp~Hex C, Temp | Hr—Hox C,
K Jmol™'| JTmel™! K-! K Jmol ' | Jmol-t K-
1180 | 1107, 127.9, 1700 17904, 134.5
1200 11334, 128.,; 1750 1858, 134. 54
1250 | 1197, 129.,, 1800 | 1925, 135,
1300 | 1262, 129.,, 1850 | 1993, 135.5,
1350 | 1327, 130. 4 1900 2061, 135,45
1400 | 1392, 131, 1950 | 2129, 136.,,
1450 | 1458, | 131, 2000 | 2197, 1365,
1500 | 1524, 132.,, 2050 | 22654 136.5
1550 1590, 132.5, 2100 23344 1375
1600 | 16574 133.,,; 2150 | 2402, 137,
1650 | 1723, 133, 2200 | 2471, 137,
2250 2540,, 138,45

* Temperatures expressed on [PTS-68 scale,
® Molecular Weight = 101.9613.
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Model equations describing large scale buoyant convection in an enclosure are formulated with the vorticity
and stream function as dependent variables. The mathematical model, based on earlier work of the authors, is
unique in two respects. First, it neglects viscous and thermal conductivity effects. Second the fluid is taken to
be thermally expandable: large density variations are allowed while acoustic waves are filtered out. A velumetric
heat source of specified spatial and temporal variation drives the flow in a two-dimensional rectangular enclosure,
An algorithm for solutien of the equations in this vorticily, stream-function formulation is presented. Results of
compulations using this algorithm are presented. Comparisen of these results with those obtained earlier by the
authors using a finite difference code to integrate the primitive equations show excellent agreement. A method
for periodically smoothing the computational resulls during a caleulation, using Lanczos smoothing, is also
presented. Computations with smoothing at different time intervals are presented and diseussed.

Key words: bueyant convection; finite difference computations; fire-enclosure; fluid flow; Lanczos smoothing;
partial differential equations; stream function; vorticity.

1. Intreduction

Over the past few years, the National Bureau of Standards has sponsored a joint research project between
the Center for Fire Research and the Center for Applied Mathematics to develop, starting from basic con-
servation laws, a mathematical model of fire development within a reom. Large scale convection is an essential
component of such a model because this fluid moton governs the smoke and hot gas transport within a room
and also supplies fresh oxygen to the fuel to sustain combustion. Therefore, development of a mathematical
model of buoyant convection was begun as a first step toward a more complete room-fire model, which would
include effects of combustion chemistry, radiation, and smoke dynamics. The mathematical model for con-
vection, the partial differential equations, and boundary conditions, are derived in reference [1]."

As noted in earlier papers [1,2] the mathematical model is unique in two respects. First, it is assumed
that viscous and thermal conductivity effects are negligible. Second, the fluid has been taken to he thermally
expandable so that large temperature and density variations can be taken into account, while acouslic waves
have heen filtered out to reduce computational time.

The model equations were integrated for density, pressure, and velocity components by finite difference
techniques; the algorithm is presented in detail in reference [2]. The algorithm has been verified by comparison
with solutions to the equations in special cases obtained by analytical and independent numerical means;
the verification is described in references [3] and [4] and in the present study.

In section 2 the model equations are recast into a form such that the dependent variables are density,
pressure, vorticity, velocity potential, and stream function. This formulation, the so-called vortieity, stream-
function formulation, is an alternate one te that described in reference [2], which we call a primitive-variables
formulation. An algorithm for integration of the equations in a vorticity, stream-function formulation is also
presented in this section.

* Center for Applied Mathematics, National Engineering Laboratory.
 Center for Fire Research, National Engincering Laboratory,
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Results from the two algorithms are compared: the results are in such good agreement that the difference
cannot be seen on plots of the dependent variables, This comparison represents a final check on the validity
of the integration algorithms and their computer code implementations. Therefore, we believe that the solutions
obtained by these computations are excellent approximate solutions to the model partial differential equations
presented in reference [1].

The model has been developed for two-dimensional, time-dependent fires evolving in a room (rectangular
enclosure). The fire has been modeled as a volumetric heat source of specified spatial extent and temporal
behavior. In section 3 density or temperature (which are inversely related at any specified time in this model},
vorticity, pressure, and velocity potential plots at fixed times during the heating are shown for a sample
computation.

It is well known that, because of the quadratic nonlinearity in convection, initially smooth flow fields
become increasingly more furrowed as time progresses; i.e., energy cascades from lower wavenumber modes
to higher ones. The computational results display this behavior, and the flow field becomes more intricate
with increasing time, the resolution of the grid providing the only limitation to the resolvable detail. However,
such an accumulation of energy at a wavenumber inversely proportional to the grid size is both unphysical,
and, if the computation is carried out long enough, disasirous. Local gradients of the dependent variables
hecome much too large and the computation ultimately fails. Therefore, also shown in section 3 of this paper
are preliminary considerations of smoothing or filtering of the computational results. Such smoothing acts
analogously to viscosity and can be used to prolong the lifetime of the computation. A brief discussion of the
effects of a particular type (Lanczos) of smoothing is presented, and results obtained using this smoothing
are shown.

2. Formulation
2.1. Continuous equations

In an earlier paper [1], the authors had derived a set of nonlinear equations describing very nonadiabatic
buoyant flows of a nondissipative perfect gas. The magnitude and the spatial variation of the heat source
(representing the exothermic reaction in a fire} were taken as known. The fluid and the fire source were
assumed confined in a closed rectangular room with the center of the source along the floor. In contrast to
reference [1], in this paper we consider only a completely enclosed room (no leaks), and when difference
equations are introduced, we confine attention to the two dimensional evolution of the flow.

In this section, the equations derived in reference [1] for a two-dimensional configuration are rewritten so
that vorticity and the stream function are primary variables, and the finite difference methods used to solve
the revised equations are presented.

Equations (11) of reference [1] are

= T3 i(pu.) 0
: du. aln—
p(ﬂfﬁ+ aj—”ﬁ) L e—p() _ phg = 0
dt ox; ox; (1)
aT ar\  dp,
— .= _——= .
pcp(a: K axj) o - QG
pt) = pRT

Here p is density, u; the velocity in the i* coordinate direction {i = 1,2, 3), p is the pressure excess above
the mean pressure p,(t) in the room, T the temperature, C, the constant-pressure specific heat, R the gas
constant, kg is the gravitational acceleration, and Q{x,,t} the specified volumetric heat source. The spatially
uniform mean pressure p,(¢} depends only upon time and increases because of the healing within the room.
It is determined in a completely enclosed room by the equation
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dp

,_1-1 '
e 2121 | o@nar @)

where v is the ratio of specific heats, V is the volume of the room and the integration is performed over this
entire volume.

We take the substantial derivative of the equation of state and use this with the energy equation to eliminate
the temperature. The resulting equation describes the evolution of the density under heating

ap ap du,

o+ uia_xi = — p'é':i = = pD(x;,7) 3)
where
~ 1 _ _ dp,
D) = = | et - 2] @

Equation (3) and the continuity equation identify D(x,t) as the divergence

2 D) - )

Finally, as in reference [1], the equation for the spatially variable portion of the pressure is obtained by
dividing the momentum equations by density and taking the divergence of these equations. The resulting

equation is
d (139 ] . aD(x,, .
(1o | |2 (, ou) , 9D(t) ©)
dx, \p Ox; ox; \ 7 o at

The boundary conditions on these equations are that velocity normal to any (impermeable) wall vanish.
un, = 0 (M)

where n; are the normal components of a vector describing the boundary wall. From eqs (1) and these
conditions, the appropriate boundary conditions on the pressure equation are obtained

d
n; L= pg nk; (8)
dz;

In two dimensions (no dependence on z), these equations become

dp dp dp
—+u—+v— = — pDxyt
at "’ax vﬂy P D(x3.1)
d J 19
Zies WP+ — w0 = — 4
dt dx p dx (9)
Ii 14d
—0+1/2—a'(u2+v2)+um= -—-——p—g
at oy p oy
14 d {1dp\. a9 a
LY (=)= - Z L 2 (vw) ~ — (uw) — 1/2 V2 (2 + %)
dx \p dx dy \p 9y a  Ox dy

where x and y are the horizental and vertical coordinates with velocity components 1 and v respectively and
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W= — — = (10)

is the only nonzero component of vorticity.
Equations (9} can be recast into a form in which the vorticity, the stream function and the velocity potential,
together with density and pressure, are primary dependent variables. The velocity components can be written

as
b,

dx dy (11)
_% _ 3
" ay Jx

where ¢ is the velocity potential and W the stream function. Equations for ¢ and s come from the divergence
eq (5) and from the definition for vorticity (10)
Vib = D(x.y.t) (12a)
V2 = — w {12b)

For these two elliptic equations, the stream function and the normal derivative of the potential are zero on
the boundary:

<=0 and ¢=0 (13)

The equation describing the density evolution remains as it was in eqgs (9), and an equation for the vorticity
evolution comes from taking the curl of the two velocity equations in eqs (9).

d a i a{1a 8 {14
—m-i-L,L—bi-l-r)—(g-{-u)D:~——£ +——iJ (14}
ot Jx dy dx \p 3y dy \p ox

In figure 1 a schematic diagram of a fire evolving in a room in two dimensions and a set of coordinate axes
are shown. It is assumed that initially the enclosure is filled with quiescent, stratified fluid of density p,(y).

Smoke and
hot gases

z

FIGURE 1. Schematic diagram of a twe dimensional fire evolving in a room:
it is assumed that there is no dependence upon z of any of the properties of
the fire or of the induced flow field. The fire, localized along the floor, has
2 plume of combustion products rising above it. The smoke and hot gases
rise to the ceiling and fill the room from the top down.
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We define a density difference from ambient and a pressure difference as follows

Fi(x’y’t) = P(xsy,t) - p.(¥)
ﬁ(x,y,t) = p(x,y,t) = ple) + g.rgpa(y’) dy'

These differences p and 5 need not be small compared with p,(y) and p,(2) respectively. Then the first and
last of eqs (9) and eq (14) become

|
+
+
|

|

(p(y) + P)D (x.3:)

ot dx Ay dy
%‘; " ‘;—‘*’ + f"a% tob= - = [(1f(pa+p))(j—§ + gﬁ)]
e [(um, + ) j—”] s
- [(um, ) g—f’] v [(um, + ) -ggj = -5 /e, + D)
-2 - V)

3 F)
+ (v} — o (uw)

Equations (11), (12} and (15) constitute the complete set of differential equations for numerical integration
in the vorticity, stream function formulation. The boundary conditions are given by eqs (8), with p and p
replacing p and p, and by eqs (13).

Finally, we form dimensionless equations using the density p,, = p,(0), the height of the room H as the
length scale and the free fall time (H/g)"? as the time scale. Then, denoting dimensionless quantities with a
hat

p = p/pao ’ ﬁ = ﬁ/(paagH) ? ﬁo pz/poo

Il

a 1 “ 1 H
¢'"H\/E§¢a ‘!’—H\/é_ﬁq-‘, o \/E‘D 16)

=%
1
3
<
|
3
=
|
=
-4Y
I
o

t

UG

Equations (11), (12} and (15) remain exactly the same in dimensionless form with g set equal to one.
Subsequently, in this paper all quantities will be understood to be dimensionless, and the hat notation will
be dropped. For the dimensionless coordinates, we note that 0 < x < 1/AR and 0 < y < 1 where AR =
HIL,

2.2. Discrete Equations

2.2.1. The Basic Algorithm

In this section the finite difference equations and the boundary relations for the solution algorithm are
presented., In figure 2a, the two-dimensional rectangular enclosure in dimensionless variables is shown together
with a schematic representation of the spatial grids used for the finite difference scheme. The grid formed
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FigURE Za, Rectangular enclosure in dimensionless variables 0 < x = K

0 =< y = 1. The mesh upon which the difference scheme is based is shown
schemalically for (f = J = 4) us a grid of solid lines, The mesh of dashed lines
jeins the center points of the basic mesh cells and is the grid upon which the
pressure computation is perfermed.

from solid lines represents the basic mesh into which the enclosure is divided: in general there are / mesh
cells in the x-direction and J mesh cells in the y-direction,
Upon this basic mesh, the two components of the vector (u,v) and single component of the vector vorticity

d
w = LA g-lf are defined.
ox oy

The second grid, formed by joining the center points of the basic grid cells and denated by dashed lines,
is that upon which sealar quantities such es density p and pressure p are defined. In figure 2a the densities
in the left-hand column of cells and in the bottom row of cells are shown to indicate how they are enumerated
for the numerical computation.

In figure 2b a typical mesh cell is shown, illustrating where all of the dependent variables in the finite
difference scheme are defined relative to the cell.

\'i_l
(JJHJ [;fij
wija
i
- pij L] p'i I
Uit Djj Yij
¥i H
Wy H Wi

FIGURE 2b. A typical mesh cell, with center lovated at x = (i — 1/2) 8x
and ¥ = {j — 1/2) 8y, illustrating where all dependent variables for the
finile difference scheme are defined.
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The following discretely evaluated functions will denote approximations to the corresponding solutions to

egs (11), (12) and (15):

b2 = &((i— 1/2)8x, (j— 1/2)8y,ndt)
% = Y(idx, jBy, ndt)
u? = u(idx, (j— 1/2)3y,ndt)
v = ((i— 1/2)8x,j9y,nbt) an
p2 = p((i — 1/2)8x, (j— 1/2)8y,nd¢)
P2 = p((i— U/2)dx, (j— 1/2)3y,ndt)

Dy = D((i—1/2)8x,(j— 1/2)8y,ndt) ,

{

o} = w(idx, /8y, ndt)

where 8x = 1/([-AR) and 8y = 1/J are the mesh cell sizes in the x- and y-directions respectively and where
8t is the time-step size. Such a staggered grid is commonly used for multidimensional finite difference
integrations [5].

With this notation, the following set of finite difference equations was used to approximate eqs (11}, (12)
and (15) and boundary conditions {8) and (13):

For the first of eqs (15), 1 = i</, 1<j< Jand n = 2,
1
n+l — n—1 — n — T n
; —m1+(1/2)D38t {11 — (U2)Dyde) 28u(Fp,, + Fy, .
+ (2)D5e, ()}

where

pr = p? — p,(j) = the density difference from the initial density,
p.(j) = exp[—(j—1/2)84/Y,] = the ambient, initial siratification, (19)

Y, = the stratification length secale.

The flux terms F;, and ¥ for 1} < i</, 1 =j=J are given by

P (290(1') + Py b ﬁ?-»u) (“5 - u?_l‘j) + ( i1 — ﬁ?—u) (u,'; +2u?_1'j) {20a)

pxy 4, dx 26x

oyi 4

o= p,(j+ 1) + p(j—1) + Pijer T PLi—a (”; - v:j—l)
By

+ pG+1) — Po(l_zls)y+ D — B ("j; +2”Ej-1) (20b)
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For the second of eqs (13}, 1 = i< [, 1 <j=< Jand n = 2

1
rn+l — n—1 _ .
W ~ = Wy 28t {28 (um1+11m1+l.1 - uf,s—lJm?—l.j)

(21)
1 n
+ E (”m54+1wfi,'+1 - ”:f:i.j—lwﬁj-l) + G;
where
ooy = (U2)(@3 + o7,
ui,-,» = (1‘{2)(“5,”1 + u’ij) B (22)
oo 2 [ra.-"“.,-ﬂ — B (Bl BN )(EY2)
d 5x5y pu(j+1) + po(j) + pzj+1‘j+1 + W+1J
_ Bher = By (Bl — P5NEYI2) 23)

po(.]+]') + pu(j) + p?.j+l + p:.f

~ Parjer = Blien P AV ]
2pu(j+ 1) + Proryer T Pl 2p,(j) + Prer, + PG

Equation (18) employs a second-order accurate lemporal discretization which eliminates instability that would
arise if leap frog had been applied. The first of eqs (15) has an undifferentiated term pD(x,v,t) that is well
known to lead to a computational instability for ordinary differential equations when leap frog is used. Reference
[10] discusses the simple change in temporal differencing used here to eliminate this instability.

Equation {21) uses a straightforward leapfrog temporal differencing, and both eqs (18) and (21) are started
by using the same spatial discretization and an explicit, first-order time step.

At each time step, after the vorticity has been updated, three elliptic equations must be solved, eqs (12a),
{12b) and the last of eqs {15). Equations (12a) and (12b} are differenced using a standard five point star

1
Q (¢?+1,j - 2¢:} + ?—1,,) + Syz( ti+1 w 1) = (24‘3)

1
8_952 (q’?ﬂ,j = 207 + 10-) + (qu;+1 2‘1‘; + ‘I—'?,j—l = — (24b)

y2

and the boundary conditions (13) are introduced in the usual fashion. These equations have been solved
using software routines from FISHPAK [6]: eq (24a) was solved using BLKTRI and more recently using
POISTG, while eq (24b) was solved using PWSCRT and more recently GENBUN. Routines BLKTRI and
PWSCRT have limitations on the number of mesh points or unknowns which they can solve, whereas POISTG
and GENBUN were produced more recently and are free of such limitations. Most computations were performed
with the former routines, but recently several computations have been performed using the latter.

The velocities are then obtained from the potential and stream funciion by difference forms of eqs (11}

1
uy (d)s-l- Li — ¢F) + g_(‘l’; = - 1) (25a)
¥

1
vy = 8_' (d)?,ji-l - ) - _(‘IJ - 1;) (25b)
i
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For the third of eqs (15), for 1 < i = /Jand 1 = =< J,

3[ Blovs — B = Py }
2900) + Py Dy 2Pu(]) + B + P 1j

+ 2 2 [ Bljer = By By — P :l
32 | pi+1) + p() + pryur + P2 P F pG—1) + Py + By

(26)
_ D;_+1 —_ D;_l F:: 1,/ - Fx_l + F;U‘ 1 F;‘lf
28¢ Sx By
_ ]' [ plj+1 + .ﬁg pq + pl] 1 ]
8y po(J+]') + po(]) + pl]"‘l + i) po(j) + pa(] 1) + ﬁxj + ﬁ:j—l
where the fluxes F7; and F7; are defined as follows:
forlsisi-11<j<]
Fn — l JL 2 2 n
A _2"6_37 [(qi+1u) - (qU) ] B (Umgm + ”wd 1('01,_1 1) (275')
andforl=j=J -1, 1=si=<]/
| — 1 ) 2 1 n
By = 5oy (e = @] + 50,05 + uiyj0r1)) (27b)
and where
W = Viery — U Uiy Toup
¥ B Sy
Vuy = E(”; + "}?+1,J) ) U, = ‘2“(u'i'J+1 + uf}

z 2
ug + ul_ A S
(g5)* = ( 5 ”) + (f 5 1) (27c)

Note that boundary conditions (7) on the normal velocities imply that uy; = w;; = 0 for 1 < j =< J and

v, = t;; = 0 for 1 = { = I. These boundary conditions are applied formally in the expressions for the
fluxes Fy,., Fj,., Fr, and F7 in mesh cells adjacent to boundaries. The boundary conditions (8} in discrete

PYy?
form become

oy = By
for1<j=s]j (28a)
Pr; = Breyy
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Pl — Pie = 63’(3531 + Dﬁo)/2
fwl=<i=] {28b)
Piyar — By = — Sy(pﬁjﬂ + Py )2

We nole that eqgs (26) together with boundary conditions (28) constitute a singular linear algebraic system of
equations. When egs (26), with boundary conditions incorporated, are summed, the left hand side sums to
zero, demonstrating that all of the equations are not linearly independent. Also, the last three terms on the
right hand side sum to zero, producing the requirement that the double sum over (D3*' — D2~%)/28t must
vanish. Examination of eq (30) below for D} shows that it has been chosen so that its double sum over all
mesh points vanishes. and that the condition which must be satisfied to allow this choice produces eq (31)
below for the mean pressure. Therefore, the singular linear algebraic system is seen to be consistent and

thus to allow a solution. The solutien is unique by noting that the double sum over all mesh points of Ji; must
be zero,

At each time step it is necessary to calculate the solution of the linear algebraic system for the pressure,
egs (26) with boundary conditions (28) incorporated. The method of solution must take into account non-
uniqueness of the algebraic system. The solution method must also be able to solve large linear systems
accurately, since there are IJ equations and cumulative errors from many time steps may destroy the com-
putation. Finally, it is very important that the solution be obtained quickly since the calculation is made at
each time step, and hundreds of time steps must be taken.

The solution method we have adopted is a hybrid method which combines an iterative algorithm, conjugate
gradients, with a fasi direct Poisson solver. The conjugate gradients algorithm provides an iterative technique
for solving the linear algebraic system of equations. Details of the algorithm are presented in reference [7].

The heat source has been chosen to have the form

5= 0s (29a)
B 12
0y = (;) A exp [=Ble—%)" — Ay (29b)
%, = (i—1/2)8x, y = (j—1/2)dy (29¢)
S* = @, tanh A¢” (29d)
n—1
t° =10, = 2 LTl {(29¢)

Hence, the discrete divergence of the velocity field becomes

1 a
D = — [(v—1)Q;—KIf" (30a)
TPD
Bl B
K= IJ .';1 -le Cs (300

and the mean background pressure is found from the difference equation

Pt =it + Kfm2be 31)

with pd = pl = 1 since f* = 0.
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The linear stability of the algorithm is the only other consideration for discussion. A linear stability analysis
of eq (18) for the density shows that the time step 8¢ must satisfy the following condition for stability

8" = max {(D; z 4 I:l—l'jll' + |—"‘|‘:| } (32)
1siss Ox Sy
1=
where
= (1/2)(uf + uly)) (33a)
Vi = (12)} + of_1) (33b)

When the stability condition, eq (32), is not satisfied by a time step, the time step dt7 is halved. Then the
time-marching algorithm is restarted using the last time-level values as initial conditions. A ﬁrst—order time
step is taken and then leap-frog is resumed.

A linear stability analysis of the difference equation for the vorticity, eq (21), yields exactly the same form
for the stability criterion as that found above for the density equation. Reference to figure 2b shows that the
density and vorticity are evaluated at different points in the mesh, however, and therefore, the divergence D
and the velocity components U and V are to be evaluated at different points than those used in eq (32). To
account for the difference in the stability criterion implied above, in all calculations performed using the
algorithm described above, the time step was chosen to be less than or equal to 0.8 the maximum value
found for the right hand side of eq (32).

2.2.2. Lancxos Smoothing

The nonlinear nature of the equations of fluid dynamics implies that initially smooth data will, in general,
produce flow fields with fine structure. Since the results presented are for finite difference computations, the
resolution of the flow field is limited by the grid size used to perform the computation: structures of a size
comparable to a few grid cells can be resolved, whereas smaller structures may represent artifacts of the
calculations. In addition, in the computations it has been found that the calculation will eventually fail because
of the intricate detail (and sharp gradients this detail represents) if the number of time steps becomes large
enough.

It is for these reasons that various methods of smoothing data generated by the computations have been
examined. In the method presented here, the computation is stopped periodically, with a period specified as
input to the computation, and the data are smoothed spatially. The computation is restarted using the smoothed
data as initial conditions, the results not being allowed to develop the intricate detail it might otherwise
develop. The method used to smooth the data is a variation of one suggested by Lanczos in reference [8].
Using this method with a relatively long smoothing period, computations have been extended indefinitely.

The smoothing used here is that proposed by Lanczos, but is modified slightly for our purposes. In reference
(8], the smoothed data is obtained from the value of the data at each point by adding a specified multiple
of the fourth difference at that point. The change in value between the smoothed and unsmoothed data then
is of order A* where & = 1/J and J is the number of mesh points in one direction in space.

Since the computational scheme described here is only second order accurate in the spatial mesh size,
0(h?), a less refined smoothing was used. The smoothing is accomplished by adding a specific multiple of
the second-order difference at the point to the value of the datum at that point and is 0(h2). When the method
is generalized to two dimensions, it becomes equivalent to adding one fifth of the finite difference, five-point
Laplacian to the value of the datum at each point to obtain the smoothed datum. (This is also equivalent to
replacing the value at a point by the average of its value and the values of ils four nearest neighbors.)

Therefore, after a specified number of time steps m, the density and vorticity data at time level m are
changed according to the following prescription:
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1
pF —pf + g (Pﬁ-l.j APyt P P T 493‘) (34a)

1
Wi < wf + '5'((’-‘?1“,;' + ol + ool ol — dof (34b)

At the boundaries, the following rules are used for the smoothing. For cells adjacent to boundaries, the density
is assumed to have the same value in a ficticious cell outside the boundary as its value in the cell under
consideration. (This is the difference equivalent of saying that the nermal derivative of the density at a
boundary is zere.) The vorticity is taken to be zero on the boundary, and represents a free slip boundary
condition.

A rough estimate of an equivalent Reynolds number or Grashof number introduced by smoothing can be
made by the following argument. The effect of viscosity in the vorticity equation in the Boussinesq approx-

1
imation arises, when the equations are made dimensionless in an appropriate way, as 7 VZw, where Re is
e

the Reynolds number, V2 is the Laplacian and w is the vorticity. The average effect per time step of Lanczos
2

ch . .
smoothing in the vorticity equation can also be represented as Y V2w where ¢ is a constant of order unity,
m

§ is the time step, h is the mesh spacing, m is the number of steps between smoothings and V* is the
discretized, five-point representation of the Laplacian, Equating the coefficients of the Laplacian operators
provides an estimate of the Reynolds number intreduced by smoothing;

where I and J are the number of mesh points in each direction. Takinge = 1,8 = 0.1, m = 40,/ - J =
1000, then Re = 4 X 10%, and noting that the Grashof number Gr is approximately the Reynolds number
squared, Gr = 1.6 X 107,

3. Computational Results

As discussed in the Introduction, the vortieity, stream-function algorithm and a code implementing this
algorithm were developed as a method for solving the partial differential equations derived in reference [1].
The other method for solving these equations, a finite difference method for directly integrating the equations
of motion in primitive variables (density, pressure and the two components of velocity) was described in
reference [2]. Reference [3] describes comparisons of the results computed using the primitive variable
algorithm with analytical results obtained in special cases. These comparisons were performed to test the
algorithm and the computer-code implementation. Final comparisons were made between results computed
using the primitive variables code and those computed using the vorticity, stream-function code. Agreement
between results was found to about five significant figures after a few time steps and to between three and
four significant figures after hundreds of time steps. The discrepancy between results is smaller than the
errors introduced by discretization for the mesh sizes used and well below differences which could be observed
by plotting.

In this section some computational results are presented and discussed. The density, pressure and vorticity
are scalar functions of the horizental and vertical coordinates at any specified time. We have found that
contours of constant value of any of these scalar quantities are a convenient way to display them. Since the
temperature and density are inversely related at any particular time, contours of constant density are also
contours of constant temperature.

All contour plots were prepared from & graphics package developed by the National Center for Atmospheric
Research. The numbers indicating contour values are relative only. Selid lines represent values of the variable
greater than zero and dashed lines represent values less than zero. For the results presented here, density
and temperature are inversely related: contours of constant density have been labeled as contours of constant
temperatures for illustration. Therefore, for the temperature plots, temperature contours above a reference
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value appear dashed and below that reference are solid. Graphic details on the scale of a mesh cell, which
is determined by the distance between fiducial marks on the sides of the plots, should he ignored.

All computations have been performed on one of three computers, the NBS UNIVAC 1108, the U.S.
Treasury UNIVAC 1100/81 or the Cybernet Cyber 175. The computations require about 45K words of storage
for the 31 X 31 mesh and were performed on any one of the three machines. Typical running times on the
1108, which is the machine most frequently used, is about 30 to 45 min of CPU time for 200 to 300 time
steps.

In figure 3 contours of constant temperature (isothetms) are shown at four dimensionless limes for a
volumetric heat source centered along the floor in a square room. The rate of heat added per unit volume is
largest along the floor at the center of the room and decreases in a Gaussian fashion with horizontal distance
from the center and exponentially with height above the floor. The heat source is “turned-on” as a hyperbolic
tangent with respect to time asymptoting to full strength around ¢ = 1.0. (Note that T denotes lime on the
figure titles.) At the first time, ¢ = 2, the problem is still linear; the flow velocities are sufficiently small
than convection is unimportant, and the temperature increase in the fluid is directly proportional to the
volumetric rate of heat added. Therefore, the isotherms are also contours along which the volumetric heat-
addition rate is constant. (These contours are found to be parabolas.)

These computations were performed on a spatial mesh having 31 cells in the horizontal and 31 cells in
the vertical directions; the tick marks along the boundary of the enclosure show the mesh cell spacing.

At time 8.5, the second frame of figure 3, a buoyant thermal has developed, giving the appearance of a
mushroom cloud. The buoyant thermal intensifies in strength until the thermal hits the ceiling, as shown in
the third frame, ¢ = 11.5 and begins to spread. Inside the plume a distinctly periodic structure has begun
to develop, as can be seen vividly in this frame; here, progressing up the plume along its centerline, one
finds a local low first, then a periodic sequence of local highs and lows up to about the center of the head
of the thermal.

The heated gases spread along the ceiling and fill the room from the top down, as shown in the last frame
of figure 3 at ¢ = 14.5. This physical behavior is exactly what is observed in room-fire tests and in other
experimental observations of heating in enclosures. The symmetry about the centerline of the room displayed
in these computations is some measure of the accuracy with which they were performed: the heat source is
placed symmetrically, but the computations were performed as if no symmetry existed.

In figure 4 contours of constant vorticity at various times are displayed. The contours show an anti-symmetry
about the centerline, as would be expected for the vorticity, and the physical features described for the density
(or temperature) contours are reflected in the vorticity plots. Because the vorticity represents a higher order
difference of the dependent varizbles, these contours display more fine scale (on the mesh scale) features
than the density contours. Also, later in the computations, “noise” of a nonsymmetric and fine scale begins
to show up. The vorticity plots are not as “smooth™ as those of the density (or temperature).

In the first frame of figure 4 at time 2.0, early in the heating process, two vortices of equal magnitude and
opposite sign develop with centers in the regions of steepest gradient of the heat source. Convection has
begun by dimensionless time ¢ = 8.5, frame 2 of figure 4, and the vortices are pinched together and buoyed
upward off the floor. The vortices are convected toward the ceiling. Also vorticity of periodically varying
strength is generated within the source region and the strength of the vorticity increases with distance above
the source. Finally, frames 3 and 4 of figure 4 show that the periodically varying vorticity trains split when
the ceiling is encountered and form two large regions of vorticily of opposile sign,

The pressure as a function of horizontal and vertical coordinates at any specified time can also be displayed.
In figure 5 contours of constant pressure at four times during the room filling are shown. This pressure actually
represents only the spatial variation of the pressure and has been normalized at each time so that its mean
value is zero. This is the quantity which, together with buoyancy, induces the flow. As with the other contour
plots, solid lines represent contours with values greater than zero and dashed lines indicate values less than
zero. The pressure plots are seen to be smoother than those of densily (temperature).

Early, the first frame at ¢ = 0.5 of figure 5, the pressure is highest at the source, where heating takes
place. As convection starts, the high pressure region is lifted off the floor, time ¢ = 2.0: a significant enough
convective velocity has developed by dimensicnless time ¢ = 2.0, that a low pressure region due to a Bermoulli
effect can be seen at the floor. This low pressure region is associated with the high convective velocities, or
the vorticity pair shown in figure 4. The low pressure region develops a double minimum, symmetric about
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the room centerline as seen at time 8.5 and rises to the ceiling, as shown in figure 5, time 11.5, where a
strong compression develops at the center of the ceiling. The final pressure diagram displays the deuble
minimum, associated with the strong vortex pair and high temperature shown in figures 3 and 4, separating
and moving toward the walls.

In figures 6 and 7 contours of constant potential ¢ and constant stream function s are shown. Only one
plot of the potential is shown because the spatial dependence does not change with time: the potential function
is separable in space and time. Four frames of stream function are shown in figure 7. The stream function
is antisymmetrical about the centerline and displays a peak and a valley which slowly rise toward the ceiling.
The stream function is rather smooth. showing only a slightly wavy behavior at later times.
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FIGURE 6. Velocity-potential contours at dimensionless time, T = 1.0 for
the calculation displayed in figures 3—5. The potential function is a function
of space times a function of time; therefore, the spatial dependence does
not change with time.

The base computation, shown in figures 3—7, was repeated several times with smoothing introduced at
different numbers of time steps. Figures 8 and 9 compare constant temperature contours at dimensionless
time 11.5 and 14.5 respectively determined by the base computation, on the upper left, and by three levels
of smoothing in the other three plots of each figure. It is seen that the fine structure is eliminated by smoothing,
but large scale features are still retained. In figure 8 four plots of constant temperature contours at approximately
the same time are compared, The plot in the upper left hand corner is the unsmoothed computation. The
plot at the upper right is the result of the computation smoothed only once up until that time, afier ¥V = 160
time steps. The next plot, lower left, is from a computation smoothed every 80 time steps, that in the lower
right is from a computation smoothed every 40 time steps. Figure 9 shows a similar comparison of the effects
of smoothing, but at approximately ¢ = 14.5. These plots show clearly the loss in detail with increasing
frequency of smoothing or increased simulated viscosity, They also show that the buoyant plume rise slows
due to the decreasing gradients. The smoothing and loss of fine-scale detail with increased frequency of
smoothing are apparent, and, in fact, these results appear much closer qualitatively to results obtained in
previcus studies which integrated the Navier-Stokes equations by finite difference techniques {for example,
reference [9], figures 4 and 5).
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