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1. Introduction

The bond-energy-bond-order (BEBO) method is a procedure for calculating the activation energies of
hydrogen transfer reactions from bond energies. When combined with absolute rate theory, it also yields
values for the rate constants. It was formulated over 10 years ago by Johnston and Parr [1], and has since
been applied with considerable success to the calculation of a large number of activation energies. Less fre-
quently, it has been used to evaluate rate constants. Although the details of the BEBO method itself have

* Figures in brackets indicate literature references at the end of this paper.

*Center for Thermodynamics and Molecular Science, National Measurement Laboratory.
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been published by Johnston [2], this aspect represents only a relatively small part of a rate constant calcula-
tion. The purpose of this report is to give a detailed account, not only of the BEBO method and its
theoretical background, but also of the absolute rate theory portion of the calculation. In addition, instruc-
tions are provided for the use of a computer program which calculates rate constants based on the BEBO
method. The discussion is limited to linear transition state models.

2. Theory
2.1. Absolute Rate Theory & Transition State Model for BEBO Calculations

For a bimolecular reaction, 4 + B — [4B]* — products, absolute rate theory utilizes the concept of a
molecular complex made up of the two reactants. This complex is assumed to be in equilibrium with these
reactants. The resuiting expression for the classical rate constant k., is

_ kT Qt"e-v'/n

where k is the Boltzmann constant, T is the absolute temperature, k is Planck’s constant, Q¢! and Q% are the
classical partition functions per unit volume for reactants 4 and B, Q. is the classical partition function per
unit volume for the complex, and 7™ is the potential energy of the complex relative to that of the reactants.
The complex contains one unstable vibrational mode whose evolution brings about its dissociation into
product fragments. The partition function Q% is evaluated with this mode missing. A detailed derivation of
eq (1) which explains all its inherent assumptions has been given by Mahan [3]. Quantum mechanical correc-
tions to the partition functions at room temperature and above need be applied only to vibrational factors.
For a particular vibration of frequency »;, the quantum correction I'; is given by the expression

- u,',z
© 7 Tsinh (u./2)

, where u; = hv/kT (2)

We assume that all vibrational modes are independent so that the total quantum correction for a particular
species is simply the product of terms given by eq (2), one for each vibrational mode. There is also a quan-
tum correction to the unstable vibrational mode of the complex which we denote by I'*. This results from
the effect of quantum mechanical tunneling through the potential barrier between reactants and products.
It will be considered in detail in section 2.5. Applying these quantum corrections to eq (1) yields the rate
expression

LT Q:l {pr’:} rue-v’/u‘
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The general class of reactions we are considering has the form
A-H + Be — A-H-B — A« + HB 4)

Radical Be abstracts a hydrogen atom attached to 4, the net result being the transfer of H from 4 to B. For
this system, we take the most general transition state to be linear, having up to 5 mass points. Its structure
and the notation which we shall use are shown in figure la. There can be up to four internuclear distances,
R., R,, R., and R.. The bonds associated with R, and R, will be assumed to be rigid. (The two vibrational
modes involving these bonds will have infinite frequencies and need not be formally included in the calcula-
tions.) Thus, there are only two vibrational stretching modes to be considered for this molecule, one of which
will be unstable. These modes arise from the stretching of the two central bonds b and ¢ which are shown by
dotted lines to indicate their unstable character. Of the five possible masses, M, will normally be that of the
hydrogen atom; the other masses will be assigned values in the manner described below. The three angles
¥,,¥,, and ¥, are defined by the bonds (a,b), (b,c), and (¢,d) in the plane of the figure while the primed sym-
bols denote the corresponding angles in the plane perpendicular to the figure. Changes in these angles from
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FicURE la. Notation for five mass point linear transition state.

180° give rise to three doubly degenerate bending vibrations. To calculate the frequencies needed in eq (3),
we require values for the two stretching force constants associated with bonds b and ¢, and three bending
force constants arising from the three bond angles. As we shall see, these values can be generated by the
BEBO process.

Within the framework of the transition state structure shown in figure la, it is possible to include all types
of reactions implied by eq (4) by considering four cases; one having a 3 point transition state, two having 4
point states, and one having a 5 point state. These four cases are shown in figure 1b. In this figure, the
subscript s appearing on the internuclear distances and force constants denote equilibrium values found in
reactants or products. Because bonds a and d are assumed to be rigid, their bond distances will always be
denoted by the single symbols R,, and Ry, respectively. The bond distance between M, and M, goes from
R, t0 R, in the transition state, while that between M, and M, goes from oo to R, in the transition state. In
the transition state, the force constant F,, is modified and combined with that of the newly formed bond be-
tween M, and M, to produce two force constants F, and F,. F, corresponds to the stable symmetric stretch
and F, to the unstable asymmetric stretch. In cases IVa and V, the bending force constant Fy,, becomes Fy,
in the complex. The newly formed bond angle made by M,, M,, and M, leads to the force constant Fy; in all
cases. Finally, in cases [Vb and V, we also have an additional bending force constant Fy, which goes to Fy,,
in the second product. The force constants associated with the out-of-plane bends are not shown since they
are the same as the in-plane constants.

The way I have chosen to assign values to the mass points is somewhat arbitrary and is best explained by
an example. Consider the reaction

CH,-CH,H + CH, — CH,CH,++H.-CH, — CH,-CH,» + H-CH,
Species A B c D

which is the abstraction of hydrogen from ethane by methyl radicals. The masses are assigned according to
the following rules:

1) The mass of the transferred H is always assigned to M,; therefore M, = 1.008 atomic mass units
(a.m.u.).

2) The mass of the atom joined to the transferred H in reactant 4 is assigned to M,; in this case M, =
12.011 a.m.u.

3) The masses of all the remaining atoms in A are added and assigned to M;; thus in this example M, =
17.051 a.m.u.

4) The mass of the atom joined to the transferred H in the product D is assigned to M,; here M, = 12011
a.m.u.

5) The masses of all the remaining atoms in D are added and assigned to M;; thus M; = 3.024 am.u. in
this example.

Different models for the transition state, and different ways of arranging the masses in linear models have
been explored in a limited way by Johnston [4] and by Sharp & Johnston [5]. They did find significant dif-
ferences between various options. Presumably, complete vibrational analyses of the reactant and complex
would yield more accurate rate constants than the linear models outlined above. Unfortunately, complete
analyses are extremely complex even for fairly small molecules, and the ability to program the calculations
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FicuRE b, Reaction cases to be used in BEBO calculations. All transition states shown here are linear. Masses are denoted by M, inter-
nuclear distances by R, and force constants by F. The subscript s denotes bond distances and force constants in the stable reactants and

products.

in a general manner would be lost by such an approach. Also, it is unlikely that all of the force constant
values required would be available for a complete analysis. In view of the crudity of the rest of the calcula-
tion, it is unnecessary to strive for high accuracy in the vibrational analysis. Intuitively, one expects that the
major features of these reactions are controlled by the nature of the atoms adjacent to the H atom being
transferred, with the effects from the remainder of the molecule appearing in the bond energy values. If this

M, — M=—=M_ooM ooM—M5 — }41—M2 + M'—M—M

1 2 3 4 3 L 5
Ra s R'b Rc Rds Ra s Rcs Rds
Fp, Fo ch
F, F,_ F F
¥o "¥3 ¥y ¥4s

is the case, then the linear models should at least be able to match trends within homologous series.

So far, we have seen in this section that evaluation of rate constants by the use of eq (3), based on the
linear models shown in figure 1b, requires a knowledge of the potential energy V* of the complex, two
stretching force constants, and from one to three bending force constants. The potential energy of all of
these linear models could, if it were known, be shown on a 2-dimensional contour diagram like that shown in
figure 2 where the independent variables are the bond distances R, and R.. The required value of the poten-
tial energy ¥ is that at the saddle point position shown by the asterisk. For a region close to the saddle point,
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FIGURE 2. Typical potential energy diagram for H atom exchange reaction.
The position of the saddle point is shown by the asterisk. The direction g is
that in which the potential energy decreases most rapidly. The direction ¢
is perpendicular to the g direction.

it is customary to assume that the first derivatives of V with respect to R, and R, are negligible, and that the
potential energy can be approximated by a power series containing only quadratic terms. Thus, for small
displacements from the saddle point, we have

26V = F,, (8R,)* + 2F,(6R,)(BR.) + F,,(6R.)? (5a)
4 v v

where Fll - a_Ri’ Flz = le = m, F22 = 'FR:—.

These derivatives are evaluated at the saddle point, and are, by definition, the stretching force constants of
the complex. In matrix notation, this equation is

28V = (SR){F,6R) (Sh)

where F, = [g" ;:z] and 6R = [gg:] .

21

This is the force constant matrix that will be used to calculate the vibrational stretching frequencies.
Starting at the saddle point, suppose we move in the direction in which ¥ decreases most rapidly; call this

the o direction, and let o denote the direction perpendicular to g. These directions define a rotated set of
cartesian coordinates which we assume makes an angle « with the R, axis; (positive « is measured in the
counter-clockwide direction). The transformation between the two sets of coordinates is given by the equa-
tion

rR-[pl=l0s o] - ®

the matrix U can now be used to express changes in ¥ at the saddle point in terms of changes in @ and o in-
stead of R, and R.. Thus, eq (5b) becomes

26V = (OR){F (6R) = (UsP)TF(UsP) = (P)HUF,U)(6P) 0]

609



The matrix UtF,U has the elements
(UtF,0),, = F,,cos’a + 2F,cosasina + F,,sina
(UtF),, = (UF,U),, = (F,; — F,))cosasina + F(cos’a — sin‘a) 8)
(U3F1),, = F,, sin*a — 2F cosasina + F,cos*r

As we shall see in the next section, the BEBO method provides values for the second derivatives of V (i.e.,
the force constants) in the g and o directions. This will allow us to evaluate the matrix UtF,U. The stretch-
ing force constant matrix F,, can then be obtained by inverting the transformation given by eq (6).

In this section [ have presented a formula (eq (3)) for the rate constant and outlined the factors required to
evaluate it. The details of the BEBO method will be given next. It will provide values for 7* and all of the
necessary force constants, both the stretching and the bending ones.

2. BEBO Method

The BEBO method is based on the concept of bond order. In the reactants the bond b of figure 1a is said
to have a bond order of unity, while in the products, its bond order is zero. The reverse of this situation
holds for bond ¢. BEBO assumes that during the reaction, the total bond order of the two bonds is con-
served; if n is the order of bond b, and m of bond ¢, then we have always n + m = 1. This is the basic
assumption of the method. One bond is breaking at the same time that the other is forming. To apply this
conservation condition it is necessary to relate the energies and lengths of bonds b and ¢ to their bond
orders n and m.

For the relationship between order and length, Pauling [6] proposed the formula

R, = R, — Aln(n) )
where R, is the length of the bond which is considered to be representative of a single bond between the two

elements of interest. The parameter \ is taken to have the same value for all element pairs. A plot of bond
length versus the logarithm of the bond order is shown in figure 3 for certain element pairs. The data were

Rn

0.371 —»—0-0

0327 --0--N=N N
0291 + C-O N

N
0306 -o-C~C o"

In(n)

Ficure 3. Plot of R, = R, — Aln(n} bond distance versus the natural loga-
rithm of the bond order for selected element pairs.
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obtained from table 4-3 of Johnston’s book [2]. Values of A obtained from least squares fits are given in the
figure for the different bonds. The constancy of X does not seem particularly striking. Pauling chose a value
of 0.26 for \; he writes, *“This equation, which is based upon the study of interatomic distances for non-
resonating and resonating covalent bonds in simple non-metallic substances of known structure, is found to
agree reasonably well with those data for metallic crystals which are suited to a check on its validity, and its
use permits a penetrating analysis of the structure of metals and intermetallic compounds to be made. There
is some evidence that the constant . . . varies with the kind of atom and with the type of bond; but the
evidence is not sufficiently extensive to lead to the determination of the nature of this variation.”” Certainly
Pauling’s value doesn’t appear to have been based very heavily on the data in figure 3 since none of these A
values are close to 0.26. Although 0.26 can hardly be construed as universal, it has nevertheless been the
value used for most BEBO calculations. There appears to be no reason why a different value shouldn’t be
used if it gave better results.

Consider next the dependence of bond energy on bond order. Johnston [4] proposed the following rela-
tionship between the two quantities

E, = En* (10)

where E, is the bond energy of a single bond and is analogous to R, of eq (9). Note that this energy is the
electronic dissociation energy of the bond in question; the zero point energy is not meant to be included in
E,. Plots of 1n(E) versus 1n(n) are shown in figure 4 for the same bonds used in figure 3. The data are again
from table 4-3 of Johnston [2]. We see that p depends on the kind of atoms in the bond. If more than one
bond type occurs for a pair of atoms, then it is possible to extract values for p from plots like figure 4 pro-
vided we are not unduly bothered by a lack of linearity. When only a single bond type exists, then some
other method must be devised. Actually, since we are interested in E, and R, for bond orders less than unity,
even if multiple bonds were available for a plot like figure 4, some method of extrapolating to zero n would
be necessary. Johnston [2], inspired by Badger’s rule for force constants, has devised a way. Let us first elim-
inate n between eqs (9) and (10); this yields

In(E,.IE,) = (p/\XR, — R.) (11

This expression is analogous to Badger’s rule (see Herschbach & Laurie [7]), which is a universal empirical

e
w
£ a
e O-
o—-
+ C-
o a C-
L ]
L

In(n)

FiGURE 4. Plots of I(E,) versus In(n) for certain bonds.
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relation having the form r = ay — by log(), where r is the bond distance,  its force constant, ¢; and b, are
constants, and { and j are the numbers of the rows in the periodic table in which the bound atoms are
located. Johnston [8] found that plots of log(f) versus r extrapolated very nicely to two-atom Lennard-Jones
noble gas clusters. For clusters having Lennard-Jones parameters o and €/k, the “"bond”’ distance is 2%g and
the “‘force” constant is 40.06(e/k)/o>. He then examined plots of In(E,) versus R, to see if a comparable
extrapolation would be possible. The results are shown in figure 5. The data are mostly from Johnston [2],
tables 4-3 and 4-1. Values of E, and R, for the He-Ne cluster were taken from Gilliom [9]. The energies for
the bonds examined in figures 3 and 4 are supposed to extrapolate to the Ne-Ne cluster. The lines shown
were drawn to connect the corresponding single bonds with this cluster. Points corresponding to multiple
bonds fall more or less in the general direction of these lines. The assumption made in BEBO is that such an
extrapolation adequately represents the bond energies for n < 1. Therefore, if we have a bond A-H, where A
is some atom in the first row of the periodic table connected to an H atom, and R, and E, are its bond length
and energy, then if this bond were perturbed in some fashion so that its bond length were greater than R,,
then its bond energy would fall on the line drawn between the A-H and He-Ne points. Bonds involving atoms
A from other rows of the periodic table will extrapolate to the appropriate rare gas-helium cluster. The slope
of the line joining A-H to the cluster is, from eq (11), ~p/\. Since the value of X has been chosen, we have a
way of calculating p for the A-H bond of interest. Formally, in this case,

_ A
PER TR In(Esie-n/F) (12)

The parameter p thus depends on A, the bond energy and internuclear distance of A-H, and the interaction
parameters for the appropriate rare gas cluster.

In{E,)

Rn

FicuRe 5. Extrapolation of bond energy to large bond distances. A of A-H
is an atom in the first row of the periodic table in this case.

We have now almost all of the information needed for the BEBO calculations. Consider a triatomic com-
plex A-H-B; there are three interactions; two between H and the atoms A and B considered above, and the
interaction between A and B themselves. If H is to form stable bonds its electron spin must be opposite each
of the spins of A and B. Consequently, A and B will have parallel spins and must repel each other. Johnston
uses one half the value of the Sato [10] triplet function to represent this interaction. He uses the modified
function because it more closely approximates the calculated H-H triplet interaction. This function has the
form
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V.= E, E1 + E) (13)

where E = 4e®, AR, = R, — R, = R, + R. — R.,. E, is the electronic dissociation energy, R,, the
equilibrium internuclear distance, and 3 the Morse parameter (see Herzberg [11] p. 101) of the ground state
of the diatomic molecule made up of A and B. Values of these paramaters for a number of such atom pairs
are given in Table 11-1 of Johnston [2]. AR, is the difference between the actual distance R, between A and
B in the complex and the equilibrium distance R,, it would have in the diatomic molecule. It is worth point-
ing out that many people use E,, as an adjustable parameter to fit the BEBO calculations to their experimen-
tal data. Other forms of the triplet function have been used and are discussed briefly in the Appendix. ¥, can
be expressed as a function of , the bond order of the b bond, through the conservation conditionn + m =
1, and through eq (9) which gives the distances R; and R. in terms of n and m.

We are now able to give the BEBO expression for the energy of the complex in terms of the bond order n.
The energy is assumed to be given by

Vin) = E;, — Eun® — E.m® + Vi(n) = Eo(1 — n?) — E,(1 — n)? + Vi(n) (14)

E,, and E,, are the single bond energies (electronic) for bonds b and ¢, and the parameters p and q are calcu-
lated from eq (12) for b and ¢, respectively. When n—1, then m—0, ¥,—0, and V-0, so that the energy is
measured relative to the energy of the reactants. When n—0, then m—1, ¥,~0, and ¥~ E;,~E,, which is
the difference in the bond energies. BEBO assumes that the maximum value of ¥intherangel = n 2 0is
the desired potential energy of the saddle point. This value #*, is obtained by substituting into eq (14) that
value of n which makes d¥/drn = 0. In what follows, all quantities are considered to be evaluated at the sad-
dle point.

Next, we must determine the stretching force constants in the g and o directions shown in figure 3. Equa-
tion (14) does not give the complete potential surface, but only that portion lying along the line of constant
total bond order. BEBQ assumes that at the saddle point, this path of constant bond order lies in the g
direction. This assumption will enable us to calculate the force constant F, = 3*¥/dg* from the second
derivative of ¥ with respect to n, which we get by differentiating eq (14).

From eq (9), we can calculate the changes produced in R, and R. when # is changed. In vector notation
these are

=[] [ 2 Jowe s

Because a change in n for constant total bond order is supposed to produce a move in the g direction, the
slope of a line in this direction can be gotten from eq (15). It is

6R.JOR, = —n/m = tana (16)
where « is the angle which g makes with the R, axis as discussed earlier. From eq (15) we can show that
cosa = m/+/(n* + m?); sina = —n//(n* + m?) amn

The matrix U defined in eq (6) can now be written in terms of n and m.

By means of eq (6), 6R can be expressed in terms of 8P; i.e., 8¢ and é¢. Combining the differential form of
eq (6) with eq (15), we get

UsP = -\ [ _‘{’,’m] on (19)
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Solving for 6P gives

— 59 _ . lin _

RCEL) e ) [ ] [—1{7m]‘5" = ~AV® + m) [”’o’”’ on (20)

As expected, o does not change when n changes. From eq (20), we have for the derivative of n with respect to
]

on dn 1 nm
oA LSO B | 21
b de N V@ + m?) @)
The second derivative of ¥ with respect to g is obtained from the sequence
dV _ dV dn
do ~ dn do
d’V_d’V(dn)z dV dn
de* ~ dn* \ do dn dp?
Since dV/dn = 0 at the saddle point, we have
_d¥ _d*V  n*m?
F= d@®* ~ dn®* N{(n*+m? 22)

This gives one of the stretching force constants.

In the ¢ direction, the stretching motion is assumed to be that of a normal molecule. Thus Badger’s rule
should be applicable. This says that the bond distance is proportional to the logarithm of the force constant,
while eq (9) says that the bond distance is proportional to the logarithm of the bond order. Therefore, the
force constant should be proportional to the bond order. We assume that

F,=F,n, and F.=F.,m (23)

where F,, and F., are single bond force constants. Consider the change in ¥ when R, and R. are changed by
motion in the o direction. This is assumed to be given by

206V)s =Fpn(6Ry):+ F.m(6R.): + Rz (BR,)2 =F 60y (24)

To evaluate F,, we must express (OR)% (6R.)%, and (6R.)? in terms of (60)%. From Eqs (6) and (18), we have

6R, ] m n 6,
For 8¢ =0,
(8Ry)o=ndal\/(n? +m?), (3R.),=mbalx/(n?+m?
(8R). =(8Rs)o+(BR.), =(n +m)dalx/(n? + m?)=0l/(n* -+ m?).
Therefore,
269, =(Fond + Fom? +2 3R V) (50Pi(n? +m?).
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Comparing this with eq (24) gives

Fyn® + F,m® + 0*V,/0R?
n® + m?

F = (26)

The method assumes that if V is expanded at the saddle point in terms of g and o then there is no cross
term; i.e., 3210000 is assumed to be zero. Thus, we have

F, 0
28V = (6P)t| ° | (6P 27
( )T[O FJ( ) 27
The use of eq (7) shows that
e 0
= 28
UiF.U |:0 FJ (28)
Inverting this equation gives
Fo 0 F, 0
F,=UN[ U =10°"|U 29
(U¥) [0 F‘J |:0 F] i (29)

where use has been made of the fact that U-! = Ut. Substituting eq (18) into (29) gives the desired stretch-
ing force constant matrix.

F_ 1 mn FQO m —
T+ m? |, OF| |nm

1 I:F,,mz + F,n? —F,mn + F,,mn:I - [ F, F, ] (30)

n* + m* | ~F,mn + F,mn, Fn* + F,m? F, F,

To complete the discussion of the BEBO method the bending force constants will now be evaluated. Con-
sider first the one involving M, as the center mass. This will be Fy,_ and appears in all of the transition states
shown in figure 2. It is defined as the second partial derivative of J with respect to the angle made by the
bonds b and ¢, with the bond lengths R, and R. held fixed. At equilibrium, this angle is 180° for our transi-
tion state models. The geometry, when the angle is less than 180° is shown in figure 6. To get Fy_, we dif-
ferentiate ¥ twice,

(AN _ V. _ 9V, 8R.
3 ’R,,R.~ 9 ~ OR 09
v _ V. _ &V, (dR.}\ . aV. &R,
( 9¢* “R,, R. T a¢*  OR: 3¢) + oR, 9¢* (31)

FiGURE 6. Definition of center bond angle.

The derivatives of ¥, with respect to R, can be gotten from eq (13). The dependence of R, on ¢ can be deter-
mined from the following vector relationships,
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R, « R. = R,R.cos¢
R,=R. - R,

R =R, R, = R + R? — 2R,R. cos¢

%_{i - R;zR‘ sing — 0 for ¢ = 180°
¥R, _ R.R. iR R,R. .
= Rf°5¢ — e sind — - 5= for ¢ = 180 (32)
Thus,
__OV.RR _ _ V. RR
Fo=-%""K = 3R & + & ©3)

The other two bending force constants F,, and F,, are assumed to obey Badger’s rule. We assume
F‘(,z = F¢hn, and Fg,‘ = F“,m (34)

This concludes the BEBO part of the calculation. It has provided us with the potential energy 7* of the sad-
dle point, the stretching force constants F,,, F,,, and F,, and the bending force constants Fy,, F,, and F,,.
In the next section we shall use these force constants to carry out a frequency analysis for each of the transi-
tion state models shown in figure 2.

2.3. Vibrational Analysis

As we have seen in the force constant derivations, the potential energy V of the most general 5 mass point
complex can be considered to depend on the variables R., R, R., R4, ¥,, ¥, ¥,, ¥,, ¥;, and ¥,. These are
called the internal coordinates. Because our model is linear, ¥ increases when any of the angles departs
from 180°. Since we assume a and d to be rigid, R, and R, need not be included in the list of variables. For
the time being, however, they will be included in the analysis. Let F be the complete force constant matrix
for the complex. We have

[ = |
Fll F12
F, F, O
=<}
F = F¢z (35)
F,,
0] o
F,,
Fy,
Fy,

The two infinite force constants come from the use of rigid bonds for a and d. Let S be the (column) vector
which denotes small changes in the saddle point values of the variables.

St = [6R., 6R,, 6R., 6R,, 6¥,, 6Y¥,, 6¥,, 6%, 6¥, 6¥,] (36)
The potential energy is assumed to be given by
V — v* = 1%SiFS @7
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Suppose there exists a matrix G, such that the kinetic energy in terms of the internal coordinates is
= 1%£516G'S (38)

Consider a new set of coordinates Q, the so-called normal coordinates, related to S by the linear transforma-
tion

S=LQ (39)

such that
V- V* = 15Q1AQ = AV (40)
= 1LQIEQ (41)

where A is a diagonal matrix having elements A;, and E is the identity matrix. In this coordinate system
there are no cross terms in ¥ and T.
Let Q: denote the i’th normal coordinate. The Lagrangian equations of motion for the system are

d ( BL) - 42)
where L = T —AV = %[QIEQ — QfAQ] = (L 0; - T\Q31, (43)
aL _ ~
aQ" - i (44)
aL
‘?@‘ - )\iQh (45)
Therefore
0+ M@ = 0. (46)
The solutions of this equation are
Qi = QPcos(A it + €). (47

Thus the \/* = 27w, are the frequencies of the vibrations of the Q, coordinates. These are called the normal
mode vibrations.
Solving eq (39) for Q, and substituting into (40) and (41) yields
V — V* = (L 'S)FAL™S) = LLSHL")TAL™S 48)
= V(L S)tE(L"S) = %SHLHEWL™S (49)

Comparison with eqs (37) and (38) yields

F = (L)AL™) (50)
L{FL = A G
G = (L™)E(L™) (52)
LiG'L = E (53)
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Next, solve eq (53) for L = LG, substitute this into eq (51) and multiply by L on the left. This gives
GFL = HL = LA (54)
as the set of equations which determine the transformation L. Written out, eq (54) is
LiH; — 65MlLy =0 (55)
This equation has solutions if the determinant
|[H-E\| =0 (56)

This is the so-called secular equation which must be solved to get the X, the eigenvalues of H and thus the
normal frequency values. Before doing this, it is first necessary to evaluate the matrix G.

Equation (38) gives the kinetic energy in terms of the internal coordinates. As such, it does not include the
kinetic energy of the center of mass or the rotational energy. We need to express the kinetic energy in terms
of cartesian coordinates, transform the result to internal coordinates, and subtract out the center of mass
and rotational energy. This will yield G™. Let us begin by expressing the internal coordinates in terms of
cartesian coordinates, Assume that the molecule lies along the x axis. A particular mass point M; will have
coordinates (x;, ¥;, z;) where ¥, and z; are small and describe the departures of the molecule from linearity
during bending vibrations. Because y; and z; are small, the bond distances can be expressed as functions of
the x; only. Thus,

R.=2x, ~ x

Ry = x; — x, -
5

Ro==x, — x,
Ry ==z, — x,
Since there are 5 cartesian x coordinates we need one more coordinate for the internal system. This is taken

to be the x-component of the center of mass of the molecule multiplied by the total mass, and is defined by
the equation,

Mx = Z° M, (58)
where M = ® M. (89
In matrix form these equations are
R. -1 1 0 0 0 x
R 0 -1 1 0 0 x.
- R 5 2
R = [Mx] = Rel=]0 0-1 1 o x, =MX (60)
R, 0 0 0 -1 I x,
Mx M M, M, M, M x5

Note that the vector R is basically that defined by eq (15). Here we have included R, and R..

We must next express the bond angles in terms of the cartesian coordinates. Consider ¥,, the angle
formed by bonds a and b. The geometry and notation for this angle are shown in figure 7. The two vectors
along the bonds a and b are given by
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Ity =[x — %, — 3,
(70)

Tl =[x — 2,05 — 3]

Y~

NIRRT
\l/ X

X
¥

FIGURE 7. Geometry of the bond angle W,.

¥, is related to these by

Ty * Tyy = Iy7pc0s¥,. (71)

Substituting eq (70) into (71) gives

—R.Ry + 0 — %05 = 72) = {[R + (1 — 7)°I[R} + (s — %.)*]} ¥%cos¥, (72)
Because the y; are small compared to R, and R, the radical can be expanded to give

—R.Ry + 0 — 7005 — 32) = [RaR,y + YRR, — 72)* + Y(RJR)ys — 3,)*]
* cosY, (73)
Let ¥, = 180° + ¥, where ¥, is small. Then
cos¥, = —cos(d¥,) = —1 + La(6¥,)f

Substituting this into eq (73) and keeping terms through second order gives

(0¥,)* = VR, — 7)* + @IRR)n — )05 ~ 32) + (VR — 32)°

oY, = —[(5; — yYR. + (y; — %2YR:] = =y /R, + (VR. + lRs)y, — y:/Rs (74)

To see why the minus sign is needed, let y, = y, = 0; then fory, > 0, ¥, < 180°, so that 8%, must be < 0.
There are analogous equations for the angles ¥, and ¥,; there is also a set, identical in form, for the angles
¥/ in the x-z plane. These contain the z, rather than the y, coordinates. In these equations, the equilibrium

values of R.,‘. .. ,R4 will be used.
The set of equations typified by eq (74) gives 3 equations in terms of the 5 y, coordinates; two more are
needed. We have one defining the y coordinate of the center of mass, like eq (58), and another defining a

quantity 7,, which is given by the equation

N = E’Mix{y; (75)

7, is related to the z component of the angular momentum m, by the relation

m, = 1, (76)



The xf are the equilibrium x, values; these can be gotten relative to the center of mass component x, by in-
verting eq (60) and inserting equilibrium values for R,, . .. ,R,. In matrix form, these equations relating y; to
the bond angles in the x-y plane are,

5y, —0:. Q.t0 —@s 0 0 %

_ ¥ &y, 0 —e @te —e. 0 2
¥ = =] 8,]=1]0 0 -@. Q.+0s —pQa Y =AY (77)

My s M x; Mox; M Mx; Mx; Ys

My Mx Mz Ma M, M, ¥s

where g., . .. ,Qa are the reciprocals of the equilibrium values of R., . .. ,Rs. There is an analogous equation
involving the z; coordinates.

Having obtained expressions (60) and (77) for the internal coordinates in terms of the cartesian coor-
dinates, we can now invert these equations and insert them into the expression for the total kinetic energy
which we shall call T. Therefore

T = 1% XiD.X + % YiD,Y + W%ZiD,Z

" ﬁT(M-’)TDm(M-')ﬁ + %'\;yf(A")TDM(A")“i; + z-term

It

BRIG R + %346, ¥ + zterm

BT + 1eM@E* + 7 + £#) + Ya(m? + m?)/]

BRIG, 'R + 1¥iG,™¥ + zterm + 1eMG2 + 32 + ) + Ya(m? + m3)I (18)

where I = .-2; 5 M,x?* is the moment of inertia, and

M, ", O

D, = M, (79)

0O ™.

We can satisfy eq (78) by writing 6," and (};‘ in the partitioned forms

=, _16G™ o (80)
=[5 4]

- G 0 o _
Gl= 10 I 0 = G,
0 0o M

We can get G, and G, simply by inverting G, and 62‘.

This gives
= G, 0
G, = E) Azl = MD'Mt (81)
_ G, 0 o0
0 0 M
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Since D,y is diagonal its inverse is easily evaluated and we therefore require only matrix multiplications to
get G, and G,.

The complete G matrix for the internal coordinates in partitioned form is

G, 0 0
G=]0 G, 0 (82)
O 0 G;'

F,. 0 0
0 0 F,

Note that F, here is like eq (30), but contains the two infinite force constants corresponding to the rigid a
and d bonds. The matrix H in partitioned form is

GF, o 0 H o0 0
H= |0 GF, 0 =|o H, 0 (84)
0 0 G\;.F ' 0 0 Hg,'

Because H factors in this way, we can set up separate secular equations for the stretching and bending

modes. Note that H is normally unsymmetric.
Before solving the secular equations, let us write down explicit expressions for G, and G,. The direct

evaluation of G, from eq (81) yields

s ~ 0 0 0
—~ THe Bty “Ha 0 0
G, = 0 -y Bstp, ity 0 (85)
0 0 — iy Byt its 0
0 0 0 0 M

where the g, are the reciprocals of the masses M;. Comparison of this equation with eq (81) yields G,.
Because we are treating the a and d bonds as rigid, the stretching part of the problems is equivalent to a 3
mass point system where the first mass is M, + M, and the third is M, + M,. The resulting 2 X 2 matrix is
the one actually used in the calculation. It is

(—’i‘—) B2t i s
G, (rigid end bonds) = i (86)

—Hy Bstp, (-—l‘;—’:_ou—s—)

The stretching force constant matrix to be used with eq (86) is that F, as given by eq (30).
The G, matrix elements for this 5 point case are

Gy, = eim + edny + (0. + @),

(Gy)z: = 0B, + @p, + (@5 + @)%,

((;\;),a = oims + olps + (e + ed)’n, 87
Gy = —esllea + @sdia + (@5 + @Isl

(Go)as = —eclles + s + (o + et} (Go)is = erocts
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There are the expressions used in the calculation. Actually, they were not derived from eq (81) but were ob-
tained from Wilson et. al. [12). However, eq (81) was used for a numerical check of eq (87). To get the matrix
elements for the two 4 mass point cases, simply delete from eq (87) those elements which contain either a
missing o or a missing p or both. Do the same for the 3 point case, but delete also (G,),,; (there is only one
element, (Gy),,, in this case).

We are now ready to consider the secular equation. For the rate constant calculation only the Ay are re-
quired, so that a solution of eq (54) for the transformation matrix L is not necessary. Nevertheless, L is easily
obtained and is convenient to have for the purpose of illustrating the actual vibrational motions of the com-
plex. Thus we shall solve eq (54) as well as eq (56). According to eq (84), there are two secular equations to be
solved (H, and H,, are equal). Because we are using rigid @ and d bonds, the dimension of H, is 2 X 2. The
maximum dimension of H, is 3 X 3 and occurs for the 5 point model. Thus a solution of a 3 X 3 problem
will suffice for our purpose and will also illustrate how an n X n problem is to be solved.

We begin by assuming that eq (56) has been solved. In the present work this was accomplished by expand-
ing (56) and solving the resulting polynomial in X. In our case, the maximum degree was cubic, so that this
part of the calculation was easily performed. As eq (47) shows, the desired frequencies are », = A}/*/2x. For
the stretching modes of the complex one of the two frequencies will be imaginary because its A, value will be
negative. As mentioned earlier, this corresponds to the asymmetric stretch.

Consider now eq (55) for a general 3 X 3 H matrix. Written out in full, it is

(Hy — ML + H,L,, + H.,Ly, =0
HyLi + (Hy — NoLas + Hylyw =0 (88)
H,L,, + HpLaw + (Hy; — MN)Lsx = 0
where A, is one of the three values of A determined from the solution of the cubic (in this case) eq (56).
Divide the first two of these equations by L, and define the ratios gi = L;x/Ls,. This yields two equations

to be solved for the two unknowns g,, and gs.

(Hy, — Mg + Hygu = —Hy,
(90)

H,gu + (sz — M)gan = —H,

We get two g, values for each value of A, substituted into eq (89), or six g, values in all. Using these values,
we can express L in terms of the product of two matrices defined by

&n &1z &1 L, 0 0
L= |ga 822 823 0 L, © =T¢ (90)
1 1 1 0 0 L,

To determine the components of §, insert eq (90) into eq (51). We get
& T{FTe=A=0¢ T{FT 91)

The final reordering is possible because £and A are diagonal and therefore I'{FT is diagonal. This equation
is easily solved for the elements £i€ to give

(650ux = L3 =M/(TTF )i 92)
The other elements of L are gotten from these values and the ratios g already determined.

The actual motions in the cartesian system can now be obtained by combining eq (39) with the inverse of
eq (60) or eq (77). For the stretching motions we have
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- LQ.
X=M"R=M" (93)
0

where L, arises from the secular equation containing H,. Q, is the normal coordinate vector and the
x-component of the center of mass has been set to zero. A similar equation results for the bending modes.
This is

- L.Q.
Y=A"¥=A"| 0 (94)

0

where the z-component of the angular momentum and the y-component of the center of mass have been set
to zero.
This completes the frequency analysis. In the next section we will consider the partition functions.

2.4. Partition Functions.

Herschbach et. al. [13] have shown how to express the classical partition function for polyatomic
molecules in terms of local properties. We shall use their method because it allows for cancellations of con-
siderable portions of the partition functions of the complex and reactants when their ratios are evaluated in
the rate constant expression, eq (3). We begin the discussion with the classical partition function for a linear
polyatomic molecule. This is (see Herzberg [14], pp. 502-509),

N-5
qa=q.V2aMET/h?y'2 (kTI(ghceB)) 3I;I (kTl(w;hc)) (95)

where gq. is the electronic partition function, ¥ is the volume, M is the total mass of the molecule, c is the
velocity of light, w; is the frequency of the i’th vibrational mode in cm™ (w; =»:/c), IV is the number of atoms
in the molecule, B is the rotational constant; B =Fh/(82cI), where I is the moment of inertia of the molecule;
o is the symmetry number which is the number of indistinguishable positions into which the molecule can be
turned by simple rigid rotations. For linear molecules 0 =1 or 2. Equation (95) neglects nuclear spins, anhar-
monicity, and non-rigidity of the molecule. Let us rewrite eq (95) in terms of I and u,=hv,/kT. It becomes

3N-5
gu=q.Viro™ kT M2 1 11 ' (96)

g can also be written in the form

qa=q.0'Z Iﬁ AZ 97
where
Z=f..... fe ¥ Tdx. . ..... dz, (98a)
A.=h@rMET) % (98b)
Z is the so-called configuration integral, ¥V is the potential energy, and x,, ¥, z). . . - . - Xy, ¥n, Zn are the

cartesian coordinates of each of the V atoms. Eliminating q., between egs (96) and (97) gives
¥ 3¥-5
Z = Van(2nkTh™ 2 4N-91)3/2 | 11 M2 ITwt (99)

Consider now the matrix H=GF defined by eq (84). A theorem of matrix algebra states that the determi-
nant of H equals the product of its eigenvalues (see Hohn [15], p. 283). There is also a theorem (Hohn, p. 65),
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stating that the determinant of product of two matrices equals the products of the determinants of the
matrices in the product. Consequently,

-5 -5
[H|* = |G[#[F|* = TI \¢ = @ekT/AY™* T u, (100)

Solving for the product over u; gives

3H5 ui' = @ukT/hPYS |G| % |F| ™ (101)
Inserting eq (101) into (99) yields
Z = Vaxn(2xkTysCr- M2 | If[ M2 |G| %|F|™ (102)
This can be rearranged to give
|F|% @rkTy%eN Z = ParM? | I:I M2 |G| ™ = Iy (103)

The left side of eq (103) does not involve the masses, while the right side does not contain force constants.
Therefore, the quantity denoted by Jy does not depend on either the force constants or the masses, but must
depend only on geometrical parameters. Herschbach et. al. [13] have shown that for linear molecules

N-1
JN - V47r |I=Il R?oi_( (104)

where Ri.., is the equilibrium distance between mass M; and M..,. For a general linear molecule, the
classical partition function per unit volume can now be written

N
Qu = qu/V = V' g  IM2mkT)AON |F| IIAZ (105)

This form of the partition function is suitable for the reactant molecules.
Let us now consider the partition function for the complex. Using eq (96), we have

N-6
kTh™ q* = kTh™ q.07" Var(2rkTh7P?? M2 1 11 ui (106)

Note that the product is over 3V —6; i.e., one less vibration than in a stable linear molecule. Consider next
the quantity

3IN-6 IN-6 3N-6
(T uf') kTh™ = (kTP T w7* = (RTAPYS T1 20N
IN-6
= (KT/RYY-S @™o N*% II NP\~
= Q@ukT/hY S v*|F|4| G| % (107)

where \* is the negative eigenvalue and »* is the associated imaginary frequency; eq (100) has been used.
Using eq (107) in (106) gives

N
kTh™ Q* = kTR ¢V = V™' g0 (VamMP? [TI Mz |G| 4)p* | F | “42ak Ty~
N
o 1 M2

= 1 g™t Jw® |F| @ekTysovo [T A2 (108)
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This equation is very similar to eq (105), the partition function of a stable molecule. Note that |F| will be
imaginary for the complex.

We can now write down the specific partition functions per unit volume for the four reaction cases shown
in figure 1b.

Case III,

Species 4 = M,—M,

Species B = M,

Species C = M,. . .M,.. .M,

Q4 = quads' 47RE, (2wkT)AF;% (A,A)°

QB = quA;J

QckT/h = q.cod' 4nwRERZV* |F, | 4F, 27k TP (A,AA)7°

The matrix F, is the 2 X 2 one given by eq. (5b), and not the 4 X 4 used in eq (83).

Case IVa.

Species 4 = M,—M,— M,

Species B = M,

Species C = M, —M,. . .M,. ..M,

Qa = quaos' 4TRLRE @rkT (FuFu)#F3l (A,A,4)°

QB = qch:s’ )

QckT/h = q.coc! 4mRERER2Y *F o4 | F, | AF L F, QukT)? (A AAA)7

Note that I have included F,, in Q4 and Qc even though it is supposed to be infinite; it will cancel out when
the ratio Qc/Q. is taken. Also note that the bending force constants appear with twice the power of the
stretching force constants. This is because of the degeneracy.

Case IVb.

Species 4 = M,— M,

Species B = M,—M;

Species C = M,. . .M,.. M,—M,

Q4 = quaod' 47RE 2mkT)4FL% (AA)7

QB = QcBUE’ 47R%, (27"" T)l/i Fa# (A.;As)‘a

QckT/h = q.co3! 4nRIRERLY* | F,|#F L F, 2nkT) "2 (A, A A Ao

Case V.

Species 4 = M,—M,—M,
Species B = M,—M;
Species C = M,~M,. . .M,. . .M, M,
Q4 = quac? ATRLRE, CrkTHFFo ) 4F), (A ALA)
Os = q.s07' 47RE QrkT)AFz% (A A)
QckT/h = q.coz* AxRLRIRERE, v F2 | F,| “FatFiFa Fsh (2rkTY (A,A,A,A,A)°
We now have everything for eq (3) except the tunneling correction. This will be taken up in the next
section,

2.5. Tunneling Correction
The one-dimensional Eckart potential function was used to approximate the barrier to quantum

mechanical tunneling from reactants to products. Three parameters are required for its definition; these are
shown in figure 8. Its functional form is
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Yy = _ By (109)

I-y  (1-y7
where
y = _eltx/L
4 =r-V
B =Vt + V¥
L =2a(-2IFy4 (V% + V%)™, and
_ &y
F =%

evaluated at the maximum in the curve. F is a force constant. Using this potential function, Eckart [16]
solved the wave equation and obtained the transmission coefficient for a particle with mass m approaching
the barrier from the left with an energy E. His result is

cosh[2m(a, —a,)] +A
cosh[2m(e; + )] +A

K(EV,VF) =1 - (110)

where A = cosh[278] if 8 is real, and A = cos[27|5[] if & is imaginary. The relationships of «;, &,, and & to
the parameters of figure 8, are

o, = Va(E/C)%
a, = W[(E—-A4)/C}*

8 ;1/2[(B—C)/C]‘A (111)
C = K(8mL?)
F

7\ “

!

X

FicuRE 8. Eckart potential function.

Given the transmission coefficient, Johnston [2], pp. 42 and 43, has derived the correction factor I'* which is
the ratio of the quantum barrier crossing rate to the classical crossing rate. His result is

I'* = e"/*7 {7 K(E)e™™*" dE/KT (112)

where E, = Owhen ¥, < V, and E, = V, — ¥, when ¥, > v,
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Let us rewrite this in a more symmetrical form. We define a new variable e = (E — V)JAT,E = kTe + V.
Equation (112) becomes

r* = ]:K(e)e“de (113)
where ¢, = —V,/kTwhen ¥, < V,and ¢, = —V,/kTwhen ¥V, > V,.
With this substitution, the parameters , and «, become
o; = W(kTe/C + V/Cy4, i=1&2 (114)
From eq (110) we have
K = K(a,,a,,8) = K(kTe/C,V,/C,V,/C,B/C)
But
B/C = V,/C + 2[(V,/C)(V,/C)% + V,/C (119)
is a function of ¥,/C and V,/C. Therefore
K = K(ep.p.,p) (116)
where
p =kT/C,p, = V,/Cand p, = V,/C.

I'* thus depends on three parameters. Furthermore, it is invariant when p, and p, are interchanged; i.e.,
I"(p,psps) = I'*(p,po»py)- To see this let p; = p, and p, = p,. From eq (115) we see that

(B/CY = py + 2pip,)* + p; = p, + 2Ap,p)* + p, = B/C
Thus, 8’ = 8. From eq (114) we have

o) = Yalpe + p;)* = Yelpe + p)* = a,
o, =

Using these results in eq (110), we get

Ke,p.p,:p.) = K(e,p.p,p) = Kle.p,p,.p,) (117

Suppose that p; > p,;ie., V] > V,. Using eq (117), eq (113) becomes

I*e.pip) =13, Keppipede= [, Klepp,p)ede=T"(p.p..p)

The way Eq (113) was integrated to get I'* will be considered later when the computer program is
discussed.

In applying this correction, it is assumed that the x coordinate of Eckart’s potential lies in the g direction
discussed earlier. This is that direction at the saddle point in which the potential energy decreases most
rapidly. It is also the direction of the path of constant total bond order. We therefore use the force constant
F, given by eq (22) for the second derivative of the Eckart potential at its maximum. The effective mass for
tunneling, M,, is the proportionality factor between the kinetic energy and 14g* We can calculate M, in the
following way: As far as tunneling is concerned, in the 4 and 5 mass point cases there are effectively 3
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masses, since the end bonds are supposed to be rigid. Thus, there are only the two variables, R, and R.,
involved. (Bending modes are not considered.) The kinetic energy T, for changes in these two bonds is given
by

T, = BRG;R (118)

where R is the 2-dimensional vector defined by eq (6), and G, is the 2 X 2 matrix given by eq (86). The
inverse of this matrix is easily calculated and found to be

MM, +M) MM, |
G* = M (119)
MM, M+ MM,

where M, = M, + M,and M; = M, + M, in the 5 point case. The transformation between R,, R, and g, o
is given by the matrix U whose value, determined by the BEBO calculation, is given by eq (18). U can be
used to express T, in terms of g and o. Thus

T, = % R1G;R = 15 PHUGUP

The desired quantity M, is simply the matrix element (U1G;*U);;. This is

MM, + M)m*—2MM!nm +(M; + M)M;n? 120
(P +mdM ’ (120)

M=

where n and m are the bond orders from the BEBO calculation, and M is the total mass of the molecule.

The bases from which the tunneling parameters ¥, and ¥, are measured are taken to be the zero point
energies of the reactants and products, respectively, and not the potential minimums as might be expected.
The maximum of the potential, on the other hand, is placed at the potential minimum of the complex; i.e., at
the saddle point. Johnston {2], pp. 190-196, gives reasons for this particular method of using the Eckart
function for tunneling corrections.

We finally have everything needed for eq (3). In the next section explicit rate constant expressions will be
given for the four reaction cases of figure 2.

2.6. Rote Constant Expressions
The rate constant expression eq (3) is not quite complete. It should be multiplied by the number of
equivalent H atoms on the molecule being attacked. Let us call this factor the chemical multiplicity, o... For
example, there are 6 identical reaction paths for H abstraction of the 6 terminal H atoms on propane, and 2

paths for abstraction of the 2 central H atoms. Thus 6., = 6 in the first case, and 2 in the second. With this
factor added, the rate constants for the four cases shown in figure 2 are

Case IIl. M,—-M,+M,—M, . M, ..M,
k = SF3! (2zkTy" (2
Case IVa. M, ~M,—~M,+M,~M,~M, . M, ..M,
k = SF,(Fi,Fo ) @ukTy? (T (T (121)
Case IVb. M,—M,+M,~M,~M, . M, ..M~ M,

k = SF,F. )" QukTys 2 (T4
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Case V. M,—M,—M,+M,—M;~M,~M,. . .M, ..M,~ M,
k = SF,, (Fi,F, ,F, )" @nkTy"* (O30T Y (T7) (A

The common factor in all these expressions is

Jec Ta0p R:R? »* FET? * _-V'/AT
Geaqen 0c RS, |F. % T '

S=ad.

The calculated factors in S are:
1) R, and R,; these are calculated from n and m through Pauling’s relation, eq (9).
2) »* is the imaginary frequency obtained from the vibration analysis for the asymmetric stretch.
3) |F.| is the determinant of the matrix given by eq (30). It is negative.
4) I'?is the quantum correction factor for the symmetric stretching frequency obtained from the vibra-
tional analysis.
5) I'* is the tunneling correction factor obtained in section 2.5.
6) V*is the saddle point potential energy given by the BEBO calculation.
Other calculated factors are:
1) F,, is the bending force constant given by eq (33).
2) F,, and F,, are the bending force constants given by eq (34).

3) The quantum correction factors I'}, I'}, I'} for the bending modes come from the frequency analysis via

eq (2).

This concludes the theoretical part of this discussion. The next section contains a brief discussion of the
computer program which was written to implement the rate constant calculations. This will be followed by
instructions on how to use it.

3. Computer Implementation of BEBO

The computer program consists of a main section and six subroutines. It is written in an enhanced form of
BASIC for use on a Hewlett-Packard 9845A computer.

3.1. Description of the Main Program

The main program begins by reading the following data:
1) Runid$

This is a string variable having up to 79 alphanumeric characters to be used for the run identification.
2) Op{M),M=1,7

These are flags which provide a series of available options. These will be described in detail in the instruc-
tion section.
3) Ntemp

This is the number of temperature values at which the rate constant is to be evaluated. A maximum of 16
values will be allowed.
4) Tmin, Tmax

The minimum and maximum temperature values desired. The reciprocal temperature scale is divided
into Ntemp — 1 equal intervals and the temperature evaluated from the reciprocal values. This gives a better
distribution on an Arrhenius plot than if the temperature scale were divided into equal intervals.
5) M1,M2,M3,M4,M5

These are the five mass point values determined according to the rules given in section 2.1.
6) Ras,Rbs,Rcs,Rds

These are the equilibrium bond distances for single bonds.

7) Ebs,Ecs,P,Q
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The first two parameters are the electronic energies for single bonds b and ¢; the last two are the BEBO
parameters obtained from eq(12).
8} Rts,Ets,Beta
These are the bond distance, bond energy, and Morse parameter f§ for the triplet interaction.
9) Fbs,Fcs,Fpsi2s, Fpsids
These are the stretching force constants for single 4 and ¢ bonds, and the bending force constants about
the M2 and M4 masses.
10) Sa,Sb,Sc
These are the partition function symmetries 0,4, 05, and 0,.
11) Schem
This is the chemical multiplicity o..
12) Sea,Seb,Sec

These are the electronic degeneracies q.4, q.5, and q.c.

The program next prints out this input data to provide an easily read record and a check of the numbers,

After these preliminaries, the program then determines the saddle point position. This is done by an
iterative procedure; 2 is initially set to 0.5; then the potential energy ¥ is calculated according to eq (14)
along with its first and second derivatives, ¥n and Vnn, with respect to n. The subroutine Trpl is used to
calculate the triplet part of V. A new n is estimated by the Newton, Raphson method from the formula n’=n
—Vn/Vnn. The process is repeated using n’ and continued until covergence is obtained. This yields a value
of n which makes Vn zero; this will correspond to the desired maximum in V. (I have not investigated the
conditions for which a maximum is expected or if there could be more than one maximum.)

Having obtained the value of n for the saddle point, the program calculates the stretching force constant
matrix Fr given by eq (30), its determinant, and the saddle values of Rb and Rc from Pauling’s relation eq
(9). It then evaluates the mass to be used for tunneling from a somewhat rearranged eq (120). Next, the 2 X
2 matrix Gr is calculated from eq (86). This is then combined with Fr to form Hr, and the stretching frequen-
cies obtained by solving the resulting quadratic secular equation. The bending frequencies are next deter-
mined through the matrices F (eq (35)) and G (eq (87)). The sizes of these matrices will depend on the type of
reaction. For the three mass point model there is only one element and thus a linear secular equation with
one bending frequency. The two four point models require solving a quadratic secular equation for two fre-
quencies. The five point model uses the subroutine Cubic to solve the cubic secular equation for three fre-
quencies. The subroutine Normod then calculates the matrix for the normal coordinate transformation of
the stretching modes.

At this point, the program prints out a number of properties of the complex. This will be discussed in
detail in the instruction section.

The rate constants are then evaluated from eqs (121) at the different temperatures. The activation energy
is gotten by numerically differentiating the logarithm of the rate constant by means of suitable finite
difference formulas. Subroutine Fit is a least-squares routine which is used to fit Arrhenius equations
through the calculated points, The program concludes with subroutine Pltk which draws an Arrhenius plot
of the results.

3.2. Discussion of Subroutine Tun

The only subroutine worth discussing is Tunl, the routine for evaluating the integral of eq (112) for the
tunneling correction factor I'*. Johnston and Heicklen [17] calculated this integral numerically by an
unspecified method for a range of input parameter values. The three input parameters which they used were
hv*/kT, where v* = (= F/m)(27), 2r¥,/(hv*), and 27V, /(hv*). Their results are in the form of a table. The
method used in the present program is a modified 6-point Gaussain quadrature formula based on Legendre
polynomials (see Abramowitz and Stegun [18]). This was used even though the nature of the integral sug-
gests using a formula based on Laguerre polynomials. Neither of these formulas was satisfactory for the
whole range of parameter values given by Johnston and Heicklen, so a modification of the first method was
developed. It was based on the following ideas: When e gets large, the transmission approaches unity. The
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idea is to use the Gaussian formula for that part of the integral where K(¢) < 1. After K(e) has gotten suffi-
ciently close to unity, the remainder of the integral can be evaluated analytically; i.e., if K{e)=1 for e>¢,,
then

]: K(e)ede =~ j:e"de =e™b

The problem is to estimate ;. Let us examine eqs (114) as € — co. We get o, V2£%, where £ = kTe/C. From
eq (110), we have

K~—1-(1+ AVzexp(2nE"s) + A = K,

We can set K, to some arbitrary value close to unity and solve this equation for € and then £ and then ¢,
which will be our cutoff point. The result is

& = C{2n) ' n [201 + A)(1 — K]} {kT)

1t turns out that this value is not entirely satisfactory and subtracting from this the average value of ¥, and
V, works better. Also it can happen that ¢, as calculated from this formula can be very large when K is close
to unity. Thus, exp(~—€,) will be very small. There is no point in using a value for € as the upper bound to the
Gaussian formula if the integrand at this point is negligible because of the exponential factor. Thus ¢, was
kept below a certain fixed value ¢,,,. This yielded two parameters, K, and €,... which were adjusted to
minimize the squares of the differences between the results of this method and the results of Johnston and
Heicklen. The differences averaged 1.3 percent with only two value differing by as much as 6 percent. Such
accurancy should be quite adequate for the rate constant calculations.

4. INSTRUCTIONS FOR USING BEBO

4.1, Input

It will be assumed that the reader is familiar with the general operation and command system of the
HP9845A. The program lines 5000 to 5240 contain a series of DATA statements which hold the input data.
As an example, data for the ethane plus methyl radical reaction is contained in these statements. The
general nature of the input has been discussed briefly in the last section; here this is considered in more
detail.

1) Runid$ is a string variable containing identifying information; 79 characters can be used.
2) OptM),M=1,7 are flags for the following options:

Opt(0): This picks out the version of the triplet function ¥; these different forms of ¥, will be discussed in
the Appendix.

Opt(1): As mentioned earlier, the activation energy Eact at any temperature is obtained by numerically
differentiating the logarithm of the rate constants. This is done in either of two ways. The more accurate
method evaluates the rate constant three times at each temperature; at the particular point and slightly
above and below the point. The derivative is then estimated from a 3 point finite difference formula. This is
automatically the method used when only a single temperature point is requested. The second, less accurate,
but faster method uses the rate constants calculated at Ntemp (see last section or below) points and usesa 5
point difference formula for the derivative. The more points requested and the narrower the temperature

range, the more accurate is this method. The value of Opt{1) determines which of these methods will be
used. Thus, when

Opy1)=1, 5 point difference formula used to get Eact (fastest method).
Opy1)=2, 3 point difference formula used to get Eact (most accurate method).
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Opt(2): When
Opt(2)=1, the Inatural logarithm of the rate constant is calculated.
Opt(2)=2, the logarithm, base 10 of the rate constant is calculated.

Opt(3): When
Op3)=1, the cathode ray tube is used for the printout. In this mode, execution of the program pauses
before the Arrhenius plot is produced, and before the caption to the plot is generated. In each case execu-
tion can be resumed by pressing the “cont” key.
Opt(3)=0, the internal printer is used for the output.

Opt(4): When
Opt(4)=1, the rate constant is in cm*®/mole-s.
Opt(4)=2, the rate constant is in cm*/molecule-s.
Opt(4)=3, the rate constant is in liters/mole-s.
Opt(4)=4, the rate constant is in liters/molecule-s.

Opt(S). Not used.

Opt(6): When
Opt(6)=0, the Eckart tunneling correction is not applied. It will automatically not be applied if the zero
point energy of the reactants is greater than the potential energy #™ of the saddle point.
Opt(6)=1, the tunneling correction is applied.

Op(7): When
Opt(7)=3, the three parameter Arrhenius type equation, AT, _r,.esrr is fit to the calculated rate constant
values.
Opt(7)=2, the standard two parameter Arrhenius equation de =***RT is fit to the calculated rate constant
values.
3) Ntemp is the number of temperature values (up to 16) at which the rate constant is to be evaluated. Use
the absolute temperature scale.

4) Tmin, Tmax are the minimum and maximum temperature values to be used. If Ntemp=1, then only one
temperature value should be entered on this line.

S) M1,M2,M3,M4,M5 are the five mass point values determined by the rules on page 5. For 3 point models
set M1 and M5 to zero. The 4 point models will have either M1 or M5 equal to zero. Atomic mass units are to
be used.

6) Ras,Rbs, Res, Rds are the single bond distances in A. For 3 point models set Ras and Rds to zero. For 4
point models, set either Ras or Rds to zero.

7) Ebs,Ecs,P,Q; the first two parameters are the electronic energies for single bonds in kcal/mole. The
quantity normally available is the bond dissociation energy DH" which is defined as the enthalpy change in
the process in which one mole of the bond of interest is broken, with reactants and products being in their
standard states as ideal gases at 1 atm and 25 °C. This is not the energy we want. The desired energy E is
shown in figure 9, which illustrates the energy relationships involved in the removal of an H atom from some
group A. Z,_4 and Z,. are the zero point energies for the reactant and molecular product, and HX-», HX.,
and HF. are enthalpies of the speices 4-H, A-, and H-, respectively. In general, a particular enthalpy is the
sum of the translational, rotational, vibrational, and P¥ contributions. We have

H™ = H(trans) + H'(rot) + H(vib) + PV
By examing figure 9 it is easy to derive the relationship between E and DF". It is
E =DH + (Hi-y — HL) + (Za-w — 24) — HL. (122)
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FicURE 9. Bond energy relationships.

The second term is
HE_,, —HI, = H%_{trans)~ HJ.(trans)+ Hj_{rot) — H}(rot) + Hj_.{vib)

Hi.w — Hi = Hi.trans) — Hp.
Assuming equipartition of energy, the translational and rotational enthalpies will be the same and the dif-
ference in vibrational enthalpies will normally be negligible. Thus, the second term in eq (122) can be
neglected. The last term H;. = Ef. + PV = 3RT/2 + RT, where 3RT12 is the translational energy of the H
atom and RT is PV for an ideal gas. Thus, eq (122) becomes

E=DH°=(Z,-4—2,.)-5RT/2
As an example, consider the process CH;—H—>CH; + H-. To estimate the difference in zero point energies
between CH;—H and CH;, I have assumed that one C-H stretch of 3100 em™ and two H-C-H bends of 1450

cm™ have been lost in going from A-H to A- and H-.This corresponds to a zero point energy difference of
8.575 kcal. For cases like this, the bond energy will be

Ecs = DH + 8.575 - 5RTy4s/2 = DH + 7.095 keal

The zero point energy difference for other types of bonds can probably be satisfactorily estimated in a simi-
lar manner. Having obtainedf Ebs and Ecs in this manner we can calculate P and Q from eq(12).

8) Rts Ets,Beta are the triplet interaction parameters in A keal and A7, respectively. I have been using the
values given in Johnston[1966], table 11-1.
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9) Fbs,Fes,Fpsi2s, Fpsids are the single bond force constants. The first two are the stretching constants in
dynes/cm; the second two are bending force constants in dyne-cm. In the 3 mass point case, both the bend-
ing force constants are set to zero. For 4 point models, only one of the bending force constants will have a
value of zero.

10) Sa,Sb,Sc are the partition function symmetries for A-H, B-, and A- -H- - B, respectively.
11) Schem is the chemical multiplicity.

12) Sea,Seb,Sec are the electronic degeneracies for A-H, B-, and A--H- -B. Sea will normally have the
value one. Since B- and A- -H- B each have an unpaired electron, Seb and Sec will normally have the value
two.

4.2. Output

BEBO first prints out the input data. It then the following properties of the complex:
1) The potential energy of activation ¥* in keal/mole.
2) The bond orders n and m of the b and ¢ bonds.
3) The bond distances Rb and Re in A.
4) The force constant in the ¢ direction in dynes/cm and the angle ¢ makes with the Rb axis on a contour
plot like figure 3.
5) The force constant in the o in dynes/cm, and the angle to the Rb axis.
6) The force constant in the unstable normal mode direction in dynes/cm, and the angle to the Rb axis.
7) The force constant in the stable normal mode direction in dynes/cm, and the angle to the Rb axis. Note
that the normal mode directions are usually not orthogonal.
8) The stretching force constant matrix Fr in dynes/cm.
9) The equations for transforming back and forth between the normal mode and valence bond coordinates.
10) The bending force constants in dyne-cm.
11) The two stretching frequencies in cm™.
12) The one to three bending frequencies in cm™.
13) The zero point energy of the complex in kcal/mole.
14) The zero point energy of the reactants in kcal/mole.
15) The zero point energy of the products in kcal/ mole.
16) The Eckart potential function parameters ¥1 and /2 in kcal/mole.
17) The reduced mass for tunneling M, = Mrho.
18) The second two of Johnston and Heicklen's tunneling parameters (see section 2.5).
The program then prints out the rate constants as a function of temperature. Also given at each temperature
is the logarithm of the rate constant, the logarithm of the Arrhenius preexponential factor, the activation
energy, the tunneling correction factor, and the first of Johnston and Heicklen’s tunneling parameters.
Since the tunneling algorithm has not been checked outside the parameter ranges used by Johnston and
Heicklen, their parameters values are listed to make sure that they are within the proper ranges. The limits
are A1 and 42 = 01020, and U* = 0 to 16.

Finally, there are listed the differences between the calculated values of the logarithm of the rate constant
and the values predicted by the least squares fitted Arrhenius equation. This fitted curve is shown by the
dotted line on the Arrhenius plot. The fitted Arrhenius parameters are given in the caption ot the plot. On
the next two pages there is a sample output for the ethane and methyl radical reaction.
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6. APPENDIX: Various Triplet Functions

The subroutine Trpl is able to provide three different triplet functions which are selected according to the
value of flag Opy0). They are as follows:

Opt(0)=0: This is the modified Sato triplet function with a small portion neglected. Instead of Eq. (13), V,
= E., is used. This simpler formula seems to have been used in the days of mechanical desk calculators. This
option is useful when attempts are being made to reproduce the results of earlier workers.

Opt(0)=1: Eq. (13) is used.

Opt(0)=2: Arthur et. al. [19] have developed a triplet energy formula by fitting a function to the H-H
triplet potential energy values given by Hirschfelder and Linnett[20]. Their formula is

V. = 5.8T3E,e - Berusra (R, +R))-

They claim better results in certain cases when this function is used.
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! 6 point Gaussian Lengendre

»-360761573048,.171324492379

]
(=}
[=Y]
< e}
o ¢
Ty]
o =
©
< 2
o P
0 i
@ a0}
. ¢
- ~— —
[{a] —~ Y]
w [pN] i
< 1 o
w — —4 N
@ £ o —~ p—
™ o X N <t
m > W g ~— —
o ) ~ o+ —_ o (3]
=1 [a¥] o« o~ fie] [ ] - g e, (O
© -~ + N #BoAlle N QO
<) w £ - - oM —~ NN\L£en
- 0 - Qo Q -\ O —~— Qo4
- . > X O o N © U — O -~
- - N W oOo- dzZ> W S>>LL O 0
= ™ ™ - — e W] Ao +++ 1 @ ]
- 2] ~ — % O # 0 4+ © Bl I o
L o Ts) ~N 0 0 HEO FEFEN .- — @
- w < ~e— e R AL W e . ¥ oaN [o W
3 @ m QU il W e M3 et d b D XK
P e (=] w N N ~OZO IS>ZUN Qe L E # W g
-~ WoOw —~ mwo N ¢ QUANNE— OHWS— WOO 00 (Chw—w— O [l (0
o Ll s e Z e —~ | B e~ (IAT 4+ il W gdoccoWwz O 4
>PNZwo - Mo Z W —QUC —F OO0 |(MF«~0 « | + O+ ol iji— O
< DK N Wm >>0 o wivo u» >. nan e #3800 == %@
—M—~m Z| o Z= Im e 2 (30 O O @ CUsw— WL ZWH-OOL oA+ E@M
C ougd—Ill II—lI MO NEC+OA O P Z el 8 # (Y ——# OO ZZOXE O
T2 ¢ || XemZ ¢ | Z~ZUD >R # \Z [~ IOmAINQ *sZ# . X Pl L ol 6Z0 g0
QX =z = Z Z womd I DN—NNNNLL O — MO ZH MU il {13 O we
H < Ol Ol ¢ XDt BOAO > HIE » *l] EllLCcOQE—OIFE- W
>Nl I EQWooa ol EXO gm

OFZFC<<hNX <N XOe || 20— T~ OO
D0 OUW— O I SO~ WO Ol 0000EQACO| $~— 00| oW o3
UWOLOULOXZOWIZZINMMYIS>S>0A 00O A dH>ULHIIUWO W UM <L UL M >-0Z - (9w

ONOoOWOONOONOoNOoOVNONOoNOUIOUOIONONOoNOOWNONONONONOWVOoNON own
OO0 —MUUMMIIWBOONNIDNNANOO - NUEMIHIIOONNDOOINO 0 —UNOMIT OW
0OoO0O0OOOOOO0O0O00OOO0OOEM e o e e e e e e o e e e O QU U QI QU QU 0 CU qucy
(0 WO W L0 W0 (O (B LD W0 L0 (O 0 LD (O K9 (0 1D (0 L0 (0 (O DO O D (0 (O (0 (O L0 (0 (D (0 L0 £0 €0 (0 (00 {0 (0 (D (D D D (D WD D WD (WD

651



PLtk(Opt(*) ,Nm,T(*),Lk[*),E(*))

(INT(Xmax/Xticl+1)*Xtic

-Xmax>1E-2*Xtic) THEN Xstop
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