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1. Introduction 

The bond-energy-bond-order (BEBO) method is a procedure for calculating the activation energies of 
hydrogen transfer reactions from bond energies. When combined with absolute rate theory, it also yields 
values for the rate constants. It was formulated over 10 years ago by Johnston and Parr [1),1 and has since 
been app1ied with considerable success to the calculation of a large number of activation energies. Less fre
quently, it has been used to evaluate rate constants. Although the details of the BEBO method itself have 

J Figures in brackets indicate literature references at the end of this paper. 

·Center for Thermodynamics and Molecular Science, National Measurement laboratory. 
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been published by Johnston [2], this aspect represents only a relatively small part of a rate constant calcula
tion. The purpose of this report is to give a detailed account, not only of the BEBO method and its 
theoretical background, but also of the absolute rate theory portion of the calculation. In addition, instruc~ 
tions are provided for the use of a computer program which calculates rate constants based on the BEBO 
method. The discussion is limited to linear transition state models. 

2. Theory 

2.1. Absolute Rate Theory & Transition State Model for BEBO Calculations 

For a bimolecular reaction, A + B - [AB]* - products, absolute rate theory utilizes the concept of a 
molecular complex made up of the two reactants. This complex is assumed to be in equilibrium with these 
reactants. The resulting expression for the classical rate constant k:, is 

kT Q*d e-V"/kT 

QjQ:, 
(1) 

where k is the Boltzmann constant, Tis the absolute temperature, h is Planck's constant, Qj and Q:, are the 
classical partition functions per unit volume for reactants A and B, Qe~ is the classical partition function per 
unit volume for the complex, and P is the potential energy of the complex relative to that of the reactants. 
The complex contains one unstable vibrational mode whose evolution brings about its dissociation into 
product fragments. The partition function Q~ is evaluated with this mode missing. A detailed derivation of 
eq (1) which explains all its inherent assumptions has been given by Mahan [3]. Quantum mechanical correc
tions to the partition functions at room temperature and above need be applied only to vibrational factors. 
For a particular vibration of frequency"" the quantum correction r j is given by the expression 

. ~j~2 12) , where u, = h" ikT sm Uj 
(2) 

We assume that all vibrational modes are independent so that the total quantum correction for a particular 
species is simply the product of terms given by eq (2), one for each vibrational mode. There is also a quan
tum correction to the unstable vibrational mode of the complex which we denote by r*. This results from 
the effect of quantum mechanical tunneling through the potential barrier between reactants and products. 
It will be considered in detail in section 2.5. Applying these quantum corrections to eq (1) yields the rate 
expression 

k = kT (3) 

The general class of reactions we are considering has the form 

A-H + B. - A-H-B - A· + H-B (4) 

Radical B· abstracts a hydrogen atom attached to A. the net result being the transfer of H from A to B. For 
this system, we take the most general transition state to be linear, having up to 5 mass points. Its structure 
and the notation which we shall use are shown in figure lao There can be up to four internuclear distances, 
R., Rb , Ret and Rd' The bonds associated with Rc, and Rd will be assumed to be rigid. (The two vibrational 
modes involving these bonds will have infinite frequencies and need not be formally included in the calcula
tions.) Thus. there are only two vibrational stretching modes to be considered for this molecule, one of which 
will be unstable. These modes arise from the stretching of the two central bonds band c which are shown by 
dotted lines to indicate their unstable character. Of the five possible masses, M3 will normally be that of the 
hydrogen atom; the other masses will be assigned values in the manner described below. The three angles 
if 2' i' 3' and if" are defined by the bonds (a, 6), (b. c), and (c,d) in the plane of the figure while the primed sym
bols denote the corresponding angles in the plane perpendicular to the figure. Changes in these angles from 
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FIGURE lao Notation for five mass point linear transition state. 

180 0 give rise to three doubly degenerate bending vibrations. To calculate the frequencies needed in eq (3), 
we require values for the two stretching force constants associated with bonds band c, and three bending 
force constants arising from the three bond angles. As we shall see, these values can be generated by the 
BEBO process. 

Within the framework of the transition state structure shown in figure la, it is possible to include all types 
of reactions implied by eq (4) by considering four cases; one having a 3 point transition state, two having 4 
point states, and one having a 5 point state. These four cases are shown in figure lb. In this figure, the 
subscript s appearing on the internuclear distances and force constants denote equilibrium values found in 
reactants or products. Because bonds a and d are assumed to be rigid, their bond distances will always be 
denoted by the single symbols Ru and Rib' respectively. The bond distance between M: and M3 goes from 
Rb$ to Rb in the transition state, while that between M3 and M4 goes from 00 to R: in the transition state. In 
the transition state, the force constant Fb$ is modified and combined with that of the newly formed bond be
tween M3 and M4 to produce two force constants Fp and Fa. Fa corresponds to the stable symmetric stretch 
and Fp to the unstable asymmetric stretch. In cases IVa and V, the bending force constant F+2.r becomes F+l 
in the complex. The newly formed bond angle made by M2 , M3 , and M4leads to the force constant F"u in all 
cases. Finally, in cases IVb and V, we also have an additional bending force constant F+4 which goes to F+4$ 

in the second product. The force constants associated with the out.of.plane bends are not shown since they 
are the same as the in.plane constants. 

The way I have chosen to assign values to the mass points is somewhat arbitrary and is best explained by 
an example. Consider the reaction 

CH3·CH2,H + CH3 - CH3,CH2 .. H .. CH3 - CH3·CH:. + H·CH3 

Species ABC D 

which is the abstraction of hydrogen from ethane by methyl radicals. The masses are assigned according to 
the following rules: 

1) The mass of the transferred H is always assigned to M3; therefore M3 == 1.008 atomic mass units 
(a.m.u.). 

2) The mass of the atom joined to the transferred H in reactant A is assigned to M2; in this case M2 = 
12.011 a.m.u. 

3) The masses of all the remaining atoms in A are added and assigned to 1\11; thus in this example Ml == 
17.051 a.m.U. 

4) The mass of the atom joined to the transferred H in the product D is assigned to M4 ; here M4 = 12.011 
a.m.U. 

5) The masses of all the remaining atoms in D are added and assigned to Ms; thus Ms == 3.024 a.m.u. in 
this example. 

Different models for the transition state, and different ways of arranging the masses in linear models have 
been explored in a limited way by Johnston [4J and by Sharp & Johnston [5}. They did find significant dif· 
ferences between various options. Presumably, complete vibrational analyses of the reactant and complex 
would yield more accurate rate constants than the linear models outlined above. Unfortunately, complete 
analyses are extremely complex even for fairly small molecules, and the ability to program the calculations 
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FIGURE lb. Reaction cases to be used in BEBO calculations. All transition states shown here are linear. Masses are denoted by M, inter· 
nuclear distances by R. and force constants by F. The subscript s denotes bond distances and force constants in the stable reactants and 

products. 

in a general manner would be lost by such an approach. Also, it is unlikely that all of the force constant 
values required would be available for a complete analysis. In view of the crudity of the rest of the calcula
tion, it is unnecessary to strive for high accuracy in the vibrational analysis. Intuitively, one expects that the 
major features of these reactions are controlled by the nature of the atoms adjacent to the H atom being 
transferred, with the effects from the remainder of the molecule appearing in the bond energy values. If this 
is the case, then the linear models should at least be able to match trends within homologous series. 

So far, we have seen in this section that evaluation of rate constants by the use of eq (3), based on the 
linear models shown in figure lb, requires a knowledge of the potential energy V· of the complex, two 
stretching force constants, and from one to three bending force constants. The potential energy of all of 
these linear models could, if it were known, be shown on a 2-dimensional contour diagram like that shown in 
figure 2 where the independent variables are the bond distances R" and Reo The required value of the poten
tial energy Vis that at the saddle point position shown by the asterisk. For a region close to the saddle point, 
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FIGURE 2. Typical potential energy diagram for H atom exchange reaction. 
The position of the saddle point is shown by the asterisk. The direction Q is 
that in which the potential energy decreases most rapidly. The direction 0 

is perpendicular to the Q direction. 

it is customary to assume that the first derivatives of V with respect to Rb and Re; are negligible, and that the 
potential energy can be approximated by a power series containing only quadratic terms. Thus, for small 
displacements from the saddle point, we have 

20V ::::; Fu (ORb)2 + 2FI2(oRb)(oRe;) + F22(oRe;)2 (Sa) 

a2 v a2 v 
F21 = aRbaR/ F22 = aR; • 

These derivatives are evaluated at the saddle point, and are, by definition, the stretching force constants of 
the complex. In matrix notation, this equation is 

20V ::::; (oR)tF,.(oR) (5b) 

where F .. = [FF.ll FF.12
] and oR = [ ~RR~] • 

21 22 U ~ 

This is the force constant matrix that will be used to calculate the vibrational stretching frequencies. 
Starting at the saddle point, suppose we move in the direction in which V decreases most rapidly; call this 

the e direction, and let C1 denote the direction perpendicular to e. These directions define a rotated set of 
cartesian coordinates which we assume makes an angle a with the Rb axis; (positive a is measured in the 
counter-clockwide direction). The transformation between the two sets of coordinates is given by the equa
tion 

-sinal [e] = UP 
cosa C1 

(6) 

the matrix U can now be used to express changes in Vat the saddle point in terms of changes in e and C1 in
stead of Rb and Re;. Thus, eq (5b) becomes 

2oV::::; (oR)tF,.(oR) = (UoP)tF,.(Uop) = (oP)t(UtF .. U)(op) (7) 
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The matrix UtFrU has the elements 

(8) 

As we shall see in the next section, the BEBO method provides values for the second derivatives of V (i.e., 
the force constants) in the e and (J directions. This will allow us to evaluate the matrix UtFrU. The stretch
ing force constant matrix Fr , can then be obtained by inverting the transformation given by eq (6). 

In this section I have presented a formula (eq (3» for the rate constant and outlined the factors required to 
evaluate it. The details of the BEBO method will be given next. It will provide values for V'" and all of the 
necessary force constants, both the stretching and the bending ones. 

2. BEBO Method 

The BEBO method is based on the concept of bond order. In the reactants the bond b of figure la is said 
to have a bond order of unity, while in the products, its bond order is zero. The reverse of this situation 
holds for bond c. BEBO assumes that during the reaction, the total bond order of the two bonds is con
served; if n is the order of bond b, and m of bond c, then we have always n + m == 1. This is the basic 
assumption of the method. One bond is breaking at the same time that the other is forming. To apply this 
conservation condition it is necessary to relate the energies and lengths of bonds band c to their bond 
orders nand m. 

For the relationship between order and length, Pauling [6] proposed the formula 

R,. == Rs - Aln(n) (9) 

where R. is the length of the bond which is considered to be representative of a single bond between the two 
elements of interest. The parameter A is taken to have the same value for all element pairs. A plot of bond 
length versus the logarithm of the bond order is shown in figure 3 for certain element pairs. The data were 

A • 

0.371 -0-0 

0.327 -·0-- N-N 

0.291 + c-o 

0.306 - 0- c-c 
loin) 

flGrRE 3. Plot of R.. = R, - Aln(n); bond distance versus t/le naturalloga
rithm of the bond order for selected element pairs. 
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obtained from table 4-3 of Johnston's book [2]. Values of>. obtained from least squares fits are given in the 
figure for the different bonds. The constancy of>. does not seem particularly striking. Pauling chose a value 
of 0.26 for >.; he writes, ffThis equation, which is based upon the study of interatomic distances for non
resonating and resonating covalent bonds in simple non-metallic substances of known structure, is found to 
agree reasonably well with those data for metallic crystals which are suited to a check on its validity, and its 
use permits a penetrating analysis of the structure of metals and intermetallic compounds to be made. There 
is some evidence that the constant ... varies with the kind of atom and with the type of bond; but the 
evidence is not sufficiently extensive to lead to the determination of the nature of this variation." Certainly 
Pauling's value doesn't appear to have been based very heavily on the data in figure 3 since none of these >. 
values are close to 0.26. Although 0.26 can hardly be construed as universal, it has nevertheless been the 
value used for most BEBO calculations. There appears to be no reason why a different value shouldn't be 
used if it gave better results. 

Consider next the dependence of bond energy on bond order. Johnston [4] proposed the following rela
tionship between the two quantities 

E,. = E.nP (10) 

where E. is the bond energy of a single bond and is analogous to R. of eq (9). Note that this energy is the 
electronic dissociation energy of the bond in question; the zero point energy is not meant to be included in 
E •. Plots of In(E) versus In(n) are shown in figure 4 for the same bonds used in figure 3. The data are again 
from table 4-3 of Johnston [2]. We see that p depends on the kind of atoms in the bond. If more than one 
bond type occurs for a pair of atoms, then it is possible to extract values for p from plots like figure 4 pro
vided we are not unduly bothered by a lack of linearity. When only a single bond type exists, then some 
other method must be devised. Actually, since we are interested in E,. and R,. for bond orders less than unity, 
even if multiple bonds were available for a plot like figure 4, some method of extrapolating to zero n would 
be necessary. Johnston [2], inspired by Badger's rule for force constants, has devised a way. Let us first elim
inate n between eqs (9) and (10); this yields 

In(E,./E.) = (P/>'XR. - R,.) (11) 

This expression is analogous to Badger's rule (see Herschbach & Laurie [7]), which is a universal empirical 

c 
w 
~ ffi 

• 

• 0-0 

o N-N 

+ c-o 

o c-c 

In(n) 

FIGURE 4. Plots of Ir(EJ t'ersILS In(n) for certain bond.s. 
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relation having the form T = ai} - bi} log(!), where r is the bond distance, f its force constant, aij and bij are 
constants, and i and j are the numbers of the rows in the periodic table in which the bound atoms are 
located. Johnston [8] found that plots of log(!) versus r extrapolated very nicely to two-atom Lennard·Jones 
noble gas clusters. For clusters having Lennard-Jones parameters q and Elk, the Hbond" distance is 2%q and 
the Hforce" constant is 4O.06(Elk~cT. He then examined plots of In(E,.) versus R,. to see if a comparable 
extrapolation would be possible. The results are shown in figure 5. The data are mostly from Johnston [2], 
tables 4-3 and 4-1. Values of E,. and R" for the He-Ne cluster were taken from Gilliom [9]. The energies for 
the bonds examined in figures 3 and 4 are supposed to extrapolate to the Ne-Ne cluster. The lines shown 
were drawn to connect the corresponding single bonds with this cluster. Points corresponding to multiple 
bonds fall more or less in the general direction of these lines. The assumption made in BEBO is that such an 
extrapolation adequately represents the bond energies for n < 1. Therefore, if we have a bond A-H, where A 
is some atom in the first row of the periodic table connected to an H atom, and R& and E. are its bond length 
and energy, then if this bond were perturbed in some fashion so that its bond length were greater than R., 
then its bond energy would fall on the line drawn between the A-H and He-Ne points. Bonds involving atoms 
A from other rows of the periodic table will extrapolate to the appropriate rare gas-helium cluster. The slope 
of the line joining A-H to the cluster is, from eq (11), -pIA. Since the value of A has been chosen, we have a 
way of calculating p for the A-H bond of interest. Formally, in this case, 

(12) 

The parameter p thus depends on A, the bond energy and internuclear distance of A-H, and the interaction 
parameters for the appropriate rare gas cluster. 

fIGURE 5. E%trapolation oJ bond energy to large bond distances. A oJ A·H 
i.. an atom in the first row oJ the periodic table in thi.. case. 

We have now almost all of the information needed for the BEBO calculations. Consider a triatomic com
plex A-H-B; there are three interactions; two between H and the atoms A and B considered above, and the 
interaction between A and B themselves. If H is to form stable bonds its electron spin must be opposite each 
of the spins of A and B. Consequently, A and B will have parallel spins and must repel each other. Johnston 
uses one half the value of the Sato [10] triplet function to represent this interaction. He uses the modified 
function because it more closely approximates the calculated H-B triplet interaction. This function has the 
form 
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v, = E", E(l + E) (13) 

where E = ~e-tJAR" AR, = R, - R" = Rb + Rc - R",. E", is the electronic dissociation energy, R" the 
equilibrium internuclear distance, and {3 the Morse parameter (see Herzberg [11] p. 101) of the ground state 
of the diatomic molecule made up of A and B. Values of these paramaters for a number of such atom pairs 
are given in Table 11-1 of Johnston [2J. ilR, is the difference between the actual distance R, between A and 
B in the complex and the equilibrium distance R" it would have in the diatomic molecule. It is worth point
ing out that many people use E" as an adjustable parameter to fit the BEBO calculations to their experimen
tal data. Other forms of the triplet function have been used and are discussed briefly in the Appendix. V, can 
be expressed as a function of n, the bond order of the b bond, through the conservation condition n + m = 
1, and through eq (9) which gives the distances Rb and Rc in terms of nand m. 

We are now able to give the BEBO expression for the energy of the complex in terms of the bond order n. 
The energy is assumed to be given by 

EbI and Ea are the single bond energies (electronic) for bonds band c, and the parameters p and q are calcu
lated from eq (12) for band c, respectively. When n-l, then m-O, V,-O, and V -0, so that the energy is 
measured relative to the energy of the reactants. When n-O, then m-l, V,-O, and V-Eb,-Eu which is 
the difference in the bond energies. BEBO assumes that the maximum value of V in the range 1 c:: nc::O is 
the desired potential energy of the saddle point. This value 1'*, is obtained by substituting into eq (14) that 
value of n which makes dV/dn O. In what follows, all quantities are considered to be evaluated at the sad· 
dIe point. 

Next, we must determine the stretching force constants in the Q and a directions shown in figure 3. Equa
tion (14) does not give the complete potential surface, but only that portion lying along the line of constant 
total bond order. BEBO assumes that at the saddle point, this path of constant bond order lies in the Q 

direction. This assumption will enable us to calculate the force constant FQ == az v/aQ2 from the second 
derivative of V with respect to n, which we get by differentiating eq (14). 

From eq (9), we can calculate the changes produced in Rb and Rc when n is changed. In vector notation 
these are 

(15) 

Because a change in n for constant total bond order is supposed to produce a move in the '1 direction, the 
slope of a line in this direction can be gotten from eq (15). It is 

oRc1oRb = -n/m = tana (16) 

where a is the angle which Q makes with the Rb axis as discussed earlier. From eq (15) we can show that 

(17) 

The matrix U defined in eq (6) can now be written in terms of nand m. 

U = .J(n2 ~ m2 ) [ ~n ~ ] (18) 

By means of eq (6), oR can be expressed in terms of oP; i.e., 0'1 and oa. Combining the differential form of 
eq (6) with eq (15), we get 

(19) 
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Solving for oP gives 

oP = [~~] = -AU-l [~iim] On = 

~(n2 ~ m2) [~~n] [_li7m]on = -A ~(n2 + m2) [1I0m]on (20) 

As expected, (1 does not change when n changes. From eq (20), we have for the derivative of n with respect to 

e 
on dn 1 nm 
~ - de = --r ~(n2 + m2) 

(21) 

The second derivative of V with respect to e is obtained from the sequence 

dV dV dn 
= de ~de 

cJ2V cJ2V ( dn )2 dV cJ2n ----- -- +----
de2 - dn2 de dn de2 

Since dV/dn = 0 at the saddle point, we have 

d2 V d2 V n2m2 

Fp = de2 = dn2 A2{n2 + m2) (22) 

This gives one of the stretching force constants. 
In the (1 direction, the stretching motion is assumed to be that of a normal molecule. Thus Badger's rule 

should be applicable. This says that the bond distance is proportional to the logarithm of the force constant, 
while eq (9) says that the bond distance is proportional to the logarithm of the bond order. Therefore, the 
force constant should be proportional to the bond order. We assume that 

(23) 

where FbJ and Fa are single bond force constants. Consider the change in V when Rb and Rc are changed by 
motion in the a direction. This is assumed to be given by 

(24) 

To evaluate F .. , we must express (oRb~ (oR~ and (oR,}; in terms of (oa)2. From Eqs (6) and (18), we have 

For oe =0, 

OR= ~:j = -~-(n-2~-m-2-) (25) 

Therefore, 
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Comparing this with eq (24) gives 

Fa = 
FbJnl + F~Jm3 + iF V,laR~ 

n2 + m2 (26) 

The method assumes that if V is expanded at the saddle point in terms of e and (J then there is no cross 
term; i.e., a2Vlaea(J is assumed to be zero. Thus, we have 

20V = (oP)t fFQ ~ (oP) (27) 
LO Fj 

The use of eq (7) shows that 

UtF,U = [:.~ (28) 

Inverting this equation gives 

(29) 

where use has been made of the fact that U -\ = U t. Substituting eq (18) into (29) gives the desired stretch
ing force constant matrix. 

F = 1 r m n l fFQ ol fm -nl 
r n

2 + m2 L-n nj LO Fj L n m J 

(30) 

To complete the discussion of the BEBO method the bending force constants will now be evaluated. Con
sider first the one involving M3 as the center mass. This will be F"'3 and appears in all of the transition states 
shown in figure 2. It is defined as the second partial derivative of V with respect to the angle made by the 
bonds band c, with the bond lengths Rb and Rc held fixed. At equilibrium, this angle is 180 0 for our transi
tion state models. The geometry, when the angle is less than 180 0 is shown in figure 6. To get F"'3' we dif
ferentiate V twice, 

( av ) = a V, = a V, aRt 
aq, R

b
, Rc aq, aRt aq, 

( a2v ) a2v, a2v, ( aR,)2 av, a2R, 
---a;j;2 R

b
, Rc = aq,2 = aR~ ~ + aRt aq,2 (31) 

~ M C 
3 

FIGURE 6. Definition of center bond angle. 

The derivatives of V, with respect to R, can be gotten from eq (13). The dependence of R, on q, can be deter
mined from the following vector relationships, 
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Thus, 

R~ = Rr • Rr = R~ + R~ - 2RbRc coscP 

aRr = RbRe sincP _ 0 for cP = 180 0 

acP Rt 

mm·u ~Rcr ~ 1800 - -m SID ~ - - R, lor ~ = 

The other two bending force constants F",z and F"'3 are assumed to obey Badger's rule. We assume 

(32) 

(33) 

(34) 

This concludes the BEBO part of the calculation. It has provided us with the potential energy V* of the sad
dle point, the stretching force constants F11' Fu , and F1Z and the bending force constants F",z' F"'3' and F"'4. 
In the next section we shall use these force constants to carry out a frequency analysis for each of the transi
tion state models shown in figure 2. 

2.3. Vibrational Analysis 

As we have seen in the force constant derivations, the potential energy V of the most generalS mass point 
complex can be considered to depend on the variables R/J' Rb , Re, Rd , ~z, ~3' ~4' ~~, ~;, and ~~. These are 
called the internal coordinates. Because our model is linear, V increases when any of the angles departs 
from 180°. Since we assume a and d to be rigid, R/J and Rd need not be included in the list of variables. For 
the time being, however, they will be included in the analysis. Let F be the complete force constant matrix 
for the complex. We have 

00 

Fll F1Z 0 FZl Fu 
00 

F= F",z (35) 

F"'3 

0 FY,4 
F",; 

F",; 
F",: 

The two infinite force constants come from the use of rigid bonds for a and d. Let S be the (column) vector 
which denotes small changes in the saddle point values of the variables. 

(36) 

The potential energy is assumed to be given by 

(37) 
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Suppose there exists a matrix G, such that the kinetic energy in terms of the internal coordinates is 

(38) 

Consider a new set of coordinates Q, the so-called normal coordinates, related to 5 by the linear transforma
tion 

such that 

V-V· = 1/2QtAQ = ~V 

T = %QtEQ 

(39) 

(40) 

(41) 

where A is a diagonal matrix having elements Ait and E is the identity matrix. In this coordinate system 
there are no cross terms in V and T. 

Let Qi denote the i'th normal coordinate. The Lagrangian equations of motion for the system are 

~( o~) -~=O 
dt OQi OQi 

(42) 

where L T -~V = %[QtEQ - QtAQ] = %[;;OJ - ;;AjQj] , (43) 

oL . 
OQi = Qj, (44) 

oL 
OQi = -AiQi' (45) 

Therefore 

Qi + A.Q. = o. (46) 

The solutions of this equation are 

(47) 

Thus the Aj2 = 211"v/ are the frequencies of the vibrations of the Qj coordinates. These are called the normal 
mode vibrations. 

Solving eq (39) for Q, and substituting into (40) and (41) yields 

v V· = %(L-lS)tA(L-1S) = %St(L-l)tA(L-l)S 

T = %(L-1S)tE(L-1S) = IhSt(L-l)tE(L-I)S 

Comparison with eqs (37) and (38) yields 

LtFL = A 
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(49) 

(50) 

(51) 

(52) 
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Next, solve eq (53) for Lt = L-1G, substitute this into eq (51) and multiply by L on the left. This gives 

GFL = HL = LA (54) 

as the set of equations which determine the transformation L. Written out, eq (54) is 

(55) 

This equation has solutions if the determinant 

o (56) 

This is the so-called secular equation which must be solved to get the Air, the eigenvalues of H and thus the 
normal frequency values. Before doing this, it is first necessary to evaluate the matrix G. 

Equation (38) gives the kinetic energy in terms of the internal coordinates. As such, it does not include the 
kinetic energy of the center of mass or the rotational energy. We need to express the kinetic energy in terms 
of cartesian coordinates, transform the result to internal coordinates, and subtract out the center of mass 
and rotational energy. This will yield G-l. Let us begin by expressing the internal coordinates in terms of 
cartesian coordinates. Assume that the molecule lies along the x axis. A particular mass point M; will have 
coordinates (Xit y" Z/) where YI and Zj are small and describe the departures of the molecule from linearity 
during bending vibrations. Because Yj and Zj are small, the bond distances can be expressed as functions of 
the Xl only. Thus, 

(57) 

Since there are 5 cartesian X coordinates we need one more coordinate for the internal system. This is taken 
to be the x-component of the center of mass of the molecule multiplied by the total mass, and is defined by 
the equation, 

(58) 

where M == "£.s M, (59) 

In matrix form these equations are 

R .. I I 0 0 0 Xl 

R == [~x] 
Rb 0 -1 1 0 0 X2 

= R" 0 0 -1 1 0 X3 =MX (60) 

R" 0 0 0 -1 X4 iUx Ml AI.: M3 M4 Ms Xs 

Note that the vector R is basically that defined by eq (15). Here we have included R ... and Rd. 
We must next express the bond angles in terms of the cartesian coordinates. Consider it.:, the angle 

formed by bonds a and b. The geometry and notation for this angle are shown in figure 7. The two vectors 
along the bonds a and b are given by 
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(70) 

FIGURE 7. Geometry of the bond angle lJ'1. 

'lt2 is related to these by 

(71) 

Substituting eq (70) into (71) gives 

Because the Yi are small compared to Ra and Rb the radical can be expanded to give 

(73) 

Let 'It 2 = 180 0 + c5'1t 2 where c5'1t 2 is small. Then 

Substituting this into eq (73) and keeping terms through second order gives 

To see why the minus sign is needed, let Yl = Y2 = 0; then for Y3 > 0, 'lt2 < 180 0
, so that c5'1t2 must be < o. 

There are analogous equations for the angles 'lt3 and 'It.; there is also a set, identical in form, for the angles 
'It; in the x-z plane. These contain the Zi rather than the Yi coordinates. In these equations, the equilibrium 
values of Ra , ••• ,Rd will be used. 

The set of equations typified by eq (74) gives 3 equations in terms of the 5 Yi coordinates; two more are 
needed. We have one defining the Y coordinate of the center of mass, like eq (58), and another defining a 
quantity T/n which is given by the equation 

(75) 

T/z is related to the Z component of the angular momentum mz by the relation 

(76) 
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The xr are the equilibrium Xi values; these can be gotten relative to the center of mass component x, by in
verting eq (60) and inserting equilibrium values for R,., ... ,Rd' In matrix form, these equations relating YI to 
the bond angles in the x-y plane are, 

01/;2 -ea ea+eb -eb 0 0 11 

[;J= 01/;3 0 -eb eb+ec -ec 0 Y2 
i= 01/;. 0 0 -ec ec+ed -ed Y3 =AY (77) 

'1J~ M1Xi M~; M~; M.X: M5X; 1. 
My M} M2 M3 M. M5 Y5 

where eo, ... ,ed are the reciprocals of the equilibrium values of Ra , ••• ,Rd' There is an analogous equation 
involving the Zj coordinates. 

Having obtained expressions (60) and (77) for the internal coordinates in terms of the cartesian coor
dinates, we can now invert these equations and insert them into the expression for the total kinetic energy 
which we shall call T. Therefore 

T = lJ2 X tD ... X + 112 Y tD ... Y + IhZtD"'z 

= lh Rt(M-l)tD ... (M-l)R + 112 ~t(A-l)tD ... (A-l)~ + z-term 

= lhRtGr-1 It + 112 ~tG~-1 ~ + z~term 

= IhT + lhM(X2 + r + .?) + Ih(m; + mD11 

= lhRtGr-IR + Ih.q;tG,,-I'.i; + z-term + lhM(:? + r + .?) + Ih(m; + m;)/I 

where I = f
1

5 Mjxjl is the moment of inertia, and 

o 
D ... 

o 
We can satisfy eq (78) by writing Gr -1 and Gil in the partitioned forms 

G.-· = [~.-. ~J 

~;l 0 0 J G;1 = 0 1-1 0 G~;l 
o 0 M-l 

We can get Gr and G~ simply by inverting Gr-J and G;I. 

This gives 

G. = ~. 
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Since D", is diagonal its inverse is easily evaluated and we therefore require only matrix multiplications to 
get Gr and G~. 

The complete G matrix for the internal coordinates in partitioned form is 

I~r 
G=~ 

o 
G~ 
o tJ 

In partitioned form, the complete force constant matrix, eq (35), is 

I~r 
F= ~ 

o 
F~ 
o 

(82) 

(83) 

Note that Fr here is like eq (30), but contains the two infinite force constants corresponding to the rigid a 
and d bonds. The matrix H in partitioned form is 

~
rFr 

H = 0 
o ~

r 
= 0 

o 

o 
H .. 
o 

(84) 

Because H factors in this way, we can set up separate secular equations for the stretching and bending 
modes. Note that H is normally unsymmetric. 

Before solvi!!,g the secular equations, let us write down explicit expressions for Gr and G ... The direct 
evaluation of G r from eq (81) yields 

L+~ 
-iL2 0 0 

-JL2 iL2 + JL3 -JL3 0 
0 -JL3 1'3 + JL .. -JL .. 
0 0 -JL .. JL .. +JLs 
0 0 0 0 

Gr = (85) 

where the JLI are the reciprocals of the masses Mi' Comparison of this equation with eq (81) yields Gr. 
Because we are treating the a and d bonds as rigid, the stretching part of the problems is equivalent to a 3 
mass point system where the first mass is Ml + M2 and the third is M3 + M ... The resulting 2 X 2 matrix is 
the one actually used in the calculation. It is 

Gr(rigid end bonds) = (86) 

The stretching force constant matrix to be used with eq (86) is that F r as given by eq (30). 
The G~ matrix elements for this 5 point case are 

(87) 
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There are the expressions used in the calculation. Actually, they were not derived from eq (81) but were ob
tained from Wilson et. al. [12]. However, eq (81) was used for a numerical check of eq (87). To get the matrix 
elements for the two 4 mass point cases, simply delete from eq (87) those elements which contain either a 
missing l! or a missing p. or both. Do the same for the 3 point case, but delete also (G~)13; (there is only one 

element, (G~)22' in this case). 
We are now ready to consider the secular equation. For the rate constant calculation only the hit are re

quired, so that a solution of eq (54) for the transformation matrix L is not necessary. Nevertheless, L is easily 
obtained and is convenient to have for the purpose of illustrating the actual vibrational motions of the com
plex. Thus we shall solve eq (54) as well as eq (56). According to eq (84), there are two secular equations to be 
solved (H~ and H~, are equal). Because we are using rigid a and d bonds, the dimension of Hr is 2 X 2. The 
maximum dimension of H~ is 3 X 3 and occurs for the 5 point model. Thus a solution of a 3 X 3 problem 
will suffice for our purpose and will also illustrate how an n X n problem is to be solved. 

We begin by assuming that eq (56) has been solved. In the present work this was accomplished by expand
ing (56) and solving the resulting polynomial in h. In our case, the maximum degree was cubic, so that this 
part of the calculation was easily performed. As eq (47) shows, the desired frequencies are VIt = hl/1 /27r. For 
the stretching modes of the complex one of the two frequencies will be imaginary because its hit value will be 
negative. As mentioned earlier, this corresponds to the asymmetric stretch. 

Consider now eq (55) for a general 3 X 3 H matrix. Written out in full, it is 

(88) 

where hit is one of the three values of h determined from the solution of the cubic (in this case) eq (56). 
Divide the first two of these equations by Lllt, and define the ratios gilt = Lilt/Lllt. This yields two equations 
to be solved for the two unknowns gilt and gu. 

(90) 

We get two gilt values for each value of hit substituted into eq (89), or six gilt values in all. Using these values, 
we can express L in terms of the product of two matrices defined by 

= rf (90) 

To determine the components of f, insert eq (90) into eq (51). We get 

it rtFrf=A=itf rtFr (91) 

The final reordering is possible because l and A are diagonal and therefore rtFr is diagonal. This equation 
is easily solved for the elements ttl to give 

(92) 

The other elements of L are gotten from these values and the ratios gilt already determined. 
The actual motions in the cartesian system can now be obtained by combining eq (39) with the inverse of 

eq (60) or eq (77). For the stretching motions we have 
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firQi 
X=M-'R=M-' LoJ (93) 

where Lr arises from the secular equation containing Hr. Qr is the normal coordinate vector and the 
x-component of the center of mass has been set to zero. A similar equation results for the bending modes. 
This is 

(94) 

where the z-component of the angular momentum and the y·component of the center of mass have been set 
to zero. 

This completes the frequency analysis. In the next section we will consider the partition functions. 

2.4. Partition Functions. 

Herschbach et. al. [13] have shown how to express the classical partltlOn function for polyatomic 
molecules in terms of local properties. We shall use their method because it allows for cancellations of con
siderable portions of the partition functions of the complex and reactants when their ratios are evaluated in 
the rate constant expression, eq (3). We begin the discussion with the classical partition function for a linear 
polyatomic molecule. This is (see Herzberg [14], pp. 502-509), 

3lV-S 

qcl =q.V(27rMkTlh2)3/2 (k17(uheB» If (k17(wihc» (95) 

where q. is the electronic partition function, V is the volume, M is the total mass of the molecule, e is the 
velocity of light, Wi is the frequency of the i'th vibrational mode in cm-1 (Wi = v;le), N is the number of atoms 
in the molecule, B is the rotational constant; B =hl(8rcl), where lis the moment of inertia of the molecule; 
u is the symmetry number which is the number of indistinguishable positions into which the molecule can be 
turned by simple rigid rotations. For linear molecules u= 1 or 2. Equation (95) neglects nuclear spins, anhar
monicity, and non-rigidity of the molecule. Let us rewrite eq (95) in terms of I and ui=hv;lkT. It becomes 

3lV-S 

qcl =q.V47ru-1 (27rkTh-2)5/2~/2 I If 

qcl can also be written in the form 

lV 

qcl =q.u- 1Z I] A~J 

where 

Z - J J -v/Ir.Tdx d - ••.•• e 1 ••••••• z" 

(96) 

(97) 

(98a) 

(98b) 

Z is the so-called configuration integral, V is the potential energy, and Xl' Yl' zl'" .... . XN' YN, =N are the 
cartesian coordinates of each of the N atoms. Eliminating qcl between eqs (96) and (97) gives 

(99) 

Consider now the matrix H =GF defined by eq (84). A theorem of matrix algebra states that the determi
nant of H equals the product of its eigenvalues (see Hohn [15], p. 283). There is also a theorem (Hohn, p. 65), 
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stating that the determinant of product of two matrices equals the products of the determinants of the 
matrices in the product. Consequently, 

(100) 

Solving for the product over Ui gives 

(101) 

Inserting eq (101) into (99) yields 

(102) 

This can be rearranged to give 

(103) 

The left side of eq (103) does not involve the masses, while the right side does not contain force constants. 
Therefore, the quantity denoted by iN does not depend on either the force constants or the masses, but must 
depend only on geometrical parameters. Herschbach et. al. [13] have shown that for linear molecules 

N-) 

iN = V4r !l RT+l.1 (104) 

where R,+1•1 is the equilibrium distance between mass M, and M,+1• For a general linear molecule, the 
classical partition function per unit volume can now be written 

(105) 

This form of the partition function is suitable for the reactant molecules. 
Let us now consider the partition function for the complex. Using eq (96), we have 

(106) 

Note that the product is over 3N -6; i.e., one less vibration than in a stable linear molecule. Consider next 
the quantity 

= (2rkTlh )3N-S 1'·1 F 1-1h I G 1-1,2 (107) 

where A· is the negative eigenvalue and v· is the associated imaginary frequency; eq (100) has been used. 
Using eq (107) in (106) gives 

(108) 
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This equation is very similar to eq (105), the partition function of a stable molecule. Note that IF 1-112 will be 
imaginary for the complex. 

We can now write down the specific partition functions per unit volume for the four reaction cases shown 
in figure lb. 

Case III. 

Species A == M2 - Ma 
Species B == M. 
Species C == M2 . . . Ma' . . M. 
QA == q.A.U;; 4rRi .. (2rkT)lhF;;;h (~Aat3 
QB == qeaA"43 

QckTlh == q.cac1 4rRiR~"* I F,.I-lhF;~ (2rkT'f (~AaA.)-3 
The matrix F,. is the 2 X 2 one given by eq. (5b), and not the 4 X 4 used in eq (83). 

Case IVa. 

Species A == MI - M2 - Ma 
Species B == M. 
Species C == Ml - M2 • . . Ma . . • M. 
QA == q.A.U;: 4rR!.Ri .. (2rkT'f (FfUFblltlhF;~ (Al~Aat3 
QB == q"BA43 

QckTlh = q.cac1 4rR;"Rm~,,*F;lhIF,.I-lhF~~F;! (2rkT)7/2 (Al~AaA.t3 
Note that I have included F fU in QA and Qc even though it is supposed to be infinite; it will cancel out when 
the ratio QCIQA is taken. Also note that the bending force constants appear with twice the power of the 
stretching force constants. This is because of the degeneracy. 

Case IVb. 

Species A == M2 - Ma 
Species B == M. - Ms 
Species C == M2 . . . Ma' . . M. - Ms 
QA == q.A.U;; 4rRi .. (2rkT)lhf';!h (~Aat3 
QB == q"sui1 4rR~ (2rkT)lh F7sh (A.Ast3 

QckTlh == q.cac1 4rRiR~Ra."*IF,.I-lhP~~F;~ (2rkT)712 (~A3A.Ast3F;j~ 

Case V. 

Species A == Ml - M2 - Ma 
Species B == M. - Ms 
Species C == MI - M2 • . . Ma· . • M. - Ms 
QA == q.A.U;; 4rR!sRi" (2rkTftF Jb .. tlh~~ (Al~Aat3 
QB == q.sui1 4rRa. (2rkT)lh~h (A.Astl 

QckTlh == q.cac1 4rR!sRiR~R~ ,,*F~h I F,.I-lhFi1AzF:;,~~!~~ (2rk1.JS (AI~A3A.A5tl 
We now have everything for eq (3) except the tunneling correction. This will be taken up in the next 

section. 

2.5. Tunneling Corredion 

The one-dimensional Eckart potential function was used to approximate the barrier to quantum 
mechanical tunneling from reactants to products. Three parameters are required for its definition; these are 
shown in figure 8. Its functional form is 
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where 

Ay By 
V(x) = l-y - (1-y)2 

y = _e2r;rIL 

A = V1 -V2 

B = (~h + ~h)2 
L = 211'( -21F)IfJ (V~1fJ + V;1f.!t" and 

F = 02V 
ar 

(109) 

evaluated at the maximum in the curve. F is a force constant. Using this potential function, Eckart [16] 
solved the wave equation and obtained the transmission coefficient for a particle with mass m approaching 
the barrier from the left with an energy E. His result is 

K(E V. V. F) = 1 _ cosh[211'(a} - a2)] + A 
, l' 2' cosh[211'(a1 + aJ] + A 

(110) 

where A = cosh[27ro] if {, is real, and A = cos[27r r 0 I] if 0 is imaginary. The relationships of ai' a2, and 0 to 
the parameters of figure 8, are 

v 

a 1 = Ih(EIC)'h 
a2 = Ih[(E-A)/C]'h 
{, = Ih[(B - C)I C]'h 
C = h2/(8mL2) 

F 

x 

FIGURE 8. Eckart potential function. 

(111) 

Given the transmission coefficient, Johnston [2], pp. 42 and 43, has derived the correction factor r* which is 
the ratio of the quantum barrier crossing rate to the classical crossing rate. His result is 

(112) 
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Let us rewrite this in a more symmetrical form. We define a new variable e (E V1)/kT. E = kTe + Vi" 
Equation (112) becomes 

(ll3) 

With this substitution, the parameters a l and 0!2 become 

ai = lh.(kTdC + V;!C)'h, i = I & 2 (ll4) 

From eq (l10) we have 

But 

BIC = V/C + 2[(V/C)(V/C)]'h + V/C (ll5) 

is a function of V/C and V/C. Therefore 

(116) 

where 

P = kTIC. PI = V/C and pz = Vz IC. 

r* thus depends on three parameters. Furthermore, it is invariant when PI and P2 are interchanged; i.e., 
r*(p,PI,pJ = r*(p,P2,Pl)' To see this let P; = P2 and p~ = Pl' From eq (115) we see that 

(BIC)' = p~ + 2(p;p~y" + p~ = pz + 2(P2PI)'h + PI = BIC 

Thus, 0' = o. From eq (1l4) we have 

a; = lh(pe + p;y" = lh.(pe + pJ'h = 0!2 

a~ = a l 

Using these results in eq (l10), we get 

Suppose that P; > p~; i.e., V; > V~. Using eq (117), eq (113) becomes 

(117) 

The way Eq (l13) was integrated to get r* will be considered later when the computer program is 
discussed. 

In applying this correction, it is assumed that the x coordinate of Eckart's potential lies in the e direction 
discussed earlier. This is that direction at the saddle point in which the potential energy decreases most 
rapidly. It is also the direction of the path of constant total bond order. We therefore use the force constant 
Fp given by eq (22) for the second derivative of the Eckart potential at its maximum. The effective mass for 
tunneling, M" is the proportionality factor between the kinetic energy and lh.e2• We can calculate M, in the 
following way: As far as tunneling is concerned, in the 4 and 5 mass point cases there are effectively 3 
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masses, since the end bonds are supposed to be rigid. Thus, there are only the two variables, Rb and Re, 

involved. (Bending modes are not considered.) The kinetic energy T, for changes in these two bonds is given 
by 

(118) 

where R is the 2-dimensional vector defined by eq (6), and G, is the 2 X 2 matrix given by eq (86). The 
inverse of this matrix is easily calculated and found to be 

(119) 

where M~ = MI + M2 and M; M.,. + Ms in the 5 point case. The transformation between Rb, Rc and e, U 

is given by the matrix U whose value, determined by the BEBD calculation, is given by eq (18). U can be 
used to express T, in terms of e and u. Thus 

The desired quantity M, is simply the matrix element (UtG;lU)QQ' This is 

M, = M;{Ma + M;)m2 - 2M;M;nm +(M; + M;JM;n2 
(n2+m2}M (120) 

where nand m are the bond orders from the BEBD calculation, and M is the total mass of the molecule. 
The bases from which the tunneling parameters VI and V2 are measured are taken to be the zero point 

energies of the reactants and products, respectively, and not the potential minimums as might be expected. 
The maximum of the potential, on the other hand, is placed at the potential minimum of the complex; i.e., at 
the saddle point. Johnston [2], pp. 190-196, gives reasons for this particular method of using the Eckart 
function for tunneling corrections. 

We finally have everything needed for eq (3). In the next section explicit rate constant expressions will be 
given for the four reaction cases of figure 2. 

2.6. Rate Constant Expressions 

The rate constant expression eq (3) is not quite complete. It should be multiplied by the number of 
equivalent H atoms on the molecule being attacked. Let us call this factor the chemical multiplicity, Oc/t. For 
example, there are 6 identical reaction paths for H abstraction of the 6 terminal H atoms on propane, and 2 
paths for abstraction of the 2 central H atoms. Thus Och = 6 in the first case, and 2 in the second. With this 
factor added, the rate constants for the four cases shown in figure 2 are 

(121) 

628 



The common factor in all these expressions is 

S q.c (JA(JS R~R~ * Fi3 r: r* -v' ItT 

(Jell qeAq.S (JC RL V I Frllh r: e . 

The calculated factors in S are: 
1) R" and Re; these are calculated from nand m through Pauling's relation, eq (9). 
2) ,,* is the imaginary frequency obtained from the vibration analysis for the asymmetric stretch. 
3) IF r I is the determinant of the matrix given by eq (30). It is negative. 
4) r: is the quantum correction factor for the symmetric stretching frequency obtained from the vibra

tional analysis. 
5) r* is the tunneling correction factor obtained in section 2.5. 
6) V* is the saddle point potential energy given by the BEBO calculation. 

Other calculated factors are: 
1) F"'3 is the bending force constant given by eq (33). 
2) F"'1 and F"'4 are the bending force constants given by eq (34). 
3) The quantum correction factors r;, rt, r: for the bending modes come from the frequency analysis via 

eq (2). 

This concludes the theoretical part of this discussion. The next section contains a brief discussion of the 
computer program which was written to implement the rate constant calculations. This will be followed by 
instructions on how to use it. 

3. Computer Implementation of SESO 

The computer program consists of a main section and six subroutines. It is written in an enhanced form of 
BASIC for use on a Hewlett-Packard 9845A computer. 

3.1. Description of the Main Program 

The main program begins by reading the following data: 
1) RunidS 

This is a string variable having up to 79 alphanumeric characters to be used for the run identification. 
2) Opt(M), M= 1,7 

These are flags which provide a series of available options. These will be described in detail in the instruc
tion section. 
3) Ntemp 

This is the number of temperature values at which the rate constant is to be evaluated. A maximum of 16 
values will be allowed. 
4) Tmin, Tmax 

The minimum and maximum temperature values desired. The reciprocal temperature scale is divided 
into Ntemp - 1 equal intervals and the temperature evaluated from the reciprocal values. This gives a better 
distribution on an Arrhenius plot than if the temperature scale were divided into equal intervals. 
5) Ml,M2,M3,M4,M5 

These are the five mass point values determined according to the rules given in section 2.1. 
6) Ras,Rbs,Rcs,Rds 

These are the equilibrium bond distances for single bonds. 
7) Ebs,Ecs,P,Q 

629 



The first two parameters are the electronic energies for single bonds band c; the last two are the BEBD 
parameters obtained from eq(12). 
8} Rts,Ets,Beta 

These are the bond distance, bond energy, and Morse parameter fJ for the triplet interaction. 
9} Fbs,Fcs,Fpsi2s,Fpsi4s 

These are the stretching force constants for single band c bonds, and the bending force constants about 
the M2 and M4 masses. 
10) Sa,Sb,Sc 

These are the partition function symmetries O,h 0o, and 00' 

ll) Schem 
This is the chemical multiplicityoc;h' 

12) Sea,Seb,Sec 
These are the electronic degeneracies qeA, q .. Ot and q .. c. 

The program next prints out this input data to provide an easily read record and a check of the numbers. 
After these preliminaries, the program then determines the saddle point position. This is done by an 

iterative procedure; n is initially set to 0.5; then the potential energy V is calculated according to eq (14) 
along with its first and second derivatives, Vn and Vnn, with respect to n. The subroutine Trpl is used to 
calculate the triplet part of V. A new n is estimated by the Newton, Raphson method from the formula n' = n 
-Vn/Vnn. The process is repeated using n' and continued until covergence is obtained. This yields a value 
of n which makes Vn zero; this will correspond to the desired maximum in V. (I have not investigated the 
conditions for which a maximum is expected or if there could be more than one maximum.) 

Having obtained the value of n for the saddle point, the program calculates the stretching force constant 
matrix Fr given by eq (30), its determinant, and the saddle values of Rb and Rc from Pauling's relation eq 
(9). It then evaluates the mass to be used for tunneling from a somewhat rearranged eq (120). Next, the 2 X 

2 matrix Gr is calculated from eq (86). This is then combined with Fr to form Hr, and the stretching frequen
cies obtained by solving the resulting quadratic secular equation. The bending frequencies are next deter
mined through the matrices F (eq (35)) and G (eq (87). The sizes of these matrices will depend on the type of 
reaction. For the three mass point model there is only one element and thus a linear secular equation with 
one bending frequency. The two four point models require solving a quadratic secular equation for two fre
quencies. The five point model uses the subroutine Cubic to solve the cubic secular equation for three fre
quencies. The subroutine Normod then calculates the matrix for the normal coordinate transformation of 
the stretching modes. 

At this point, the program prints out a number of properties of the complex. This will be discussed in 
detail in the instruction section. 

The rate constants are then evaluated from eqs (121) at the different temperatures. The activation energy 
is gotten by numerically differentiating the logarithm of the rate constant by means of suitable finite 
difference formulas. Subroutine Fit is a least-squares routine which is used to fit Arrhenius equations 
through the calculated points. The program concludes with subroutine Pltk which draws an Arrhenius plot 
of the results. 

3.2. Discussion of Subroutine Tun 

The only subroutine worth discussing is Tunl, the routine for evaluating the integral of eq (l12) for the 
tunneling correction factor r·. Johnston and Heicklen {l7] calculated this integral numerically by an 
unspecified method for a range of input parameter values. The three input parameters which they used were 
hv-lkT, where II· = (-Flm)t2/(2ir), 211"Vl/(hv*), and 21rVJ(hv·). Their results are in the form of a table. The 
method used in the present program is a modified 6-point Gaussain quadrature formula based on Legendre 
polynomials (see Abramowitz and Stegun [lBD. This was used even though the nature of the integral sug
gests using a formula based on Laguerre polynomials. Neither of these formulas was satisfactory for the 
whole range of parameter values given by Johnston and Heicklen, so a modification of the first method was 
de'reloped. It was based on the following ideas: When f gets large, the transmission approaches unity. The 
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idea is to use the Gaussian formula for that part of the integral where K(e) < 1. After K(e) has gotten suffi
ciently close to unity, the remainder of the integral can be evaluated analytically; i.e., if K(e)= 1 for e >eb, 
then 

The problem is to estimate Eb' Let us examine eqs (114) as E - 00. We get Q'1- 1hEl-2, where E = kTflC. From 
eq (110), we have 

We can set Kb to some arbitrary value close to unity and solve this equation for E: and then ~ and then E.b 

which will be our cutoff point The result is 

It turns out that this value is not entirely satisfactory and subtracting from this the average value of VI and 
V2 works better. Also it can happen that Eb as calculated from this formula can be very large when K is close 
to unity. Thus, exp( -Eb) will be very small. There is no point in using a value for E as the upper bound to the 
Gaussian formula if the integrand at this point is negligible because of the exponential factor. Thus Eb was 
kept below a certain fixed value Emu. This yielded two parameters, Kb and Emu which were adjusted to 
minimize the squares of the differences between the results of this method and the results of Johnston and 
Heicklen. The differences averaged 1.3 percent with only two value differing by as much as 6 percent Such 
accurancy should be quite adequate for the rate constant calculations . 

.4. INSTRUCTIONS FOR USING BEBO 

4.1. Input 

I t will be assumed that the reader is familiar with the general operation and command system of the 
HP9845A. The program lines 5000 to 5240 contain a series of DATA statements which hold the input data. 
As an example, data for the ethane plus methyl radical reaction is contained in these statements. The 
general nature of the input has been discussed briefly in the last section; here this is considered in more 
detail. 

1) Runid$ is a string variable containing identifying information; 79 characters can be used. 
2) Opt(M),M = 1,7 are flags for the following options: 

Opt(O): This picks out the version of the triplet function V.; these different forms of V. will be discussed in 
the Appendix. 

Opt(l): As mentioned earlier, the activation energy Eact at any temperature is obtained by numerically 
differentiating the logarithm of the rate constants. This is done in either of two ways. The more accurate 
method evaluates the rate constant three times at each temperature; at the particular point and slightly 
above and below the point The derivative is then estimated from a 3 point finite difference formula. This is 
automatically the method used when only a single temperature point is requested. The second, less accurate, 
but faster method uses the rate constants calculated at N temp (see last section or below) points and uses a 5 
point difference formula for the derivative. The more points requested and the narrower the temperature 
range, the more accurate is this method. The value of Opt( 1) determines which of these methods will be 
used. Thus, when 

Opt(l)= 1,5 point difference formula used to get Eact(fastest method). 
Opt(1)=2,3 point difference formula used to get Eact(most accurate method). 
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Op~2~ When 
Op~2)= 1, the lnaturallogarithm of the rate constant is calculated. 
Op~2) = 2, the logarithm, base 10 of the rate constant is calculated. 

Op~3~ When 
Op~3)= 1, the cathode ray tube is used for the printout. In this mode, execution of the program pauses 
before the Arrhenius plot is produced, and before the caption to the plot is generated. In each case execu
tion can be resumed by pressing the "cont" key. 
Opt(3) =0, the internal printer is used for the output. 

Op~4~ When 
Op~4)= 1, the rate constant is in cm3 /mole-s. 
Op~4)=2, the rate constant is in cm3/molecule-s. 
Op~4)= 3, the rate constant is in liters/mole-so 
Op~4)=4, the rate constant is in liters/molecule-so 

Op~5~ Not used. 

Opt(6~ When 
Opt(6) =0, the Eckart tunneling correction is not applied. It will automatically not be applied if the zero 
point energy of the reactants is greater than the potential energy r of the saddle point. 
Op~6)= 1, the tunneling correction is applied. 

Op~7): When 
Op~7)=3, the three parameter Arrhenius type equation, Al"c-Ezact+RT is fit to the calculated rate constant 
values. 
Op~7)=2, the standard two parameter Arrhenius equation Ae -Eact+RT is fit to the calculated rate constant 
values. 
3) Ntemp is the number of temperature values (up to 16) at which the rate constant is to be evaluated. Use 
the absolute temperature scale. 

4) Tmin, Tmax are the minimum and maximum temperature values to be used. If Ntemp= 1, then only one 
temperature value should be entered on this line. 
5) Ml,M2,M3,M4,MS are the five mass point values determined by the rules on page 5. For 3 point models 
set Ml and M5 to zero. The 4 point models will have either Ml or M5 equal to zero. Atomic mass units are to 
be used. 

6) Ras,Rb5, RC5, Rds are the single bond distances in A. For 3 point models set Ras and Rds to zero. For 4 
point models, set either Ras or Rds to zero. 

7) Eb5,Ec5,P,Q; the first two parameters are the electronic energies for single bonds in kcal/mole. The 
quantity normally available is the bond dissociation energy DIr which is defined as the enthalpy change in 
the process in which one mole of the bond of interest is broken, with reactants and products being in their 
standard states as ideal gases at 1 atm and 25 ·C. This is not the energy we want. The desired energy E is 
shown in figure 9, which illustrates the energy relationships involved in the removal of an H atom from some 
group A. ZA-H and ZA. are the zero point energies for the reactant and molecular product, and Hl-H, Hl., 
and H~. are enthalpies of the speices A·H, A·, and H·, respectively. In genera~ a particular enthalpy is the 
sum of the translational, rotationa~ vibrationa~ and PV contributions. We have 

1fT = 1fT(trans) + W(rot) + W(vib) + PV 

By examing figure 9 it is easy to derive the relationship between E and DIr. I tis 

E = DIF + (ffl-H - m.) + (ZA-H - ZA.) - HJ;. 
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FIGURE 9. Bond energy relationships. 

The second term is 

m-H - Hl. == ffl_J.trans) - Hl. (trans) + m-J.rot) - H;..(rot) + m_J.vib) 

m-H - m. = ffl_J.trans) m. 

Assuming equipartition of energy, the translational and rotational enthalpies will be the same and the dif
ference in vibrational enthalpies will normally be negligible. Thus, the second term in eq (122) can be 
neglected. The last term m. = EJ;. + PV = 3RT!2 + RT. where 3RTl2 is the translational energy of the H 
atom and RT is PV for an ideal gas. Thus, eq (122) becomes 

As an example, consider the process CHJ-H-CHJ' + H·. To estimate the difference in zero point energies 
between CHJ-H and CHJ', I have assumed that one C·H stretch of 3100 cm-1 and two H·C·H bends of 1450 
cm-1 have been lost in going from A-H to A· and H· .This corresponds to a zero point energy difference of 
8.575 kcal. For cases like this, the bond energy will be 

Ecs = DE + 8.575 -5RT29S/2 = DH + 7.095 kcal 

The zero point energy difference for other types of bonds can probably be satisfactorily estimated in a simi· 
lar manner, Having obtainedfEbs and Ecs in this manner we can calculate P and Q from eq (12). 

8} Rts,Ets,Beta are the triplet interaction parameters in A kcal and A-I, respectively. I have been using the 
values given inlohnston[1966], table 11-1. 
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9) Fbs,Fcs,Fpsi2s, Fpsi4s are the single bond force constants. The first two are the stretching constants in 

dynes/ cm; the second two are bending force constants in dyne-cm. In the 3 mass point case, both the bend· 

ing force constants are set to zero. For 4 point models, only one of the bending force constants will have a 
value of zero. 

10) Sa, Sb, Sc are the partition function symmetries for A·H, B· , and A· . H· . B, respectively. 

11) Schem is the chemical multiplicity. 

12) Sea,Seb,Sec are the electronic degeneracies for A·H, B', and A· . H· . B. Sea will normally have the 
value one. Since B· and A· . H· . B each have an unpaired electron, Seb and Sec will normally have the value 
two. 

A.2. Output 

BEBO first prints out the input data. It then the following properties of the complex: 
1) The potential energy of activation V· in kcallmole. 
2) The bond orders nand m of the band c bonds. 
3) The bond distances Rb and Rc in A. 
4) The force constant in the e direction in dynes/ cm and the angle e makes with the Rh axis on a contour 
plot like figure 3. 
5) The force constant in the a in dynes/cm, and the angle to the Rb axis. 
6) The force constant in the unstable normal mode direction in dynes/ cm, and the angle to the Rb axis. 
7) The force constant in the stable normal mode direction in dynes/ Cpl, and the angle to the Rb axis. Note 
that the normal mode directions are usually not orthogonal. 
8) The stretching force constant matrix Fr in dynes/ cm. 
9) The equations for transforming back and forth between the normal mode and valence bond coordinates. 
10) The bending force constants in dyne-em. 
11) The two stretching frequencies in cm- I

• 

12) The one to three bending frequencies in cm- I
• 

13) The zero point energy of the complex in kcallmole. 
14) The zero point energy of the reactants in kcallmole. 
15) The zero poi~t energy of the products in kcall mole. 
16) The Eckart potential function parameters VI and Jl2 in kcal/mole. 
17) The reduced mass for tunneling M, = Mrho. 
18) The second two of Johnston and Heicklen's tunneling parameters (see section 2.5). 
The program then prints out the rate constants as a function of temperature. Also given at each temperature 
is the logarithm of the rate constant, the logarithm of the Arrhenius preexponential factor, the activation 
energy, the tunneling correction factor, and the first of Johnston and Heicklen's tunneling parameters. 
Since the tunneling algorithm has not been checked outside the parameter ranges used by Johnston and 
Heicklen, their parameters values are listed to make sure that they are within the proper ranges. The limits 
areAl andA2 = 0 t020, and U· = 0 to 16. 

Finally, there are listed the differences between the calculated values of the logarithm of the rate constant 
and the values predicted by the least squares fitted Arrhenius equation. This fitted curve is shown by the 
dotted line on the Arrhenius plot. The fitted Arrhenius parameters are given in the caption ot the plot. On 
the next two pages there is a sample output for the ethane and methyl radical reaction. 
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6. APPENDIX: Various Triplet Functions 

The subroutine Trpl is able to provide three different triplet functions which are selected according to the 
value of flag Opt(O). They are as follows: 

Opt(O)= 0: This is the modified Sato triplet function with a small portion neglected. Instead of Eq. (13), Vt 

= Ets is used. This simpler formula seems to have been used in the days of mechanical desk calculators. This 
option is useful when attempts are being made to reproduce the results of earlier workers. 

Opt(O)= 1: Eq. (13) is used. 
Opt(O)= 2: Arthur el al. [19] have developed a triplet energy formula by fitting a function to the H-H 

triplet potential energy values given by Hirschfelder and Linnett [20]. Their formula is 

They claim better results in certain cases when this function is used. 
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BEBO· Calculations 

P~n Identific~tion: 

CH3CH2-H + CH3 = CH3CH2 + H-CH3 

Options Used in Calculatians: 
Modified Sato triplet function. 
F i ' . .!E·-pO i nt, d i ff.;,t'.;'nc €. f';'f'·m .. ~ 13.:: I.Js·ed t"J get ,3.': t. l' '.3.t i ':'n .;'net·'9~/. 

I:.01::€· Ie I ogar it hrll .;.f t h€· "·3.t e c c.ns. t .3.nt • 
Rat~ con::tant units in I it.ers/mole-s. 

i't.:ts::;:.es, if, At.::.r(li.: N·3.:':;.s Unit.s. 
1'11= 17.~510, M2~ 12.01113, M3= I.D080, M4= 12.0110, M5= 3.0240 

:; i (II~ I €. Bc.nd D i t3.n.: ",. s" in Angs. t r,.:,rl'IS. 
F: 3..~. = 1 .526 (Hj. Rt.::;:·= 1 • 09.) (H) , Rc s· = 1 • 09(t(n), R.js= 1 • o ,?(t (H) 

Slngle Band Energies of Center Bonds, in kcal; also p & q Parameters. 
E b s· = 1 ~ 5. 1 (1 (1 , E.::.:. = 1 1 1 • 1~) 0 , p = 1 • () 8 5 , q = 1 • (I'~:3 

Si~gle Bond Energy, Distance, & Morse Parameter for Triplet Inter3.ction. 
Et. S·= 84. 4(tO, Rt s= 1 • 54~)(1IJ. I:€·t ·a= 1.42513 

Single Bond Stretching Force Constants in dynes/cm for Cent€r Bonds. 
Fbs=4.790BOE+05, Fcs=4.79BeBE+05 

Single Bond Bending Force Constants in dyne-em for Outer Masses. 
Fpsi2s=9.14837E-12, Fpsi4s=5.46530E-12 

Partition Function Symmetry Numbers for Species A, B, & C. 
:3A=I. ~;B=I, 8C=1 

t:: f', e' rn i e .::s I t'l u I t. i p 1 i cit. ~,.J • 

':;c h€fu=6 
Electronic Dageneracy for Species A, B, & C. 

SeA=I, SeB=2, SeC=2 
P::suling's Bond-Order Parameter. 

L.:"fitd::s=0.2800 

Properties of Complex. 
Pot '" n t. la 1 Ene r' g~;, IJ f A c 1: 1 I.}~ t Ion: V = 1 4 • 5 ';=.I 6 k ': a 1 
Bond Order Parameters: N=O.5804, M=0.4196 
Bond Dist3.n~es for Center Bonds: 
Fcrce Canst. 1n Rho Direction: 

Rb=1.24235, Rc=1.3331S Ang:.:.t.roffis 
Frho= -8.25841E+04 dvnes/c~: Angl 

F .:d" :: e' (;.:. tE t. 1 !-. S i .-;;: fll a D i r" t?: ti" n: F ;E. ; q fit a = 2 • 9 (1 2 2 7 E + (t 5 d ~, .. ' n e s· .... >: f," : An 9 1 
F C~· I: e C c. n E· t. 1 nOr n. ril • d ; r e .: t i .:, n : F q r" = - 7 • 5 ':; ::: (t 1 E +- (t 4 d V n o? S .. ··· 0: rtt : An q 1 € 

F Col- ':';' :::':..r,.: t .• 

F" t'l.::..t. 1",,( f.jl~ 

in Os n.m. dir~ction: Fqs~ 2.21465E+05 
Stretche::: in dynes/cm 

1.6222..JE+05 
1 • -;-702~)E +(t5 

1. 77(12~)E+05 
4.5418SE+04 

tic, r' rlt.~! C -::. 0::: r' din :t t e T I~ 3.n sf.;. 1-' ril:" t. i Q n;:. 
0.== 3.2115 Rb + 3.0558 Rc Rb= 0.2649 Qs + -0.9779 Qr 
Or= -0.15~5 Rb + 0.8279 Rc Rc= 0.0488 Os + 1.0277 Qr 

F Matri EleMents for Bends; (these equal th€ bending ior~e constant 
FPS12=5.30926E-12, Fpsi1=7.5 4 613E-13, Fp:.:.i4=2.29351E-12 dyne-em 

:tr'.::t,:"'il-II~ FI''''qw"ncie.E: 1"';10.40;. 522.47 1,1.::;",,,; r .. :o:.:·. 
E e ,'"j i n';l F t' '" q 1.1 e n c ~ .;. s: 1 1 :3.2 • .3 -;' , 1 4::: . '? '? • 441) • 72 ' .. I.::s '.' € IK'S. 
Zero Point Ent?r';!y of COMple~= 5.669 ~c~1 

2';1'.:, P':.lnt En-:Tq',.i c.f P",::sct.3.nt,;::.: 7.':-"0':: k,::..l 
:",r,:. F':'ll,t Enet'';I',' .:.( Pr-cldlJl:t.:= 7.47::: ~:.:al 

En.;r.,;',' !::i.:es fat' Eo:l:"t'·t T' .. mnellt-p;t: './1= 6.6'?(t, '·/2=1::::.117 ko:3.1 
R .; d u ': .J d r'T::J.= sf.:, r-' nom r', 0: lIn ';;1 : rh- h ':. = • '? 3 ! 4 
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35. ::::7 de',;! 
-46.42 de·q 

1::.44 de·q 



Ten·,p. , 
10(10/T 

10.50 
0.78 
1. 06 
1 .3:3 
1 .61 
1 • :39 
2. 17 
2.44 
2.72 
3.0(1 
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m 

"'-". 

Rat >? C,)t-.st .• , A fa,:tor·, Ac~ .. Et-Iet~q') ~ Ec k ·:tr·t u* F ·:te t c. r' ~ De-'."'; .:'It i .:'t-I frol'(l Fi t 
T K LogO~) Lo,;p:A) E.:rt.t t Ga.m u* Fit 

2~)0\) 1.796E+[19 9.254 11. 724 22.597 1- 041 1.200 -0.01E: 
1286 1. ~):3(1E+08 8.013 It. 1"'0:, I" 18.626 1.091 1.867 0.019 
947 *:; • 106E+06 6.959 10.718 16.294 1. 166 2.5:34 0.017 
750 1.036E+06 6.015 10. :347 14.866 1.273 :3.2(1(1 O. \)(16 
6;~'1 1 • ::96EH~15 5. 145 10.022 1:;:. :::50 1.422 '3.867 -(1.006 
529 2. 129EHj4 4.328 9. 727 13.079 1.627 4.584 -0.013 
462 :3. 577E+0S 3.553 9. 454 12.462 1.909 5.201 -0.016 
409 6.501E+(!2 2.813 9. 193 11.943 2. 300 5.867 -0.011 
:;:~67 1.264E+02 2. 102 8. 944 11.502 2.851 6.534 0.001 
:3'.33 2.599E+Ol 1.415 8. 716 11. 135 3.627 7.201 n.020 
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Figure 1. Plot of logarithm of rate constant as a function of the reciproca.l of 
the temper-·.atl.H"e. . _ . _. __ •. ' ~ _ .. _.' .... 
A l€·.:'lst :=-ql.!.:'lt"·E·$. fit .:,f ~hE c.:'llcul.ated t~·:'lt>? ce.n:::·t:'lnt ~.o t.h.: F!t·rl·")I::nl l

.1.: . .: .. · ..••• t"'.:·::;,l'_t"l, 
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This is a listing of the computer program for calculating the rate 
constants of hydrogen atom transfer reactions according to the 
bond-energy-bond-order method (customarily referred to as BEBO). 
It is written in an enhanced form of the BASIC language for use 
on a Hewlett-Packard 9845A computer. 
OVERLAP 
READ H K Lam Pmass Econv Prec1 Imax C Null 
DATA S ~S234E.!.27 ,1 .~8033E!.1S, .28,1 .S5972E-24,S .94612E-14,1 E-9 ,15,2 .9977SE1 0,0 
Tpfac=2*PI*K*1.q39S51E13 
DIM Runid$[79] 
DIM Opt(71 1 Temp(1 :1S1 rTPktkcal(1 :16).r.Ktkcal(1 :1S) ,Kqpr(1 :1S) ~Eactpr(1 :1S] 
DIM Gam p r (-I : 1 6] , L k q p r 1: 1 S 1 , Lap r (1 : 1 b ) J. U s t r (1 : 1 6 ) ;z. Err 0 r (1 : 1 6 J ,P a r 1 1 : 3 ) 
COM Delta,Lam,Nbebo,RbsJ.RcsrRts,Betab,~etac,Beta,ebs,Ecs,Ets 
READ Runio$ IHun ldentification. 
READ Opt(O] ,Opt(1] ,Opt(2) ,Opt(31 ,Opt(4] ,Opt(5) ,Opt[S) ,Opt(7) 
READ Ntemp INumber of temperature values. 
IF Ntemp<=16 THEN LS2 
PRINT ItError-03" 
BEEP 
STOP 

LS2: IF Ntemp<5 THEN Opt(1]=2 
REDIM Temp(1 :Ntemp) ,Tpktkcal[1 :Ntemp) ,Ktkcal[1 :Ntemp) ,Kqpr(1 :Ntemp) 
RED I MEa c t p r (1 : N t em p ) .:. Gam p r (1 : N tam pJ r l k 9 P r [1 : N t e m p ) , Lap r 1 1 : N t e m p ] , Err 0 r [1 : N t e m p ] 
IF Ntemp=1 THEN READ Imax fA slngle temperature entered. 
IF Ntemp=1 THEN Tmin=1 
IF Ntemp=1 THEN Opt(1]=2 
IF Ntemp)1 THEN READ Tmin,Tmax fThe minimum and maximum temperatures. 
Rtmin=1000/Tmax 
Rtmax=1000/Tmin 
IF Ntemp)1 THEN Delrt=(Rtmax-Rtmin]/(Ntemp-1) 
FOR L=1 TO Ntemp 
Temp(L)=1000/{Rtmin+(L-11*DelrtJ 
Tpktkcal(Ll=Tpfac*Temp'(Ll 
Ktkcal(L)=Tpktkcal(Ll/[2*PIl 
NEXT L 
Delrt=Delrt/1000 
READ M1,M2;z.M3,M4,M5 
IF M1)0 THeN Mu1=1/M1 
IF M5)0 THEN Mu5=1/M5 
READ Ras,Rbs,Rcs,Rds 
IF Ras)O THEN Rhoa=1/Ras 
IF Rds)O THEN Rhod=1/Rds 
READ Ebs,Ecs,P,Q 
READ Rts,Ets,Beta 
READ Fbs,Fcs,Fpsi2s,Fpsi4s 

READ Sa,Sb,Sc 
READ Schem 
READ seafSeb~Sec 
PAINTER S 1b 

!Atomic mass units. 

fAngstroms. 

fEnergies in kcel/mole. 

IStretching constants in dynes/cm. 
I Bending constants in dynes-cm. 
(Partition function symmetries. 
fChemicel multiplicity. 
IElectronic degeneracy. 
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L72: IF Opt[31=0 THEN PRINTER IS 0 
PRINT" BEBO Calculations" 
PRINT "********************************************************************************,. PRINT "Run Identification:" 
PRINT Runid$ 
PRINT "********************************************************************************ff 
PRINT "Options Used in Calculations:" 
IF Opt(O]=O THEN PRINT "Simplified, modified Sato triplet function." 
IF Opt(0)=1 THEN PRINT "Modified Sa to triplet function." 
IF Opt(0)=2 THEN PRINT "Two-parameter Arthur et.al. triplet function." 
IF Opt(O)=3 THEN PRINT "Three-parameter Arthur et.al., style triplet function." 

L64: IF Opt(1 )=1 THEN PRINT If Five-point difference formulas used to get activation energ 

IF
Y 6~t (1)=2 THEN PRINT "Three-poi nt di fference formu las used to get the act; vati on ene rg 

IF
Y

Opt(21=1 THEN PRINT "Natural logarithm of the rate constant." 
IF Opt(2)=2 THEN PRINT "Base 10 logarithm of the rate constant.1f 
IF Opt(4)=1 THEN PRINT If Rate constant units in cc/mole-s." 
IF Opt(4)=2 THEN PRINT "Rate constant units in cc/molecule-s. 1f 
IF Opt(4]=3 THEN PRINT "Rate constant units in liters/mole-s." 
IF Opt[4)=4 THEN PRINT "Rate constant units in liters/molecule-s. 1I 

IF OQt(6)=0 THEN PRINT "Tunnelina correction not aeelied." 
PRINT "*************************t:t*****************~~***********************************11 PRINT "Masses, in Atomic Mass Units." 
PRINT USING Format31 "M1 ,M2,M3,M4,M5 

Format31: IMAGE" wl=",3D.4D,", M2=",3D.4D,", M3=",3D.4D,", M4=",3D.40,", M5=",3D.4 
D 

PRINT "Single Bond Distances, in Angstroms." 
PRINT USING Format32;Ras,Rbs Rcs,Rds 

Format32: IMAGE If Ras="rZ.5D" Rbs=",Z.5D,", Rcs=",Z.5D," Rds=",Z.5D 
PRINT "Single Bond Energles of Center Bonds, in kcal; also p &. q Parameters." 
PRINT USING Format33;Ebs,Ecs p,a 

Format33: IMAGE" Ebs=",3D.3D,", Ecs=",3D.3D ", p=",Z.3D,", q=",Z.3D 
PRINT "Single Bond Energy1. Distance, & Morse Parameter for Triplet Interaction." 
PRINT USING Format34;Ets,Hts Beta 

For mat 3 4 : I f4 AGE" E t s = II ,3D • 3 D ", R t s = " , Z • 5 D , " , Bet a = " , Z • 4 D 
PRINT "Single 80nd Stretching Force Constants in dynes/cm for Center Bonds." 
PRINT USING Format35;Fbs,Fcs 

Format35: IMAGE II Fbs=",Z.5DE,", Fcs=",Z.5DE 
PRINT If Single Bond Bending Force Constants in dyne-cm for Outer Masses." 
PRINT USING Format36jFpsi2s,Fpsi4s 

Format36: IMAGE" Fpsi2s=" Z.5DE" Fpsi4s=" Z.5DE 
PRINT IIPartition Function S~mmetry Numbers for'Species A, B, & C." 
PRINT USING Format37'Sa,Sb Sc 

Format37: IMAGE If sA=" Z" S8=1I Z" SC=",Z 
PRINT IIChemical Multi~l{c~ty.II ", 
PRINT USING Format38;Schem 

For mat 3 8 : I r~A G EllS C hem = " , Z 
PRINT "Electronic Degeneracy for Species A, B, & C." 
PRINT USING Format39;Sea,Seb,Sec 
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Format39: IMAGE" SeA=",Z," SeB=",Z ", SeC=",Z 
PRINT "Pau ling's Bond-Order Paremeter." 
PRINT USING Format41 ;Lem 

Format41: IMAGE" Lamde=" Z.4D PRINT 11*******************'************************************************************" 
Sym=Schem*Sec*Sa*Sb/£Sea*Seb*Scl Fbs=1E-16*Fbs/Econv IForce constants are converted to kcel energy units. 
Fcs=1E-16*Fcs/Econv 
Fpsi2s=Fpsi2s/Econv 
Fpsi4s=FDSi4s/Econv I ******~****************************************************************** 
, The saddle point position is calculated. 
N=.5 
Icount=O 
L11: IF N<O THEN N=.5*Nold 
IF N>1 THEN N=.5*£Nold+1J 
Nold=N CALL TrplfRbs,Rcs,Rts,Ets,Beta,Lam,N,Vt,Vtn,Vtnn,Vtr,Vtrr,Opt£OJJ 
M=1-N V=Ebs*(1-NAP)-Ecs*MAQ+Vt 
Vn=_Ebs*P*NA(P-1J+Ecs*a*M Aca-1)+Vtn 
Vnn=_Ebs*P*£P-1)*NA(P-2J-Ecs*a*(a-1)*MA(Q-2)+Vtnn 
N=Nold-Vn/Vnn 
IF ABS[(N-NoldJ/Nold)<Prec1 THEN L10 
Icount=Icount+1 
IF Icount>Imax THEN L12 
GO TO L 11 
L12: PRINT "Error-01" 
STOP 
L10: N=Nbebo=Nold , ************************************************************************* 
I Next~ the stretching part of the force constant matrix is calculated. 
Nsq=NAi:! 
Msq=M"'2 
N2m2=Nsq+Msq 
Nm=N*M 
Frho=Vnn*Nm"'2/(N2m2*Lam"'2J 
Fsigma=fFbs*N"'3+Fcs*M"'3+Vtrr)/N2m2 
DIM Frf1 :2,1 :2) 
Fr!1,11=fFrho*MSg+Fsi gma*NSqJ/N2m2 
Fr 1 ,21=Fr£2,1 J=r-Frho+Fsigma)*Nm/N2m2 
Fr 2,21=£Frho*Nsg+Fsigma*Msq)/N2m2 
Rb=Rbs-Lam*LOG(NJ 
Rc=Rcs-Lam*LOG(MJ 
Dfr=DET{FrJ 
Dfr=SGN{DfrJ*SQR£ABS£DfrJl 
Jfac=[Rb*Rc/Rbs)"'2 
Rhob=1/Rb 
Rhoc=1/Rc 
Cc=-Nbebo/(1-NbeboJ 
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Ma=M1+M2 
Mx=M3 
Mb=M4+M5 
Maxb=Ma+Mx+Mb 
Mrho=(Ma*Mb*(1+Cc)·2+Mb*Mx*Cc·2+Ma*Mx)/(Maxb*(1+Cc·2]) 
DIM Azr(1 :3,1 :2) IALq(1 :3,1 :2] 
Azr[1,11=-(Mb+Mx /Maxb 
Azr(1 ,2}=Azr(2,2 =-Mb/Maxb 
Az r ( 2,1 1 =Az r (3 ,1 1 =Ma/Ma xb 
Azr(3,2)=(Ma+Mx)/Maxb 
I Mrho=1 
I ************************************************************************* 
I Next, the Gr matrix is caLcuLated. This wiLL hoLd for 3,4,&5 atom modeLs 
I with rigid bonds on the ends. 
I First j the type of modeL being used is determined. (Note, aLL are Linear) DIM Gr(-I :2,1 :2] 
Model=5 
IF [M1=0) OR (M5=0) THEN ModeL=4 
IF (M1=0) AND [M5=0] THEN ModeL=3 
MOdeL2=ModeL-2 
Mu2=1/M2 
Mu3=1/M3 
Mu4=1/M4 
Gr{1,1 ]=Mu2/(1+M1/M2]+Mu3 
Gr(1 ,21=Gr(2,1 )=-Mu3 
Gr(2,2]=Mu3+Mu4/(1+M5/M4] 
I Stretching frequencies evaLuated. 
DIM Hr(1 :2,r.1 :2] 
MAT Hr=Gr*rr 
Bh=Hr(1,1 ]+Hr(2,21 
Ch=Hr(1,1.1 )*Hr[2,2)-Hr(1 ,2)*Hr(2,1] 
Dh=SQR(~h·2-4*Ch) 
DIM Evs(1 :2] ,Frqs(1 :2) ,Ls(1 :2) 
Evs(1 }=.5*(Bh+Dh) 
Evs(2}=.5*(Bh-Dhl 
FOR 1=1 TO 2 
Frqs(I)=SGN(Evs[I))*682.427*SQR(ABS(Evs[I)))/(2*PI) lIn 1/cm. NEXT I 
I ************************************************************************* 
I Bending frequencies now caLcuLated. 
Fpsi3=-Rb*Rc*Vtr/(Rb+Rc) 
DIM G(1 :3,1 :3) ,F(1 :3,1 :3) JH(1 :3,1 :3),lEvb(1 :3),lFrqb(1 :3] ,Lb(1 :3) 
RED I M G (1 : Mod e L 2 r 1 : f4 ode l 2 , F (1 : Mod e L c , 1 : ~1 ode L c) , H (1 : Mod e L 2 ,1 : Mod e L 2 1 
RED I MEv b (1 : ~1 ode L 2 1 , F r q b (1 : Mod e L 2) , L b l 1 : ~1 ode L 2 ] 
ON ModeL2 GOTO La3,La4,La5 
I •••••••••••.••.•••••••••.••••.•••••••••.•.•••••• ' •••••••••••••••••••••••••. I Three atom modeL. 
La3: G(1 ,11=Mu2*Rhob·2+Mu4*Rhoc·2+~"u3*(Rhob+Rhoc].2 F(1 ,1 ]=FQsi3 
MAT H=G*F 
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Evb(1 )=H{1,1) 
GOTO L20 
I •••••••••• 11 11 11 11 11 11 11 11 • 11 11 11 11 11 11 • 11 11 • 11 11 11 • 11 11 11 11 11 11 11 11 11 • 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 

I Four atom modeLs. 
La4: IF M1=0 THEN La4sub 
G11,1 =Mu1*Rhoa"2+Mu3*Rhob"2+Mu2*(Rhoa+Rhob)"2 
G 1, 2 = G ( 2, 1 1 = - Rho b * ( r Rho a + Rho b ) * M u 2 + ( Rho b + Rho c ) *~, u 3 ) 
G 2,2 =Mu2~Rhob"2+Mu4iRhoc"2+Mu3*(Rhob+Rhocl"2 
F(1,1 =Fl?si2=Fl?si2s*N 
F (1 ,2 =F ( 2 ,1 ) =0 
F{2,2 =F{lS13 
MAT H=G*F 
GOTO La4end 
La4sub: G(1 11=Mu2*Rhob"2+Mu4*Rhoc"2+Mu3*(Rhob+Rhocl"2 
G(1,2J=G[2,1)=-Rhoc*(rRhob+Rhocl*MU3+(Rhoc+Rhod)*Mu4) 
G(2,21=Mu3 Rhoc"2+Mu5 i Rhod"2+Mu4*(Rhoc+Rhod)"2 
F(1,1 )=Fl?si3 
F(1 ,2)=F(2,1 )=0 
F{2,21=F~s14=Fpsi4s*M 
MAT H=G*F 
La4end: 8h=H[1 1 )+H[2 21 
Ch=H(1,1 )*H(2,21-H(1 ,21*H(2,11 
Oh=SQRlBh"2-4~Chl 
Evb{11=.5*(Bh+Ohl 
Evb(21=.5*(Bh-Dhl 
GOTO L2D 
I 11 11 11 11 • 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 • 11 11 11 11 11 

I Five atom modeL. 
LaS: G(1,11=Mu1*Rhoa"2+Mu3*Rhob"2+Mu2*(Rhoa+Rhobl"2 
G(2,21=Mu2*Rhob"2+Mu4*Rhoc"2+Mu3*(Rhob+Rhocl"2 
G(3,31=Mu3*Rhoc"2+Mu5*Rhod"2+Mu4*(Rhoc+RhodJ"2 
G(1 ,2J=G(2,1 J=-Rhob*{ (Rhoa+Rhob)*Mu2+(Rhob+RhocJ*Mu3J 
G(2,31=G(3,2J=-Rhoc*((Rhob+Rhocl*Mu3+(Rhoc+Rhodl*Mu41 
G{1 ,3 )=G(3,1 )=Mu3*Rhob*Rhoc 
MAT F=ZER 
F(1,11=Fpsi2=Fpsi2s*N 
F(2,2]=Fpsi3 
F(3,3J=F{lsi4=Fpsi4s*M 
MAT H=G*F 
DIM Rz[O:21 
Rz(0)=H(1 1 )*H(2 2J*H(3 3)+H(2 11*H(3 2J*H(1 3l+H[3 11*H(1 2J*H[2 3) 
Rz(O)=Rz(Ol-H(2J2)*H(3~1J*H(1~Sl-H(1~1J*H(312)*H(2,S)-H(3,SJ*H(2,11*H(1 ,21 
Rz[1J=H(3 1 l*H(l 31+H[~ 21*H(~ 31+H(~ 1)*H('1 21 
Rz(1)=Rz[il-H{1~11*H[2~2)-H[1 ,1J*H{3,SJ-H[2,2J*H{3,31 
Rz(2l=H{1,1 )+H(~,2l+Hl~,31 
CALL Cubic(Rz(*),Evb( JJ 
I 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 

I Bending freguencies. 
L20: FOR 1=1 TO ModeL2 
Frqb(Il=S82.427*SQR£Evb(I))/{2*PI) 
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NEXT I 
PRINT "Pro~erties of Complex." 
PRINT USING Format1;V 
Format1: IMAGE "Potential Energy of Activation: V=",DD.3D," kcal" 
PRINT USING Format2;N M 
Format2: IMAGE "Bond Order Parameters: N=",Z.4D,", M=",Z.4D 
PRINT USING Format3;Rb r Rc 
Format3: IMAGE "Bond Dlstances for Center Bonds: Rb=",Z.5D,", Rc=",Z.5D," Angstroms" 
PRINT USING Format4;Frho*Econv*1E16,ATN(Cc]*180/PI 
Format4: IMAGE "Force Canst. in Rho Direction: Frho= ",MZ.5DE," dynes/cm:"," Angle=",M 

DDZ.DD " deg" 
PRINT USiNG Format5;Fsigma*Econv*1E16,ATN(-1/Cc)*180/PI 
Format5: IMAGE "Force Canst. in Sigma Direction: Fsigma=",Z.5DE," dynes/cm:"," Angle=",M 

DDZ.DD " deg" 
DIM Lqi(1:2 1:2) Lg(1:2 1:2) 
CALL NormodlHr(*J ,Evs(*J ,Fr(*] ,Lqi (*]) 
MAT Lq=INV(Lqi] 
DEF FNGg(Z1=Fr(1 11 )*COS(Z) "2+2*Fr(1 ,2)*SIN[Z)*COS[Z)+Fr(2,2)*SIN[Z)"2 
Z= Lq ( 2 ,2 ) / Lq (1 ,2 
Zr=ATNlZ) 
PRINT USING Format4a;FNGg(Zr)*Econv*1E16,Zr*180/PI 
Format4a: IMAGE "Force Canst. in ar n.m. direction: Fqr=",MZ.5DE," dynes/cm:"," Angle=", 

MDDZ.DD," deg" 
Z= Lq ( 2,1 ) I Lq [1 ,1 ) 
Zs=ATNlZ) 
PRINT USING Format4b;FNGg(Zs]*Econv*1E16,Zs*180/PI 
For mat 4 b: I MAG E " For c e Can st. i nOs n. m. d ire c t ion: F q s = " , t~ Z • 5 DE," d Y n e s / c m : " ," A n 9 l e = " , 

MDDZ.DD," deg" 
MAT Alq=Azr*Lq 
I MAT PRINT Alq" 
DIM Rcomglex(1 :2) ,Zeq(1 :3) 
Rcomplex(1 ]=Rb 
Rcom(llex(2]=Rc 
MAT Zeq=Azr*RcompLex 
I MAT PRINT Zeq 
PRINT "F Matrix for Stretches in dvnes/cm" 
P R I NT U SIN G " 2 X , ~1 Z • 5 DE, 2 X " ; F r (1 , 1 ) ~ E can v * 1 E 1 6 , F r (1 , 2 ) * E can v * 1 E 1 6 
PRINT USING "2X,MZ.5DE,2X";Fr[2,1 )*Econv*1E16,Fr(2,2)*Econv*1E16 
PRINT "Normal Coordinate Transformations" 
PRINT USING Format45;Lqi (1-,1 ).l.Lai (1,2) ,Lq(1,1) ,Lq(1 ,2) 
For mat 45: I MAG E" 0 s = " ~1 L • 4 U II R b + "M Z • 4 D ," R c " , " R b = ", t~ Z • 4 D ," as + " , M Z • 

4D " Or" ", 
PRINt USING Format46 ;Lqi (2-,1 J.l.Lai [2,21 ,Lq(2,1 J ,Lq[2,21 
Format46: IMAGE" Or=" ML.4u II Rb + "MZ.4D" Rc" " Rc= ",MZ.4D," as + ",MZ. 

4D " Or" "", 
PRINt "F Matrix Elements for Bends; [these equal the bending force constants)" 
PRINT USING Format6;Fpsi2*Econv,Fpsi3*Econv F(lsi4*Econv 
Format6: IMAGE" Fpsi2=" Z.5DE," Fpsi3=",i.5DE,", Fpsi4=",Z.5DE," dyne-cm" 
PRINT USING Format7;-Frqsf2J ,FrqsI1) 
Format7: IMAGE "Stretching Frequencies: ",4D.DD,"i, ",4D.DD," wave nos." 



2700 IF Model=3 THEN PRINT USING Format8 Frqb[1] ,Null Null 
2710 IF Model=4 THEN PRINT USING Format8 Frqb(11,Frqbf21,Null 
2720 IF Model=5 THEN PRINT USING Format8 Frqb(1} Frqb[21 Frgb[3} 
2730 Format8: IMAGE "Bending Fraquencies ",40.00,", ",40.00,", ",40.00," wave nos." 2740 Zcmplx=Frqs(1) 
2750 FOR 1=1 TO Model2 
2760 ZcmQlx=Zcmplx+2*Frqb(I) 
2770 NEXT I 
2780 Zcmplx=.5*Zcmplx*2.8585E-3 
2790 PRINT USING Format9;Zcmplx 
2800 Format9: IMAGE "Zero Paint Enerav of Comolex=" 30.30 II kcal" 
2810 PRINT "************************"#*******101*****'*****'**********************************" 
2820 I ************************************************************************* 
2830 I The rate constants are now evaluated at the different temperatures. 2840 Unit=1 
2850 ON Opt(4) GOTO Lunit1 ,Lunit2,Lunit3,Lunit4 
2860 Lunit2: Unit=6.02E23 
2870 GOTO Luni t1 
2880 Lunit3: Unit=1000 
2890 GOTO Lunit1 
2900 Lunit4: Un1t=6.02E26 
2910 Luni t1: I Conti nue 
2920 OEF FNG[Z)=Z*EXP[-.5*Z)/(1-EXP{-Zl) 
2930 DIM Lograte (-1 :11 
2940 NRt=O 
2950 IF Opt(1)=1 THEN L61 
2960 Oelrt=1.987E-3*.05/V 
2970 Npt=1 
2980 L61: Evbs=Fbs*(Mu2+Mu31 
2990 Frqbs=682.427*SQR(Evbs)/(2*PI) 
3000 Zreact=Frgbs/2 
3010 Evcs=Fcs*[Mu3+Mu4] 
3020 Frqcs=682.427*SQR[Evcs]/(2*PI) 
3030 Zprod=Frqcs/2 
3040 IF Model=3 THEN L40 
3050 IF (Model=4) AND (M1<>0) THEN L46 
3060 Rhocs=1/Rcs 
3070 Rhods=1/Rds 
3080 Evpsi4s=Fpsi4s*(Mu3*Rhocs-2+Mu5*Rhods-2+Mu4*(Rhocs+Rhods]-2] 
3090 Frqpsi4s=682.427*SQR[Evpsi4s)/{2*PI] 
3100 Zgrod=Zprod+Frqpsi4s 
3110 L~6: IF (Model=~l AND (M1=0) THEN L40 
3120 Rhoas=1/Ras 
3130 Rhobs=1/Rbs 
3140 Evpsi2s=Fps;2s*[Mu1*Rhoas-2+Mu3*Rhobs-2+Mu2*(Rhoas+Rhobs)A21 
3150 Frqpsi2s=682.427*SQR{Evpsi2s]/{2*PI) 
3160 Zreact=Zreact+FrqRs;2s 
3170 IF Opt(6)=0 THEN Tunnel=O 
31.80L40: IF Opt [6)=0 THEN L85 
3190 Zreact=Zreact*2.8585E-3 
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ZQrod=ZQrod*2.8585E-3 
PRINT USING Format1 0 iZraaet 
Format10: IMAGE "Zero Point Energy of Reactants=II,DD.3D,1I keal" PRINT USING Format11 ;Zprod 
Format11: IMAGE "Zero Point Energy of Produets=II,3D.3D," keal" V1=V-Zreact 
Tunne l=1 
IF V1>O THEN L84 
Tunnel=O 
PRINT "Eckert tunneling factor not applied because zero point energy of reactants is" PRINT "greater than the barrier height." GOTO La5 
LB4: V2=V-Ebs+Ecs-Zprod 
PRINT USING Format12;V1 ,V2 
Format12: IMAGE "Energy Bases for Eckart Tunneling: V1=",DD.3D,", V2=II,DD.3D," keal ll PRINT USING Format13;Mrho 
Format13: IMAGE "Reduced Mass for Tunneling: Mrho=",00.40 
I Johnston's tunneling factors calculated. 
Nu=SQR[-Evs r 21*Econv*1E16/[Mrho*Pmassll/(2*PIl 
A1=V1*Econv~2*PI/[H*Nu) 
A2=V2*Econv*2*PI/[H*Nu) 
IF (A1<201 AND [A2<20] THEN L300 
Tunnel=O 
PRINT IIEckart tunneling factor not calculated because A1 or A2 is greater then 20." GOTO L85 
L3DO: PRINT USING Format16;A1,A2 
Format16: IMAGE "Johnston's tunnelina oeremeters' A1=" OZ 3D" A2=" OZ.30 
L85: PRINT "************************~*~***************'*****'*'*****,******************* ****11 
IF Opt[31=0 THEN PRINTER IS 16 
FOR L=1 TO Ntemp 
PRINT USING Format20;L Ntemp 
Format20: IMAGE "Calcutating rate canst. at II,OO,"'th temperature value out of ",DO," va lues." 
Rtemp=1/Temp[Ll 
FOR Nt=-Npt TO Npt 
Rt=Rtemp+Nt*Oelrt 
T=1/Rt 
Tpktkcalsub=Tpfec*T 
Ktkcalsub=Tp.ktkcalsub/r2*PIl 
Kfac=EXP£-VtKtkcalsubl*Sym*Jfac*C*Frqs{21*SQR[FbsJ/[Ofr*Unitl Tf=1.439/T 
ON Model2 GOTO Lb3,Lb4,Lb5 
Lb3: Kcl=Kfac*Tpktkcalsub"'1.5/Fpsi3 
G3=FNG{Tf*FrQs(1JJ*FNGITf*FrQb[111"'2/FNGCTf*Frqbsl Kg=G3*Kcl 
GOTO L30 
Lb4: IF M1=0 THEN Lb4sub 
KCl=Kfac*Toktkcalsub"'1.5*Fpsi2s/(FpSi2*FpSi31 
G4a=FNG(Tf~Frqs{1)1*{FNG{Tf*FrQb[1JJ*FNGITf*FrQb{2JJ)~2 
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G4a=G4a/(FNG[Tf*Frqbs}*FNG(Tf*Frqpsi2s}~2} 
Kg=G4a*KcL 
GOTO L30 
Lb4sub: Kcl=Kfac*Tpktkcalsub~2.5/[4*PI*FpsiS*Fpsi4} 
G4b=FNG(Tf*Frqs{11J*(FNG[Tf*Frqb(1))*FNGLTf*Frqb[21))A2 
G4b=G4b/FNG[Tf*Frqbsl 
Kg=G4b*KcL 
GOTO LSO 
Lb5: KcL=Kfac*Tpktkcalsub A2.5*Fpsi2s/[4*PI*FpSi2*FpsiS*Fpsi41 
G5=FNG(Tf*Frqs[111*(FNG{Tf*Frqb[11)*FNG(Tf*Frqb(21]*FNG{Tf*Frqb(S)))~2 
G5=G5/(FNG(Tf*Frqbs)*FNG(Tf*Frqpsi2s)A2) 
Kg=G5*Kcl 
LSO: Gam=1 
IF TunneL=O THEN L87 
CALL TunL(V1*Econv J V2*Econv,Frho*Econv*1E16,Mrho*Pmass,T,Gam) 
L87: KcL=6.025E23*"IE-24*Kcl 
Kq=6.025E23*1E-24*Kq*Gam 
IF Nt=O THEN Kqtab=Kg 
IF Nt=O THEN Gamtab=Gam 
Lograte[Nt)=LOG(Kql 
NEXT Nt 
IF Npt=O THEN L59 
Eact p r(Lj=-1.987E-3*(-LOgrate(-1 1+Lograte(1) )/(2*Oelrt) 
IF Opt(2 =1 THEN Lapr[Ll=LOG(Kqtab*EXP(Eactpr(L)/Ktkcal[LJ1) 
IF Opt(2 =2 THEN Lapr{LJ=LGT(Kqtab*EXP(Eactpr(LJ/Ktkcal(LJ)J 
L59: K1~r[L)=Kqtab 
IF Opt 2}=1 THEN Lkqpr(Ll=Lograte(Ol 
IF Opt 21=2 THEN Lkqpr(L)=LGT(Kqtabl 
UstrlLl=Nu*H/(K*Temp[L)l 
Gampr(L)=Gamtab 
NEXT L 
IF Opt(3)=O THEN PRINTER IS 0 
IF Npt=1 THEN L60 
OIM 00[1 :5).101 [1 :5).10i (1 :5) 
00(1 J=-2.08~3333333~ 
00(2)=4 
00(3J=-S 
00 (4) =1 .33S33333333 
00(51=-.25 
01 (1 ) =- .25 
01(2)=-.833333333333 
01(3)=1.5 
01(4)=-.5 
01(5)=8.33333333333E-2 
Oi(1)=8.3333S333333E-2 
Oi(2]=-.666666666667 
0; {3 ) =0 
0;(41=.666666666667 
Oi (51=-8.33333333333E-2 
MAT Ea at p r=ZER 
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FOR J=1 TO 5 
Eactpr(1)=Eactpr(11+00(Jl*Lkqpr(J1 
Eactpr[21=Eactpr(21+01(J1*Lkqpr[Jl 
Eactpr(Ntemp-11=Eactpr(Ntemp-11-01(Jl*Lkqpr(Ntemp-J+11 
Eactpr[Ntemp1=EactprlNtemp)-OO(J1*Lkqpr(Ntemp-J+1) 
FOR Na=3 TO Ntemp-2 
Eactpr(Na1=Eactpr(Na]+Oi(J1*Lkqpr(Na+J-31 
NEXT Na 
NEXT J 
IF Opt (21 =1 THEN MAT Eactpr=Eactpr * (-1 .987E-3/De L rt J 
IF Opt(2]=2 THEN MAT Eactpr=Eactpr*[-1.987E-3*LOG[101/0eLrt] 
L60: FOR L=1 TO Ntemp 
Afac=Kqpr(L1*EXP(EactprCLJ/KtkcaL(L11 
IF Opt[21=1 THEN LaprIL)=LOG[Afac) 
IF Opt(21=2 THEN Lapr[L)=LGT[Afac] 
NEXT L 
IF [Opt(3]=O) AND [Ntemp)1) THEN PRINT PAGE 
IF Ntemo)1 THEN CALL Fit[Oot[2] Ntemo Temo[*l Lkoor[*l Error(*l Par[*l Variance Ootr7]) 
PRINT "~******************~*********~****~******'4~*******************************~*****" 
PRINT "Tempo t Rate Canst.,. A factor, Act. Energy, Eckart U* Factor, Deviation from Fit" 
IF Opt(2)=1 HEN PRINT "1uOO/T T K Ln[K) Ln[A) Eact Gam U* 

Fit" 
IF Opt(2)=2 THEN PRINT "1000/T T K Log(K1 Log(A) Eact Gam U* 

Fit" 
FOR L=1 TO Ntemp 
PRINT USING Format14;1000/Temp(L) ,Temp(L) ,Kqpr[L) ,Lkqpr(L) ,Lapr[Ll ,Eactpr(L] ,Gampr[L] ,Us 

tr[Ll,Error[L) 
NEXT L 
Format14: IMAGE 1X Z.OO 2X 40 2X Z.30E 6(1X MOZ.30) 
PRINT "********************************************************************************" 
IF Ntemp=1 THEN L63 
IF Opt [3] =1 THEN PAUSE 
CALL Pltk(Opt(*l ,Ntemp,Temp(*l ,Lkqpr[*) ,Error(*l) 
IF Opt(3)=1 THEN PAUSE 
IF Opt(3)=O THEN DUMP GRAPHICS 
EXIT GRAPHICS 
PRINT "Figure 1. Plot of logarithm of rate constant as a function of the reciprocal of" 
PRINT "the temperature." 
PRINT "A least squares fit of the calculated rate constant to the Arrhenius expression," 
IF Oot(7]=2 THEN PRINT "k=A*EXP[-Earr/RT], yields the following values for the parameter 

s:h 
IF Opt[71=3 THEN PRINT "k=A*(TAnl*EXP(-Earr/RT), yields the folLowing vaLues for the par 

ameters:" 
IF (Opt(7)=2) AND (Opt(2)=1] THEN PRINT USING Arrhen;us1a;Par(11,Par(3)/1000 
IF (Opt(7)=2] AND (Opt(2]=2J THEN PRINT USING Arrhen;us2a;Par(1] ,Par(3)/1000 
Arrhenius1a: IMAGE" Ln(A)=" MZ.30E" Earr=" MOZ.30 
A r r hen ius 2 a: I MAG E" LOG ( A ) = ,. , M Z • 3 0 E , ,. , Ear r = ,. , M 0 Z • 3 0 
IF (Opt(7)=3] AND (Opt{2)=1] THEN PRINT USING Arrhen;us1b;Par[1) ,Par(2) ,Par(3]/1000 
IF (Opt[7)=3) AND [Opt(2)=2] THEN PRINT USING Arrhenius2blPar(11 ,Par[21 ,Par(3]/1000 
A r r hen ius 1 b: I MAG E" L n (A ] =" , M Z . 3 0 E , " , n = " , M Z • 3 0 , " , t: a r r = " , ~1D Z • 3 0 
Arrhenius2b: I~1AGE II Log[A)=" MZ.30E" n=" MZ.30" Earr=" r~OZ.30 L63: PRINTER IS 16 " , t ,t , 

IF Opt(5]=0 THEN L82 
I Position of normal coordinate plot. 
L82: PRINTER IS 16 
SERIAL 
END 
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I Run Identificetion 
DATA CH3CH2-H + CH3 = CH3CH2 + H-CH3 
I Options: 
I 0,1,2,3,4,5,6,7 
DATA 1,1,2 ... 1,3,0,1,3 
I Number aT temperature values. 
DATA 10 
I Minimum and maximum temperatures, [or a single temperature if Ntemp=1). 
DATA 333.3333333,2000 
I Masses: M1 M2 M3, M4, M5 
DATA 17.051 ,i 2 .oi1 ,1 .008,12.011 ,3.024 
I Single bond distances: Ra, Rb, Rc, Rd 
DATA 1 .526,1 .09,1 .09,1 .09 
I Bond energies: Ebs and Ecsl BEBO parameters: p and q 
DATA 105.1 ,111 .1 ,1 .0852,1 .09~5 
I Triplet single bond dlstance, bond energy, and Morse parameter: 
I Rts Ets and Beta 
DATA 1.54,84.4,1.425 
I Stretchlng constants Fbs Fcs and bending constants Fpsi2s, Fpsi4s 
DATA 4.79E5,4.79E5,9.14837E-12,5.4653E-12 
I Partition function symmetries for species A, B, and C 
DAT A 1 r 1 ,1 
I Chemlcal multiplicity 
DATA 6 
I Electronic degeneracies for species A, B, and C 
DATA 1 ,2,2 
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SUB Trpl[Rbs,Rcs,RtstEts,BetaLLam,N,Vt,Vtn,Vtnn,Vtr,Vtrr,Version) 
I Version=O; Simplif1ed, modiried Sato function. 
I Versi on=1; Modi fi ed Sa to functi on. 
I Version=2; Arthur et.al., function [2 parameter form). Delrs=Rbs+Rcs-Rts 
IF Version=2 THEN Delrs=Delrs+Rts 
M=1-N 
R=Delrs-Lam*LOG[N*Ml 
Rn=Lam*r1/M-1/Nl 
Rnn=Lam*[1/N A2+1/M A21 
IF (Version=1] OR (Version=Ol THEN L10 
P1=5.873 
P2=1.747 
P3=1.525 
O=Ets*P1*Beta AP3 
E=EXP[-P2*Beta*Rl 
Er=-P2*Beta*E 
En=Er*Rn 
Enn=-P2*Beta*[Rnn*E+Rn*Enl 
Err=-P2*Beta*Er 
Rp3=RAP3 
Vt=O*E*Rp3 
Vtn=O*Rp3*rEn+E*P3*Rn/Rl 
Vtnn=O*RP3*[Enn+P3*[[2*En+E*(P3-11*Rn/Rl*Rn+E*Rnnl/Rl 
Vtr=O*Rp3*fEr+P3*E/Rl " 
Vtrr=O*Rp3*[Err+2*P3*Er/R+P3*(P3-11*E/R A 21 
SUBEXIT 
L10: E=.5*EXP[-Beta*Rl 
Er=-Beta*E 
En=Er*Rn 
Enn=-Beta*(Rnn*E+Rn*Enl 
Err=-Beta*Er 
IF Version=O THEN L15 
Vt=Ets*E*(1+E] 
Efac=1+2*E 
Vtn=Ets*En*Efac 
Vtr=Ets*Er*Efac 
Vtnn=Ets*(Enn*Efac+2*En A 21 
Vtrr=Ets*(Err*Efac+2*Er A 2] 
SU8EXIT 
L15: Vt=Ets*E 
Vtn=Ets*En 
Vtnn=Ets*Enn 
Vtr=Ets*Er 
Vtrr=Ets*Err 
SUE1ENO 
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SUB CubicCCfC*),Rt[*)) 
R=-CfIOj O=-Cf 1 
P=-Cf 2 
A=[3*O-P'"2}/3 
B=(2*P'"S-9*P*O+27*A)/27 
Fc1=A"'3/27 
Fc=B"'2/4+Fc1 
IF Fc<O THEN L89 
PRINT "Error-005 u 
STOP 
L89: PSi=-B/(2*SOA(-Fc1)1 
DEG 
Ps;=ACS[Psi)/3 
Fc=2*SORf-A/31 
Rt!11=FC*COS(PSil-P/S 
Rt 2)=Fc*COS(Psi+120}-P/3 
Rt 3)=Fc*COS(Psi+240)-P/3 
RAD 
SUBEND 
SUB Normod(H(*l Ev(*l,F(*l,L;(*ll 
DIM G ( 1 : 261 : 2) , G t (1 : 2 , 1 : 2) , F 9 (1 : 2 , 1 : 2) ,G f 9 (1 : 2 , 1 : 2) , L (1 : 2 ,1 : 2' 1 
FOR 1=1 T 2 
G (1 ,I ) =- H [ 1 ,2) I { H {1 ,1 1 -E v { I 1 1 
G ( 2t,I ) =1 
NEX I 
MAT Fg=F*G 
MAT Gt=TRN(G) 
MAT Gfg=Gt*Fg 
FOR 1=1 TO 2 
Ll2,Il=SOR[ Ev lI)/Gfg[I,I)) 
L(1

f
I)=G(1,I) L(2,I] 

NEX I 
MAT Li=INV(Ll 
SUBENO 
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SU8 Tunl[V1 ,V2,F,M,T,Gam) I 6 point Gaussian Lengendre 
OPTION 8ASE 1 
D I ~1 X ( 6) \H 8 ) 
DATA .238619186083,.661209386466,.932469514203 
FOR N=4 TO 6 
READ X[N) 
X[7-N)=-X[N) 
NEXT N 
DATA .467913934573,.360761573048,.171324492379 
FOR N=4 TO 6 
READ \'I(N) 
\'1 ( 7 - N ) = W [ N ) 
NEXT N 
H=6.6234E-27 
K=1.38033E-16 
Kt=K*T 
A=V1-V2 
V1 h=SQR [V1 ) 
V2h=SUR(V2J 
B=[V1 h+V2h}"2 
Pi2=2*PI 
L=Pi2*SUR(-2/F)/[1/V1h+1/V2h) 
C=H"2/(8*M*L"21 
DEF FNCosh(Z)=.5*[EXP(Z)+EXP(-Z)) 
Delta=[8-C)/C 
IF Delta(O THEN L10 
Dfac=FNCosh(PI*SUR[Delta)) 
GOTO L 11 
L10: Dfac=COS[PI*SUR[-Delta)) 
L11: IF V2>=V1 THEN EO=-V1/Kt 
IF V1>V2 THEN EO=-V2/Kt 
Va v = .5* ( V1 + V2 1 
Eb1=[C*[LOG£2*{1+Dfac)/.0141/Pi2)"2-Vav)/Kt 
Eb2=3.2 
Eb=~lIN [Eb1 J.Eb2) 
Em=.5*(Eb-t:0) 
Ep=.5*[Eb+EO) 
Gam=O 
FOR N=1 TO 6 
E=Em*X£NJ+Ep 
Kte=Kt*E 
Alph1=PI*SUR[ [Kte+V1 l/C) 
Alph2=PI*SUR([Kte+V2)/Cl 
Facp=FNCosh(Alph1+Alph2) 
Facm=FNCosh[Alp.h1-Alph21 
Ke=(Facp-Facmli[Facp+Dfacl 
Y=Ke*EXP(-E) 
Gam=Gam+\'I(N)*Y 
NEXT N 
L50: Gamfac=EXP(-Eb} 
Gam=Em*Gam+Gamfac 
SUBENO 



6500 SUB PltkCOptC*] ,Nm,TC*] ,LkC*) ,EC*)) 
6502 DEG 
6504 PLOTTER IS 13,"GRAPHICS" 
6506 GRAPHICS 

~~~8 5~~A*~i~~l~~~~1BY~1cs(1 :11) 
651 2 DATA .01,.02,.025,.05,.1,.2,.25,.5,1,2,2.5 
6514 MAT READ Xtics 
6516 Xmin=1000/T(1] 
6518 Xmax=1000/T(Nm] 
6520 Xspan=Xmax-Xmin 
6522 FOR 1=1 TO 11 
6524 Itab=I 
6526 IF INTCXspan/XticsCI]J<=6 THEN L30 
6528 NEXT I 
6530 L30: Xtic=Xtics(Itabl 
6532 Xstart=INT(Xmin/Xtic *Xtic 
6534 Xstop=INTCXmax/Xtic) Xtic 
6535 IF (Xstop>Xmax] AND (Xstop-Xmax>1E-2*Xtic) THEN Xstop=CINTCXmax/Xtic)+1)*Xtic 
6536 Ymin=Ymax=Lk(1) 
6538 FOR N=2 TO Nm 
6540 IF Ymin>Lk(N] THEN Ymin=Lk(N) 
6542 IF Ymax<Lk(N) THEN Ymax=Lk(N) 
6544 NEXT N 
6546 Yspan=Ymax-Ymin 
654B MAT Ytics=Xtics 
6550 FOR 1=1 TO 11 
6552 Itab=I 
6554 IF INTCYspan/YticsCIll<=6 THEN L40 
6556 NEXT I 
6558 L40: YtiC=YtiCS(Itabj 
6560 Ystart=INT(Ymin/Ytic *Ytic 
6562 Ysto~=(INT(Ymax/Ytic +1)*Ytic 
6564 SCALE Xstart,Xstop,Ystart,Ystop 
6566 LINE TYPE 3 
6568 GRID Xtic,Ytic,Xstart,Ystart 
6570 LINE TYPE 1 
6572 AXES Xtic,Ytic,Xstart,Ystart,2,2,6 
6574 FRAME 
6576 CSIZE 3 
6578 LOAG 8 
6580 FDA Ypos=Ystart TO Ystop STEP Ytic 
6582 MOVE Xstart Ypos 
6584 LABEL USING'''MDD.DDX'';Ypos 
6586 NEXT Ypos 
6588 LOAG 6 
6590 FOR Xpos=Xstart+Xtic TO Xstop STEP Xtic 
6592 .MOVE Xpos~Ystart-Ytic/10 
6594 LABEL USING "Z.DD";Xpos 
6596 NEXT Xpos 
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LOIR 90 
CSIZE 4.5 
LORG 1 
ON Opt(2) GOTO L1 L2 
L1: ON Opt(4) GOTO La1 La2,La3,La4 
La1: MOVE Xstart-Xspan'.15,Ystart+Yspan*.27 
LABEL USING "K";"Ln(k) cclmola-s" 
GOTO Lout 
La2: MOVE Xstart-Xspan*.15,Ystart+Yspan*.1B 
LABEL USING "K";"Ln[kJ cclmolecule-s" 
GOTO Lout 
La3: MOVE Xstart-Xspan*.15,Ystart+Yspan*.1B 
LABEL USING "K";"LnlkJ liters/mole-s" 
GOTO Lout 
La4: MOVE Xstart-Xspan*.15,Ystart+Yspan*.12 
LABEL USING "K";"Ln[kl liters/molecule-s" 
GOTO Lout 
L2: ON Ollt(41 GOTO Lb1 Lb2,Lb3,Lb4 
Lb1: MOVE Xstart-Xspan'.15,Ystart+Yspan*.25 
LABEL USING "K";"Log(kl cc/mole-s" 
GOTO Lout 
Lb2: MOVE Xstart-Xspan*.15,Ystart+Yspan*.16 
LABEL USING "K"j"Log[kl cc/molecule-s" 
GOTO Lout 
Lb3: MOVE Xstart-Xspan*.15,Ystart+Yspan*.16 
LABEL USING "K"j"Log(kl llters/mole-s" 
GOTO Lout 
Lb4: MOVE Xstart-Xspan*.15,Ystart+Yspan*.08 
LABEL USING "K"j"Log[k) llters/molecule-s" 
Lout: LOIR 0 
MOVE Xstart+.43*Xspan,Ystart-Yspan*.12 
LABEL USIrJG "K'" "1 OOOIT" 
t~OVE T{1 1~Lk(1 l' 
FOR N=1 Tu Nm 
PLOT 1000/T(N) ,Lk(N) 
NEXT N 
LINE TYPE 3 
~10 V E 1 0 0 0 I T [1 ) , L k ( 1 1 - E ( 1 J 
FOR N=1 TO Nm 
PLOT 1000/T(Nl ,Lk[Nl-E{Nl 
NEXT N 
RAD 
SUBEND 
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SUB Fit (0 pt 2) N , T ( * 1 , Xo b ( * ) , E [ * ) , P ( * ) , E2 ,0 p t 7 1 
OPTION BASE "I 
DIM A(N,3J ,At(3,N) ,Ata(3,31 ,Ata; (3,3) ,Atx(3) ,XCN) 
FDA I=1 TO N 
A (I ,1 ) =1 
ACI 2)=0 
IF Opt2=2 THEN L10 
IF opt7=3 THEN Arl r21=LoGCTCIJJ 
A C I J. 3 ) =-1 / ( 1 • 987 * T I)) 
GoTu L11 
L1o: IF opt7=3 THEN A(I f 21=LGT[T[I)) 
A[I ,3)=-.43429/(1 .9B7*TC )) 
L 11: N EXT I 
MAT At=TAN(A) 
MAT Ata=At*A 
MAT Atai=INVCAtaJ 
MAT Atx=At*Xob 
MAT P=A t a i *A t x 
MAT X=A*P 
MAT E=Xob-X 
E2=DoT[E,E) 
SUBEND 
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