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This paper establishes what might be called a "uniformity principle" for building evacuation problems. 
The principle may be stated as follows: given a building for which each occupant has reasonable access to every 
evacuation route, if the building is evacuated in minimum time, then the allocation of evacuees to routes is such 
that the route evacuation times are all the same. That is, there is a uniformity of route evacuation times. Also, 
analytical expressions for the minimum time to evacuate a building, and for the corresponding allocation of 
evacuees to routes, are obtained. 
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1. Introduction 

The main purpose of this paper is to establish analytically what might be called a "uniformity principle" 
for building evacuation problems. The principle may be stated as follows: given a building for which the 
occupants have reasonable access to all the evacuation routes, if the building is evacuated in minimum time 
then the allocation of the people in the building to the various building evacuation routes is such that there 
is a uniformity of route evacuation times, that is, all route evacuation times are the same. This principle is 
easy to motivate. If the evacuation time for some route j is greater than for all the other routes, then some 
people using route j could be evacuated by other routes instead, thus reducing the time to evacuate route j 
while not increasing the evacuation times for the other routes above the time to evacuate route j. 

The uniformity principle appears to fall into the "folklore" category. People involved with building 
evacuation appear aware of the principle, and assume it is true, but only implicit references to the principle, 
such as the ones by Pauls and Jones [6),1 appear in the literature. As a consequence of the means by which 
we establish the principle, we obtain analytical expressions for the minimum time to evacuate a building, 
and for the number of people to be allocated to each evacuation route so as to achieve the minimum 
building evacuation time. We remark that even if the minimum building evacuation time is not achieved in 
an actual evacuation, it may still be of interest in the sense that it provides a benchmark, or standard of com­
parison, which gives some measure of how ugood" an actual building evacuation time might be. 

As concerns other related literature, for a graphical approach to the problems we shall consider, see Fran­
cis [3]. For various generalizations of the approach we shall consider, see Chalmet, Francis and Saunders [2], 
and Francis and Saunders [4]. For a general discussion of the evacuation literature, see Stahl and Archea [7]. 

The organization of the paper is as follows. We first give an analytical problem statement. We then give a 
solution procedure, followed by examples. Finally we consider and solve the more general problem where 
each route can have a capacity, i.e., can have an upper bound on the total number of people who can use the 
route. We motivate the correctness of the solution procedures we give, but omit proofs of correctness, as 
such proofs are relatively direct. 

"This research was supported in part by the Center for Fire Research, National Bureau of Standards, Grant No. N8i9NADOO2I, and by the Operation~ 

Research Division, Center for Applied Mathematics, National Bureau of Standards. 

I Figures in brackets indicate literature references at the end of this paper. 
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2. Analytical formulation 

So as to state the evacuation problem of interest analytically, suppose a building has k people to be 
evacuated, and there are n different evacuation routes. For j = 1, ... , n we assume we know that the time to 
evacuate x) people via route j, denoted by tJ{x), is well structured, in the sense that it is a strictly increasing 
and continuous function with tJ{O) == O. We call the function tJ{ ) the route j evacuation time function. 

Since the building is not evacuated until all the routes are evacuated, the building evacuation time, say z, 
is the maximum, i.e., the longest, of the route evacuation times, that is, 

(1) 

Since we want to evacuate k people, we require that 

Xl + ... + X" = k, (2) 

that is, the total number of people evacuated via all the routes is equal to k. Since we cannot allow the 
number of people using any route to be negative, we also require 

(3) 

The evacuation problem can now be stated analytically: minimize (1) while satisfying (2) and (3). That is, 
find the (nonnegative) number of people to be evacuated via each route so as to minimize the time to 
evacuate the building. 

Note it is assumed that routes do not ffinteract." For example, if routes 1 and 2 Hcross" at some point, 
the time to evacuate route 1 would depend not only on Xl' the number of people using route 1, but on X 2' the 
number of people using route 2, as well; the model cannot handle such a situation. However, particularly for 
buildings for which the routes are essentially staircases, this assumption of no interaction appears 
reasonable. Further, in modeling a specific problem there may be more than one means of defining specific 
routes, in which case an appropriate definition might guarantee that in fact the routes do not interact. 

It is also assumed that each of the k persons can use anyone of the n routes; this assumption is implicit in 
the condition (2). 

We emphasize the fact that the problem statement does not require X) to be an integer. Thus an implicit 
assumption is that solutions to the problem can be rounded to adjacent integers with an acceptable loss of 
accuracy. Particularly when the total number of people in the building is large in comparison to the number 
ofroutes, as is often the case, this assumption does not appear too restrictive. Further, if the integrality con­
dition is imposed, then the uniformity principle may fail, although probably by only a little. For example, if 
a building contains 501 people, has two evacuation routes, and the two routes have the same route evacua­
tion time functions, an optimum solution to the problem is to evacuate 250.5 people by each route, giving 
uniform evacuation times. In reality, the closest one would come to uniform evacuation times would be to 
evacuate 250 people via one route, and 251 via the other route, giving (slightly) different route evacuation 
times. 

It is worth emphasizing that the route evacuation time functions need not actually be known in order for 
the uniformity principle to be true. It is only necessary to know that they are well structured. In particular, 
the route evacuation time functions need not be linear; nonlinearity makes the theory no more difficult. On 
the other hand, nonlinearity would certainly make the theory more difficult to implement computationally. 

3. Solution procedure 

We denote by pAz) the number of people who can clear route j in a time of z. Since tAx) is the time to 
evacuate X) people via route J: 

(4) 
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is the time to evacuate pAz) people via route j, and so we obtain pAz) by solving the equation (4) for pAz). 
(Note we are just finding the inverse function of tA) when we solve (4) for pAz).) The expression (4) holds for 
z satisfying 0 =::; z =::; tAk). If z > tAk) then the time z is greater than that needed to evacuate all k people 
via route j, and so in this case the number of people who can clear route j in a time of z is just k, Le., 

pAz) = k for tAk) < z. (5) 

Thus we determine pAz) either from (4) or from (5), depending upon whether 0 S z S tAk) or tAk) < z. 
Note we can interpret pAz) as the most people who can clear route j in a time of z, for if Xj people clear 

route j, and Xi > pAz), then, using (4) and the fact that tA) is a strictly increasing function, we have tAxj) > 
tApAz» = z, i.e., the time to clear more than pAz) people exceeds z. Hence it follows, if we let 

P(z) = Pl(Z) + ... + P,.(z) for 0 S z, (6) 

that P(z) is the most people who can exit the building in a time of z. Since there are k people in the building, 
let us find the time z· for which 

k = P(z·), (7) 

in which case k is the most people who can exit the building in a time of z·. We can now conclude that in any 
time say z', with z' < z·, not all k people can exit the building, and thus z· is the minimum time to evacuate 
all k people. 

Once we know z·, we can allocate 

xl = pAz·) people for each route j (8) 

and be assured that 

xi + ... + x! = Pl(Z·) + ... + p,.(z·) = P(z·) = k. 

Thus the allocation (8) evacuates all k people. Further, the time to evacuate xl people via route j is given by 

tj(xj) = tj(PAz*» = z* for each route j. (9) 

Thus every route clears at the same time, z·. Therefore we obtain a uniformity principle, in the sense that 
the route evacuation times are uniform when the building is evacuated in minimum time. 

At this point we summarize our procedure for allocating people to routes so as to evacuate the building in 
minimum time. First use (4) and (5) to determine each function pA ). Then use (6) to find the function P( ). 
Given k, next solve (7) to find the minimum building evacuation time z·. Then use (8) to determine an op­
timum allocation of people to routes, and conclude from (9) that all routes clear at the same time. We 
remark, if we suppose we draw every function pA ), as well as the function P( ), on a single graph, then we 
can envision all the steps of the procedure of this paragraph as being carried out using only this one graph. 

We comment that the foregoing procedure is somewhat related to procedures given by Brown [1], but the 
applications he considers are quite different. Also, Brown does not consider the case where routes have 
capacities, which we treat in section 5. 

4. Examples 

Let us consider some examples. As a simple initial example, suppose we can compute the time for x} 

people to clear route j by dividing x} by a known (positive) flow rate rit so that tAx}) = x/r} for every route j. 
Solving z = pAz)!r} for pAz) gives pAz) = r}z, so that P(z) = r1z + ... + r,.z = Rz, where R = r1 + ... + ',.. 
Thus solving k = P(z·) for z· gives z· = k/R, which can be interpreted as the time to evacuate all k people 
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via a single-hypothetical-route of flow rate R. Similarly, x/ ::: pAz*) ::: rjz* ::: (r/R)k for every route j, and 

so the number of people allocated to each route j is directly proportional to the flow rate of the route. 

As a second example, consider a situation where a positive constant c is known, as well as a positive con­
stant ah a ffroute parameter," for each route j, and a strictly increasing and continuous function t( ) with 
t(O) :::: 0, so that tAxj) is computed as follows: 

By taking t(y) :::: y, C :::: 1, and aj :::: 'j we get the previous example. By taking c :::: 1 and aj :::: 1 for every 
route j we get the situation where the time functions are the same for all routes. By taking t(y) :::: y-73, C :::: 

(.206)11.73 and aj :::: Wj we get an empirically determined route time function of Pauls [5], where each route j 
represents a stairwell and Wj is the Heffective width" in meters of stairwell j, obtained by subtracting 0.3 
meters from the actual stairwell width. Thus this example represents a number of situations of interest. Let 
p( ) denote the function for which z :::: t(p(z» and y :::: p(t(y». By solving z :::: tj(PAz» = t(PAz)/(caj» for 
pAz) we get p(z) = pAz)/(caj)' so that pAz) :::: cajp(z). Letting A :::: a1 + ... + all for convenience, we have 
P(z) :::: Pl(Z) + ... + p,,(z) = cA p(z). Thus solving k = P(z*) :::: cA p(z·) for z* gives z* = t(k;{cA», which 
can be interpreted as the time for all k people to clear a single-hypothetical-route having a route parameter 
A. The number of people allocated to each route j is given by Xj· = pAz*) = cajp(z*) :::: caj p(t(klcA» = 
caAklcA) :::: (a/A) k. Thus the number of people allocated to each route j is directly proportional to its route 
parameter aj. For the case where t(y) = y, C :::: 1, aj :::: 'h and A = R we get the same solution as in the 
previous example. By taking c = 1 and every aj = 1, we have A = n, giving x/ = kin for every route j, so 
that when the time functions are the same for all n routes the k people are allocated evenly among the 
routes. For the case representing Pauls' time equation, letting aj = Wj and A = W we get x/ :::: (w/W)k for 
each route j, so that the number of people allocated to each route j is directly proportional to the effective 
width of the route. 

5. Including route capacities 

We now consider briefly a capacitated problem, a generalization of the earlier (uncapacitated) problem 
defined by (1), (2), and (3). For each route j we assume we know a capacity function Cj( ), where cAz) is an 
upper bound on the total number of people who can be evacuated via route j in a time of z. For each j we 
assume cA ) is a continuous and nondecreasing function, with cAO) ~ o. We obtain the capacitated problem 
by imposing the following capacity constraints upon the uncapacitated problem: 

(10) 

Note that if we take each cAz) :::: kin (10) that (10) becomes redundant, so that the capacitated problem 
includes the uncapacitated problem as a special case. 

There are a number of reasons for considering capacity constraints. For example, a solution to the 
uncapacitated problem might al10cate unrealistically large numbers of peoples to certain routes, which 
could be remedied by giving capacities to the routes in question. Alternatively, letting cAz) be some constant 
CJ might represent a situation where route j becomes blocked after Cj people exit the route. Further, the 
capacity functions permit the representation of situations where no extra people use the route in certain 
time intervals, e.g., if ci30) = 60 = cA90) then the capacity of route j is 60 at every point in time between 
z = 30 and z :::: 90, and if 60 people have cleared the route by the time z = 30 then no extra people can 
clear the route until z > 90: such a situation might represent a temporary route blockage. 

It turns out that the uniformity principle may fail for the capacitated problem, but the solution procedure 
remains much the same. For each route j, let qAz) now denote the most people who can clear (capacitated) 
route j in a time of z. Continuing to let pA) denote the function defined by (4) and (5), we have qAz) :::: pAz) 
provided pAz) ::5 cAz), while qiz) :::: cAz) if ciz) < pAz), as the route capacity cannot be exceeded. Hence 
for each route j we conclude 

qAz) = minimum of pAz) and cAz) , 0 ::5 z. (11) 
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With the definition (II) we can state the following procedure to solve the capacitated problem. First use 
(4) and (5) to determine each function pA), and then use (II) to determine each function qj(). Next construct 
the function Q() defined by Q(z) = ql(Z) + ... + qn(z) for 0 ~ z. If k > Q(z) for all nonnegative z then the 
capacity functions make it impossible to solve the problem as formulated, as all k people can never be 
evacuated. Otherwise, given k, solve the equation 

k = Q(z} (l2) 

and take the minimum building evacuation time z* to be the smallest z satisfying (12). (In case (12) has a 
unique solution take z* to be the unique solution.) Then determine an optimum allocation of people to 
routes by letting x/ = qAz*) for each route j. As with the procedure for the uncapacitated problem, if we 
suppose we draw every function qA ), as well as the function Q(), on a single graph, then we can envision the 
steps of the procedure of this paragraph as being carried out using only this graph. 

While the uniformity principle may fail, it can be shown that the principle still holds for routes that are 
not saturated. That is, every route j for which x; < cAz*) is cleared in a time of z*. 

Acknowledgement: The author would like to thank Dr. Alan J. Goldman for his many constructive 
suggestions. 
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