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The number of bound-state solutions of the Schrodinger equation for the screened Coulomb potential 
(Yukawa potential), -(Clr) exp( -ar), occurs frequently in theoretical discussions concerning, for example, gas 
discharges, nuclear physics, and semiconductor physics. The number of bound states is a function of (Cia). 
Three upper limits for the number of bound states associated with the Yukawa potential are evaluated and com­
pared. These three limits are those given by Bargmann, Schwinger, and Lieb. In addition, the Sobolev inequality 
states that whenever (Cia) < 1.65 no bound state occurs. This agrees to within a few percent of the numerical 
calcuiations of Bonch-Bruevich and Glasko. The Bargmann and Lieb limits and the Sobolev inequality are 
substantially easier to evaluate than the Schwinger limit. Among the three limits, the Schwinger limit gives the 
most restrictive limit for the existence of only one bound state and, therefore, is the best one to use for the ap­
proach to no binding, i.e., 1.65 < (Cia) !;; 1.98. The Lieb limit is the best among the three when (Cia) > 1.98. 
The Bargmann limit is the least restrictive. 
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1. Introduction 

Many theoretical topics in such areas as plasma, nuclear, solid state, and semiconductor physics [1-6)1 re­
quire knowledge about the number of bound-state solutions of the Schrodinger equation for two particles 
that interact according to the Yukawa or screened Coulomb potential. For example, as semiconductor 
devices become smaller, required dopant ion densities and their spatial gradients increase. The density of 
states for such highly doped materials is needed to predict device performance and degradation mecha­
nisms. The density of states involves summation over bound states and integration over continuum states. 
The disappearance of bound-impurity levels in semiconductors due to free-carrier screening of the Coulomb 
field of impurity ions is thereby fundamental in understanding the behavior of electronic devices. [7] 

During the course of research on the effect of donor impurities on the continuum electronic states in semi­
conductors, the author has used the Bargmann limit [8], the Schwinger limit [9], and the Lieb limit [10] to 
evaluate upper limits for the number of bound states associated with the screened Coulomb potential. The 
analytic methods used here to calculate these limits are more general and may be applied to other fields 
such as those mentioned above. 

We shall show that 1) when the Yukawa potential permits only one bound state to exist, Schwinger's 
extension of Bargmann's limit gives a more restrictive limit for the number of bound states than do the 
Bargmann and Lieb limits; 2) when many bound states exist, the Schwinger and Bargmann limits agree to 
within a few percent and are not as restrictive as the Lieb limit; and 3) the Sobolev inequality [10,11) 
predicts no binding when (CIa) < 1.65. The limit 1.65 from the Sobolev inequality agrees to within a few 
percent of the limit 1.68 from the numerical work of Bonch-Bruevich and Glasko. [5] 
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J Figures in brackets indicate literature references at the end of this paper. 
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2. Yukawa Potential and Schrudinger Equation 

The Schrodinger equation for two particles that interact according to the Yukawa potential is 

. 2m 
[V2 + -V {E - V{r)}] t/; (r) = 0, (1) 

where E is the energy of the two-particle system, m is the reduced or effective mass, r is the relative coordi­
nate vector between the two particles, and r = 1 r 1 is its magnitude. The spherically symmetric potential 
energy V(r) is assumed to have the Yukawa form: 

V{r) = - Cr- 1 exp ( - ar) . (2) 

For many applications, the Yukawa potential is an idealized one which gives a reasonable description of the 
physical phenomena under study. Expressions for the parameters C and a in terms of physical quantities 
then depend upon the application. For donors such as phosphorus or arsenic in silicon, the quantities C and 
a become, respectively, C = (e21 €) and a = 11 r •. The charge of the electron is e, the dielectric constant is €, 
and the screening length is r •. The last depends in part upon the temperature and the dopant density. It 
gives the extent to which free carriers screen the Coulomb field of the donor ion. 

The radial wave equation obtained from the Schrodinger equation, eq. (1), for the spherically symmetric 
potential V{r) is 

fP ,I. () [2m {E V{)} i{£; 1) ] ,l.lr) = 0, dr2 ~t r + ~ - r - ~f,. (3) 

where 

The quantities, EI'm' are constants. The normalization and orthogonality conditions for the spherical har­
monics Y I'm (S,cp) are 

.(4) 

In the folIowing sections, we shall calculate upper limits for the total number of bound-state solutions N of 
the Schrodinger equation, equation (1), and the number of bound-state solutions ntof the radial wave equa­
tion, eq. (3), for a given f. Counting multiplicity, we perform the following summation to obtain the total 
number of bound states for a given spherically symmetric potential V. 

t",tu 

N[V] = E (2£ + I) nt[V], 
1'=0 

(5) 

where £",tu is the largest value of £ for which n( '* O. 

3. Bargmann Limits 

When the integral, 

IB[V] = I; rl V(r) 1 dr, (6) 

is finite, the Bargmann formulation [8] gives the inequality that 

(2£+ I)n,< IB[V]. (7) 
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Thus, for the Yukawa potential, eq. (2), we have 

(8) 

From the inequality (7), we note that the maximum £ = £m ..... for which nt =1= 0 in the sum of eq. (5) has the 
upper limit 112 (/s I). Thus, we have the following inequality [9] for spherically symmetric potentials; 
namely, 

(9) 

4. Schwinger Limits 

Schwinger [9] extends the Bargmann derivation to treat angular and spin-independent potentials and to 
give the number of states that lie at or below some chosen energy. His result for the upper bound Is to the 
total number of bound states N associated with a general spin-independent three-dimensional potential 
V(L) is 

N < Is, (I 0) 

where 

I - I !! dl dl ' I V(r) II V(r') I 
s - (471'")2 "1 r - r 12 • (II) 

We shall now proceed to evaluate the double integral in eq (1 I) for the case of the Yukawa potential given 
by eq. (2). Because the Yukawa potential is spherically symmetric, we expand the denominator in terms of 
the spherical harmonics; namely, 

--:-_1~~ _ 471'" f t I r~ y. «(J' ,1,.') y. «(J,I,.) Ir-r'l - l=O m::-f (2£+1) r>f+1 fm ,'jJ 
tm 

,'jJ , 
(2) 

where r< and r> are, respectively, the lesser and the greater values of Irl and Ir'l and where 

y. «(J,I,.) = {(2£ + 1) (f - m )! } 112 pm(cos (J) eimt/> • 

lm ,'jJ 411'(£+ m)! ( 

The Legendre polynomials Pfm satisfy the relation 

p-m(x) = (-l)m (f-m)! pm(x). (14) 
t (£+m)! t 

Substituting relation (12) into eq. (I 1) and using for the volume element in spherical coordinates dl , = ,2 

sin (Jd(Jd4>dr, we perform the integrations over (J, 4>, (J', and 4>'by frequent reference to eqs. (4), (13), and (14) 
and obtain the result that for spherically symmetric potentials V.(r) 

Is[ V.] = !:,2 dr !: r'2 dr' 1 Vs(r) II Vs(r') I 

00 I r~ X E --___ ..0.--

(15) 

f=o (2£+1) r;f+2 

Equation (15) becomes for the Yukawa potential (2) 

ls(y) = (C/a)2 ~o (2£~ I) U:z exp( -z) dz 

(16) 

X (!~ 71 2(+1 exp( - Z71) d71 + !~ 7]-2(-1 exp( - z7]) d7] J] , 
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where we made the substitutions z = ar, y =ar', and then 11 = (y/z) to obtain equation (16) from equation 

(15). 

Let us consider the first term in the curly brackets in eq. (16). Interchanging the order of integration, we 
obtain 

We now examine the second term in the curly brackets of equation (16), namely, 

(18) 

Interchanging the order of integration in equation (18), we write the second term 

(19) 

By making the substitution 11 = (lIx), it follows that d2(f) = d1(f). 

From the above, we obtain the Schwinger upper limit for the total number of bound states associated with 
the Yukawa potential 

(20) 

Interchanging the order of integration and summation in eq. (20), 

and observing that when 11 < I, 

I + ~ 2nlf+l 
In (~) = i.J -=..:l-

1-71 1'=0 (2£+ I) , 

we write eq. (20) in the form 

Is[V] = (Cla)2 ( Inl(1 +7])/(1-7])} d 
o (l +71)2 71 . (21) 

We show in Appendix A that the integral in eq. (21) equals 112. Hence, our final result is 

(22) 

5. Lieb Limits and Sobolev Inequality 

In three dimensions, Simon [10] gives a bound for large (Cia) due to Lieb of the form 

(23) 

where a3 ~ 0.116. For the potential (2), the Lieb limit IL[V] becomes 

IdV] = 0.116 X 6.062 (/B[v]PI2 . (24) 

When (Cia) is small enough, bound states do not occur. The Sobolev inequality [10,11] predicts that 
bound states do not occur whenever Isr[ V] < 1, or equivalently, whenever 
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1 > 0.078 x 6.062 [JB[ V]}3/1 == Isl[ V] . 

That is, according to the Sobolev inequality, N = 0 whenever (Cia) < l.65 

6. Conclusions 

We have shown in sections 3, 4, and 5 that the upper limit for the total number N of bound states 
associated with the Yukawa potential is for the Bargmann limit, eq. (9), 

N < ~ IB[V] [JB[V] + 1) = NB , 

for the Schwinger limit, 

and for the Lieb limit 

N < 0.7032 {IB[V]Jl/l = NL . 

Because 0 < Ns[ V] < NB[ V] for all IB[ V] > 0, we conclude that the Schwinger upper limit, Ns[ V], is a 
more restrictive limit than NB[ VJ. However, for large enough values of IB[ V], the fractional difference [(NB 
- Ns)/NB], between the Schwinger and Bargmann upper bounds approaches zero as (lIIB[V]) approaches 
zero. 

When (Cia) > l.98, NL < Ns and the Lieb limit is best for large (Cia) and for many bound states. When 
(Cia) < l.98, Ns < NL and the Schwinger limit is best for the existence of only one bound state and for the 
approach to no binding, i.e., l.98 > (Cia) > l.65, and finally, the Sobolev inequality gives N = 0 whenever 
(Cia) < l.65. This value of l.65 agrees to within 2 percent of the value (Cia) < l.68 which Bonch-Bruevich 
and Glasko [5] determined numerically to give no bound state. 

And finally, we observe from table 1 that even the Lieb limit is more than a factor of 3 greater than the 
numerically determined number of bound states given in reference 5 for values of (Cia) > 8.92.2 

TABLE 1. Comparison of the Number of Bound States N Determined 
Numerically by Bonch-Bruevich and Glasko· and the Three Upper 

Limits of Bargmann [Eq. (9)], Schwinger [Eq. (22)]. and Lieb 
[Eq. (24)) The Sobolev inequality is given by Eq. (25). All 

quantities are dimensionless. 

(CIa) N 

1.65 
1.68 
1.90 
1.98 
2.00 
6.00 1 
6.45 2 
7.00 2 
8.50 2 
8.92 5 

• Reference 5. 

Bargmann 
Limit 

2.19 
2.25 
2.76 
2.95 
3.00 

21.00 
24.03 
28.00 
40.38 
44.24 

Schwinger Lieb Sobolev 

Limit Limit Inequality 

1.36 1.49 1.00 

1.41 1.53 

1.81 1.84 

1.96 1.96 

2.00 1.99 

18.00 10.33 

20.80 11.52 

24.50 13.02 

36.13 17.43 

39.78 18.73 

I The relative strengths of the Lieb, Schwinger, and Bargmann limits are depend· 
ent upon the potential VCr). For example, the table analogous to table 1 for the attrac­
tive three-dimensional square well shows that the Bargmann limit is best in the range 
2.47 < Voa' < 10.74 and the Lieb limit is best when Voa' > 10.74, where Vo is the 

depth of the well and a is the width of the well. The Sobolev limit states that bound 
states do not occur when Voa' < 2.11 whereas the exact numerical result state. that 
bound states do not occur when Voa' < 2.47. 
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8. Appendix 

In this appendix, we outline the evaluation of the integral that appears in eq. (21); namely, 

We let 1 + 11 = wand write 

2 

I2l = II w-2 (In(w) - In (2 - w)} dw. 

Referring to integral tables, we find that 

1 = 1- + Lim (2 - w) 1 (2 _ ) _ 1 
21 2 w-2 4 n w - 2 . 
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