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Conditions are given under which subsets of the players of a noncooperative game can be combined into
"aggregate players" without changing the set of equilibrium-point solutions of the game. These conditions are
shown to be the weakest possible ones with a certain specified kind of generality. "Approximate" versions of the
results are also formulated and proven.
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1. Introduction

Like its predecessor [1]/ this paper is motivated by the following observation: in applied game-theoretic
modeling, it may prove useful to reduce model-complexity and data-needs by combining, into a single
ff aggregate player," some subset of the original players whose interests are sufficiently ff parallel" for this
purpose. It is natural, therefore, to investigate from a mathematical viewpoint the conditions under which
such an aggregation is ffvalid" in the sense ofleaving the game's set of ffsolutions" undisturbed. Results of
this type were needed, for example, in connection with a class of models [2, 3, 4] involving an inspection
agency with insufficient resources to visit all of a number of sites at which ff cheating" might or might not
occur; the issue was whether the individual site-managers could be aggregated into a single ffinspectee"
entity so that the situation could be analyzed as a two-person game.

Our treatment here is limited to noncooperative games and to the equilibrium-point notion of ff solution."
For completeness, these concepts are defined in section 2 below, where the process of aggregation is also
formalized. A natural special case of aggregation rt group equilibrium") is discussed in [5], but without con­
sidering the question of solution-set preservation.

In [1], a simple condition was given under which aggregation does not change a game's set of solutions.
That condition stated that each individual player's payoff(in the original game) is independent of the strat­
egy choices by the other individuals comprising the same aggregate player. Though applicable to the
inspector-inspectee games mentioned above, this condition is clearly rather restrictive, and captures the
ff independence" or ff indifference" of the aggregated players' interests rather than (as desired) the" paral.
lelism" of those interests. In section 3 of the present paper, we give less restrictive sufficient conditions for
aggregation (a) to avoid introducing extraneous solutions, and (b) to preserve all solutions of the original
game. Further theorems and examples show that these conditions, though not necessary as well as sufficient,
are actually the weakest possible sufficient conditions with a certain specified kind of generality. Additional
examples show that the family of player-subsets which are ff aggregable," in the sense of obeying the mini­
mal conditions mentioned above, need not have certain properties to be expected if aggregability fully
corresponded to some natural notion of ff parallel interest;" for example, a subset of an aggregable set need
not be aggregable.
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Consistent with [1], section 4 extends the preceding material to Happroximate solutions" in cases in which
the conditions described above are satisfied only approximately. This topic reflects an expectation that in
applied contexts, many mathematical relationships will not (or cannot be known to) hold exactly.

I am grateful to colleague D. R. Shier, whose careful reading of a first version of this paper revealed the
need for several corrections and clarifications.

2. Games, equilibria, aggregation

Let n ~ 1 be an integer, and N = {1,2, ... ,n}. An n-person noncooperative game G = (X,/) consists of an
n-tuple (XIt ••• ,x..)of nonempty sets Xi with Cartesian product X, and an n-tuple f = (ft, ... J,.) of func­
tions};: X - K where K is equipped with a strict linear order Qi' Here Xi is interpreted as the set of strat­
egies or actions open to the i-th player,}; as that player's upayofffunction," K as the set of possible payoffs
or outcomes experienced by that player, and Qi as the relation of (strict) preference by that player among
outcomes. The fact that the domain of}; is X, rather than Xi' expresses the idea that each player's payoff
depends not only on what strategy that player chooses, but also on the choices made by other players.

For any .uX, any i£N, and any XiE:X, we denote by (x, i. Xi) the member. of X obtained from x by changing
its i-th coordinate to Xi' With this notation, a Hsolution" concept can be defined: X°E:X is called an
equilibrium point (El') for game G if, for every i£N and every XjE:Xi, the relation

(1)

isfalse. That is, if one thinks of the coordinates of XO as the players' ftcurrent" choices of strategies, then no
player has an incentive to deviate unilaterally from his or her current choice. Since the game is regarded as
unoncooperative," only unilateral shifts come into consideration, and so the falsity of all relations (1) is suf­
ficient to describe the Hstability" of xc. If n= 1, an EP is simply a strategy that yields a preference-maximal
outcome for the (s?le) player.

Next we describe an Haggregation" of game G. Let m be an integer with 1 <:m <: n, and let M =
{I, 2, ... ,m}. An m-player aggregation GlB,F] of G is specified by the following structure. B = {B h • •• ,Em}
is a partition of N into nonempty sets; note that the relation i£Bj(i) defines a functionj: N - M. Let Sj be the
Cartesian product of the sets {K : i£Bj}; also let F = (Fh ••• ,Fm) be an m-tuple of functions ~ : Sj - ~

where each set ~ is equipped with a strict linear order Tj, and function ~ is strictly monotone in each of its
arguments. This last condition means that for any sjE:Sj, for any i£Bj with ri the i-th coordinate of Sj, and for
any r;E:K,

(2)

Such a structure defines an m-person game as follows. The ff players" are {Bj : jE:M}. The set of strategies
of Bj is lj, the Cartesian product of {X: i£Bj}. Note that the Cartesian product of the player's strategy-sets,
i.e. of {lj : jc.M}, is the same set X as for the original game; this permits the symbols H X " and H y" to be
used interchangeably, and corresponds to the idea that we are dealing with aggregation of players and
payoffs, but not of strategies. (The same observation justifies the later use of notation like (x, j, Yi), as an
extension of the previous symbol (x, i. x;).) In the aggregated game, the payoff function for player Bj is & :
X - ~, defined by2

&{x) = .r:[{f;(x): i£BJ].

The definition of an EP for game GlB,F] is directly analogous to that for G.

J In the foUowing notation., the argument of~ is the member s/-Sj whose j-th coordinate, for ilBj, is/,{x}.
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3. Preservation of the solution-set

For any subset S of N, let Xs denote the Cartesian product of the strategy-sets {Xi: itS}. We will call x£X
S-stable if there is no xsf.Xs such that (with an obvious extension of previous notation)

j; (x,S,xs)ej;(x) orf; (x,S,xs) = f,{x)

holds for each iES, with the first relation holding for at least one iES. Intuitively, this means that even if the
players in S could act together, they could effect no deviation from the status quo represented by x which
would be Hadvantageous to S" in the sense of being preferable to some members of S and a matter of indif­
ference to the others. Thus XO is an EP if and only if it is {i}-stable for all itN.

Let XS denote the set of S-stable members of X. We call S nonfrustrating (NF) if

Xs ~ n {XN: itS}. (4)

The reason for this terminology is best seen by taking complements in (4): for each x£X, if some player itS
can find a unilateral deviation preferable (for l) to the status quo represented by x, then there is a joint
deviation xsf.Xs which is Hadvantageous to S" in the sense described above and which could therefore be
adopted by S without internal dissension were it the only available alternative to continuation of x. That is,
there is no opposition of interests within S that would preclude deviating from a status quo which some
single player in S could profitably deviate from. Thus no player, by becoming part of an aggregate player S,
would risk the frustration of being Hstuck with" an undesirable status quo against which he or she had a
unilateral counteraction as an individual player.

THEOREM 1. Ifeach Bj is NF and XO is an EP for G [B,F], then XO is also an EP for G.

PROOF. Suppose, to the contrary, that (1) holds for some itN. Then XO is not in XN; since Bj(i) is NF, XO can­
not be Bj(i)"stable. Thus there exists Yi(i)£~(i) such that changing from XO to (xO,j(i), Yj(i») is Hadvantageous
to Bj(i)" in the sense defined above. Consider changing the arguments of Fj(i) [(h (XO) : kEBj(i)}] one at a
time to those of Fj(i)[ {h (xo,j(i),yj(i») : kEBj(i)}]; by the monotonicity of Fjli ) and the transitivity of Tjli ) it
follows-cf. (3)-that gj(i) (xo,j(i),yj(i»)Tj(i) gj(i)(XO), contradicting the hypothesis that XO is an EP for &lB,F].

We will call a subset S of N unilateral-deviation unanimous (UDU) if, for each x£X and itS, any xi£X; for
whichf;(x,i,x;}ej;(x) also has the property that

holds for all kES - {i}. Intuitively, this says that whenever a single player in S has incentive for some par­
ticular unilateral deviation from a status quo, then no other player in S would regret seeing that single
deviation effected. This condition, introduced only for the sake of the following Corollary, may be easier to
recognize than NF.

COROLLARY. Ifeach Bj is UDU, and XO is an EP for G[B,F], then XO is also an EP for G.

PROOF. In view of Theorem 1, it suffices to observe that UDU implies NF; the proof of that implication is
straightforward.

As preparation for the next result, observe that condition NF when applied to subset S of N is fflocal to
S," in that it does not refer to the attributes {R,eiJ;} of the players itN-S. This is important for ease of
checking the condition. Furthermore, NF is ff general" in that it does not refer to the attributes (Ts,Ts,Fs) of
S as an aggregate player in any particular aggregated version of G. The next theorem shows that condition
NF is the weakest one, with these two properties, which would suffice for an analog of Theorem 1.
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THEOREM 2. Let all the information needed to define G and G[B,F] be specified exceptfor(TIlTI!F.) and {fj :
iEN.B.}. /fB. is not NF, then the missing information can be specified in such a way that G[B,F] has an EP
which is not an EP for G.

PROOF. Since B. is not NF, there exists a B.·stable XEX, an i£.R Il and an XjEXj, such that

(5)

It follows from (5) that x cannot be an EP for G. We shall specify the missing information in such a way that
x is an EP for G[B,FJ.

Choose each of {f, : uN-B.} to be constant, and write !rB{l)" instead of HB." for subscripting purposes.
For x to be an EP for G[B,F], it suffices to choose (T.,T .,F.) in such a way that for no XB(.) EXB(.) is

(6)

Choose T.:::: SI! and F. to be the identity map of S•. Define Ti as the direct product of {Qp : pEB.}; that is,
given s. and s; in SIl with respective coordinates {rp : pEB.} and {r;: pER.}, then s;Tis. holds if and only if

holds for all pE.RIl with the former relation holding for at least one pEB•. This Ti is a strict partial order on
Til but not in general a linear order. To make F. strictly monotone in each of its arguments, as required, we
must (and it suffices to) choose the linear order T. to be an extension ofTi.

The partial order Ti can be viewed as a collection of ordered pairs of distinct members of Til where (t,t')
ET. x T. is in the collection if and only if tTit'. Now let t be the member of T. with coordinates {f;,(x):
pEB.}, and for each XB(l)EXB(l) let h(XB(l) be the member of T. with coordinates {f;,(X,B.,XB(l) : pEB.}.
Define a second collection of ordered pairs by

Then the fact that x is B.·stable can be written as yo n Ti :::: ~, and the desired condition that (6) hold for no
XB(l)E.XB(l) can be written yo n T. :::: ~.

What remains to be proved, then, is the existence of a strict linear order T. on T. which is an extension of
Ti and which satisfies yo n T. :::: ~. Since in general yo =1= ~, we cannot simply appeal to the general theorem
[6] that every partial order can be extended to a linear order. Let T be the family of all strict partial orders
on T. which contain Ti and are disjoint from YO. T is not empty, since it includes Ti. Considered as subsets
of T. x Til the members of T are partially ordered by set-inclusion, and the union of any linearly·ordered
subfamily of T is easily shown to be again in T. By Zorn's Lemma, T has a maximal member Tt. The proof
will be completed by showing that T. is a linear order.

Suppose, to the contrary, that there exist distinct elements t,t' of T. such that neither (t,t') nor (t',t) lies in
T •• (It is in the balance of this paragraph that a more delicate argument than that given in [6] for the case yo
:::: ~ is required.) At most one of t,t' can coincide with to; if one of them does, choose the notation for t and t'
so that t:::: to and t'=I=to. Observe that at least one of (t,t') and (t',t) must fail to be a «(,t"') with the property
that(t",tO)E.Toand (t"',tO)E.T. (this is true because TO n T. :::: ~); if either{t,t') or{t',t) is a «(,t"') with the prop­
erty just mentioned, choose the notation for t and t' so that (t',t) rather than (t,t') is such a «(,t"'). (This
precaution will only be needed if neither t nor t' coincides with to.) Note for future use that in this case, there
cannot be an sr.T. such that (S,t)E.T Il (t',t°)E.T. and (s,t°)E.YO. Observe further that at least one of(t,t') and (l,t)
must fail to be a (f,l''') with the property that for some SETIl the relations (s,f)E.T.. (l''',t°)E.T. and (s,t°)E.YO
all hold. In this case, choose the notation for t and t' so that (t,t') is not a (f,l''') with the last-mentioned
property. (This precaution will only be needed if neither t nor t' coincides with to, and if in addition neither
(t,t') nor (t',t) is a (t',t''') of the type described above.)
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Now set

TI = TI U {(t,t')} U {(S,t'): (S,t)£TI} U {(t,S'): (t',S')£T I}

U ((S,S'): (S,t), (t',S')£TI}.

Then f 1 is a binary relation on T1 which is a proper extension of T I. A straightforward enumeration of cases,
ignoring the care with which the notation for t and t' was chosen above, verifies that 1'1 is a strict partial
order on T1• With that care taken into account, another enumeration of cases verifies that yo n 1'1 = ~,

yielding a contradiction to the maximality ofT I in T. SO T I is a linear order, and Theorem 2 is proved.
Having considered what conditions rule out the introduction through aggregation of ff extraneous" solu­

tions (EP's), we now turn to ruling out the loss of solutions under aggregation. A subset S of N will be called
unilateral-deviation strong (UDS) if for each XEX, in case fic(x,S,xs)eJ;.(x) holds for any kES and xsEXs, it
follows thatj;(x,i,x;)ej;(x) for some i£.S and x;£X;. This (somewhat unsatisfactory) terminology is intended to
reflect the idea that the unilateral deviations desirable to the individual members of S (as deviators) are,
taken together, sufficiently ffstrong" to reject any status quo x from which S as a collective could possibly
deviate to the advantage of any of its members.

THEOREM 3. Ifeach Bj is DDS, and XO is an EP for G, then XO is also an EP for G[B,F].

PROOF. Suppose, to the contrary, that gixO,j,yJTjgJ{XO) for some j£M and some Yj£t:. Because each of {ek :
kEBj} is a linear order and 0 is monotone, it follows (proof by contradiction) that

must hold for at least one kEBj. From this, and the fact that Bj is UDS, there follows immediately a contradic­
tion to the hypothesis that XO is an EP of G.

Note that UDS, applied to subset S of N, has the same fflocal to S" and ff generality" properties described
before Theorem 2. The next theorem shows that UDS is the weakest condition, with these two properties,
which would suffice for an analog of Theorem 3.

THEOREM 4. Let all the information needed to define G and G[B,F] be specified except for (ThT hFI) and
{f; : iE:N - B1}. IfB I is not DDS, then the missing information can be specified in such a way that G has an
EP which is not an EP for G[B,F].

PROOF. Write ffB(l)" instead of ffBt" for subscripting purposes. Since B I is not UDS, there exists an XEX.
an XB(1 )£XB(1)' and a kEBI such that

(7)

(8)

Choose each of {f, : uN - B I } to be constant; then (8) implies that x is an EP for G. Choose Tl =Sh and Fl

to be the identity map of SI. Let IBII = b, and let {k(1),k(2), .. .,k(b)} be any enumeration of B1 in which k(l)
= k. Take TI to be the lexicographic product of the sequence {ek = ek(I),Qk(2)' . . .,Qk(b)}; then TI is a linear
order and F l is monotone. It follows from (7) that gl(x,Bb xB(I))TIgI(x), and so x cannot be an EP for G{B,F],

completing the proof.
Combining the previous results, we see that if each Bj is both NF and UDS, then G{B,F] has the same set

of EP's as G. Furthermore, the conjunction ffNF and UDS" is the weakest condition, with the properties of
being fflocal" and U general" as defined earlier, which suffices for such a conclusion; one might well refer to
this condition as ff aggregability." The question of how this condition might be systematically and effi­
ciently checked-for is a natural one, but will not be addressed here.
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To relate the preceding material to that of [1], we define a subset 8 of N to be limited-dependent (LD) if,
for each itS,j;(x) does not depend on the coordinates of x associated with the players in 8 - {i}. Theorems 1
and 2 of [1] are then equivalent to the following assertion.

THEOREM 5. Ifeach Bj is LD, then G[B,F] has the same set ofEP's as G.

PROOF. By Theorems 1 and 3, it suffices to show, if 8 is an LD subset of the players, that S is both UDU
(hence, NF) and UDS. First, suppose some x£X is not {i}-stable for some i£.S, Le. j;(x,i,xj)QJ';(x) for some
Xj£Xj. Since S is LD,f,.(x,i,x;} = f,.(x) for all h.S - {i}. This shows that Sis UDU. Next, consider any x£X such
thatf,.(x,S,xs)QJ;.(x) for some h.S and xsEXs. Let Xk be the coordimite of Xs corresponding to player k; since S
is LD, f,.(x,S,xs) = f,.(X,k,Xk) and so f,.(X,k,Xk)QJ;.(X). This shows that S is UDS, completing the proof of the
theorem.

To show that Theorem 5's sufficient condition for preservation of the solution-set was not also a necessary
condition, the following example was gIven in [1]. It had n = 2, m = 1, and BI = {l,2}. Each Qj(i = 1,2) was
the numerical u>" relation, Xl = {A,B} , X2 = {a,b}, and the payoff functions ft and f2 were
identical (ft = f2 =j) with

ltA,a) = 2,ltA,b) = j{B,a) = l,/(B,b) = O.

Here BI is not LD, but both G and G[B,Fj-for any choice of (ThT'bFI)-have (A,a) as the unique equilib­
rium point It is easily verified that BI is both NF and UDS, so that this example is Hexplained" by
Theorems 1 and 3 of the present paper.

To illustrate that the hypotheses of Theorems 1 and 3, though sufficient conditions for the Theorems'
conclusions to hold, are not also necessary conditions, we will give an example in which NF and UDS both
fail, but G and G[B,FJ have the same set of equilibrium points. We would like the set of G's equilibrium
points to be a proper subset of X (so that aggregation has a fair chance to introduce one or more extraneous
EP's), and to be nonempty (so that aggregation has a fair chance to lose one or more EP's). Also, to keep the
example simple, we would like to have n = 2, m = 1, and BI = {1,2} = N. For an example meeting all
these stipulations, take (Xb XZ,QI,Q2) as in the last paragraph, but set

ft(A,a) = l,ft(B,a) = 2,ft(A,b) = ft(B,b) = 0

and}; = -ft. Then (in the notation introduced above eq (4» Xli} = X - {(A, a)} and Xl2} = {(A,b), (B,b)}.
Because G is zero-sum, XlI,2} is all of X, and comparison with (4) shows that NF fails. That UDS fails can be
seen from the statement of this condition by taking k = 1, x = (A,b), Xs = (B,a). The set of equilibrium
points of G is given by Xli} n Xl2} = Xl2}, a nonempty proper subset of X. Now take Tt = 8 b FI to be the
identity map of Tit andTI to be the lexicographic product of the ordered pair (Q2,Qt); with this choice, G[B,FJ
has the same equilibrium-point set as G.

In the remainder of this Section, we investigate how well the conditions appearing above-NF, UDo,
UDS, HNF and UDS," and LD-conform to some intuitively plausible requirements for representing the
notion of U parallel interests." Let 9-be a family of nonempty subsets of N, which includes all singletons. We
will say that9 is equivalence-derived if there is an equivalence relation on N such that subset 8 of N belongs
to 9 if and only if S lies in a single equivalence class. Also, we will call9- hereditary if 0 '1= T C Sand S £ 9
imply T £.9, and will ca1l9connected if S £9, T £9 and S n T'I= 0 imply 8 U T £9. All three of these prop­
erties are plausible requirements if9 is to represent the family of all subsets whose players Hhave parallel
interests." It is easy to show that a family 9- is equivalence-derived if and only if it is both hereditary and
connected, so that we will deal with these last two properties.

None of the conditions appearing in the previous theorems necessarily yields a connected family of
subsets of N. To show this, it suffices to give an example in which subsets Sand T of the players are both LD
(hence NF, UDU and UDS), satisfy S n T'I= 0, but have S U T neither NF nor UDS. Such an example can
be constructed from the preceding one by adjoining a third player as U dummy." Specifically, take
(Xt>X2,Qt,Qz) as before; (XJ,QJ) need not be specified, for what follows. Adjoin a dummy argument xJ£XJ to
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the previous definitions of j;, and 11, and take h to be constant Choosing S = {1,3}
and T = {2,3} then yields an example with the desired characteristics.

It is easily shown that the LD subsets of N form a hereditary family, as do the UDU subsets. To dispose of
the ffhereditary question" for the remaining properties, it suffices to give an example in which subsets S
and T of the players satisfy 0 *T C S, S is both NF and UDS, but T is neither NF nor UDS. This example,
too, will be constructed from a preceding one by suitably adjoining a third player. Take (X.,X1 ,{l1,{l2) as
before, and take Xl = {a,f3}; Ch is the numerical ..>" relation. Following the model of the previous
example, let

and 12(x.,x2,a) = -/l(xhx2,a) for all (X.,X2) E Xl X X 2. This is already enough to assure that T = {l,2} is
neither NF nor UDS. To make S = {l,2,3} both NF and UDS, set

An initial impression from these findings might be, that despite the motivating observation with which
the present paper began, aggregability of a subset of the players does not really have much to do with the
parallelism of those players' interests. I presently prefer an alternative interpretation, namely that the find­
ings are corrective to an implicit assumption that parallelism of players' interests must (like parallelism of
sets of lines in the Euclidean plane) be viewed as equivalence-derived from a binary relation of ffparallel
interests" between individual pairs of players. The formulation of a different concept of parallel interests
for a subset of the players, and the study of the relationship between that concept and aggregability, are
planned for a subsequent paper.

4. Approximations

Since the topics of this section deal with quantitative rather than qualitative relationships, we now take all
sets Rand T.i to be the set of real numbers, and take all the relations Qi and Tj to be the ordinary numerical
..greater than" relation. Theorems 1 and 3 involve the notions of an equilibrium point, of an aggregation of
a given game G, and of conditiQns NF and UDS. The definitions of these concepts involve elements of an
essentially order-theoretic nature (the linear-order properties of Qi and Tj; the monotonicity of ~). To obtain
.. approximate" versions of the theorems, it will be necessary to replace these "ordinal" elements by sui t­
able "cardinal" ones. The particular replacements introduced below appear reasonable, but other plausible
alternatives may be more appropriate in particular contexts.

For each iEN and each XEX, the quantity

M,{x) = sup{j;(x,i,xJ: XiEX} - j;(x)

is nonnegative. If0 = (01J .. .,On) is an n-tuple of positive real numbers, and if XOEX satisfies

(9)

then XO will be called a o-EP of game G. Approximate EP's of G[B,F] are defined similarly.
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We will say that F: is (kj,kj)-bounded monotone in each argument, where kj and kj are positive constants,
if for each Sj£Sj, and for any iE.Bj with rj the i·th coordinate of Sj, and for any r;E.R;,

(10)

This hypothesis expresses the plausible idea that an aggregate player's payoff should respond Hin a
bounded manner" to changes in the payoffs of the individual players comprising the aggregate. Note that
(10) holds with kj = kj = 1 if F';{sJ is the sum (as in [5D of the coordinates of Sj'

For a given C >0, a subset S of N will be called NF(c) if for all XEX, if there is an iE.S and an XjE.Xj such that
f.{x,i,x;} >j;(x), then there is an xsEXs such that.h(x,S,xs) ~ .h(x) for all kE.S and

.h(x,S,xs) - .h(x) ~ c [j;(x,i,x;} - j;(x)] (11)

holds for at least one kE.S. (The intuitive interpretation of this condition follows readily from that given
earlier for NF.)

THEOREM 6. Assume Fj is (kj,kj)-bounded monotone and Bj is NF(cj) for all jE.M. Let d be a positive n-tuple
and d' a positive m-tuple such that dj ~ d'j(i)/kj(i)cj(j) for all iE.N. /fxo is a d'-EP for G[B,F], then XO is also
ad-EPforG.

PROOF. Suppose, to the contrary, thatj;(xO,i,x;) - j;(XO) >dj for some iE.S and some XjE.Xj. Letj = j{l). Since Bj
is NF(cj), there is a YjE.~ such that.h(xO,j,)j) ~ .h(XO) for all kE.Bj, with

(12)

holding for at least one kE.Bj. Consider changing the arguments of F:H.h(xO) : kE.Bj}] one at a time to those
of ~[(h(XO,j,)j) : kE.BJ], beginning with a kE.Bj for which (12) holds. It follows from (10) and the last display
that

yielding a contradiction to the assumption that XO is ad'-EP for G[B,F].

Theorem 6 is an Happroximate" version of Theorem 1. To obtain an Happroximate" version of Theorem
3, we first define subset S of N to be UDBJ..c), where c >0, if for all XEX, if.h(x,S,xs) >.h(x) holds for some kE.S
and xsEXs, then

holds for some ir.S and XjE.Xj. (The intuitive interpretation follows from that given earlier for UDS.)

THEOREM 7. Assume Fj is (kj,kj)-bounded monotone and Bj is UDS (cj)for all jE.M. Let d be a positive n-tuple
andd' a positive m-tupl~ such that dj ~ cj(j)d'j(i,lkj(j)/Bj(i)/ for all iE.N. /fxo is a d-EP for G, then XO is also

a d'·EP for G[B,F].

PROOF. Suppose, to the contrary, that gixO,j,y) - gixO) >d; for some jE.M and YjE.~. Consider changing the
arguments of ~[(h(XO): kE.BJ] one at a time to those of ~[(h(XO,j,Yj):kE.BJ]; it follows from (10) that
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Thus there must be a kEBj for which

Since Bj is UDS(cj), it follows that there must be an iEBj and an XjEX; such that

yielding a contradiction to the assumption that XO is a 6-EP for G.
Note that the presence of kj in (10) is required for Theorem 7 but not for Theorem 6, and vice versa for k;

(so long as~ is assumed monotone). The two theorems are not intended to apply simultaneously to the same
pair (6,6'). Theorem 6 directly generalizes Theorem 3 of [1], an extension of which is obtained by taking all
Cj= 1, all kj= k;= 1, and each F:{Sj) to be the sum of the coordinates of Sj' Making the same choices in
Theorem 7 yields a result closely related to Theorem 4 of [1].
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