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A method is presented for the direct calculation of tunneling corrections for unsymmetrical Eckart type
potential barriers. It is based on a modified 6-point Gaussian quadrature formula. Accuracy is better than 1 per­
cent over a wide range of tunneling parameter values.

Key words: chemical rate constants; Eckart potential; potential barriers; quantum mechanical tunneling calcula­
tions; tunneling corrections.

1. Introduction 2. Derivation of the method

Eckart's potential has the form

where m is an effective mass for tunneling (see ref. 2, p. 53).
The integral (1) can be written in a symmetrical form by in­
troducing a new variable, E ~ (E - VI)/kT. It becomes

V = - y[A - RI(1 - y)]/(1 - y)
y = - exp(21rxlL)
A = VI-V2

R = (V~ + V~)2

L = 27r( -2IF*)IIJ(V;'h + V;'ht l

(2)

(3)

u· = hv·lkT
a/ = 21rVihv·, i = 1,2
v· = (l/21rX - F·lm)'h

The potential has the limiting value of zero when x - - 00,

goes through a single maximum of height VI as x increases,
and has a limiting value of VI - V2 as x - + 00. F· is the
second derivative of Vat its maximum. The lower bound Eo
in the integral (1) is equal to zero when VI =::;; V2 , and to VI

- V2 when VI > V2 • The three parameters used by
Johnston and Heicklen are aI' a2 , and u·.

The Eckart potential function [1]1 is often used to estimate
quantum mechanical tunneling corrections to theoretically
determined chemical rate constants. The correction factor
r· is defined as the ratio of the quantum mechanical to the
classical mechanical barrier crossing rate. It can be ex­
pressed [2] as in integral over the energy E,

r· = exp(VIlkT) rK exp( -E/kT)dE/kT (1)
E.

where VI is the height of the potential barrier, and K is the
transmission probability for tunneling. K depends on E and
three other parameters which are determined by the shape
of the barrier and an effective mass for the system. Johnston
and Heicklen [3] have evaluated this integral numerically
for a number of parameter values. For certain applications
their results are inconvenient to use because interpolation is
required to get values not tabulated. In view of this, I have
devised a simple method which can be used to calculate r·
directly, for any set of parameter values within the ranges
chosen by Johnston and Heicklen. The method is presented
in the form of a small FORTRAN subroutine called TUNL.
In the next section, the details of the method are discussed.
Following this, the results of a series of comparisons with an
accurate calculation are presented. Finally, the subroutine
is listed in the Appendix.
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where f o = -VI = - VI/kTwhen VI =::;; V2 , and Eo = -V2

= - VJkT when VI > V2 • In terms of the parameters (2),
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the transmission probability K, derived by Eckart, has the

form

K :::: [cosh21l"(al + aJ - cosh2?r{al - aJ] X
[cosh21l"(al + a2) + D]-I

21l"ai :::: 11"[(€ + Vi)/CJ'\ i :::: 1,2
c :::: (118)1l"u*(a

l
-Ih + a

2
-Ih)2 (4)

D :::: cosh21l"d if d is real
:::: cos21l" Id I if d is imaginary

21l"d :::: (4al a 2 - r)lh

The method used to evaluate (3) is a modified 6-point
Gaussian quadrature formula based on Legendre polyno-.
mials [4]. This was used even though the nature of the in­
tegral suggests using a formula based on Laguerre poly­
nomials. When the number of evaluations of K is kept small,
neither of these methods is satisfactory for the whole range
of parameter values used by Johnston and Heicklen, so a
variation of the first method was developed.

When € gets large, K approaches unity. The method uses
a Gaussian formula for that part of the integral where K <
1. The remainder where K == 1 is evaluated analytically.
Thus, if K(€) == 1 for € > €b, then

JCI> K(€)e-fd€ == JCD e-fd€ :::: e-f>.
f.. f.

To evaluate Eb' examine (4) as E - 00. One gets ai
1h(E/C)1h and

Setting K b to some value close to unity and solving this
equation for Eb gives

3. Test of the method

Extensive testing of the accuracy of the method was per­
formed by comparing it with an accurate 40-point Gaussian
formula having the cutoff fixed at Eb corresponding to Kb ::::

0.999 or at €b < 8. In the ranges 0.5 :s a l :S a2 :s 20, and
2 :s u - :s 16, a group of 10,910 comparisons was made. For
this set there were the additional restrictions that when a l
~ 8 then u - :s 12, or when a l ~ 16 then u - :s 10. Note
that r-(al , aJ :::: r-(a2 , all. A second set of 4,920 compar­
isons was made in the ranges 0.5 :s a l :S a2 :s 20, and 0.05
:s u - :S 1.5. The results of these tests are given in table 1
in the form of histograms. These show the number of values
which differ from the accurate values by a given percentage
range. It can be seen from these results that very few values
are in error by as much as 5 percent. Such accuracy should
be quite adequate for most rate constant calculations.

TABLE I. Tests of the accuracy of TUNL

Variation from Number of differences in
accurate values percentage ranges

Percent difference Set I G. b Set II G. C

-5.5%, -4.5% 3 1
-4.5, -3.5 4 5
-3.5, -2.5 6 19
-2.5, -1.5 30 26
-1.5, -0.5 3246 140
-0.5,0.5 6811 4475

0.5, 1.5 343 227
1.5,2.5 217 27
2.5,3.5 170
3.5,4.5 78
4.5,5.5 2

Standard deviations 0.77% 0.42%

(5)

G For both Sets I and II, a2 ~ a l • The values used were 0.5, 1.0, 1.5,2.0,
... 40.0.

b ForSetI,u· =2,3,4, ... 16.Alsoifa1 ~ 8thenu· S 12andifa1 ~

16 then u· s 10.
c For Set II, u· == 0.05, 0.1, 0.2, 0.5, 1.0, 1.5.

It happens that this value is not entirely satisfactory, and
subtracting from it the average value of VI and V2 gives bet­
ter results. Also, in some cases, Ell calculated in this way is
very large. There is nq point in using this value for €b as the
upper bound of the Gaussian formula if the integrand at
this point is negligible because of the exponential factor.
Thus Eb was kept below a certain fixed value E",az. There
resulted two parameters, K b and €",a.x, which were adjusted
to minimize the sum of the squares of the differences be­
tween the results of this method and the corresponding
tabulated values of Johnston and Heicklen.

4. Appendix. Listing of rUNL

The parameters for this program are ALPHI :::: aI'
ALPH2 :::: a2 , U :::: U -, and G :::: r-. It will calculate r- ac­
curately in the parameter ranges 0.5 :s aI' a2 :S 20, and 0
< u - :s 16 with the additional restrictions that when a l

and a2 ~ 8 then u - :s 12, and when a l and a2 ~ 16 then
u- :s 10.
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SUBROUTINE TUNLCALPHl,ALPH2,U,G)
DIMENSION X(6) ,W(6)
DATA X1-. 9324 6 9 S • - • 6612094. - .2386192 •• 2386192 , • 6612094 , • 9324 6 9 S I
DATA wI. 1 713 24 S , • 3607616 •• 4679139 •• 467913 9 •• 3607616 •• 1 71324 S I
g~I~ cH ~~H l~g?g +~g~~g 16.2831853.9.86960441
UPI2=U/PI2
C= .12S °PI °Uo (1.1 SQRTCALPHl) +1 ./SQRTCALPH2»"2
Vl=UPI20ALPHI
V2 a UPI2oALPH2
D=4. oALPHloALPH2-PISQ
IFCD.LT.O) GOTO 10
DF=COSH CSQRT(D»
GOTO 11

10 DF=COSCSQRTC-D))
11 IFCV2.GE. VI) EZ=-Vl

IFCVl.GT. V2) EZ=-V2
EB=AMI Nl CCo CALOG C2 • ° C1 • +DF) I .014) I PI2 ) .. 2-. SoC VI +V2) .3.2 )
EM=.soCEB-EZ)
EP=.soCEB+EZ)
G=O
DO 20 N=I,6
E=EMoX CN) +EP
Al=PIoSQRTC (E+Vl) IC)
A2=PJOSQRTC (E+V2) IC)
FP=COSHCA1+A2 )
FM=COSHCAI-A2)

20 G=G+W(N) °EXPC-E) 0CFP-FM) I CFP+DF)
G=EMoG+EXP C-EB)
RETURN
END
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