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A number of labeling procedures for determining shortest paths in a network employ a sequence list in
order to carry out the required steps systematically. This paper studies certain formal properties of such
sequence lists. It is shown that the desirable property of branching out from nodes whose labels represent actual
in-tree distances is assured for certain ways of managing the sequence list, but not for others. The relationship of
this property to the computational complexity of various labeling procedures is also investigated.
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1. Introduction

A number of methods for finding shortest paths in networks have been proposed during the past 30 years.
Stimulated to a great extent by the wealth of application areas in which shortest path calculations arise
(notably in transportation planning models), considerable effort has been directed toward the efficient
implementation of such methods for large-scale problems. Recent evidence {2, 11]* indicates that a method
proposed by Pape [11] is remarkably successful in practice. However, compelling reasons for the observed
efficiency of Pape’s method are lacking. One motivation for the present work is to find some formal justifica-
tion for the success of Pape’s method.

To begin, some necessary terminology and notation will be introduced. Consider a directed network (N, 4)
with node set N and arc set 4, and let

Ka)e N,J(a)e N

denote the origin and destination of arc a € 4. Given a length {(a) for each arc a ¢ 4, the length {(P) of any
path P is defined to be the sum of its constituent arc lengths. A frequently encountered problem is that of
finding, among all paths (if any) extending from ie N to j¢ N, a shortest path: i.e., a path from i to j having
minimum length. It is assumed that the network contains no closed paths with negative length, in order to
guarantee that such shortest paths always exist.

If 7 is a given node of N, then shortest paths from r to all nodes j accessible (by a path) from r can be
selected to form a shortest path tree with root r. That is, the unique path in this tree from node r to node j is
in fact a shortest path between the nodes.

A tree T, rooted at node r, can be uniquely specified by a predecessor map g that assigns to each node j #
rin T its predecessor arc q(j) in the tree. Similarly, each node j # r in the tree has a unique predecessor node
P() = Kq(j)) in the tree. The nodes p(j), p(p()} , - . . , r constitute the ancestors of node j in the tree. The
branch at node i of tree T, or B(i,T), is the largest subtree of T rooted at i. Thus, B(i, T) contains node i and
all nodes j which have i as an ancestor.

*AMS Subject Classification: 05C35, 05C05
tCenter for Applied Mathematics, National Engineering Laboratory
! Numbers in brackets indicate literature references at the end of this paper.
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A number of methods for determining a shortest path tree with root r are based on providing a labeling
(T,d), where T is a tree rooted at r in the network and d: N = R U {oo} assigns a label d(j) to each node j
such that

d(j)=° for nodesjnotin T. (1)
d(i) + l(a) < d(j) for all arecs a = (45) in T. 2)

If i is an ancestor of j in T, then P(;,j) denotes the unique simple path in T from node i to node j. If (T,d) is a
labeling, then repeated application of property (2) produces

d(i) + AP,)) < dj) 3

for all nodes i,j in T with { an ancestor of j. In particular, if node j is in T then r is an ancestor of j, whence

d(r) + L(Ar,) < d(). (©)

Accordingly, d(j) — d(r) is an upper bound on the length of the tree path from r toj. As a consequence, d(j) —
d(r) is also an upper bound on the length of a shortest path in the network from r to .
A labeling (T, d) is said to be optimal if

d(n)=0, 6)]
d(l(a)) + £(a) = d(J(a)) for all a e A. (6)

A suitable interpretation of (6) is assumed in the case of infinite labels. If a labeling (T, d) is optimal, then T
is a shortest path tree rooted at node r [5,14]. On the other hand, if T is a shortest path tree rooted at 7, then
the distances d(j) from the root to node j define an optimal labeling (T, d).

If(T,d) is any labeling, and (6) is violated for some arc acA, then redefining

dJ(a)) = d(l(a) + £(a)
while leaving all other labels unchanged,

d) = d()) forje N = {J(a)}

and modifying the tree T in an obvious fashion to contain the arc a, will produce a new labeling ( f‘,é) This
observation forms the basis of the so-called labeling methods for finding shortest path trees. These methods
employ successive label corrections of the above kind to construct an optimal labeling. The various labeling
methods differ in their strategies for selecting arcs which are to be examined for possible label corrections.

A large class of labeling methods branch out from nodes, that is, they examine successively and in fixed
order all arcs in the forward star

Fk) = {ae 4: Ka) = K}

of the node k from which to branch out. Candidate nodes for branching out are kept and prioritized on a
sequence list. Employing a predecessor map q for characterizing trees, these methods follow the pattern:

Step 1: Putd(r) = 0 and d(j) = o forje N —{}.
Step 2: Enter node r into the top position of the sequence list.
Step 3: Remove the top node & from the sequence list.
Step 4: For each arc a in the forward star F{k): if a violates (6), then put
dJ(a)) = d(l(a)) + L(a), q(J(a)) = a,
and enter node J{g) into the sequence list.
Step 5: If the sequence list is empty, then STOP; else return to Step 3.
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Such sequence-list driven labeling methods are the subject of this paper. These methods differ from one
another essentially in the way the nodes J(a), whose labels have been corrected, are entered into the
sequence list. Commonly used sequence disciplines that prescribe how nodes are introduced on the list
include FIFO (nodes enter at the bottom), and LIFO (nodes enter at the top). There are various disciplines
that are 2-WAY (nodes enter at either the bottom or top) such as the sequence discipline proposed by Pape
[11]. Finally, there is the well-known discipline of DIJKSTRA (keep the sequence list sorted by labels
increasing toward the bottom). We are interested in certain formal properties of such sequence disciplines.

For instance, the label d(j) of some node j is called sharp, with respect to (T,d), if equality holds in (4).
Since d(r) = 0 always holds for a labeling algorithm, a sharp label d(j) represents the actual path length from
r toj in T, and not just an upper bound. It is undesirable to branch out from a node j whose label is not
sharp, since this condition guarantees that all labels directly and indirectly corrected from node j will have
to be corrected again. It will be shown that LIFO and certain 2-WAY sequence disciplines branch out only
from nodes having sharp labels, whereas this does not necessarily hold for a FIFO discipline. This property
turns out to be closely connected to the question of how the order of nodes on the sequence list relates to the
natural order of nodes in the associated tree.

2. Active Nodes

We call nodes appearing on the sequence list active. Since labeling methods based on sequence lists ter-
minate when there are no active nodes remaining, the following fact is necessary for the proper functioning
of such methods.

LEMMA 1: For any sequence-list driven labeling method, the active nodes include the origins of all arcs
which violate the optimality condition (6).

PROOF: The lemma holds initially, when only the root r is active. Assume it holds at some intermediate stage.
Branching out from some active node k will assure that all arcs in the forward star F{k) satisfy the optimality
condition. Therefore, removing node k from the sequence list will not cause the lemma to be violated. Also,
the only arcs that previously satisfied (6) but do no longer must originate at those nodes whose label has
been reduced by branching out from the node k. However, these nodes have just been entered in the sequence
list.

LEMMA 2: Any node j in T having a non-sharp label d(j) with respect to (T,d) must have an active ancestor
inT.

PROOF: Consider the path A(r,j) in T from r toj. If all arcs in P(r,j) satisfied the optimality condition (6), then
d(r) + L(Hr,)) > d(j).

However, using property (4) of the labeling (7T, d) yields
d(n) + L(Ar)) = d(),

whence label d(j) would in fact be sharp. Thus, at least one arc of (r,j) must violate (6), and its origin must
be active by Lemma 1.

We can now derive a general condition on sequence disciplines which assures that only nodes having

sharp labels are branched out from. To this end, observe that a natural order relation exists among the
nodes of the tree T associated with the labeling(T,d). We write

i<j(M

if i is an ancestor of j in T. A sequence discipline is called order-compatible if the sequence list never con-
tains ancestors of the top node & in the list. In other words, the top node & does not have an active ancestor.
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Examples of such sequence disciplines will be examined later in the paper. The following general condition
on sequence disciplines is a direct restatement of Lemma 2.

THEOREM 1: Under an order-compatible sequence discipline, a labeling method only branches out from
nodes having sharp labels.

3. Sequence Disciplines

As demonstrated in [2,7], the particular choice of sequence discipline employed in labeling procedures
can profoundly affect the efficiency of the resulting shortest path algorithms. In this section, then, we will
discuss several commonly-used sequence disciplines for determining shortest paths.

Recall that in sequence-list driven labeling methods a node is removed from the top of the sequence list (if
the list is nonempty) and its forward star is then scanned. Any node i whose label is changed is entered, in
some fashion, on the sequence list. For example, entering node i may always be placed at the top of the list,
at the bottom of the list, or at either the top or the bottom of the list, depending on certain other information
associated with node i.

In a LIFO (Last-In-First-Out) sequence discipline, any node i not appearing already on the sequence list is
inserted at the top of the list. In case node i already appears on the list, either (1) the node is moved from its
present list position to the top of the list, or (2) the node remains in its current position. We refer to these
two variants as (1) LIFO/MOVE and (2) LIFO/NO MOVE, respectively. Shortest path algorithms based on
LIFO/NO MOVE [7] make use of a “‘flag’’ to signify whether or not a node is currently on the sequence list.
A reasonable implementation of the LIFO/MOVE version appears to require in addition the use of a
doubly-linked list.

In a FIFO (First-In-First-Out) sequence discipline, any node i not appearing already on the list is inserted
at the bottom of the list. In case node i already appears on the list, either (1) the node is moved to the bottom
of the list, or (2) the node remains in its current position. Thus, in the latter case, nodes are branched out
from in the order in which they are placed on the sequence list. These variants are referred to as FIFO/
MOVE and FIFO/NO MOVE, respectively. The computational behavior of the second of these two variants
has been studied in[2,7,8].

In the 2-WAY sequence discipline described by Pape [11], nodes i that have their label d(i) corrected for
the first time are placed at the bottom of the list. Nodes i that have previously been on the list (but are not
currently) are placed at the top of the list when d(i) is corrected. If node i already appears on the list, either
(1) the node is moved from its present list position to the top of the list, or (2) the node remains in its current
position. Again, these variants are referred to as PAPE/MOVE and PAPE/NO MOVE, respectively. Pape’s
description of this algorithm [11] leaves open which variant he has in mind. Dial, Glover, Karney, and
Klingman {2] have implemented the second variant.

{In the sequence disciplines described above, the sequence list is considered to be linearly ordered, with
the top node being the *first” node with respect to this linear order. If no new nodes are added to the top of
the list, then the “*second’” node in the order thus becomes the new top node. It is easy to think of disci-
plines in which the associated list does not maintain a linear order structure; in these cases, the succession
problem is regulated in some other manner.)

It should be noted that both the LIFO and PAPE sequence disciplines are special cases of another concep-
tually useful sequence discipline. Indeed, suppose f is a tree function defined with respect to the tree T of
labeling(T,d). Namely, f: N-RU{oo} is such that

i <j(T) implies that fli) < fUj). )

If strict inequality holds above then f is called a strict tree function. Examples of tree functions abound. For
example, if f{7) denotes the number of nodes in the path Ar,i) from r to i in T, then f'is a (strict) tree function.
Or, if g(i) denotes the number of nodes in B(;, T), then —g is a (strict) tree function. If the network arc lengths
are all nonnegative and (7,d) is a labeling, then the labels d(:) define a tree function, in view of property (3).
Tree functions find application in the efficient tracing of cycles in networks[1,12,13].
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Consider now the tree-derived sequence discipline, based on a tree function f; that adds node i to the top
of the list if

S) < max {f{u): u is active} (8)

and to the bottom of the list otherwise. Here the tree function fis defined with respect to the “‘old’’ tree T
prior to update by the branching out that has just corrected the label on node i. Also, we suppose that the
active nodes u in (8) are those which are active in the ‘“old’’ sequence list. Of course, this tree-derived
sequence discipline also has two variants(MOVE/NO MOVE) depending on whether a node i already on the
list is moved in the prescribed manner or remains in its current position.

Using the tree function

fl)) = Oforallie N
clearly produces the LIFQ discipline. Using the tree function

0ifie T
=

o ifie T

produces the PAPE discipline. It will become clear later that FIFO cannot be derived from a tree function.
The more general notion of a tree-derived sequence discipline has been introduced because it will be shown
in the next section that every such discipline possesses the desirable property of being order-compatible.

Strict tree functions can be used to define sequence disciplines in which the top element is an active node
for which the strict tree function assumes its minimum value. Such sequence disciplines are trivially order-
compatible, since any active ancestor j of the current top node % would have f{j) < f{k); this contradicts the
fact that £ was chosen to have minimum value of f{i) over active nodes i. Thus, the corresponding labeling
methods will automatically branch out from sharp labels, by Theorem 1.

By using the labels d(i) as a tree function and selecting the top node as an active node of minimum label,
one obtains the well-known “‘label-setting’” method of Dijkstra [3], for networks with positive arc lengths.
The requirement of positive arc lengths ensures that d is a strict tree function (yielding order-compatibility)
and that once a node is removed from the sequence list, it will never reappear on the list (whence the label
can be permanently set). Dijkstra’s method also works, perhaps with minor modification, in the presence of
negative arc lengths [4,10], even though the above two properties are not assured. Somewhat surprisingly,
the DIJKSTRA sequence discipline is order-compatible even in the presence of negative arc lengths, as will
be shown in the next séction.

4. Branching Out From Sharp Labels

In this section, we present some major results that indicate which of the sequence disciplines discussed in
section 3 do in fact guarantee that only nodes with sharp labels are used for branching out. This desirable
property will be assured for order-compatible sequence disciplines, by Theorem 1. The first major result of
this section shows that tree-derived sequence disciplines always possess this property.

THEOREM 2: Every tree-derived sequence discipline is order-compatible.

PROOF: Suppose the sequence discipline is not order-compatible. Then there is a first time that order-
compatibility is violated. Let k be the corresponding top node of the list A at that time and let j be an active
node (j £ A) such that j < k (7) in the associated tree T. Since j is currently active, but has not always been
active, there exists a progression of lists A,, A, . . . , A, (with associated trees T, T3, . . ., T) such that A, = A,
jeAsandjeA, forl<m <s. Also, T, = T.
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Since node j has not been branched out from while on lists Ay, . . ., A, it follows that
B(G.T) 2 B(,T») 2 ... 2 B, T). 9

Indeed, the only way the branch B(j, T,.) can gain new arcs in B(j, T..,), 1 < m <s, is if some node i ¢ B(j, T,,)
has been branched out from. The existence of such a node i £ A,, withj < i(T,) and m < s contradicts the
fact that (T}, A,) was the first instance when order-compatibility was violated.

In view of (9), the assumed relation j < k (T) implies

J<E(T.).forl<m<s. (10)

Moreover, it is claimed that

d(k) remains the same in all trees T, . . ., T.. (11)

Suppose, to the contrary, thdt d(k) was corrected in branching out from node i € A,. If i ¢ B(j, T,), then (10)
would not hold in T.,,. Thus, i ¢ B(j,T,) with v < s, but this contradicts the fact that the first violation of
order-compatibility occurred for (T, A,).

Consider now the manner in which node j was added to the sequence list A,.

CASE I: Node j was added to the top of A,. Thus, the only way node k can precede j on list A, is for d(k) to
have been corrected in some T, 1 € m < s, contradicting (11).

CASE II: Node j was added to the bottom of A,. Since k is ini A, = A, it must be in all A, (1 € m < s). Other-
wise, in changing from inactive to active status at some list A,,, its label must have been corrected; but this is
prohibited by (11). In particular, k¢ A,. Recall that a tree-derived sequence discipline adds node to the bot-
tom of list A only if (8) fails to hold. Since k ¢ A,, this means that f{j) > f(£) in T,. However, by (10) we have j
< k(T), and using property(7) of a tree-function produces f{j) < f{k), a contradiction.

Since either case yields a contradiction, the sequence discipline is in fact order-compatible.
Because LIFO and PAPE sequence disciplines are special cases of tree-derived sequence disciplines,
Theorems 1 and 2 produce the following results.

RESULT 1. Under LIFO/MOVE or LIFO/NO MOVE sequence disciplines, a labeling method always
branches out from nodes having sharp labels.

RESULT 2. Under PAPE/MOVE or PAPE/NO MOVE sequence disciplines, a labeling method always
branches out from nodes having sharp labels.

While the definition of a tree-derived sequence discipline in section 3 used a tree function f; on the “‘old”
tree T (before branching out has occurred), it is also possible to employ instead a tree function f; based on
the ““new’’ tree T (which possibly incorporates new arcs emanating from the node just used for branching
out). The proof of Theorem 2 shows that this second type of tree-derived sequence discipline is order-
compatible as well. Specifically, in case II we would have & £ A, and f{j) > f(k) would hold in T, = T again,
a contradiction is reached to the fact that j < k(T%).

In summary, it does not really matter whether the old tree function values fi{(i) or the newly-updated tree
function values fi(i) are used in defining the 2-WAY sequence discipline based on (8). In either case, the
sequence discipline is order-compatible, and so only nodes k with sharp labels will be used for branching
out. This property still holds whether we view all nodes updated by branching out as entering the sequence
list simultaneously or sequentially.

However, under a FIFO sequence discipline, a node with a non-sharp label can be branched out from. For
example, consider the network of figure 1, together with the associated sequence lists and trees produced an
appropriate FIFO discipline. At the fourth step, node ¢ is the top node of the list but it has an ancestor cur-
rently on the list. Thus, the label of node ¢ is not sharp, and ¢ will be used for branching out at the next step.
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Ficure 1.

RESULT 3. Under FIFO/MOVE or FIFO/NO MOVE sequence disciplines, a labeling method will not nec-

essarily branch out from nodes having sharp labels.

A few additional observations are warranted. In the proof of Theorem 2, the fact that k was the top node
of A was not used in any essential way. As a result, any tree-derived sequence discipline (including LIFQ and
PAPE) possesses the strong-compatibility property:

(SCP) If the sequence list A is linearly ordered and if i,j€ A then

i<j(T) iprecedesjinA.
Clearly, by Theorem 1, any discipline having the SCP will always branch out from nodes with sharp labels.

Also, the LIFO/MOVE sequence discipline creates a progression of trees having a very special property.
Namely, any tree generated by such a discipline must have a form like that shown in figure 2, where the
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associated (linearly-ordered) sequence list A has entries @, b, ¢, . .., 3,z with a the top entry and z the bottom
entry. Active nodes are indicated by squares in this figure, and inactive nodes are indicated by circles. There
can be any number of active nodes (possibly none) adjacent from one of the “*central’’ inactive nodes. The
circled “I"’ configuration signifies an arbitrary collection of subtrees, possibly empty, of inactive nodes.
This special property of LIFO/MOVE can be established in a straightforward manner by induction. Note
that from the structure of the tree in figure 2, it is clear that nodes a, b, ¢, . . . ; ¥,z on the sequence list are
always incomparable in the associated tree T: i.e., neither i < j(T) nor j < i (T) holds. This property is not
guaranteed to hold, however, for other sequence disciplines.

O e

of [ [=

FIGURE 2.

The second major result of this section establishes that the Dijkstra sequence discipline is also order-
compatible, everi though ares of negative length may be present. This result is somewhat surprisirig in that
the labels d(i) no longer form a tree furiction in the presence of negative arc lengths. However, it will be
shown that the labels do define a tree function when restricted to active nodes (Theorem 3).

Notice that under the Dijkstra sequence discipline branching out from node & along a negative length arc
creates an active label which is smaller than all labels of active nodes already on the list. Thus, the newly-
labeled node becomes the top node of the list, giving the procediite somewhat the flavor of a LIFO-based
procedure. To formalize this statement we define, for each node i in tree 7T,

L(i) = min {d(u): u is active, u ¢ B, T}
By convention, I(i) = o if there are no active nodes outside B(i,T). Branch B(i,T) is said to be saturated if
d(j) > d(i)
holds for all active nodes j in B(i, T). Our key observation is
L{i) 2 d(i) for nonsaturated B(i, T). (12)

Note that(12) implies
Each nonsaturated branch contains allactive nodes of minimum label. (13)

We now proceed to prove (12). The statement is trivially satisfied for the initial labeling on the tree con-
sisting of the root r alone. Assume it is true for subsequent labelings, including the present one (T,d,S); here
S denotes the set of active nodes. After branching out from node %, which according to the modified Dijkstra
procedure satisfies
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d(k) = min {d(j): je S} ,
anew labeling(f‘, z?, 3’) results. The nodes with actual label changes are
hy... h.e F(k)

so that

dh)y<dhy,t=1,...,m,

S=SUfhy,..., k) —1{k.
Note that m = 0 is possible. In this case, the only change is a reduction in the number of active nodes: a
previously nonsaturated branch may now be saturated; L(i) may increase. Statement (12) remains true

regardless. We assume henceforth that m > 0.

CAsE I: Suppose node i is not an ancestor of node k in T: then it is not an ancestor of node k in T. By (13),
since B(i, T) does not contain the minimum node &, B(;, T) is saturated in(T,d,S). Note that

B.T) CBG).
Moreover, any active node j #iin B(i,"I\') is different from h,, . . ., h,,. Thus,
dj) = dg) > dii) > dii)

for all active nodes j # iin B(}', f) Thus, B(, f') is saturated for all nodes i # k which are not ancestors of k in
T. This implies (12) holds in T for these nodes.

CASE II: Suppose i = k. Then we have
£y > (k) > dk) = dik)

since B(k,T) C B(k, f), since there are no label changes outside B(k, f’), and since d(k) is a minimum label in
(T,d,S). This implies statement(12) holds in T for node k.

CASE IIL: Suppose node i is an ancestor of k in T, and therefore in T. Note again that
B, 1) = B U Bk D 2BGT),
and that there are no label changes outside B(i, f’) Thus,
L) > Li).
In addition,
dli) = di) < L) < £6)
unless B(;, T) is saturated. In the latter case, since d(k) is a minimum label of (T,d,S),
di) = d(i) < di) < L) < L6

Thus, (12) holds in T for all nodes.
The required result will now be shown to follow from statement(13).
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THEOREM 3: Under the DIJKSTRA sequence discipline, the labels d(i) form a strict tree function when
restricted to the active nodes.

REMARK. If this theorem is proved, then the DIJKSTRA discipline is order-compatible, since an active
ancestor j of node k in T would by Theorem 3 satisfy d(j) < d(k), contradicting the fact that node k is an
active node of minimum label. We proceed therefore to a proof of the theorem.

PROOF: The theorem clearly holds for the initial labeling on the tree consisting of node r alone. Suppose the
theorem holds for (T,d) and that node k is used for branching out. By induction, node k does not have an
active ancestor. The only possible violation of the theorem for the next labeling (T,d) occurs because a
newly-active node h, has a label that is too large. However, B(h.,T) does not contain node k and so it does not
contain all active nodes with minimum label. By (13), branch B(h,,T) is saturated, whence

d(h) < d(j)

holds for all active nodes j in B(k,,T). Since any active node j in B(h,j') is active in B(h,,T), and since

d(h) < dih) < d§j) = dij),
all active nodes in B(h,, T) satisfy the requirements of the theorem.

RESULT 4. Under the DIJKSTRA sequence discipline, a labeling method always branches out from nodes
having sharp labels.

5. Computational Complexity of Labeling Methods

In this section the (worst-case) computational complexity of labeling procedures based on various
sequence disciplines will be established. We consider the effort of calculating a shortest path tree by a label-
ing procedure to be the number of arcs examined (i.e., used in branching out). This definition is optimistic
in that it does not include the work inherent in data-structure manipulations or in finding suitable arcs to
examine. For NO MOVE variants, however, the latter constitute only an insignificant portion of the total
work involved. (An alternative measure of effort is the total number of nodes entered onto the sequence list.
Since each such node, apart from the root, gets placed on the sequence list as a result of examining some
arc, this alternative measure is a lower bound for the first.)

We first study the effort required, in the worst case, to solve the shortest path problem using a LIFO
sequence discipline. Consider the networks V*,n = 0, 1,2,. .. defined by

yn:

2

By convention, ° consists simply of the single node 0. Generally, V" consists of 2n+ 1 nodes and 3n arcs,
where n designates the number of segments. For n = 3, we would have




We assume further that the networks 7 are represented by forward stars and that the ares in these forward
stars are scanned in order of increasing length.
The following propositions concerning the application of LIFO to P* follow readily by induction.

If E(n) denotes the effort of solving 7 then E(0) = 0 and E(n+1) = 3 + 2E(n)forn=0,1,... (14)
Every examination of an arc results in a node being added to the sequence list. (15)

Proposition (14) shows that E(n) = 3(2"—1) and thus the effort is exponential. Proposition (15) shows that
LIFO/NO MOVE and LIFO/MOVE perform identically when applied to networks 7. These facts are sum-

marized in Result 5 below.

RESULT 5. Under LIFO/MOVE or LIFO/NO MOVE sequence disciplines, a labeling method has exponen-
tial computational complexity.

The idea behind the construction of the networks 7 is to build sequences of segments identical in topol-
ogy, but with arc lengths for any segment being larger by a factor F than the corresponding arc lengths of
the segment immediately to the right. For example, consider the networks G* defined by

Suppose that arcs in forward stars are again scanned in order of increasing length.
LEMMA 3: IfF 2 2,¢>a + b, and ¢ > a then LIFO is exponential on the networks G".

To show this, we first demonstrate a crucial fact about the 2" paths from node 0 to node 2n: P(1), P.(2),.. .,
P,(2") which are generated by the LIFO discipline.

If paths P.(1), P.(2), .. ., P.(2") are the paths generated in order by the LIFO discipline, then  (16)
AP > UPA2) > ... > UPA2").

PROOF: When n = 1, the paths are P,(1) = [0,2], P{(2) = [0,1,2] and £(P(1)) = ¢ > a + b = L(Py(2)), by
assumption.

Suppose the assertion is true for n = k — 1. Then the set of paths produced in G* by LIFO have lengths

L(P(1) = F*'c + (P-(1))
L(P(2)) = F*'c + H(Pi-1(2)

UPEY) = F&'e + HP(2)
(P (21 +1)) = F*'a + F*'b + 2(Pi-(1))
H(P(2x1+2) = FF'g + F*1b + 4(P-i(2)

UP(2) = F=ta + F-ib + H(Puk27)-
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By induction

UPer() > (P2 > ... > UPi(27)
and so

HP) > LPL2) > ... > (P2,
KPP+ 1) > (P21 +2) > ... > NP(2¥)

It suffices then to show that

D= {(P(251) — (P2 +1) >0
Now,

D= F¥lc + (P y(2) — (F¥'a + F*'b + U(Pp(1))
= F*c+(F*2a+F*b) +...+ (Fa+ Fb)+(a+ b) —(F*'a+ F*'b+ F*?*c +...+ Fc+¢)
= F*Y¢—g—b) — (F**c—a~b) +...+ F(c—a—b) + (c—a—b)).
Since c—a—b >0, D >0 if and only if
Fetr—(F2 4+ ..+ F+1)>0
or, since F > 1,
Fx>2P -1,

Now since F > 2, F* > 2F*! > 2F**' — | and so (16) is established. (In fact, D > 0 for all k if and only if

F22)

From (16) it follows that every arc incident to node 2n causes an update of d(2n), and similarly for nodes 2j

(1 € j < n) and nodes 2j—1 (1 € j < n). This means all potential label corrections are made, and the expo-
nential behavior follows with

E(n)=32-1),n=0,1,...
A similar fact holds when forward stars are ordered by decreasing length.

LEMMA4: IfF 22,c > a + b,and a> cthen LIFQ is exponential on the networks G".

Notice that ¥ is the special case of G* witha = 1,5 =0,c = 2, and F + 2. Lemma 3 thus guarantees
exponential behavior on }*, assuming that arcs in F{%) are ordered by increasing length. The following net-

works W (corresponding toa = 0,5 = =2, ¢ = =1, F = 2) require exponential effort by LIFO when arcs
in F(k) are ordered by decreasing length (see Lemma 4).




We now show that

RESULT 6. Under PAPE/MOVE or PAPE/NO MOVE sequence disciplines, a labeling method has exponen-
tial computational complexity.

This result is not surprising inasmuch as Pape’s method becomes a LIFO method once all nodes have
been entered on the sequence list. To exhibit an actual example, we modify networks V* by adding arcs from
the root node 0 to all nodes not already connected to it. These arcs are given a very large arc length M
(>2"**). The forward star of the root is arranged by nonincreasing arc length, whereas all other forward stars
are arranged as before by increasing arc length. Pape’s method, when applied to these modified networks
7, will enter all non-root nodes into the sequence list with nodes 2 and 1 being next-to-last and last, respec-
tively. The nodes j having label d(j) = M will be branched out from first. This will not produce any label
changes, so that finally all active nodes will have disappeared except nodes 2 and 1, in this order. From this
point on, Pape’s method will reproduce LIFO as applied to the original networks V». Again, there is no
difference between PAPE/MOVE and PAPE/NO MOVE.

RESULT 7. Under the DIJKSTRA sequence discipline, a labeling method has exponential computational
complexity if arcs of negative lengths are admitted.

This result has been previously obtained by Johnson [9]. We show that it follows rather easily from our
present results. If all arc lengths are nonpositive, and if the forward stars of the network are arranged in
order of decreasing arc length, then the LIFO/MOVE discipline will be equivalent to the DIJKSTRA dis-
cipline, since branching out from a node of smallest label will place another node of smallest label in the top
position of the sequence list. The networks #* described earlier then provide the necessary evidence.

RESULT 8. Under FIFO/MOVE or FIFO/NO MOVE sequence disciplines, a labeling method has computa-
tional complexity 0(n®), where n = |N|.

To demonstrate this result, let us define sets S,, ¢ = 1,2, .. ., as containing those nodes added in a FIFO
manner to the sequence list during branching out of nodes in S,.,. We set S, = {r}. In the case of
FIFO/MOVE, a node j whose label is updated by branching out from & € S,_, is always moved to S,, even if
node j is currently on the bottom of the sequence list.

A label d(j) is said to have cardinality «j) if the path P corresponding to the path length d(j) has precisely
o) arcs. It can be readily shown by induction that for a FIFO discipline(MOVE or NO MOVE)

oj) 2 t for all nodes j £ S.. (17)

As a matter of fact, o(j) = ¢ for the case of FIFO/MOVE. It follows from (17) that S, = ¢ inasmuch as no
shortest path length d(j) on the sequence list need have ¢(j) > n — 1. Thus, all FIFO methods require at most
n sets S, before terminating. Since each set S, can contain at most n — 1 nodes (node r cannot re-enter the
sequence list) and since branching out from a node entails at most n — 1 arc examinations, the effort re-
quired is no more than O(n%). It is easy to give examples where this bound is achieved and thus a FIFO-based
method has worst-case complexity 0(rn?), as stated in Result 8.

6. Conclusions

This paper has investigated two properties of sequence disciplines for labeling procedures: branching out
from sharp labels, and worst-case computational complexity. Of the disciplines studied, only FIFO fails to
branch out from sharp labels, yet only FIFO has polynomial complexity. Clearly, either of these properties
alone is not sufficient to guarantee good performance in practice. For example, the LIFO discipline has
been observed [2,7] to be inefficient in practice, even though it branches out from sharp labels. Also, the
PAPE discipline has proven to be surprisingly successful [2] in sparse networks, even though it can require
exponential effort for certain sparse networks (V" of sect. 5).
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In the highly structured sparse networks used for assessing the relative efficacy of Pape’s method [2], this
method does indeed act similar to a FIFO method while maintaining the sharp labeling property. We con-
jecture that Pape’s method, as well as other 2-WAY methods, can achieve success by combining in a certain
sense these two desirable, but apparently conflicting, properties. At the present writing it is not known
whether there exists a polynomial labeling method that branches out from sharp labels. Even if such a
method cannot be found, the 2-WAY tree-derived disciplines appear to be a promising area of further inves-
tigation. For example, it is not difficult to show that a 2-WAY method, based on using the new labels d as a
tree function, performs polynomially for the networks 7 on which Pape’s method is exponential,
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