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Part I. Fitting Functions of a Single Argument 

1. Introduction 

The ready availability of calculators and computers has had a profound effect on the use of tables of com
plicated functions. For example, in statistical work one may be required in a specific computer program, to 
call on critical values of the F distribution for specified degrees of freedom in the numerator and the denom
inator, at specified levels of significance. It is totally impractical to store the entire F table in the memory of 
the computer, but it is entirely feasible to let the computer calculate the required value by a suitable approx
imation formula. 

Similar situations occur for physical or chemical properties that are tabulated as functions of temper
ature, pressure, wave-length, etc. 

The object of this paper is to present a widely applicable procedure for finding empirical representations 
of tabulated values. The tabulated values are of course assumed to be derived from reasonably smooth func
tions of the arguments. The approximation formulas are expected to generate values that are practically 
interchangeable with the corresponding tabulated values. 

We will present the procedure in three parts. Part I is concerned with the empirical fitting of curves, i.e., 
functions of a single argument. Part II deals with functions of two arguments. The case of functions of more 
than two arguments is discussed in Part III. 

Part I consists of two sections. In section 1, we deal with monotonic functions, and in section 2, with func
tions that have a single maximum or a single minimum. 

2. Monotonic functions 

2.1 The general formula 

Polynomials, which are widely used for empirical fitting, have well-known shortcomings for the fitting of 
monotonic functions: they often have undesirable maxima, minima, and inflection points. The formula we 
propose in this section applies to monotonic functions, with or without a single inflection point in the range 
over which the curve is fitted. The formula is 

(1) 

-National Measurement Laboratory. 
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where (Xi,Yi) are the coordinates of the points to be fitted by a monotone curve; and xo,Yo,A, and B are four 
parameters the values of which have to be estimated. Note thatB need not be an integer. 

A simpler formula would be: 

(2) 

but this formula presents difficulties for x<Xo, because of the ambiguity of defining {x - xo)B for negative 
values of x - Xo. Equation (1) is totally free of this shortcoming. We will refer to eq (1) as the ufour 
parameter equation" for monotonic functions and denote it by the symbol MFP. 

2.2 Nature of the MFP function 

Table 1 presents the properties of the MFP function in diagrammatic form. The function is defined for 
the entire range x = -00 to x = +00. Note that for B<o, the curve is discontinuous at Xo and consists 
essentially of two branches, each of which is free of points of inflection. Note also that in this case (B < 0), 
the curve has finite asymptotes, equal to Yo, both at + 00 and - 00. 

TABLE 1. MFP: Nature of Function 

Y = Yo + A(x-xo) Ix-xol B-1 

Value of y 

x A<O A>O 

-00 Yo Yo 
B<O Xo (+ 00 

- 00 
(- 00 
+00 

+00 Yo Yo 

Value of y 

x A<O A>O 

-00 +00 -00 

B>O XO Yo Yo 
+00 -00 +00 

B =0 y is a constant 

B = I y is a linear function of x. 

For B>o, Y becomes infinite both at x = -00 and x = +00 and has a point of inflection at Xo' 
For B = 1, the curve becomes a straight line and for B = 0, it becomes a constant It is worth noting that 

the curve is increasing whenAB>o and decreasing whenAB<o. 
It is apparent that by choosing appropriate portions of the curve, with the proper parameter values, great 

flexibility is available, and it may therefore be expected that the curve will provide good fits for many sets of 
empirical data representing monotone functions with no more than one point of inflection. This does not 
mean, of course, that it will provide satisfactory fits for all sets of monotone data. 

Figures (ta) through (Ie) show some examples of curves that were generated by eq (1). The four 
parameters are given for each case. The figures demonstrate the flexibility that can be achieved through the 
use of this general formula. 

2.3 Method of fitting 

The procedure we use for finding the four parameters consists of two steps: (a) finding initial values for Xo 
and B; (b) iterating, using the Gauss-Newton procedure, to improve these estimates. 
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Both steps are presented with a great deal of detai~ in spite of the fact that standard procedures can be 
found in the literature for non-linear fittbg. The reason for this is the intent to make this paper essentially 

self-contained. 
Once Xo and B are known, define 

(3) 

Then, eq (1) becomes: 

(4) 

which is the equation of a straight line in Yi versus Zi, for which the intercept Yo and the slope A are readily 
estimated by linear regression. 

The variable Zi can be regarded as a reexpression of Xi in a transformed scale. The new scale must be such 
that Zj is linearly related to Yi' For the purpose of comparing different pairs of(xo,B) in achieving a good fit, 
a convenient measure is therefore the correlation coefficient between Zj and Yi' We will use this measure 
throughout the paper with the understanding that it is merely a comparative measure for the adequacy of a 
(xo,B) pair of values, and that we are not concerned here with the statistical properties of this measure. 

2.4 Initial values for leo and B 

Differentiating y with respect to x, in Eq (1), gives the relation: 

dY:ay' =AB Ix -x I B-1 dx x 0 
(5) 

Dividing eq (1) by eq (5) yields: 

or: 

(6) 

Now x and yare given for N points of the curve, and y'x can be approximately calculated for the midpoints of 
the intervals between successive x-values. The value of Y can also be estimated approximately at these mid
points. This yields N-l sets of values x, y. and Y' % from which xY' x can be calculated. A multiple linear 
regression of yon xY'J{ and on y'n allowing for the constant term Yo, then gives estimates of the coefficients 

Yo, 1 and ~. We ignore the first and use the two others to estimate Xo and B. 

2.5 Illustrative example for finding initial values of x" and B 

An important statistical application of empirical curve and surface fitting is to represent standard statilr 
tical tables by formulas that can be used for ready interpolation or for incorporation into computer pro
grams. Our first example is the two-tailS percent critical value of Student's t, for values of v, the degrees of 
freedom, ranging from 2 to 00. The data used for the fit consist of 20 selected pairs of (v, tc), where tc is the 
critical value in question [2]. The data are given in table 2. We substituted 10,000 forv = 00. 

The calculations for the initial values estimation are shown in table 3. The midpoints of x and yare 
denoted x ... andy .... The derivative y'J{ is approximated by Ay/Ilx (column 5). For example: 
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(1) (2) 

XI Yi 

2.0 4.3027 
3. 3.1825 
4. 2.7764 
5. 2.5706 
6. 2.4469 
7. 2.3646 
8. 2.3060 
9. 2,2622 

10. 2.2281 
12. 2.1788 
14. 2.1448 
16. 2.1199 
18. 2.1009 
20. 2.0860 
25. 2.0595 
30. 2.0423 
40. 2.0211 
60. 2.0003 

120. 1.9799 
10000. 1.9600 

TABLE 2. Two-Tail 5 percent Critical Values of Student's 
t Statistic 

Degrees of Freedom (p) Student's t 

2.0.............. . 4.3027 
3 ................ 3.1825 
4 ................ 2.7764 
5 ................ 2.5706 
6 ................ 2.4469 
7 ... ............. 2.3646 
8 ................ 2.3060 
9 ................ 2.2622 

10 ... ............. 2.2281 
12 . . . . . .. . .. .. .. . . 2.1788 
14 . . . . . . . . . . . . . . . . 2.1448 
16 ................ 2.1199 
18 ................ 2.1009 
20 ................ 2.0860 
25 ................ 2.0595 
30 ................ 2.0423 
40 ................ 2.0211 
60................ 2.0003 

120................ 1.9799 
10000 .. . ... . ... . . . . . . 1.9600 

TABLE 3. Calculations for Initial Values of x. and B. 
(Data in Table 2) 

(3) (4) 

Xm Ym 

2.5 3.74260 
3.5 2.97945 
4.5 2.67350 
5.5 2.50875 
6.5 2.40575 
7.5 2.33530 
8.5 2.28410 
9.5 2.24515 

11.0 2.20345 
13.0 2.16180 
15.0 2.13235 
17.0 2.11040 
19.0 2.09345 
22.5 2.07275 
27.5 2.05090 
35.0 2.03170 
50.0 2.01070 
90.0 1.99010 

5060.0 1.96995 

3.1825 -4.3027 
-l.1202 

3-2 

(5) 

Ay 
Ax 

-1.120200 
- .406100 
- .205800 
- .123700 
- .082300 
- .058600 
- .043800 
- .034190 
- .024650 
- .017000 
- .012450 
- .009500 
- .007450 
- .005300 
- .003440 
- .002120 
- .001040 
- .000340 
- .000002 

Finally, the value xy';r is approximated by Xm ~ (column 6). 

(6) 

Xm Ay 
Ax 

-2.800500 
-1.421350 
- .926100 
- .680350 
- .534950 
- .439500 
- .372300 
- .323950 
- .271150 
- .221000 
- .186750 
- .161500 
- .141550 
- .119250 
- .094600 
- .074200 
- .052000 
- .030600 
- .010191 

The multiple linear regression is carried out by regressing column (4) on a column consisting of unity for 
all rows (for the coefficient Yo) and on columns (6) and (5). Thus, the first observational equation is: 

3.7426 = Yo (1) + ~ (-2.8005) - ~ (-1.1202) 
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The normal equations are (omitting the symmetrical elements below the diagonal in the x'x matrix): 

Yo 
1 Xo 

B -Jj 

44.00215000 19.0 -8.86179170 -2.15789201 
-25.67782645 12.14223318 4.10274947 

-6.95277684 1.49195207 

Solving these 3 equations in 3 unknowns, we obtain for the second and third coefficients: 

which give the estimates: 

1 

B 
= -.93471932 

..:. xo = .75296356 
B 

Xo = .80555 

iJ = -1.069839 

Calculating the corresponding z. for all XI by eq (3) and regressing YI on Zi, we obtain the estimates 

Yo = 1.96424556 

A = 2.82544745 

The correlation coefficient between Zj and Y;, for the pair (xo = .80555, R = 1.069839), is 0.999993, indicat
ing a quite successful fit. We now develop a Gauss-Newton iteration process to achieve, if possible, an even 
better fit. 

2.6. Gauss-Newton iteration to improve the fit 

The iteration is carried out on the standardized vectors of y and z, defined as follows: I 

Vi == YI;i ,where Sy = ..Jr;(YI-j)2 
y 

(7) 

(8) 

Define: 

(9) 

(10) 

Then the equations yielding the corrections for Xo and R, denoted by Axo and M, are: 

D. = CIt; Ax +..E..!L AD 

• Clxo 0 oR un 
(11) 

It" as defined by eq (8) should not be confused with Students's t used for the illustrative example. 

6 



The partial derivatives ;!: and :~ are readily evaluated using eqs (3), (7), and (8). The results are: 

at· 1 --' = -(Pi - P - Eeti) 
axo S~ 

(12) 

(13) 

where 

(14) 

(I 5) 

P and Q are the averages of the Pi and the Q;, and 

(I 6) 

(17) 

Using these equations, ;!: and :~ are computed for all i and a multiple linear regression is carried out, 

in accordance with eq (II), of Di on ;!: and :~ . The coefficients are dxo and dB. 

To avoid Hovershooting," it is advisable to correct Xo and B by only a fraction of dxo and dB, say (dxo)/4 
and (dB)/4. Thus, the new values for Xo and Bare 

_ + dxo new Xo - Xo -4-

new B = B + dB 
4 

(I 8) 

(I 9) 

Using these new values, z{ is recalculated for all i and the entire process is repeated. Iteration continues 
until practical convergence is reached. 

Using the above equations, the entire procedure is readily programmed on the computer. The calcula
tions are simple and rapid. 

Referring to our illustrative example (table 2), and starting with the initial values Xo = .80555 and B = 
-1.069839, we obtain after 30 iterations: Xo = .836464 and B = -1.055240. The correlation between z and Y 
is now 0.9999964. The fitted values are correct to within 2 or 3 units in the third place. Further iterations do 
not improve the fit and result in only minute changes in Xo and B. Table 4 lists the four parameters of the 
final fit and the fitted values. Figure 2 is a graph of the experimental points and of the fitted curve. 

2.7. Additional remarks 

Occasionally, the initial values for Xo and B, obtained by the method described in section 4 above, are 
unsatisfactory and the iteration process may fail to converge. One possible remedy is to interchange x and y 
in the formula. Indeed, the basic formula Y=Yo+A(X-xo)B can be written: 

(20) 

indicating the same form for expressing x in terms of Y as vice-versa. 
If this advice leads to a satisfactory fit, one can do further iterations in the original form (y as a function of 

x), using the values of Xo and B obtained by use of the inverted formula after a few iterations. 
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TABLE 4. Fit of Data of Table 2 

Equation: y = 1.963000 + 2.745822 (p - .836464t1.055240 

Degrees of Freedom (p) 

2 .............................. . 
3 .............................. . 
4 .............................. . 
5 .............................. . 
6 .............................. . 
7 .............................. . 
8 .............................. . 
9 .............................. . 

10 .............................. . 
12 ........................... , .. . 
14 .............................. . 
16 .............................. . 
18 .............................. . 
20 .............................. . 
25 .............................. . 
30 .............................. . 
40 .............................. . 
60 .............................. . 

120 .............................. . 
10,000(00) ........................... . 

5 

Tabular Value 

4.3027 
3,1825 
2.7764 
2.5706 
2.4469 
2.3646 
2.3060 
2.2622 
2.2281 
2.1788 
2.1448 
2.1199 
2.1009 
2.0860 
2.0595 
2.0423 
2.0211 
2.0003 
1.9799 
1.9600 

Fitted Value 

4.3032 
3.1792 
2.7775 
2.5725 
2.4487 
2.3659 
2,3068 
2.2625 
2.2281 
2.1783 
2.1439 
2.1188 
2.0997 
2.0847 
2.0583 
2.0411 
2.0203 
2.0004 
1.9807 
1.9632 

Two-Tail 5% Critical Values of Student's i-distribution 

4 

3l 
2 ------------------------______ _ 

o 50 100 

Degrees of Freedom 

150 200 

FIGURE 2. Two-tailS percent critical values of Student's t-distribution. 

It is also possible to simply "guess" initial values. It happens occasionally that after an initial tendency to 
diverge (decreasing correlation coefficient), the process suddenly reverses itself and leads to a good fit. 

As noted earlier, the general fitting equation given by (I), yields good results for many sets of monotonic 
data, but cannot be guaranteed to be satisfactory in all cases. 
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3. Non-Monotonic functions 

3.1. The general formula 

We will deal with functions that present a single maximum or a single minimum in the range in which 
they are to be fitted. Polynomials of order 2 (quadratics) appear to be the most plausible candidates for such 
functions. The general equation for the quadratic is: 

y = a + bx + CX
2 (21) 

In practice, however, it is often found that even for functions presenting only a single maximum or a single 
minimum, eq (21) provides a very poor fit indeed. For example, the five points represented by the first two 
columns of table 5, when fitted by a quadratic, give the least squares fit of column 3 of that table. A fairly 
obvious device for improving the fit is to express the x variable in a transformed scale. To be effective, the 
scale transformation must be non-linear. A simple example is given by the relation: 

(22) 

We will use a slight modification of eq (22), to allow for a frequently occurring case, namely the case in 
which a logarithmic transformation of x is indicated. 

TABLE 5. A Non-Monotonic Function 

x y Quadratic Fit of ya 

25 .513089 .503630 
10 .551180 .684080 
5 .516202 .329230 
1 .063119 -.104050 

0.5 -.403100 -.167547 

a Value y = a + bx + cx2
, resulting from unweighted least squares fit. 

I t can readily be shown that 

In x = lim X
O 

- 1 
0+0 ex 

(23) 

Thus, by writing: 

(24) 

we obtain a general formula that includes the transformation of x to its logarithm (for very small a) as well as 
all cases covered by eq (22) (for any other a). 

Equation (24) is the formula we propose for fitting non-monotonic functions of a positive valued argu
ment, with a single maximum or minimum. We refer to this equation as the Quadratic Four Parameter 
(QFP) formula. The unsolved problem is to find the value of a that provides the best fit by eq (24). But first 
we study the properties of the Q FP function. 

3.2. Nature of the QFP function 

A diagrammatic presentation of the properties of the QFP function is given in Table 6. 
Note that the curve can be monotonic under certain conditions, namely for bexl2c~ 1. If not monotonic, 

the curve is finite at one end of the range of x and 00 at the other end. Within this range, it passes through a 

local minimum or a maximum, which always occurs at x = (1 - ~)l/o. Here again, as for the MFP, a 
2c 

great deal of flexibility is available. 
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(If ~ ~ 1, curve is monotonic) 
2c 

Value of x 

TABLE 6. QFP: Nature of Function. 

x"-l x"-l 
Y = a + b (-a-) + c(-a-P 

Case of ~ < 1 

Value of y 

a>O a<O 

x=O a-~+c 
a (? + oo(c> 0) 

x = x,"o 

x = +00 

• x," =(1-~) II,,; for a = 0, x," = e-b/1
< 

2c 

b In that case: y = a + b in x + c(in X)1 

- oo(c<O) 

a -!C b1 

a --
4c 4c 

+ oo(c> 0) a _~+ c 

- oo(c<O) 
a (? 

3.3. The fitting procedure 

a very close to zerob 

+oo(c>O) 
-oo(c<O) 

b1 

a --
4c 

+ oo(c> 0) 
- oo(c<O) 

Appropriate a-values are often found in the range -2 to + 2. Since a computer program can readily be 
written that fits eq (24) for any given value of a, and since the calculations are quite rapid on any program
mable desk calculator, or minicomputer, a trial and error search procedure is a reasonable way to obtain an 
initial value for a.1t is then easy to apply a Gauss-Newton iteration process to zero in on the best value for a. 

We propose the following procedures: 

1. Let 

Then: 

u == xa-l 
a 

y = a + bu + cu1 

(25) 

(26) 

2. Choose a small set of values of a between -2 and +2. For each value of a, calculate u for each x, fit eq 
(26), and calculate the correlation coefficient e between Yi and the corresponding fitted value YE' Also 
calculate: 

k =L 
b 

(27) 

With a properly-written program, step 2 should take very little time on a programmable desk calculator 
and much less on a minicomputer. 

3. Having found a value of a that gives a e-value of 0.99 or better, in absolute value, 1 this a and the cor
responding k may be taken as the starting values for the iteration process, which is presently described: 

4. Equation (26) is wri tten in the form: 

Y = a + b (u + ku2
) (28) 

J For data of nlatively low preei.sion. it may not be possible to achievee= .99. We are particularly concerned, in this paper, with data of high precision. 
such as tabulated mathematical functioll5, or high precision physical or chemical data. 
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5. Let 

Zi - Ui + kuf (i 1 to N) (29) 

Then 

Yi = a + bZi (30) 

6. Using the same approach as for the monotonic four-parameter (MFP) curve fit, and defining Vi' ti , and 
Di in the same way (eqs (7) to (10), we obtain, as before: 

at· 1 -
a~ = Sz [Pi - P-E-ti] 

at· 1 -at = Sz [Qi - Q - F-t;] 

However, the quantities P and Q are now defined by the following relations: 

Pi == _1_+_2_k_u.:....i [(1 + au{)£n Xi - utl 
a 

The quantities E and F are defined, as before, by eqs (16) and (17). 
In the place of eq(ll), we now have: 

(31) 

(32) 

(33) 

(34) 

(35) 

The regression of Di on :~ and ~~ yields the Hcorrections" Aa and Ak. Again, it is advisable to use 

only a fraction, say one-fourth, of these quantities at each iteration. 
The iteration process is continued until further impovement of the fit becomes negligible. 

3.4. An illustration 

For illustration of the QFP process, let us return to the example of table 5. Trying first a few values 
between -1 and 1, one finds readily that a high correlation (e =.999263) is obtained for a = -0.1, with a 
corresponding k = .243550. Using these approximations as initial estimates for the iteration process, the 
latter rapidly converges to a e-value of 0.9999988, giving the final estimates (for eq (24»: 

a =-.198499 
a = .062839 
b = .522744 
c = -.140142 

The effectiveness of this fitting procedure can be judged by examining table 7, in which a number of simple 
transformations are compared with the one resulting from our fitting procedure. Note that the logarithmic 
transformation is represented by a =0; what is actually meant is that instead of the transformation to the 
logarithm, eq (23) could have been applied, using a very small value of a, such as 0.001 or 0.0001. It is 
apparent that a dramatic improvement in the fit results from using the value of a that is given by the itera
tion process. 

Contrary to what may be believed, the (x,y) data in table 5 were not Hmade up." They represent one of the 
eigenvectors obtained in the process of fitting a table of a statistical function of three arguments by an 
empirical formula (see part III). The x-values are the values of one of the three arguments: level of signifi
cance. 
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TABLE 7. Comparison o/Quadratic Fits 

y fitted, using quadratic function of 

y 

x observed x In xG X-I X-o·198499 

25 0.513089 0.503630 0.495354 0.560887 0.513351 

10 .551180 .684080 .578775 .530048 .550271 

5 .516202 .329230 .525325 .478823 .517023 

I .063 II 9 -.104050 .014030 .076830 .062839 

0.5 -.403100 -.167547 -.372926 -.406150 -.402995 

1 0 -1 -.198499 

e .89630 .99675 .99687 .999999 

• In x corresponds to a =0. See text. 

3.A. An illustration from the physical sciences and a simple stratagem 

Table 8 is taken from a tabulation of the density d,3 in grams per mi11iliter, of ordinary water, for values of 
temperature ranging from -5 to 30 °C [2].4 For ease of calculations, we use the coded values y = 10-6 (d
.998). It is well known that this property has a maximum in the vicinity of 4°C. We consequently try to fit 
the data by the Quadratic Four Parameter (QFP) formula. 

TABLE B. Density of Ordinary Water as a Function of Temperature 

Temperature Density Temperature Density 
(0C) (in y·unitso) (0e) (in y-unitsD

) 

-5 1283 5 1992 
-4 1441 6 1968 
-3 1578 7 1930 
-2 1694 8 1877 
-1 1790 9 1809 

0 1868 10 1728 
1 1927 15 1129 
2 1968 20 234 
3 1992 25 -925 
4 2000 30 -2322 

.y = 106 (d - 0.998) 

We run into a minor difficulty in that our range of x-values includes negative values. This can be remedied 
in this case by taking as the independent variable x = t + (3, where (3 is chosen so as to make all x- values 
posi tive. We use (J = 10 for our example. Thus: 

x = t + 10 
y = 106 (d - 0.998) 

Trial of a few values for a shows that a = 0.8 gives a fit with a correlation coefficient of 0.999967 (whereas 
for a = 1, which corresponds to a Hno transformation" quadratic fit, the correlation is 0.99894). The cor
responding k value is k = - .055752. Application of the iteration process leads rapidly to the best parameter 
values: 

with a correlation e = .999990. 

a =.824103 
a =242.267451 
b =373.749212 
c= 19.881303 

J To llToid confU5ion with the corelation coefficient. we U5e the symbol rI. rather than the conventional Q for density. 
• Figures in brackets refer to literature references located at the end of each of the three parts of this paper. 
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Table 9 presents a comparison of the simple quadratic fit (no transformation) with the QFP. For ease of 
evaluation, the tabulated value is the residual y-5- (fitted minus observed). 

The QFP can reliably be used for interpolation. Use of an empirical formula for extrapolation is of course 
always risky and should be done if at all, with great caution. The usefulness of the formula for interpolation 
is demonstrated in table 10, which shows both fits for values of x not included in the fitting process (but 
within the range of the x values used for the fit). 

TABLE 9. Comparison of QFP and QLS Fits for Data of Table 6-

Temperature Residual Temperature Residual 

(0C) QFP QLS (OC) QFP QLS 

-5 -10 93 5 -3 -35 
-4 -1 53 . 6 -3 -26 
-3 4 20 7 -4 -17 
-2 6 -4 8 -5 -5 
-I 6 -22 9 -4 7 

0 5 -35 10 -4 20 
1 3 -43 15 2 77 
2 2 -45 20 8 97 
3 0 -45 25 8 47 
4 -1 -41 30 -7 -97 

-QLS = quadratic least squares fit (unweighted) 

TABLE 10. Comparison ofQFP and QLS Fits for Interpolation 

Temperature Residual Temperature Residual 

(0C) QFP QLS (0C) QFP QLS 

11 -3 32 21 9 94 
12 -2 45 22 9 86 
13 -1 57 23 9 77 
14 1 68 24 8 64 
16 4 86 26 5 26 
17 5 92 27 3 2 
18 6 96 28 1 -26 
19 7 97 29 -4 -60 

4. Conclusion for Part I 

We have presented two formulas for the empirical fitting of functions of a single argument. The first 
applies to monotonic functions; the second can be used for monotonic functions under certain conditions, 
but its main use is for functions that have a single minimum or a single maximum. These formulas turn out 
to be useful also in the fitting process of functions of two or more arguments, as will be shown in Parts II and 
III of this paper. The fitting of the two functions is straightforward and can be readily programmed on com
puters and even on programmable calculators. 

5. References 

[I] Symbols. Definitions and Tables for Industrial Statistics and Quality Control. Rochester, Institute of Technology, Rochester, N.Y. 
(1958). 

[2] Handbook of Chemistry and Physics. 56th Edition, CRe Press, Cleveland, Ohio (1975-1976). 
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Part II: Fitting Functions of Two Arguments 

1. Introduction 

Let Z;j be a function of two arguments X; and Yi. The form of the function is unknown, but a set of data is 
available in the form of a rectangular array, in which the row Hlabels" are X; and the column Hlabels" Yi. 
The tabulated value corresponding to x; and Yj is Zij. We assume that each cell of this two-way table is 
If filled"; i.e.: there are no cells for which the value of Z;j is missing. 

An example will clarify matters. Table 1 is a portion of the table of 5 percent critical values of the nstu-
dentized Range" [1 J. This is a relatively short portion of the complete table but will suffice for illustration of 
the method, and will help to show its power. 

The principle of the procedure is to first find the rrSingular Value Decomposition" (SVD) [2] 1 of the 
matrix representing the tw(}-way table, using only the Zij values (but not the x; and the y), and then to relate 
the parameters of the SVD to the Xi and the Yh using the methods of part I of this paper. 

The SVD [2] is a technique for developing the following relation: 

or, more compactly: 

p 

Zij = E ()"UlriV"j 
"=1 

where the a" are positive constants and the Uki and V"j are vectors such that 

E U~i = E vt = 1, for all k 
i j 

and 

(1) 

(2) 

(3a) 

(3b) 

It can be shown that p is equal to the rank of the z-matrix, and this rank is, in turn, equal at most to the 
number of rows or the number of columns of the table, whichever is smaller. The a" are the square roots of 

J the Heigenvalues" of the ZTZ matrix, where ZT denotes the transpose of the matrix z, and the V"j are the 
corresponding Ueigenvectors." The U"l are the eigenvectors of the ZZT matrix. The ()'s are called the 
singular values of the matrix z. 

2. The SVD technique 

Algorithms for finding the SVD are readily available and a number of computer programs have been writ
ten for this purpose [14,15,16,171. 

In most cases, it is not necessary to consider all p terms on the right hand side of eq (1). In fact, the first 2 
or 3 terms are often sufficient to give an excellent approximation for the Zij. From a practical viewpoint, it is 
easy to judge at what point the SVD can be terminated. 

We illustrate the procedure with the data of table 1. Denote the residuals, after fitting the first q terms on 
the right-hand side of eq (2), by (dij)q. Thus: 

q 

(d;j)q == Z;j - ~1 ()"uJcjv"j (4) 

I t can be shown that: 

I Th~ SVD procedure is intimately related to the Method of Principal Components [3]; its use, in either of these two forms for the analysis of two-way 
tabl!."!! of data has been discussed in a number of places [4,5,6,7,8,9,10,11,12,13]. Figures in brackets refer to literature references, listed on page 19. 
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q 

EE (dij)2 = EE zr - E O~ 
ij q ij:.J It=! 

(5) 

For the data of table 1, we find 

8 1 = 38.034666; 82 = 1.392726; 8J = .064557 

and 

E.~ zt = 1448.579715. 
IJ 

Applying eq (5), for q = 3, we find: 

This sum of squares of residuals applies to 42 observations; the residuals are not independent Nevertheless, 
we can calculate an tf average square residual per observation,"2 which will be equal to 

0.0~~044 = 1.05 X 10-6 = (0.0010)2 

Thus, after fitting the first three terms of the SVD, the residuals will be of the order of 0.001. Since the data 
are given with 3 decimals, such a fit is, for most practical purposes, quite satisfactory. 

Table 2 lists the 8 values and the eigenvectors Ui and Vj for the first three terms. 

TABLE 1. Five Percent Critical Values 0/ the Studentized Range 

~ 2 3 5 10 20 60 100 

4 3.927 5.040 6.287 7.826 9.233 11.240 12.090 
8 3.261 4.041 4.886 5.918 6.870 8.248 8.843 

20 2.950 3.578 4.232 5.008 5.714 6.740 7.187 
40 2.858 3.442 4.039 4.735 5.358 6.255 6.645 

120 2.800 3.356 3.917 4.560 5.126 5.929 6.275 
00 2.772 3.314 3.858 4.474 5.012 5.764 6.085 

TABLE 2. O·Values and Eigenvectors/or Studentized Range (table 1) 

" U I U2 U 3 n VI V2 V3 

4 .586984 -.684908 -.393566 2 .199994 .550013 .514706 
8 .439355 -.132755 .588796 3 .246064 .489632 .178017 

20 .366344 .194757 .446619 5 .296980 .365874 -.212600 
40 .343350 .317316 .117282 10 .357146 .167917 -.490644 

120 .328090 .407791 -.239725 20 .411696 -.032030 -.447995 
00 .320429 .456467 -.477211 60 .489830 -.320941 .071843 

100 .523336 -.437783 .459993 

01 = 38.034666, O2 = 1.392726, 03 = .064557 

3. Fitting the structural parameters 

Our next task is to express the U i and Vj (which we can call the structural parameters) as functions ofv and 
n respectively. This is a curve fitting problem, and can be attacked by the methods developed in part I of 
this paper. 

J No attempt is made to compute a "standard deviation of fit" with an appropriate number of degrees of freedom. The fit is purely empirical and is nol 
based on a mathematical mode~ the proposed" average square residual per observation" is to be understood in that spirit 
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The method of section 2 of part I is used for eigenvectors that are monotonic ~u~ctions of their argu· 

ments while section 3 is applied to eigenvectors that present a single maximum or mInImum. In general, the 
fit fo/ the U3i and V3j vectors need not be as good as those for the first two sets of vectors, since the third 

term, having a small multiplier BJ , contributes only a small part to the SVD. 
The entire computational procedure is summarized in Table 3 which lists the fitted vectors Uki and Vltj 

obtained, for k = 1 and 2, by the MFP procedure and for k = 3, by the QFP fitting procedure. Table 4 lists 
the fitted values, which may be compared to the values in table 1. 

TABLE 3. Parameters of Fits 

MFP Fits 

Vector Xo Yo A B 

U I .981602 .320232, .766066 -.954958 

til .569248 1.335141; -1.167675 -.079057 

Ul .523691 .459599 -3.326912 -.856578 

Vl -5.477500 -.964295 3.392462 -.398982 

QFP Fits 
Vector ex a b c 

Ul -.776878 -24.645495 47.554916 -22.368740 
VJ -.032413 1.449792 -1.543742 .307466 

TABLE 4. Fitted Values for Data of Table 1 

>\n 2 3 5 10 20 60 100 

4 3.923 5.044 6.291 7.823 9.231 11.242 12.089 
8 3.261 4.038 4.889 5.921 6.867 8.247 8.848 

20 2.954 3.572 4.233 5.012 5.712 6.733 7.183 
40 2.862 3.435 4.040 4.739 5.358 6.253 6.648 

120 2.804 3.348 3.917 4.564 5.126 5.930 6.283 
00 2.776 3.308 3.859 4.477 5.007 5.755 6.081 

4. Interpolation 

The total number of parameters used for the fit is 27: four for each of the two vectors in each of the three 
terms of the SVD, in addition to the three B-values. The actual number is less, since each B can be incor
porated into the coefficients of one of the two corresponding vectors, and further simplification is possible 
when the entire equation is algebraically reduced. However, this is unimportant for two reasons. 

In the first place, for purposes of programming the calculations, any additional manipulation to reduce 
the number of parameters is unnecessary. 

Secondly, and this is an important point-the often-made assertion that Hit is absurd to fit a set of data 
with as may parameters, or almost as many parameters as there are data" can not be justified. The fact is 
that by fitting the 42 values of table 1, we have obtained a formula that fits the 5 percent critical value table 
of the Studentized Range for all values of v from 4 to infinity and all values of n from 2 to 100, using only 27 
parameters. That this indeed so, can be verified by applying our fitting algorithm to any pair of v and n 
values (II = 4 to 00, n = 2 to 100). 

The values of Table 5 illustrate this point for some selected pairs of values. 
The procedure we propose is in many cases, a powerful and reliable interpolation algorithm. 
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TABLE 5. Examples of Fitted Values for (lI,n) Not Included in Fit. a 

Studentized Range 

JI n Tabular Fitted 

3 3 5.910 5.945 
3 8 8.853 8.863 
3 50 13.360 13.352 
6 4 4.896 4.897 
6 12 6.789 6.789 
6 70 9.370 9.375 

13 2 3.055 3.059 
13 17 5.931 5.929 
13 90 7.667 7.663 
60 4 3.737 3.734 
60 50 5.958 5.956 
60 80 6.303 6.305 

500 3 (3.314) 3.317 
700 40 (5.498) 5.517 

1000 90 (6.020) 6.042 

a Values in parentheses correspond to II values not found in tables. The values in parentheses are for JI = 00. 

AN EXAMPLE FROM THE PHYSICAL SCIENCES 

Table 6 lists values of the quantity (n2 -1)/(n2 + 2) for benzene at various values of pressure and 
wavelength. The values were derived from table I of ref. [18]. The symbol n represents refractive index. The 
function (n1-1)/(n1+2) is chosen, in prefernce to n, because of the Lorentz-Lorenz equation: 

(6) 

where D represents density and A wavelength. Since for a fixed mass, the density is a function of pressure, 
we can replace D by ~(P), where P denotes pressure. Equation (6) can then be written as: 

::~~ = ¢(p)ef(A) (7) 

According to this equation, the quantity (n1 -1)/(n1+2) is a multiplicative function of two factors, one 
depending on pressure only, and the other on wavelength only. It can be shown that if this is true, all but the 
first term of SVD of table 6 represent merely experimental error. The first term of the SVD, on the other 
hand represents the quantity tf>(p)ef(A). 

TABLE 6. Refractive Index of Benzene at 34.5 °C as a Function of Pressure and Wavelength 

Tabulated Value = n
2
-1 

n2 +2 

Wavelength 

Pressure 6678 6438 5876 5086 5016 4922 4800 4678 
1. 0.287528 0.288222 0.290224 0.294366 0.294869 0.295531 0.296490 0.297546 

246.2 .293514 .294242 .296296 .300494 .301012 .301707 .302652 .303743 
484.8 .298497 .299225 .301278 .305558 .306072 .306737 .307738 .308830 
757.2 .303242 .303964 .306057 .310383 .310917 .311597 .312595 .313713 

1107.7 .308426 .309152 .311276 .315688 .316232 .316921 .317930 .319058 
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Eventhough our procedure makes no pretenses to anything but empirical fitting, this set of data provi.des 
us with an opportunity to examine the agreement between a physical theory (the Lorentz-Lorenz relation) 

and a set of experimental data. 
The first three 9 values of the SVD of table 6 are: 

9 1 = l.92330513; fh = 0.00009801; 93 = 0.00002689 

Note the very large drop from 9 1 to 9z, indicating that one multiplative term in the SVD should represent 

the data quite well More exactly, we find: 

= 3.699102657 - (1.92330513)Z = 3.4xlO-8 

The average square residual per observation is: 

3.4 X 10-
8 = 8.5 X 10-10 = (2.9 X 10-5)2 

40 

Thus, one single multiplicative term reproduces the data of table 6 to about 3 units in the 5th place. It is 
easily verified that addition of a second multiplicative term fails to significantly improve this fit The preci
sion of a measurement of n in this study is no better than 1 to 3 units in the fifth place [18]. Applying the law 
of propagation of errors, it is easily seen that the same statement holds for the quantity (n2-1)/(nz+2). 

We now have the model: 

(8) 

where u, is a function of pressure only, and Vj a function of wavelength only. Thus, eq (8) is equivalent to eq 
(7), as required by the Lorentz-Lorenz theory. 

The fit of Ui as a function of pressure and Vj as a function of wavelength can be accomplished by the four
parameter curve. Table 7 lists the parameters of the two curves as well as the fitted values, using eq (8). A 
comparison of tables 6 and 7 confirms the satisfactory quality of the fit 

TABLE 7. Fitted Values for Data of Table 

n'-I II 
Equation: -, -2- = 1.923305 [.671861 -1.483692(P+ 1480.809979)"· .. ·04.] • [.333889 + .091736 (-- -1.817095t1

.
2379821 

n + 1000 

Wavelength 

Pre •• ure 6678 6438 5876 5086 5016 4922 4800 4678 
1 0.287552 0.288247 0.290238 0.294364 0.294840 0.295519 0.296470 0.297513 

246.2 .293563 .294272 .296305 .300517 .301003 .301696 .302667 .303732 
484.8 .298467 .299188 .301255 .305537 .306032 .306736 .307723 .308806 
757.2 .303229 .303961 .306061 .310412 .310915 .311630 .312633 .313733 

1107.7 .308387 .309133 .311268 .315693 .316204 .316931 .317952 .319070 

5. Conclusion for Part II 

By combining the Singular Value Decomposition technique with the curve fitting procedures developed 
in part I, it is possible to obtain excellent empirical fits for many sets of data in which the dependent 
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(response) variable is displayed as a two-way table and the rows and columns represent levels of the two in
dependent (regressor) variables, respectively. 

The procedure consists in performing an SVD on the matrix of values of the response variable and then 
fitting the vectors of parameters, which are functions of the rows or of the columns, but not of both, to the 
corresponding regressor variables. 
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Part III: Fitting Functions of Three 
or More Arguments 

1. Introduction 

The first two papers in this series (Parts I and II) dealt with ordinary curve and surface fitting, i.e., with 
the fitting of functions of one or two arguments. In the latter case, it was assumed that the data were in the 
form of a two-way table with no cells missing. Similarly, we will assume in this paper, that each value of the 
function to be fitted is associated with a combination of the levels of three or more arguments, all combina
tions being present, and each one being associated with a single value of the function. In other words, we 
assume a ucomplete factorial" with no replications per cell Of course, if one or more cells contain more 
than a single observation, one can substitute the average for these replicates. For purposes of empirical 
fitting, this should be quite acceptable, provided the precision of the single observations is satisfactory. 

We present the method in terms of a single example, a function of three arguments. Generalization to 
functions of more than three arguments should be self-evident However, the method may become cumber
some, and is not recommended as a first choice in these cases. 
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2. Illustration: Fitting the F table 

Table 1 is a portion of the table of critical values of the F distribution for the levels of significance P, of 

25, 10,5, and 1 percent, and for degrees of freedom, both in the numerator and in the denominator, of 4,6, 
60, 120, and 00. The table, taken from ref. [1], has 100 ffobservations," but covers an infinite range of both 

sets of degrees of freedom, "1 and "2' We fully intend the empirical fit to be acceptable over this doubly
infinite range, and for all values of P between 1 and 25 percent. 

TABLE 1. F-Table. Datafor Fit 

P-Level of Significance, in percent 
p 

Pl 25 10 5 
4 2.06 4.11 6.39 15.98 
6 1.79 3.18 4.53 9.15 

60 1.38 2.04 2.53 3.65 
120 1.37 1.99 2.45 3.48 
00 1.35 1.94 2.37 3.32 

6 4 2.08 4.01 6.16 15.21 
6 1.78 3.05 4.28 8.47 

60 1.35 1.87 2.25 3.12 
120 1.33 1.82 2.17 2.96 
00 1.31 1.77 2.10 2.80 

60 4 2.08 3.79 5.69 13.65 
6 1.74 2.76 3.74 7.06 

60 1.19 1.40 1.53 1.84 
120 1.16 1.32 1.43 1.66 
00 1.12 1.24 1.32 1.47 

l20 4 2.08 3.78 5.66 13.56 
6 1.74 2.74 3.70 6.97 

60 1.17 1.35 1.47 1.73 
120 1.13 1.26 1.35 1.53 
00 1.08 1.17 1.22 1.32 

00 4 2.08 3.76 5.63 13.46 
6 1.74 2.72 3.67 6.88 

60 1.15 1.29 1.39 1.60 
120 1.10 1.19 1.25 1.38 
00 1.00 1.00 1.00 1.00 

3. Approach 

The method is simply stated. First, we combine two of the three factors, in this case VI and V2, pretending 
it to be, for the time being, a single factor. We then apply the SVD (singular value decomposition) to the 
two-way table thus obtained. Each eigenvector will be a function of either P or of the combination of a 
particular VI and a particular V2' This latter type of eigenvector is then entered into a two-way table, as a 
function of VI and Vl' This two-way table is, itself, subjected to a SVD, with resulting eigenvectors that are 
functions of VI or Vl, taken singly. The problem is thus reduced to the fitting of a number of curves (func
tions of a single argumen t). 

4. Details of the fitting process 

1. First step: SVD of 25 X 4 table. 

The 25 rows are the combinations of the five levels of VI and the five levels ofv2; the four columns repre
sent the four levels of the factor P(see table 1). 
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The SVD of this table, carried out to three terms, is represented byl 

(1) 

with the values (see Parts I and II for notation and terminololQ'): 

~Fyft = 1939.001 (2) 

81 = 43.70505824 (3) 

82 = 5.34641595 (4) 

83 = .53288922 (5) 

From these values we derive: 

~F (ditH = 7.495692 X 10-4 

which gives an average square residual per observation of: 

Thus, the fit will be good to approximately 3 units in the third place, provided that all the eigenvectors are 
fitted to an equivalent degree of approximation. 

2. Second step: Fitting the v vectors 
All v vectors are functions of a single variable, P, as shown in table 2. They are readily fitted by the meth

ods of Part 1, with the results shown in Table 3. 

Vector 

Vector 

p 

25 
10 
5 

Xo 

0.104080 
-6.628102 

ex 

-0.237709 

TABLE 2. v-Vectors as Functions of P 

0.161663 
.275861 
.395108 
.861193 

0.567164 
.537558 
.412703 

-.468007 

TABLE 3. Fit of v-Vectors 

a) MFP Fits 
Y = Yo + A(x-xo) IX-Xol B-' 

where x = P; y = v 

Yo 

-0.102867 
.568912 

b) QFP Fit 

y = a + b( x· - 1 ) + c( x· - 1 )l 
ex ex 

where x = P; r = v 

a 

0.190293 

(" The critical F values are temporarily represented by the symboly". 
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A 

0.923714 
-9496.645 

b 

-1.847334 

0.750537 
-.155183 
-.613514 

.190293 

B 

-0.388978 
-4.489745 

c 

0.931911 



3. Third Step: SVD of the u vectors 
Each u vector is a function ofVt and V2 as shown by tables 4,5, and 6. 
To avoid confusion we will denote the eigenvectors resulting from the SVD of each u vector by the sym· 

boIs Aj and BA; for Ub Cj and DA; for U2, and Ej and GA; for UJ. We find that, to obtain sufficient precision, the 
SVD for Uh requires three terms, while for U2 and UJ two terms suffice; thus: Z 

4 
6 

60 
120 
CD 

4 
6 

60 
120 
CD 

4 
6 

60 
120 
CD 

4 

0.406210 
.247943 
.112774 
.108349 
.104083 

4 

-.273800 
.058346 
.227296 
.229914 
.230595 

4 

0.054105 
-.352902 
-.259816 
-.227942 
-.206583 

TABLE 4. ul·Vector as a Function of III and 112 

6 60 

0.388401 0.352024 
.231426 .196782 
.098616 .063326 
.094350 .058259 
.090175 .052868 

TABLE 5. u2·Vector as a Function of III and 112 

6 60 

-.232084 -.153928 
.084441 .132782 
.231801 .224040 
.232483 .220851 
.233936 .216705 

TABLE 6. u3·Vector as a Function of III and 112 

6 60 

0.101229 0.149334 
-.284130 -.137823 
-.119461 .163908 
-.098102 .195804 
-.088254 .221559 

4. Fourth Step: Fitting the vectors A, B. C, D, E, and G. 

120 

0.349916 
.194521 
.060227 
.054485 
.048419 

120 

-.149371 
.135561 
.221888 
.216840 
.210834 

120 

0.154646 
-.118086 

.180098 

.216706 

.247171 

00 

0.347548 
.192350 
.056489 
.050072 
.038755 

00 

-.144944 
.139113 
.218938 
.212030 
.196284 

CD 

0.159300 
-.109860 

.215083 
256403 
.323018 

(6) 

(7) 

(8) 

The vectors A, C, and E are functions ofVt only, while B, D, and G are functions ofv2 only, as shown in 
table 7. Again, we use the methods of Part I to fit these vectors to their corresponding arguments, with the 
results shown in table 8. 

5. Fifth step: Fit of F as a function of P, v., and P2' 

By substituting for u., Ul, and UJ in eq. (1), their expressions as given by eqs (6), (7), and (8), one readily 
obtains an expression for Yit as a function of quantities that are either constants (the () and the T), or func
tions of a single argument (P, Ph and V2)' Since the latter have all already been fitted in terms of their 
respective arguments, the problem is solved, except for the routine multiplications and additions involved in 
eqs (1), (6), (7), and (8). A program can readily be written to obtain the value of Yir, that is, of F, for any Vh V2, 

and P, using eqs (1), (6), (7), (8) and the MFP or QFP fits shown in Tables 3 and 8. 

I The 8quare root, of the eigenvalues are represented by the Jelter T. to avoid confusion with the (J of eq. (I). 
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TABLE 7. SVD Vectors as Functions of PI or Pl 
(Eqs. (6), (7), (8» 

PI AI Az A3 CI Cz EI Ez 

4 .828136 -.362993 -.216246 -.436484 -.712491 .220226 .407258 
6 .479297 .070208 .361271 .243432 -.673184 .053854 -.898992 

60 .179612 .482627 .431289 .506592 -.166174 .511488 -.141436 
120 .168194 .520863 .266325 .501735 -.105627 .554120 -.025071 
00 .154640 .599231 -.752183 .491779 -.020205 .616385 .072944 

Pz BI Bl B3 DI Dl GI Gz 

4 .511101 .609203 .238929 .481716 .687371 -.473303 .661606 
6 .481313 .367238 -.143676 .475017 .314111 -.195838 .558564 

60 .416240 -.301559 -.508432 .434081 -.344513 .426098 .311762 
120 .411520 -.379435 -.342844 .426716 -.377055 .471649 .281945 
00 .405595 -.509016 .739069 .414481 -.409871 .577595 .271280 

TABLE 8. Fit of Vectors of Table 7 

a) MFP Fits 

Y = Yo + A(x-xo) Ix-xol B-1 

where x = PI or Pl; y = vector fitted 

Vector Xo Yo A B 

AI 2.333242 .154595 1.080698 -0.925484 

Az 3.160494 .609721 -.893793 -.483655 

BI -.251639 .405481 .366518 -.859647 

Bl -.228726 -.518182 2.767959 -.622996 

DI -9.389754 .414477 .470463 -.749928 

Dl -.114913 -.409594 4.845992 -1.050171 

GI .678625 .581829 -2.303516 -.650175 

G1 -1.463892 .269022 2.026138 -.966873 

b) QFP Fits 

y = a + b(xo-l) + c(xo-l J2 
a a 

where x = PI; y = vector fitted 

Vector a a b c 

A3 -.428299 -6.868927 9.408257 -2.907025 

B3 -.325922 3.754828 -4.383540 1.108433 

CI -1.196614 -34.856565 87.329516 -53.883595 

C1 -.830262 3.094441 -9.025929 5.346705 

EI -1.010583 15.626475 -37.446675 22.511319 

El -1.126615 93.240278 -235.519021 147.086636 

5. Results 

Table 9 shows the fitted value for each entry of table 1. As expected, the fit is very good. The sum of 
squares of the residuals for 100 values is 0.0109. This gives a root mean square deviation per value of 
0.0104. 

6. Interpolation 

We mentioned earlier that the final fit should be adequate not only in reproducing the values of the ori
ginal table, but also as an interpolation formula. In table 10, a comparison is made between values of F as 
given by the Biometrika Tables, and those given by our empirical fit, for combination of P, v .. and V1 not 
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included in table 1 (the basis for our formula). Note, in particular, the values for P = 2.5 percent, a level that 

was totally absent from table 1. 
The sum of squares of residuals for these 80 values is 0.01812. Thus, the root mean square deviation 

per value is 0.048. Interpolation would of course be better if a larger table of F values had been used 
for the fitting process. 

TABLE 9. F Table-Fitted Values 

P 

VI V1 25 10 5 1 

4 4 2.07 4.11 6.40 15.98 
6 1.78 3.18 4.52 9.i5 

60 1.39 2.04 2.54 3.66 
120 1.37 1.98 2.45 3.47 
00 1.36 1.95 2.39 3.32 

6 4 2.07 4.00 6.16 15.21 
6 1.79 3.07 4.29 8.47 

60 1.35 1.87 2.26 3.12 
}20 1.32 1.80 2.16 2.95 
00 1.31 1.76 2.10 2.82 

60 4 2.07 3.78 5.69 13.66 
6 1.75 2.77 3.74 7.06 

60 1.19 1.40 1.54 1.84 
120 1.15 1.32 1.42 1.65 
00 1.11 1.23 1.30 1.47 

120 4 2.08 3.78 5.66 13.56 
6 1.74 2.74 3.70 6.96 

60 1.17 1.35 1.47 1.73 
120 1.13 1.26 1.35 1.53 
00 1.08 1.16 1.21 1.31 

00 4 2.09 3.77 5.64 13.46 
6 1.73 2.72 3.66 6.89 

60 1.15 1.29 1.38 1.60 
120 1.10 1.18 1.23 1.36 
00 1.01 1.02 1.00 .95 

TABLE 10 F Table-Interpolated Values· 

P 

1'(%) 25 10 5 2.5 1 

III III Tab. Fit Tab. Fit Tah. Fit Tah. Fit Tah. Fit 

5 5 1.89 1.87 3.45 3.41 5.05 4.99 7.15 7.06 10.97 10.93 
15 1.49 1.53 2.27 2.33 2.90 2.98 3.58 3.59 4.56 4.61 
30 1.41 1.42 2.05 2.07 2.53 2.57 3.03 3.00 3.70 3.73 
40 1.39 1.39 2.00 2.00 2.45 2.47 2.90 2.87 3.51 3.53 

15 5 1.89 1.86 3.24 3.20 4.62 4.57 6.43 6.34 9.72 9.69 
15 1.43 1.48 1.97 2.06 2.40 2.51 2.86 2.89 3.52 3.57 
30 1.32 1.34 1.72 1.76 2.01 2.06 2.31 2.28 2.70 2.72 
40 1.30 1.31 1.66 1.68 1.92 1.95 2.18 2.14 2.52 2.53 

30 5 1.88 1.85 3.17 3.14 4.50 4.44 6.23 6.13 9.38 9.34 
IS 1.40 lAS 1.87 1.96 2.25 2.35 2.64 2.67 3.21 3.26 
30 1.28 1.30 1.61 1.64 1.84 1.89 2.07 2.05 2.39 2.40 
40 1.25 1.27 1.54 1.56 1.74 1.77 1.94 1.90 2.20 2.21 

40 5 1.88 1.85 3.16 3.12 4.46 4.40 6.18 6.07 9.29 9.25 
IS 1.39 1.43 1.85 1.93 2.20 2.30 2.59 2.60 3.13 3.17 
30 1.27 1.29 1.57 1.61 1.79 1.84 2.01 1.98 2.30 2.32 
40 1.24 1.25 1.51 1.53 1.69 1.72 1.88 1.83 2.11 2.12 

• Tab. :: tabulated, from [11 
Fit = fitted by the procedure of this paper. 
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The total number of parameters is the sum of 10 (one for each (J or 1), and 4 X 17 (four for each of the 
three eigenvectors v, and four for each of the 14 vectors occuring in eqs (5), (6), and (7»; i.e., 78. As men
tioned in Part II, this number can be somewhat reduced through algebraic manipulation, but this is unnec
essary for a fitting process carried out on a programmable calculator or on a computer. 

We finally repeat our previous assertion (see also Part II) that these 78 parameters fit not only a table of 
100 observations (Table 1), (which would be a waste of time) but actually any Fvalue, for P between 1 and 25 
percent, and for P1 and Pl between 4 and (Xl. 

7. Conclusion for Part III 

Through repeated application of the procedure given in Part II, it is possible to fit functions of more than 
two arguments, provided the data appear as a complete factorial. This is accomplished by first combining all 
combinations of two or more factors into one factor until a two-way table is obtained. The parameter vectors 
of the SVD of this table are then expressed as two-way tables themselves and further SVD's are carried out 
The procedure is simple in principle but can become quite cumbersome in practice. It is not recommended 
for functions of more than three arguments, unless no other appropriate fitting procedure is available. 
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