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Turbulence, Plasma Containment, and Galaxies* 

c.c. Lin 

Massachusetts Institute of Technology, Cambridge, MA 02139 

August 5, 1981 

These three exciting areas of research, apparently disjointed in content, have similar basic mechanisms in 
common which can be described by the same mathematical principles, concepts, and methods. Scientific prob
lems will be discussed in all three areas. Emphasis will be placed on galaxies, where observational data are plen
tiful for checking the theory. A unified mathematical approach applicable to all three areas will then be 
described. 

Key words: density wave; galactic spirals; hydrodynamic instability and turbulence; plasma dynamics; spiral 
grand design; W ASER; winding dilemma. 

1. Introduction 

Dr_ Dillon, Miss Smith, Mr. Tsai, ladies and gentlement, I 
am indeed honored by your invitation for me to speak on 
the occasion marking the contribution of American citizens 
of Pacific and East Asian heritage. I am especially pleased 
by the fact that I, as a Chinese-American, have been chosen 
to speak today, May 4th, 1979. For this day marks the 60th 
anniversay of the celebrated May Fourth Movement, which 
is generally recognized as the most important milestone of 
vigorous new cultural developments in modern China. 

My talk will be devoted to a discussion of the similarities 
and differences among the three subjects mentioned in the 
title. By using these as examples, I also hope to explain the 
basic theme of an applied mathematician (physical mathe
matician); that is, the fundamental concepts and mecha
nisms that show similar mathematical characteristics are 
also physically similar, and vice versa. [These discussions 
were presented but omitted from this abbreviated record.1 

Since my current research work is on the spiral structure 
of galaxies, I shall begin my discussion with this subject. 

2. Galaxies 

A galaxy is essentially a collection of stars. Galaxies 
exhibit a variety of morphological appearances: elliptical, 
spiral, bar-spiral, and irregular. In figure 1, we show the 
spiral galaxy M81 in an optical photograph. In figure 2, we 

• (This is an abbreviated rendition of a lecture delivered at the National Bureau of 
Standards on May 4, 1979, as a part of the program to mark the Asian/Pacific 
American Heritage week.) 

show the sam~ galaxy observed in radio-frequency at a wave 
length of approximately 21 cm. The latter waves are emmit
ted by hydrogen atoms, which exist in the galaxy (instead of 
the molecular form) because the medium is so rarefied. We 
note that the spiral structures observed in optical and in 
radio frequencies are quite similar. Such spiral structures 
are observed in many galaxies. 

How do we explain these spiral features? Let me first clar
ify the issues by quoting from the famous Dutch astrono
mer, Professor Jan Oort, who has been studying galaxies for 
the past 50 years: 

"In systems with a strong differential rotation, such as is 
found in all non-barred spirals, spiral features are quite 
natural. Every structural irregularity is likely to be drawn 
out into a part of the spiral." 

That is, since the galaxy is in a disc form, with a nucleus in 
the middle, it must be rotating, otherwise self-gravitation 
would have pulled it together. It turns out that the inner 
part is rotating faster than the outer part, in such a manner 
that the liner velocity of rotation is nearly constant. So the 
inner part, say at the distance of 5 kiloparsecs from the 
center, is rotating twice as fast as the outer part at 10 kilo
parsecs. (One parsec is about 3.3 light years.) Since the 
inner part rotates faster, any material clump would be 
stretched out into a part of a spiral structure. 

"But this is not the phenomenon we must consider. We 
must consider a spiral structure extending over the whole 
galaxy from the nucleus to its outermost part, and consist
ing of two arms starting from diametrically opposite points. 
Although this structure is often hopelessly irregular and 
broken up, the general form of the large scale phenomenon 
can be recognized in many nebulae [galaxies]." 
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FICURE 1. The spiral galaxy M8l according to optical observations. The 

line drawings show the locations of the shock wave in the interstellar 

medium and the minimum of gravitational potential. Both lie close to the 

du t lane. 

fbi issue is often referred to as the existence of grand 
design. 

The other problem i the s(}-called winding dilemma, i.e., 
piral galaxie , especially normal spiral galaxies, are classi

fied by Hubble (see fig. 3) according to the tightness of 
winding into Sa, Sb, and Sc sprials, Sc being the most open. 
You might imagine that becau e of differential rotation, Sc 
galaxie would oon wind toward Sa, because the inner part 
i rota ring fa ter, and like a pool of tring, would therefore 
tend to become tighter and tighter with rotation. But this is 

not ob erved to be the ca e. Of cou r e we cannot directly 
follow the evolu tion of galaxie in our lifetime: thi winding 
would occur on the order of a few hundred million year. 
However we can make a stat istical tudy and how that Sc 
galaxie and a galaxie are phy ically different through 
the ob ervation of other physical characteri itc ; for exam
ple, the ga content in Sc i much higher than in Sa. You 
can ay that c galaxie would have their ga formed into 
tar and then become Sa at the arne time. But if that were 

0, the average rna and the number of tar formed would 
be 0 large that Sc galaxie would be much more brilliant 

FIGU RE 2. The spiral galaxy M8l according to radio observations at 21 

cm. wavelength. The line drawings show the iso-velocity lines according to 

observations and according to theoretical cal culations. 

than they actually are. Furthermore, the mass distribution 
is such that there is a very small nucleus in Sc galaxies 
whereas Sa galaxies have more massive nuclei. It is impo si
ble for mass to accumulate so rapidly because the angular 
momentum in the system cannot be adjusted so quiclkly. 
Thus, the evolution from Sc to Sa in a reasonable period of 
time is ruled out, and they must be rather permanent struc
tures. The question is: If we have material objects arranged 
like that in an Sc galaxy, why does it not wind down to an Sa 
tructure? This is the so-called winding dilemma. 

The an wer is, a it turns out, that Sc and Sa galaxies 
ha e thei r large scale spiral s tructu re in the form of perma
nent or nearly-permanen t wave patterns. These pattern 
have now been calculated by using a number of method 
and the mechani ms for their maintenance have been 
under tood. Waves over a y tern in differential rotation are 
well-known in the tud y of turbulence. Theory of in tab ili

tie of thi kind goe back to Lord Rayleigh, in 1880, and 
ha been developed over the yea r. There were mathemati

cal difficultie , 0 the theory wa not fully develop ed until 

much later. There were al 0 experimental difficultie, 0 the 
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FI GURE 3. Hubble classification of galaxies. 

theore tical predictions were not checked until the work at 
the Bureau of Standards was carried ou t by Dryden, Schu
bauer, Klebanoff and their collaborators. It is generaBy 
accepted that the calculated instabilities in a sheared 
boundary layer were verified by these experiments. More 
recently, in Japan, they have also checked the calculations 
for the more classical case of flow through a channel Thus, 
we are applying these weB-known concepts of waves of per
manent structure over a system in differential motion (in 
shear) to the study of galaxies. 

The other question is: What are those brilliant stars which 
mark the waves? How do they behave? They are, as a matter 
of fact, like the white caps on the ocean: they come and go, 
they are formed and then they disappear. They are now 
believed to form out of the intersteBar medium (the gas) and 
then shine brilliantly by burning their nuclear fuel After 
exhausting their nuclear fuel , they disappear with a bang, a 
supernova explosion. Can these things happen over the time 
period under consideration? Indeed the answer is: Yes! For 
the time cale fo r the evolution of such brilliant star into 
the supernova sta te and then into the white dwarfs i one to 
ten mill ion year , and the time of one per iod of revolution of 
the galaxy i about 200 million year . So it i during a mall 
frac tion of a period of revolu tion of the galaxy that the 
whole phenomena of tar formation and tar di appearance 
can occur and they are no more permanent than the white 
cap a t the cres t of wave on the ocean. T hi i another 
example where the concept u ed to explain the phenomena 
of turbulen ce, hyd rod namic and galaxie get togeth r. 

Let me provide orne more detail . Let u a ume the 
exi tence of a rotating wave pattern, and imagine our elve 
in a moving y tern in which the wave pattern i fixed (cf. 

fig. 4). The flow of the interstellar medium fo llow the 
arrow, and as it enters the density peak (the gravita tional 
minimum), the material would und ergo an oblique shock 

FIG RE 4 . Ga eo u flow in a galax. when ther i a piral gravitational 

field. treamline are marked with arrow indicating the direction of 

ga eo u flow. The hock are the heavy olid line next to the hatched 

region. 
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which suddenly compresses the material and turns its flow 
direction. This oblique shock forms a part of the spiral arm. 
The material passing through the spiral arm follows the arm 
over a considerable distance, and goes to the next arm 
where it goes through another shock compression in the 
same way, and comes around and closes the loop (approxi
mately). So the gas is going around not along a circular 
path, but in a slightly distorted orbit which has two shocks 
near the two spiral arms. At these shocks, interstellar 

medium is compressed, forming stars out of a part of the 

gas. As the s tars emerge from these shocks, they go further 

and they disappear when their nuclear fuel is burned oul 
The bright part of this diagram is the region of star forma
tion and star evolution. As the hydrogen gas is compressed 
by the shock, molecules are formed in the dense clumps of 
gas. There are also dust particles composed of elements of 
higher atomic weights. So one would see, at the first sign of 
compression, a rather dark region- the dust lanes. (See figs. 

FIGURE 5. LEFT PICTURE: The location of the p ale of the ynchrotron emi sion in the right picture is shown and seen 

to coincide with the location of the du t lane. 
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1 through 5). This is followed immediately by a region of 

bright young stars, which are expected to be very bright, 
and in fact blue in color. This is ind eed what i observed. In 
any case, in the region of compres ion, one would al 0 

expect to see a concentration of atomic hydrogen in the 
slightly less brightly shaded area. 

The young stars stand out well in the galaxy M51 in blue 
light These young stars are indeed in a very narrow band 
because their age is short and they do not move very far 

before they burn them elve ou l Through a tudy of the 
nuclear reaction in tar, one can develop a connection be
tween their color and their luminosity. The blue tars are 
very luminou , but they al 0 burn out quickly. 

The Dutch a tronomer Herman Vi ser ha con tructed a 
model (cf. fig. 1) for the galaxy M8I based on these con
cepts. In Vi ser's model, the hock e entially matche the 
observed dust lanes (one is hown in dotted line and one in 
olid line). He calculated the flow field of atomic hyd rogen 

F'lCURE 5. RIGHT PI CT RE: The continuum radi o map (at 20 m) of the galax M51. 
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and its distribution in this galaxy, given such a gravitational 
field. The calculated motion of atomic hydrogen is shown in 
terms of iso-velocity lines; so are the data from observations 
(see fig. 2). Indeed, the quantitative agreement is very good. 

Can we see the density variation postulated in the theory? 
It is not easy, but it has been done. Now, the bright young 
stars which we see on the spiral arms are not the ones which 
determine the gravitational field, because they are very few 
in number. We must look beyond those stars, i.e., we must 
filter out their light and look at the background stars which 
are more like the sun, a rather average, dim star. The bright 
stars are essentially those which are colored blue and the 
dim stars essentially red. The astronomer Schweitzer made 
the necessary observations with proper filters. When the 
blue color is filtered out and the color is essentially orange, 
one sees the fairly regular variations in the orange compo
nents from the dim stars. On the other hand, a rather 
chaotic variation is seen superposed when the blue compo
nents are put in. This work was done during just the past 
three years, so it could still be improved upon. But basically 
the results bear out the idea that there is a small density 
variation on the order of 10-20% (closer to 10%) in the 
actual density of the stellar mass. 

There is another way to look at the existence of density 
waves. Roberts and Yuan made a calculation which pre
dicted what is shown on the left hand side in the next figure 
(fig. 5). In this galaxy (M51), you can see very clearly the 
dust lane which is marked out by the dark strip side-by-side 
with the bright stars. The line drawn along this lane is not a 
physical object, but is drawn to show the location of the 
peak of synchrotron emission as explained below. Now we 
know that there is a shock, so there is a compression of gas. 
H there is a magnetic field, that compression would also 
strengthen the magnetic field because the latter is frozen 
into the material. So one would expect a strong magnetic 
field at the dust lane. This stronger magnetic field would 
manifest itself by the stronger synchrotron radiation from 
this region, because there are charged particles moving at 
relativistic speeds in the galaxy. Those particles would then 
emit at very high frequencies and one can detect them as a 
continuum emission. The right picture in figure 5 is an 
observed map of this emission by the radio telescope. The 
results indeed show a peak as indicated in the diagram on 
the left The line was in fact drawn by the observers from 
the map on the right 50 the results do show that there is a 
stonger radiation at the dust lane where the theory predicts 
a stronger radiation due to the strengthening of the 
magnetic field by a galactic shock. 

We have thus seen two sets of data, one in M81 and 
another in M51, supporting the density wave theory. There 
are many other phenomena which have been observed to 
agree with the predictions based on the density wave theory. 

3. Basic concepts and mechanisms 

We record briefly some of the basic concepts and mecha
nisms visualized for the explanation of the observed phe
nomena. 

(1) The above discussion places emphasis on the winding 
dilemma and on the existence of grand design. One should 
recall that the spiral structure in galaxies is indeed .. often 
hopelessly irregular and broken-up" and hence there is 
coexistence of regular spiral patterns and spiral features in 
bits and pieces. Some of these may be material arms; others, 
waves. This situation is not very much different from that in 
a turbulent jet which shows both small scale chaos and 
large scale structures. There are only a few prominent 
large-scale modes, and hence at any instant the large
scale structure shows quite a deal of regularity. Hot-wire 
anenometer records of turbulence motions in a boundary 
layer (NBS) show similar behavior. 

It is a matter for speculation how much regularity may be 
expected in the observed patterns of galaxies. In the above 
discussions, we assume a considerable amount of regularity 
and hence we conclude that it is indeed possible to have the 
Hubble classification in a statistical sense. Further detailed 
studies are desirable to clarify these issues. 

(2) There are a number of similarities in mechanisms 
among the three subjects under discussion: galaxies, turbu
lence, and plasmas. We shall only record some of them 
without detailed explanation. [More details were given in 
the verbal presentation.] 

(A) Both in hydrodynamic stability and in the study of 
spiral waves in galaxies, corotation resonance plays an 
important role in energy transfer. 
(B) Analogous mechanisms may be found between the 
instability of the ballooning mode in contained plasmas 
and the instability of Couette flow with inner cyclinder 
rotating. 
(C) The WA5ER mechanism (wave amplification by 
stimulation of emitted radiation) is important for spiral 
wave patterns in galaxies, as well as in plasma dynamics 
and in the instability of supersonic shear layers. It in
cludes the interaction of wave of positive and negative 
energy densities. 
(0) There is similarity between the density waves in 
galaxies and the Bernstein waves in magentically con
tained plasmas. This is due to the similarity between the 
Coriolis force in the former case and the Lorentz force in 
the latter case. 
(3) A unique feature. The maintenance of density wave 

patterns must depend on waves propagating iiI opposite 
directions. A naive view would then require the existence of 
leading waves and trailing waves, and we may expect to find 
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only bar-like structures. Actually, there are two kinds of 
trailing waves propagating in opposite directions (see fig. 
6). Thus, one can even form pure trailing spiral wave pa~-
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FIGURE 6. Schematic diagram showing composition of a spiral pattern 
by two trailing waves. 

terns without any leading component. Obviously, there are 
also barred spirals, which has contributions from leading 
components . 

4. Concluding Remarks 

Since this is an occasion to mark the contribution of 
Asian Americans, I should mention that a number of impor
tant contributors to the subjects under discussion are 
Asian-Americans. Contributors to the older subject of tur
bulence are too numerous to be named. However, I do wish 
at least to mention four persons who contributed both to 
plasma physics and to the study of the dynamics of stellar 
systems. They are James Mark, Y. Y. Lau, Linda Sugiyama, 
and C. S. Wu. If one examines the list of references in this 
subject one finds that the contribution of Asian-American 
scientists far outweighs the total percentage of Asian
Americans in the population as a whole. We have in this 
country, indeed, great opportunities for all ethnic groups, 
especially in science. By its very nature, science has a 
tendency to permeate international boundaries. Science 
and scientists do have a very important role to play in pro
moting mutual understanding among the countries in this 
world. American scientists with special ethnic backgrounds 
can contribute greatly to this effort. With this hopeful note, 
let me thank you again for inviting me here, and I wish you 
great success with the rest of your program. 
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Following a brief description of early semiconductor history, the invention of the transitor and subsequent 
important events are presented in perspective, with emphasis on the role of semiconductor physics in device 
development. 

Key words: diode; field·effect transitor; IMPATT diode; integrated circuit; LASER; LED; photocell; solar cel~ 
solid state; transitor; tunnel diode; III·V compounds. 

I. Introduction 

The agricultural civilization in the cultural history of man 
was said to be the result of two genetic accidents which gave 
birth to a new species of bread wheat some 10,000 years 
ago, involving wild wheat and goat grass. Large-scale agri
cultural activity in man's society followed. Great inventions 
or discoveries could be considered to be such genetic acci
dents-mutations. New knowledge, arising from these 
inventions, often leads to a large-scale engineering effort 
which eventually has far-reaching consequences in our 
society. The invention of the transistor by three solid state 
physicists, Shockley, Bardeen, and Brattain, is one such 
example. The development of the transistor began in 1947 
through interdisciplinary cooperation with chemists, metal
lurgists, and electronic engineers, at Bell Laboratories. A 
large-scale development effort for a variety of semiconduc
tor devices followed in a number of institutes throughout 
the world. Semiconductor know-how, thus established, has 
revolutionized the whole world of electronics-communica
tions, control, data processing, and consumer electronics. 

One of the major achievements of modern physics has 
been the success of solid-state physics in creating new tech
nologies. Solid-state physics, which involves experimental 
investigation as well as theoretical understanding of the 
physical properties of solids, constitutes, by a substantial 
margin, the largest branch of physics; probably a quarter of 
the total number of physicists in the world belong to this 
branch. Semiconductor physics, one of the most important 
sub-fields of solid-state physics, covers electrica~ optica~ 
and thermal properties and interactions with all forms of 
radiation in semiconductors. Many of these have been of 
interest since the 19th century, partly because of their prac
tical applications and partly because of the richness of in
triguing phenomena that semiconductor materials present 

Point-contact rectifiers made of a variety of natural 
crystals found practical applications as detectors of high
frequency signals in radio telegraphy in the early part of 
this century. The natural crystals employed were lead 
sulphide (galena), ferrous sulphide, silicon carbide, etc. 
Plate rectifiers made of cuprous oxide or selenium were 
developed for handling large power [1).1 The selenium 
photocell was also found useful in the measurement of light 
intensity because of its photo-sensitivity. 

In the late 1920's and during the 1930's, the new tech
nique of quantum mechanics was applied to develop elec
tronic energy band structure [2] and a modern picture of the 
elementary excitations of semiconductors. Of course, this 
modern study has its roots in the discovery of x-ray diffrac
tion by von Laue in 1912, which provided quantitative 
information on the arrangements of atoms in semiconductor 
crystals. Within this framework, attempts were made to 
obtain a better understanding of semiconductor materials 
and quantitative or semiquantitative interpretation of their 
transport and optical properties, such as rectification, 
photoconductivity, electrical breakdown, etc. 

During this course of investigation on semiconductors, it 
was recognized in the 1930's that the phenomena of 
semiconductors should be analyzed in terms of two separate 
parts: surface phenomena and bulk effects. Rectification 
and photo-voltage appeared to be surface or interface phe
nomena, while ohmic electrical resistance with a negative 
temperature coefficient and ohmic photocurrent appeared 
to belong to bulk effects in homogeneous semiconductor 
materials. The depletion of carriers near the surface primar
ily arises from the existence of surface states which trap 
electrons and, also from relatively long screening lengths in 
semiconductors because of much lower carrier concentra-

1 Figures in brackets indicate literature references at the end of this paper. 
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tions than in metals. Thus, it is possible to create potential 
barriers for carriers on the semiconductor surface or at the 
interfac~ between a semiconductor and a metal contact, or 
between two semiconductors. The early recognition of the 
importance of surface physics was one of the significant 
aspects in semiconductor physics. 

2. Transistors 

Since the rectification in semiconductor diodes is analo
gous to that obtained in a vacuum diode tube, a number of 
attempts had been made to build a solid-state triode by 
inserting a "grid" into semiconductors or ironic crystals-a 
solid-state analog of the triode tube amplifier [3,4,5,]. 
Because of the relatively low density of carriers in semicon
ductors, Shockley thought that the control of the density of 
carriers near the semiconductor surface should be possible 
by means of an externally applied electric field between the 
surface and a metal electrode insulated from the surface
the field effect device. The observed effect, however, was 
much less than predicted [6]. In 1947, in the course of trying 
to make a good "field effect" device with two gold contacts 
less than fifty microns apart on the germanium surface, Bar
deen and Brattain made the first point-contact tran
sistor where they discovered a phenomenon-minority car
rier injection into a semiconductor [7]. The importance of 
this phenomenon was soon recognized and led to the inven
tion of the junction transistor by Shockley. The realization 
of this junction device, which did not occur until 1950 [8], 
was far more significant than its precursor. 

The early version of the junction transistor was presented 
by Shockley as a post-deadline paper at the Reading Con
ference on uSemi-Conducting Materials," held July 10 to 
15, 1950. This conference is now called "The First Interna
tional Conference on the Physics of Semiconductors." 
Shockley's paper, however, was omitted· from its Pro
ceedings, apparently because a fabrication method used for 
the junction transistor was then proprietary at the Bell 
Laboratories [9]. 

The Foreword of the Proceedings of the Reading Con
ference [10] states: "During recent years physicists in many 
countries have made rapid and important advances in the 
field of solid state physics. Semiconducting materials, in 
particular, have become a subject of great interest by 
reason of their numerous practical application. . . ." 
Indeed, the development of transistors, as well as the pro
gress in semiconductor physics of Ge and Si, would not have 
been accomplished without the key contribution of mate
rials preparation techniques. Soon after Teal and Little 
prepared large Ge single crystals, Sparks successfully made 
a grown junction transistor at Bell Laboratories [11]. The 
subsequent development was Pfann's zone refining and 

then Theuerer's floating zone method for silicon process
ing. These developments made it possible to make Ge and 
Si of controlled purities and crystal perfection. 

The early Ge junction transistors had poor frequency 
response and relatively low reliability. In fabricating these 
transistors, the grown-junction technique, or the alloying 
technique, was used to form p-n junctions; in other words, 
these techniques were used to control the spacial distribu
tion of donors and acceptors in semiconductors. Then a pro
cedure for forming p-n junctions by thermal diffusion of 
impurities was explored in order to obtain better reproduc
ibility and tighter dimensional tolerances. This technique, 
indeed, enabled bringing forth the double diffused transis
tor with desirable impurity distribution, the prototype of 
the contemporary transistor [12]. Attention was also turned 
toward Si because of its expected high reliability and im
proved temperature capability. 

In the 1940's, a team at the Bell Laboratories selected 
elemental semiconductors, Ge and Si, for their solid-state 
amplifier project, primarily because of the possible simplici
ty in understanding and material preparation, in compari
son with oxide or compound semiconductors. This not only 
was a foresighted selection but also had important implica
tions: Ge and Si single crystals exhibited long diffusion 
lengths of hundreds of microns at room temperature, which 
were prerequisites to the desirable operation of the transis
tor, because of both reasonably high mobilities of electrons 
and holes, and long trapless lifetimes of minority carriers. 
The latter fact may arise from the indirect energy-gap in 
these elemental semiconductors in contrast with the direct 
energy-gap in some III-V compound semiconductors which 
exhibit high rates of radiative combination of electrons and 
holes. The exploration of the III-V compound semicon
ductors was initiated through Welker's ingenuity and imag
ination, in the early 1950's, to produce semiconductor 
materials even more desirable for transistors than Ge or Si 
[13]. Although this initial expectation was not quite met, 
III-V compound semiconductors later found their most im
portant applications in LED (light emitting diodes), injec
tion lasers, Gunn microwave devices, etc.; these devices 
could not have been achieved through elemental semicon
ductors. 

3. Important devices 

Now, in order to reach a perspective in semiconductor 
device development, it may be worthwhile to comment on 
some selected semiconductor devices in chronological 
order: 

1) Solar Cells. In 1940, Ohl observed a photovoltage as 
high as 0.5V by flashlight illumination in Unaturally" 
grown Si p-n junctions [14]. The modern Si solar cell, 
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however, was created by bringing together seemingly unre
lated activities, namely, large area p-n junctions by Fuller's 
diffusion method, Pearson's effort for power rectifiers, and 
Chapin's search for power sources for communication sys
tems in remote locations_ According to Smits' article [15], 
Pearson's diode showed t t a conversion efficiency from solar 
energy to electrical energy of 4 percent. Low as this efficien
cy may seem today, in 1953, it was very exciting, improving 
on selenium by a factor of five." Development and produc
tion of solar cells were stimulated by the needs of the space 
program. 

In 1972, heterojunction solar cells consisting of p 
Gat-xAlxAs-p GaAs-n GaAs, exhibiting power conversion 
efficiency of 16-20 percent, were reported by Woodall and 
Hovel [16]. The improved efficiencies were attributed to the 
presence of the heavily-doped Gat-xAlxAs layer, which 
reduced both series resistance and surface recombination 
losses. The recent advent of the energy crisis has generated 
a renewed interest in research and development of solar 
cells which might be economically viable for terrestrial 
applications. 

2) Tunnel Diodes. Interest in the tunneling effect goes 
back to the early years of quantum mechanics. Phenomena 
such as rectification, contact resistance, etc. in solids, were 
explained by tunneling in the early 1930' s. However, since 
theories and experiments often gave conflicting results, not 
much progress was made at that time. Around 1950, semi
conductor p-n junctions generated a renewed interest in the 
tunneling process. Experiments to observe this process in 
the reverse breakdown of the junctions, however, were 
again inconclusive. 

In 1957, Esaki demonstrated convincing experimental 
evidence for tunneling in his heavily-doped (narrow) p-n 
junction-the tunnel diode [17, 18]. This diode found use in 
microwave applications because of its differential negative 
resistance being responsive to high frequencies. The dis
covery of the tunnel diode not only generated an interest in 
heavily-doped semiconductors but also helped to open a 
new research field on tunneling in semiconductors as well as 
in superconductors. 

3) Integrated Circuits. In 1958, Kilby initiated the fabri
cation of a circuit which included a number of transistors, 
diodes, resistors, and capacitors, all residing on one semi
conductor chip [19]. This structure is called the (monolithic) 
integrated circuit Around the same time, Noyce and Moore 
introduced improved fabrication techniques called the 
tt planar" process which enabled the birth of the first 
modern transistor-a landmark in semiconductor history. It 
was soon realized that this transistor with dished junctions 
(extending to the surface) and oxide passivation (protecting 
the junctions), was most suited for assembling integrated 
circuits, because metal stripes evaporated over the surface 
oxide layer could be readily used for interconnection [20]. 

Integrated circuits of digital as well as linear types have 
had one of the largest impacts on electronics; they are now 
the main building block in computers, instrumentation, 
control systems, and consumer products. According to a 
recent analysis by Moore [21], their complexity has almost 
doubled each year, now approaching one hundred thousand 
components on a single Si chip of, say, a quarter centimeter 
square, and yet the cost per function has decreased several 
thousandfold since their introduction at the beginning of 
the 1960's. Meanwhile system performance and reliability 
have been tremendously improved. 

4) MOS FET (Metal Oxide Semiconductor Field Effect 
Transistor Devices. As mentioned earlier, the transistor was 
invented while searching for a field-effect device. The field
effect concept originated as early as the 1920's, but no 
successful device was made in spite of a number of attempts 
because of the lack of adequate technology. 

Thermally-grown Si02 on Si single crystal surfaces, which 
was originally developed for oxide passivation of junctions 
in the later 1950's, was found to be a most suitable insulator 
for a field effect device by Kahng and Atalla [22]. This insu
lator, indeed, had relatively low loss and high dielectric 
strength, enabling the application of high gate field. More 
importantly, the density of surface states at the Si-Si02 

interface was kept so low that the band bending in Si near 
the interface was readily controllable with externally 
applied gate fields. Thus, a simple, yet most practical, Si 
MOS transistor was created whereby the surface inversion 
layer conductance C channel") was modulated by gate volt
ages. This transistor is called a unipolar device because of 
no minority carrier involvement; it requires fewer processes 
in fabrication than the bipolar transistor because of its 
structual two-dimensionality, and is especially adaptable for 
large-scale integrated circuits. 

Presently, integrated circuits, consisting of MOS FET or 
MOS based components such as dynamic memory cells [23], 
charge-coupled devices [24], MNOS (Metal Nitride Oxide 
Semiconductor) memory cells, etc., are even more extensive
ly used than bipolar transistors, in computer memories, 
microprocessors, calculators, digital watches, etc., while 
being challenged by advances in bipolar-based devices such 
as PL (Integrated Injection Logic). As the size of individual 
FETs has continued to decrease for large integrated circuits 
with the application of advanced processing techniques, the 
tt channel" distance is shortened to one micron or even less 
and the oxide thickness is thinned to a few hundred ang
stroms. If one pushed this to the extreme, new physical 
problems arise from excessively high fields across thin oxide 
films as well as in the tt channel" direction. There has been 
some discussion on physical limits in digital electronics [25, 
26]. 

While taking measurements of Si surface transport pro
perties at low temperatures, Fang and Howard discovered 
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that electrons in the Hchannel" were two-dimensional [27], 
which provided a unique opportunity for studying quantum 
effects [28]. 

5) Injection lasers. Since the early part of this century, 
the phenomenon of light emission from SiC diodes was rec
ognized and studied, although a practical light emitting 
diode had not materialized until the development of effi
cient p-n junctions made of III-V compound semiconduc
tors [29]. Apparently, reports of high-efficiency radiation in 
GaAs stimulated a few groups to engage in a serious exper
imental effort to find lasing action in semiconductors: 
These possibilities were previously discussed [30, 31]. In 
1962, the announcement of the successful achievement of 
lasing action in GaAs came on the same date, independent
ly, from two groups: Hall et al. at General Electric; and 
Nathan et aL at IBM; and a month later from Quist et al. at 
Lincoln Laboratory [32]. All of them observed a pulse 
coherent radiation of 8400A from liquid nitrogen-cooled, 
forward-bias GaAs p-n junctions. This occurrence is not 
suprising in the present competitive environment of the 
technical community where new scientific information is 
rapidly disseminated and digested, and new ideas are quick
ly implemented. There was a two-year interval between the 
first reports of the Ruby and He-Ne lasers and the 
announcement of the injection laser. 

The performance of the device was improved with incor
poration of heterojunctions by Alferov et al [33, 34]. With 
double-heterostructure the threshold current density for 
lasing was substantially reduced by confinement of both 
carriers and photons between two heterojunctions [35]. 
Finally, in 1970, Hayashi et al. [36] succeeded in operating 
the device continuously at room temperature. Because of 
the compactness and the high efficiency of this laser, the 
achievement paved the way towards many practical applica
tions such as optical (light-wave) communication, signal 
processing, display and printing. There is a development 
effort in integrated optics to mount miniaturized optical 
components, including injection lasers and waveguides, on 
a common substrate using heterojunction structures of 111-V 
compound semiconductors, analogous to the integrated cir
cuit, for improved signal processing. 

6) Gunn and IMPATT (Impact Ionization Avalanche 
Transit Time) Microwave Devices-In 1962, Gunn dis
covered that, when the applied field across a short bar of 
reasonably pure n-type GaAs exceeded a threshold voltage 
of several thousand volts per em, coherent microwave oscil
lations could be extracted by synchronizing the random cur
rent fluctuations with a resonator[37]. Furthermore, by his 
ingenious probe technique, he was able to show that the 
oscillations were related to the periodic formation and 
propagation of a narrow region of very high field
ff domain." It took two years to confirm that Gunn's exper
imental discovery of oscillations was indeed due to the 

Ridley-W a tkins-Hilsum transferred electron effect, pro

posed in 1961 and 1962 [38,39]. 
As is true of any important discovery, Gunn's work trig

gered a wide spectrum of experimental and theoretical 
activity from device physics to microwave engineering. 
Apparently this achievement rejuvenated the work of 
microwave semiconductor devices in genera~ and, in 1964, 
IMPATT diodes finally started to oscillate-which was 
rather overdue since Read's proposal in 1958 [40]. The 
operation of the device was explained on the basis of 
dynamics of electrons involving the transit time and ava
lanche. IMPATT and Gunn devices are now widely used in 
many microwave gears: the former has high power capabili. 
ties (rv50mW at 110 GHz), whereas the latter meets low 
noise requirements. 

4. Summary 

Figure 1 schematically illustrates the development path 
of a variety of semiconductor devices. I t should be noted 
that the developme"nt path of each device appears to have 
had its own sequence of conception (theory) and observation 
(experiment): Typically, the theoretical prediction was later 
confirmed by the experiment, but, in may instances, the 
experimental discovery came first, followed by the theory 
and yet, in other instances, the initial idea which led to the 
discovery was irrelvant to its consequence. Obviously, this 
article cannot possibly cover all landmarks and indispen· 
sable innovations, not to mention a great number of won· 
derful, but nonworkable ideas. We will summarize some 
important items in semiconductor devices and processing 
techniques which have made remarkable progress since 
1950: Si devices of new structures, such as controlled recti· 
fiers, solar cells, photo detectors, PL, etc.; development of 
novel semiconductor devices, such as injection lasers, Gunn 
microwave oscillators, Schottky junction FETs, infrared 
detectors, etc., combined with the investigation of new 
materials, such as III-V compounds; and the introduction of 
new processing techniques for device fabrication, such as 
alloy contacts, etching, thermal diffusion of impurities, 
vapor and liquid.phase epitaxy, oxide formation, sputter
ing, photolithography and, more recently, ion etching, 
molecular beam epitaxy, etc. 

Not all of this progress arises from engineering ingenuity 
and advanced material technology; pioneering research in 
semiconductor physics has also contributed to each signifi· 
cant development, exploring intriguing phenomena in 
semiconductors, for example, electron-hole multiplication 
(avalanche), tunneling, hot electrons, lasing by high carrier 
injection, two-dimensional electrons on the surface or in a 
semiconductor superlattice, etc. For a qualitative under· 
standing, semiconductor materials, crystalline or amor· 
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FIGURE 1. Schematic illustration of the development path of a variety of semiconductor devices. 

phous, as well as surfaces, have been extensively investi
gated-often under extreme conditions with advanced 
instruments; measurements at high pressure or in ultrahigh 
vacuum, or under the synchrotron radiation fall into this 
category. 

Semiconductor physics has a strong interaction with 
chemistry, metallurgy, and electrical engineering, and wi th 
the broader field of materials science. The separation be
tween basic discoveries and applications in this field of 
physics is far less distinct than that in some of the other 
fields of physics. Semiconductor physics has a particularly 
effective interface with engineering. 

nScience is the understanding of nature, whereas engi
neering is the control of nature." Following this notion, in
dustriallaboratories appear to have played a dominant role 
as a junction between science and engineering in many 
technological developments, wherein there may possibly be 
a kind of gap between them. (Hopefully, this junction will 
always be forward-biased so that electrons and holes, carry
ing information, can flow easily from science to engineering 
and vice versa.) In the field of semiconductors, one may 
think that the coupling between science and engineering is 
strong, or that the gap between them is indeed narrow. 
After all, the semiconductor is a narrow-gap insulator!! 

In the preparation of this manuscript, I am indebted to 
many authors who kindly sent me advance copies of papers 
which have appeared in the Special Issue of the IEEE 
Transactions on Electron Devices, July 1976. 
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1. Introduction 

With the advent of the dynamic light scattering method 
and the attendant detection techniques, [1-5], we are now 
able to expand the application of light scattering methods 
to a variety of diverse condensed medium systems hitherto 
unexplored. In this paper, I will outline the kinds of light 
scattering methods that we use in my laboratory at Wiscon
sin to probe the structure and dynamics of polymers, 
nematic liquid crystals, and biological membranes. Four 
scattering techniques shall first be described with ap
propriate examples in each case, and then I will move on to 
the studies of (a) amphoteric latex system, (b) photo-receptor 
disk membrane vesicles, (c) binary nematic solution, and (d) 
intrachain dynamics of random coil polymers, in order to 
bring home the power and limitation of various light scat
tering techniques. At the outset I must emphasize that this 
paper is not intended as an exhaustive review of the state-of
the art of light scattering methods, but rather as a report of 
how one academic research laboratory uses these methods 
to explore diverse problems of jnterest. 

2. Elastic Light Scattering 

Extensive treatises have been written on the subject such 
that I need not dwell on the historic oven'iew or lengthy ex
plication of the technique. Instead, I will focus on a rather 

I Figures in brackets indicate literature references at the end of thi~ paper. 

narrowly defined problem of how to determine the linear 
dimension of scattering particles with substantial symmetry 
in shape, particularly when the linear dimension R is com
parable to the incident wavelength A. The problem of this 
kind arises for example in trying to determine the large 
radius of gyration [9] of T even bacteriophage DNA whose 
molecular weights are on the order of 108 daltons. If one 
tries to effect the customary procedure of the Zimm plot [10] 
to extract the radius of gyration, the scattering intensity 
profile must be obtained at such small angles that one en
counters substantial technical problems [9]. By small angle 
scattering, I mean that one must obtain the data in the 
Guinier region, [11] i.e., QR ~ 1 where Q is the momentum 
transfer. We propose a new scheme to determine the linear 
dimension R when the scattering particles are so large that 
QR ~ 1 is difficult to attain experimentally. The method is 
to focus on the structure of scattering profile at higher 
angles where the Bragg condition is fulfilled, i.e., QR = 
mhr where m is an integral multiple constant. To be more 
specific, I quote some simple examples such as solid sphere, 
hollow sphere, spheroidal shape of either oblate or prolate 
axial ratio, and the corresponding shell structures. The 
isotropic parts of the particle form factor in the limit of 
Rayleigh-Gans-Debye scattering [12] of some of these are 
given below. 

a. Solid sphere 

(1) 
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where x == QR, R is the radius and jk(X) is the kth order 
spherical Bessel function. 

b. Hollow sphere [13, 14] 

P«()=[ X3(1
3
_P) (sinx-sinxl-xcosx+xlcosxl)]2 (2) 

where x == QR, I == aiR, R and a are respectively the outer 
and inner radii. 

c. Ellipsoids of revolution [15] 

P«() = ~ 12
,. J~I2(U) cos(3d(3 (3) 

2 0 u3 

where u == Qa(cos2(3 + b: sin2(3)lh, a and b are semi-major 
a 

and semi-minor axes, (3 is the angle between the semi-major 
axis and bisectrix, and JJ/l is the 3/2th order Bessel 
function. 

d. Circular cylinder 

P«() =27rv ell --,.---[J1/l (vcos(3). 2]1(~si~(3q2 sin(3d(3 (4) 
cos(3 USlDfJ 

where a and I are the radius and length of the cylinder, u == 
Qa, v == Qlf2, and (3 is the angle between the cylinder axis 
and bisectrix. 

e. Spheroidal shells 

R.,() = II sin2 [Xyr=--gy2] dt 
o r(1 - qt2 ) 

1 sin2 [y(~)Ih] = I I q dt 
o r( \ __ q~' ) 

(5) 

(6) 

for oblate shell where x == Qb, y = Qa, q == I - (+)2, and 
b and a are respectively the semi-major and semi-minor axes 
such that 0 :5 q :5 1. 

(7) 

(8) 

for prolate shell where x and yare the same as above, a and 
b are respectively the semi-major and semi-minor axes, and 
p == (alb'f - 1 such that 0 :5 P :5 <Xl. 

As an illustration of the proposed method, we take the 
simplest structure, i.e., sphere, and ~how how the Bragg 
condition is extracted from which the radius of sphere is 
deduced. The isotropic particle form factor of sphere in the 

Rayleigh-Gans-Debye limit is given by the square of the sum 

of the zeroth and second order spherical Bessel function as 
in eq (1), and its structure is a monotonically decreasing 
function from unity at zero scattering angle to x = tanx 
where it gives the first minimum. This is illustrated in 
figure 1 where a semi-logarithmic plot of the particle form 
factor P(() versus sine of one-half of the scattering angle () is 
given for spherical particles having the radii of 100, 110, 
120, and 130 nm suspended in water and scattered by inci
dent blue light of 436 nm in wavelength. It is clear from the 
plots that under these conditions the radius must exceed 
120 nm for P(() to give the first minimum; P(() is fairly 
structureless for the radius less than 120 nm. If, on the other 
hand, we plot (QR),'P(() against sin«()12), the graphs as shown 
in figure 2 result. This arises because the damping profile of 

~ 
a. 
0> 

~ 

-2 

-4 

Rayleigh Scattering 
for Isotropic Sphere 

Ao = 436 nm (blue) 
n = 1.33 (wafer) 

-6~ __ ~~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~. 
o .2 .4 .6 .8 /.0 

Sin (9/2) 

FIGURE 1. The isotropic part of the particle form factor p(x) of Ray
leigh-Gans-Debye scattering from solid, isotropic spheres against sin (0/2) 
for the radius of 100, 110, 120 and 130nm, with the incident wavelength of 
436 nm (blue) in a medium with the refractive index n of 1.33 (water). Note 
that x= QR hence p(x) = P(O). 

FIGURE 2. ~p(x) versus sin (0/2) of figure 1. In place of R = 130 nm, 
plot for 200 nm is shown. 
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P(8) in eq (1) is compensated by the factor (QR)4. Thus, the 

monotonic descrease of P(8) for small particles is rendered 

to have a maximum by multiplying by (QR)4. Algebraically 
this is easily seen from eq (1); 

x4 P(O) = 9 (sinx - cosx}2 
x 

(9) 

where x == QR = 4~n sin(O/2). R and the extrema posi

tions of P(O) appear at 

and 

tanx = __ x_ for maxima 
1-,x2 

tanx = x for minima 

The plots in figure 2 are drawn for the common experimen
tal scattering conditions in mind, namely the scattering 
angle spans from 30° to 150°. Experimentally the ordinate 
scale is immaterial to the extent that one is interested in 
determining the extrema positions to extract the particle 
radius. For completeness sake, we show in figures 3 and 4 
the analogous set of plots for spherical particles with longer 
radii as though they could be analyzed by the Rayleigh
Gans-Debye approximation, whereas its applicability is 
limited [8] in this size range, and P(O) itself contains suffi
cient structure that x4 P(O) plot affords at best sharper max
ima and smoother minima. I shall later return to the limit of 
applicability of Rayleigh-Gans-Debye scattering relative to 
the particle size. We display in figure 5 why the factor x4 is 
chosen as the multiplication factor to P(O) in order to 
moderate its damping at higher angles. For a given radius 
of a particle, we show three profiles whereby it is made clear 
that a factor ,x2 does not reduce the damping sufficiently, 

o 1.0 

FIGURE 3. Similar to figure 1 with R = 200,300,400 and 500 nm. 
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whereas a factor x6 overcompensates the damping. The op
timum is clearly the x4 factor. 

Turning to the experimental verification of the proposed 
method, [16], we show in figure 6 a plot of I",,(O)·sin4(O/2) 
versus sin(O/2) for a polystyrene latex standard (Poly
sciences, Lot 2-1435), whose radius is given as 87 ± 4 nm 
determined by transmission electron microscope, sus
pended in distilled water. Here, the subscripts vv of the scat
tered intensity stand for the polarized scattering, namely 
the polarizer and analyzer are both oriented vertically 
relative to the scattering plane. We should note that the or
dinate scale is arbitrary and x4P(O) is proportional to 
I",,(O).sin4(O/2), since P(O) is the isotropic part of the particle 
form factor. The data points were taken at 1 ° increments 
and the solid curve was drawn according to eq (9) with Ao = 
436, n = 1.333, R = 80 nm. The discrepancy of 10 percent 
between the radius of 87 nm by electron microscopy and 
that of 80 nm by this method may be ascribed to a number 
of artifacts arising from electron beam optics in the electron 
microscopy technique. In figure 7, we show a test of another 

.3 .4 .5 .6 .7 
Sin (9/2) 

1.0 

FIGURE 4. Similar to figure 2 with R = 200,300,400 and 500 nm. 

FIGURE 5 . .xl ~8) and r' ~8) versus x. 



polystyrene latex standard (Polysciences, Lot 2380), having 
the radius of 139 nm again determined by electronic 
microscopy. Two curves are drawn for comparison. The first 
(solid curve) is that predicted by the Mie scattering function 
with R = 136 nm and the other (dashed curve) is that pre
dicted by eq (9) with the same R. In the Mie function fitting, 
we use the refractive index ratio m of the particle to 
medium as 1.21 [17]. In the inset, the scattering profiles at 
different concentrations of the latex particles are shown 
where the concentration range of the most (a) to the least (d) 

Polysciences Latex Std. 
6 R=87!4nm 

Ao=436nm 

4 

2 

o~~--~----~----~--~----~--~----~ 
.4 .6 .8.9 1.0 

Sin (9/2) 

FIGURE 6. Calibration run of the light scattering method with Polysciences 

latex standard with R = 87±4 run (mean ± s.d.). The scattering intensity 

here is observed with the incident and scattered beams vertically polarized 

relati,"e to the scattering plane. The ordinate is scaled in arbitrary units, 

and the solid curve represents the Rayleigh-Gans-Debye scattering func

tion for an isotropic solid sphere with 80 nm raduis. 

"~ 

.J,] .,~ • ,)C) 

'3i'i'9 /2: 

FIGURE 7. Calibration run with Polyscience latex standard with R = 13S± 

I nm. Experimental conditions are identical with those in Figure 6. Dashed 

curve is drawn with the Rayleigh scattering function with R = 136 nm and 

solid cun"e with the Mie function with R = 136 nm. The inset shows the 

concentration dependence of scattering profile whereby a represents the 

most concentrated and d the least concentrated. The number density of 

latex particles in a is about one order of magnitude larger than in d. 

concentrated is about one order of magnitude. It shows well 
that the scattering profiles are weakly dependent on the 
concentration, and we could have deduced the radius of 130 
nm from the most concentrated case (a) shown in the inset. 
The least concentrated case (d) is expanded in the plot of 
figure 7. Ignoring the matching with the entire scattering 
profile but focusing on the maximum and minimum posi
tions inferred from eq (9) for the Rayleigh-Gans-Debye scat
tering, we would have deduced the radius of 144 nm. Thus 
for this size particle, either scattering function would have 
sufficed if the radius determination within 4 percent is 
acceptable. It should however be noted that the discrepancy 
of the radius determinations by the two scattering functions 
exceeds the precision limit of extrema position determina
tion in this size range. 

Having thus established that our proposed method works 
for the radius determination of a spherical particle of R s 
140 nm suspended in aqueous media, we now turn to the ap
plicability limit of Rayleigh-Gans-Debye scattering and 
when one must use the Mie scattering function. In order to 
stipulate the applicability limit, we compare the extrema 
positions predicted from eq (9) and those computed from 
the Mie functions. The latter computation was performed 
on a Harris/7 computer. The comparison is provided in 
figures 8(A) and 8(B) where the reduced size parameter ex, 
defined as 2nRJ>.., is given in terms of the extrema positions 
in the scattering angle of x4P(O) profiles for the polarized 
and unpolarized scatterings respectively. When m = 
l.0001, we recover the predictions of the Rayleigh-Gans
Debye scattering as given by eq (9); this particular value of 
m is not significant as long as m is very close but still larger 
than unity for the Mie function to be evaluated. These 
figures allow us to understand why the radius deduced from 
the Rayleigh function always overestimates. At any given 
extreme position, be it a maximum or minimum, ex values 
for m > I invariably lie below that for m = I although the 
relative error committed by assuming m :::::::; I is not a mono
tonically increasing function of m for any size particles. 
This is particularly true with the maximum positions which 
show oscillation with respect to m. Hence, the relative error 
should also oscillate. In fact, we can evaluate the error. This 
is illustrated in figure 9(A) and 9(B) where the percent error 
of analyzing the scatterng profile extrema according to the 
Rayleigh-Gans-Debye scattering is plotted against the 
reduced size parameter ex at different values of m. The 
polarized and unpolarized scattering cases are shown in (A) 
and (B), respectively, In either case, the error can be equal 
or less than 10 percent if m s 1.15 for ex s 7. The oscilla
tion in the error estimate becomes progressively larger in 
amplitude as the m value increases. For the values of m 
close to unity, the error with respect to the particle size is 
sensibly constant though with a slight increase with ex in 
each m. Hence, one should not approximate with impunity 
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the scattering of small particles by the Rayleigh scattering 
function regardless of the refractive index ratio m. 

In closing this subject, let me emphasize that the spher
ical particle size analysis can be effected by determinations 
of the extrema positions of sin4(O/2}/(O} profiles and these 
are provided by analytical solutions of 
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FIGURE 9A. Percent error of analyzing the profile extrema positIOns 
according to Rayleigh·Gans-Dehye scattering as a function of the reduced 
size parameter a at different refractive index ratios m, for the polarized 
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in scattering medium, a= 2rrRIA, versus sin (812) at different extrema 
positions of the Mie function for x4118). Each set is drawn at different 
refractive index ratios m. The maxima and minima are distinguished hy 
solid and dashed curves respectively. This is for the Mie function at the 
vertical/vertical optical configuration. 
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in the case of Rayleigh-Gans-Debye scattering whereas they 
must be evaluated numerically in the case of Mie scattering. 
Because the method depends on the structure of scattering 
function at high Q, it is restricted to monodisperse systems 
and extrapolation to infinite dilution is not an essential step 
in the procedure provided the scattering suspension is 
dilute enough. 

3. Quasielastic Light Scattering 

Here, we restrict our discussion to the thermally induced, 
spontaneous concentration fluctuations whereby the trans
lational diffusion coefficient of the scattering particles at in
finite dilution is deduced. The homo dyne power spectrum 
[1] S(Q,v} of the Doppler broadened scattering from a 
monodisperse system of particles is 

(10) 

where A is an optical constant which depends on the inten
sity factor of the spectrum, B is a constant, a measure of 

SLIT 

/ 
LASER 

POLARIZER LENS 

shot-noise level and the spectral half-width at half-height 
AVlh is related to the translational diffusion coefficient D by 

(11) 

Our instrument [18] is schematically depicted in a block 
diagram in figure 10. A typical power spectrum obtained 
from a Dow Polystyrene Latex standard suspension (45.4 
nm radius) is shown in figure II and the corresponding 
spectral halfwidth against Q2 17r is displayed in figure 12 
where the scattering angle spans the range 10°-100°. The 
diffusion coefficient deduced via eq (1 I) is (5.39 ± 0.04) X 

1O-8cm2 /s which is in turn converted to the Stokes radius of 
45.5 ±0.4 nm. Progression of the SIN ratio of the observed 
power spectrum with the number of accumulations is shown 
in figure 13. 

4. Electrophoretic Light Scattering 

The technique was first developed by Ware and Flygare 
in 1971 [19] and subsequently by Uzgiris in 1972, [20] and it 
has since undergone substantial refinements [21-29]. The 
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FIGURE 10. Block diagram of Rayleigh spectrometer. 
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advantages that it offers over the conventional electrophor
esis methods have now been well-documented in the liter
ature [25, 27]. As with any new technique, this one also had 
to first be calibrated against those of more conventional 
methods with the use of a test system. Ware and Flygare 
chose bovine serum albumin (BSA) for the purpose because 
it was one of the best characterized globular proteins and 
commercially available in a relatively pure form. Others 
have subsequently chosen BSA for the same reason to 
calibrate their instruments [28-32]. 

The method is no more than another application of laser 
velocimetry. A monodisperse system of charged particles in 
dilute solution under the influence of an applied electric 
field would drift uniformly to the oppositely charged elec
trode. The diffusion equation governing this situation [4] in 
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FIGURE 11. Homdyne power spectrum of a polystyrene latex standard at 2 
kHz bandwidth with flvlh = 299 Hz. 
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FIGURE 12. flv. versus ql/rt whose slope yields D 
lO-llml/ s and the Stokes raduis of 45.6 ± 0.4 nm. 

(5.39±0.04) x 

terms of the self part of the space-time autocorrelation func
tion Gs(R,t) is 

with the initial condition 

G.(R,O) = O(R) (13) 

where Vd is the uniform drift velocity, D the translational 
diffusion coefficient of particle and O(R) is the Dirac delta 
function. Upon taking the space Fourier transforms of the 
above, we have 

with 

(15) 

The solution of eq (14) with the initial condition, eq (15), is 

(16) 

o .5 1.0 1.5 2.0 

Y IK Hzl 

FIGURE 13. Power spectra of polystryene latex standard taken at 60° ~cat· 
tering angle. A, B, and Care 250, 1000 and 4000 scan averages, respec· 
tively. 
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The power spectrum of heterodyne beating from a system of 
charged particles governed by eq (16) is a Doppler shifted 
Lorentzian whose shifted angular frequency .1ws is given by 

(17) 

Our scattering geometry is represented in figure 14. In 
order to effect heterodyne beating, the scattering angle has 
to be fairly small (2°_8°) so as to make use of cell surface 
reflected light as the local oscillator component. Thus the 
shifted frequ~ncy 

where n is the refractive index of scattering medium, Jl. the 
electrophoretic mobility (the drift velocity per unit field 
strength), () the scattering angle, Vpp the peak-to-peak ap
plied voltage, d the electrode spacing (1.84 mm in our case) 
and Ao the "incident wavelength in vacuo. Hence, the shift 
frequency .1v. should be proportional to the product, (}Vpp , 

and the electrophoretic mobility Jl. can be deduced by deter
mining .1v. measured at different scattering angles and Vpp • 

Since there were some discrepancies in the mobility 
values of BSA reported by Ware and Flygare [19, 21] and 
Mohan et al. [28] by electrophoretic light scattering and 
those by Schlessinger [30], Alberty [31], and Longsworth and 

Jacobsen [32] with the moving boundary method, we have 
set out to examine the discrepanices [33]. The purpose was 
to test the accuracy attainable by this technique vis-a-vis 
that of a more conventional method. In so doing, we have 
not only found the mobility by this technique to be in com
plete accord with those of the moving boundary method but 
also established that the BSA mobility depends on the ionic 
strength of the suspending medium according to Henry's 
formulation [34, 35]. The latter finding is neither without 
parallel nor unexpected [36-38], but the ease of the experi
ment to confirm it points to the utility and power of the 
te~hnique. At the same time, our experiment, which covers 
a wide range of ionic strength, points to certain limitations 
and the complementary nature of the technique with more 
conventional methods. 

The discrepancies referred to above were entirely due to 
the sample polydispersity and had little bearing on the 
veracity of the electrophoretic light scattering technique. 
This was confirmed by examining the two sets of samples. 
First is the so-called Fraction V of Armour (Lot A21505) 
which was used by Ware and Flygare as well as by all others 
with the moving boundary method, and the other is the BSA 
Monomer Standard of Pentex brand from Miles Labora
tories. Polyacrylamide gel electrophoresis patterns of the 
two are compared in figure 15. In figure 16, we display how 
well the shifted frequency depends linearly on the product 
((). V"pp) for the Fraction V sample. Finally we compare the 
deduced mobilities, corrected to 20°C in water, of the two 
samples relative to their ionic strength dependence in 
figure 17. In the same figure, we plot all other available 

GEO~!ETRY OF F.LECTROPIIORETIC SCATTERI~G 

Applied Field: along the z-axis 

Light Scattering: on the x-y plane 

t'\cctrodc(+) ========== 

- - -~ -"* • - - - - - - - - - - -----» incident light 
:d :d)8 ~ (scattering wave vector) 

!'!cctrodl'(-)========== 
scattered 1 ight 
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!.o = "1Q ko 

2'rrn • 
!.s = -x;- ks 

where AO = As (quasiclastic) 

FIGURE 14. Scattering geometry of electrophoretic light scattering, where the symbol K is used in place of Q. 
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FIGURE 15. Polyacrylamide gel electrophoresis patterns of polydisperse 
BSA Fraction V of Armour and Pentex brand BSA monomer standard. 
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FIGURE 16. Electrophoresis Doppler shift frequency All, versus ()Vpp for 
Fraction V samples at 5 mM ionic strength. Three independently prepared 
samples are examined. Scattering angles of two preparations are distin
guished as (e) 2°, (ct) 3°, (0) 4°, (6) 4° and third preparation is meas
ured at (0) 6°. 

BSA data in the literature at pH 8.7-9.4 after making ap
propriate temperature correction. Two solid curves are 
drawn according to Henry's equation 

JL = ~j(xR) 
67rTJR 

(18) 

where QE is the net charge of the electrokinetic unit, TJ the 
viscosity of the medium, R the radius of the unit, X-I is the 
Debye screeriing length, and j(xR), which accounts for the 
ionic strength dependent charge screening, is given by 

j(xR) =(1 +xRtl {I + (xl~)2 _ 5(~)3 _ (~~)4 + (x9~)S 

(19) 

+[ (XR)4 _ (XR)6] ';R J QO r1e-'dt) 
8 96 e .R 

where the integral in the last term is the exponential in
tegral E1(xR) [39]. With use of the Stokes radius of 36;\ 
deduced from the translational diffusion coeffici~nt of BSA 
by Baldwin et al. [40] and with the dependence of x-Ion 
ionic strength I at 20°C as X-I =3.0451 "/(A), the two 
curves are drawn with 20 and 26 electronic charges per BSA 
molecule for QE' respectively, for the lower (Fraction V) and 
upper (Pentex) sets. Since the data by the moving boundary 
method are all obtained with the Fraction V samples, it is 

AOlI04 

(cm2v's,)3 

.001 

FIGURE 17. Electrophoretic mobility, corrected to 20 'C in water, versus 
ionic strength. Open circles with error bars are Fraction V sample, filled 
circles with error bars are Pentex sample. • is from the slope of figure 16. 
All others are from the literature; (0) Schlessinger, «) Alberty, (0 and V) 
Longsworth and Jacobsen, (~) Ware and Flygare [20] and (A) Ware and 
Flygare22 and (0) Mohan et al. [29] 
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not surprising that they belong to the lower set and are con
sistent with ours. The results in figure 17 represent the first 
instance, to the best of our knowledge, of a systematic study 
of BSA mobility dependence on ionic strength at a given 
pH. It is clear that Henry's equation can well account for 
the ionic strength dependence of electrophoretic mobility. 

5. Forward Depolarized Scattering (FDS) 

The technique was first proposed and utilized by Wada 
and coworkers in 1969-70 [41, 42] for the determination of 
the rotatory diffusion coefficient of a rod-like molecule, i.e., 
tobacco mosaic virus. A further refinement was reported by 
Schurr and Schmitz in 1973 with the same system [43] and 
an extension to calf-thymus DNA followed [44]. I will illus
trate the technique with use of an example, namely the 
intrachain dynamics of linear flexible macromolecules in 
dilute solution. A theoretical formulation of the spectral 
profile of a scattered optical field is provided by Ono and 
Okano. We have slightly generalized the scheme by con
cluding that the FDS spectrum is a superposition of uni
formly weighted multiple Lorentzian as long as there exists 
the normal coordinate transformation for the intramolecu
lar chain dynamic modes [45]. 

NEUTRAL 
DENSITY 

FILTER 

A model of dilute polymer solution is composed of opti

cally isotropic solvent and linear flexible chains, each of 

which is constituted of n + I anisotropic elements with cylin
drical symmetry. The FDS spectral profile is formally given 
by 

/Vh (w)=B(NIV) J~oo < to ;to a.!;' (T) alP (0) > e-;wTdT (20) 

where B is an optical constant, (N IV) is the number density 
of polymer molecules within the scattering volume, the sub
scripts Vand h refer to the vertical and horizontal polariza
tion directions of the incident and scattered optical fields, 
respectively, and < > refer to the equilibrium ensemble 
average. If the normal coordinate transformation is possi
ble, the long wavelength modes in hydrodynamic regime is 

n lITk 
IVh (w) =B(NIV) (daI3)2 E 2 (11)2 (21) 

k=1 w + Tk 

where l:t.a is the optical anisotropy of each element and Tic is 
the kth normal mode relaxation time. In case of a monodis
perse system of dilute rigid rod molecules, the heterodyne 
power spectrum corresponding to eq (21) is 
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FIGURE 18. Block diagram of the Rayleigh spectrometer in the FDS configuration and the filter train. Here, r, [L and P stand for the incident leakage 
and scatlering intensities, respectively, and the subscripts V and H designate vertical and horizontal polarization directions. ' 
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where T is the relaxation time of rotatory diffusion of the 
rod. 

The optical train of our apparatus [46] is shown in figure 
IS, and an example of Sol (0, v) for a dilute solution of 
poly(n-hexyl isocyanate), a rigid rod chain of 3500 A in 
length, is given in figure 19. 
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FIGURE 19 FDS power spectrum of PHIC (M. W. 3.2 X 205
) in n-hexane at 

C == 2.16 mg/mL with single Lorentzian fit (-) and Zimm spacing fit 
(-'-). Upper and lower graphs are distinguished by linear and 
logarithmic frequency scales. 

The four light scattering techniques that we employ to 
study a variety of scattering systems are summarized above. 
Before leaving this section, I note parenthetically that our 
data acquisition and analysis system makes use of a mini
computer (PDPS/e) and a set of two microprocessor com
puters (Apple II) interacting with a Harris/7 system. This is 
shown schematically in figure 20 where only the part deal
ing with computer controlled automatic goniometer on 
SO FICA light scattering photometer is yet to be imple
mented while all others are now in operation. 

6. Systems 

Turning to the four systems that were studied by one or 
more of the above techniques, table I summarizes what we 
were able to learn about these systems by the Hght scatter
ing methods. For the sake of brevity, I will not discuss all of 
them in the same detail but rather highlight some selected 
aspects of some of them. 

FIGURE 20. Data acquisition and analysis system of 
quasielastic light scattering in time domain 
(Malvern autocorrelator) and in frequency domain 
(PDP 8/ e) and those of elastic light scattering. 

a. Amphoteric Latex Particles 

Monodisperse latex particles have been utilized in a wide 
variety of fields including immunochemical assays [47, 4S] 
and biomembrane studies [49] in addition to their more con
ventional applications as the markers and calibration stan
dards in microscopy and light scattering and as the model 
colloids [50]. Our interest coincides with the last instance 
where an amphoteric latex system with the well-defined 
number of charges can be invoked as a model for globular 
proteins and biomembrane vesicles relative to the ioniza
tion behavior of their surface groups. Recently, Homola and 
James [51] were able to prepare an amphoteric latex system 
without any added surfactants which now meets the require
ment of a well-defined charge number. The latex particles 
consist of three monomers, styrene (S), methacrylic acid 
(MA), and N,N-diethylaminoethyl methacrylate (DEAM), 
emulsion polymerized with persulfate at 70°C. 

We were mainly interested in whether there exists any 
size change at different pH [52]. One of the transmission 
electron micrographs taken of the samples is shown in 
figure 21 which makes it evident that the sample has a 
relatively homogeneous size distribution. Results of the con
ductometric and potentiometric titrations, as shown in 
figure 22, give clear evidence that the latex particles are in
deed amphoteric in nature and the titration valences at the 
extreme pH of 3 and 11 are fairly symmetric at about 6 X lOS 
electronic charges per particle. This was deduced from the 
titration results and the size determination, which was per
formed by elastic light scattering according to the method 
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TABLE 1. List of the four systems tudied by light caltering technique 

SYSTEM 

Amphoteric Latex Particle 

Photoreceptor 
Retinal Oi c Membrane 

ematic Liquid Cry tal 

Lin ar Macromolecules 

ELS 
QL 
EPLS 

Opt ical Birefringence 
NM R Line Splitting 
FD 

FO 

; ela tic light cattering-total cattered inten ity profile 
; qua i la tic light catt ering-angular dependent pec tral hape 
; elect rophoretic light cattering-electrical field dependent QL 
; forward depola rized cattering 

1. o motic deformation 
2. membrane lateral tirfne 
3. 
4. 

1. 
Function 

2. order nuctuation dynamic 

internal normal mode 

1. 
2. 

3. ion conce ntrat ion 

1. non-nemat ogen compo ition 
2. temp ratur 

FIG RE 21 Tran mi ion electron . 
micrograph of amphoteric latex particle at X67,OOO. 
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FIGURE 22. An example of potentiometric and conductometric titration. For the conductometry, the 
left intersection point of extrapolated lines is taken as the starting point of protonation of amino 
groups and the right intersection point as the termination point of protonation of carboxylate ions. 

outlined earlier. In figures 23 through 25, we show the scat
tering profiles, plotted according to eq (9), at nominal pH of 
3, 7 and 11, all at the same ionic strength of I mM. We dis
play in figure 26 all the radius data so obtained at different 
pH from 3 to II at the same ionic strength. It is evident that 
there is a symmetric size change with respect to pH and the 
point of minimum radius at around pH 7 coincides with the 
isoelectric point determined by titration. The Stokes radii 
obtained by quasielastic light scattering agree with those in 
figures 23 and 25, 125 ±3 nm and 123 ±3 nm respectively at 
pH 3 and 11, while that of 118 ±2 nm at pH 7 does not 
agree with the radius in figure 24, 112 ±2 nm. Collecting all 
these results, we propose a model as depicted schematically 
in figure 27. It consists of hydrophobic core mainly con
stituted of styrene monomer and of hydrophilic shell made 
predominantly of ionic comonomers, MA and DEAM. The 
observed size change is then attributed to the chain expan
sion in the shell layer due to electrostatic repulsive interac
tions while the core remains relatively intact with respect to 
pH changes in the suspending medium. What remains 
uncertain however is the difference between the Stokes 
radius and that determined by elastic light scattering at pH 
7. Whether the difference could be attributed to the 
thickening of the hydration layer at the isoelectric point 
must be examined by another technique such as NMR. 

Before closing I must remark that one could raise the 
issue of whether our scheme of size determination is indeed 
probing the outer radius of swollen latex particles as con
trasted to some iII-defined average of the inner and outer 
radii. After performing a set of simulation studies with con
centric spheres having different segment densities in the 
shell volume relative to that in the core, we are convinced 
that our method is likely to underestimate the outer radius 

4~----------r-----------Y-----------~----------~----------~----------~---------------~~ 

I(9)'Sin4(9/z) 
(a.u.l 

pH 2.97 
Ao: 436nm 

o~-----~~----------~----------~----------~----------~----------~~~~~ 
.25 .55 .65 .75 .85 .95 

Sin (9/z) 
FIGURE 23. Light scattering profile of amphoteric latex at pH 2.97 where 
the polarization condition was unpolarized/unpolarized. Solid curves 

represent an isotropic solid sphere with the indicated radius in the 
Rayleigh.Gans-Debye scattering. 
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FIGURE 24. Same as figure 23 at pH 6.75. 
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FIGURE 25. Same as figure 23 at pH 11.01. 
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FIGURE 26. The particle radius versus pH. The dashed curve represents 
the degree of ionization and the solid curve a model of simple polyelec

trolyte effect for the shell layer. 
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FIGURE 27. Schematic representation of pH induced swelling and deswelling of latex particles. 

in the swollen state. Hence the latex particle dilation could 
easily be larger than what we report here. Unambiguous 
confirmation of the concentric sphere model is not possible 
with light scatterings alone. It might be possible to employ 
small angle neutron scattering [53] with perdeuterated core 
(with ful1y deuterated styrene monomer) and an appropriate 
D20IH20 mixture to contrast match the core and solvent 
such that the scattering due to the shell volume can be ac
centuated, whereby we could indeed measure the shell 
thickness dilation with pH. 

b. Photoreceptor Disk Membrane Vesicles 

The vertebrate visual process involves complex sequences 
of events in transducing photochemical energy to electrical 
energy [54-56]. A vast literature exists concerning the role 
of the visual pigment membrane in this process [57, 58]. Our 
goal has been to isolate disk membranes from vertebrate 
rod outer segment (ROS) as intact as possible [59] and focus 
on their static and dynamic structure relative to the photo
receptor function. I shaIl now discuss what we have learned 

about these membranes by isolating the disk membranes 
from ROS, swelling them into vesicles in hypotonic media 
and examining them in dilute suspensions by quasi elastic 
and elastic light scatterings. 

A typical homodyne power spectrum is shown in figure 28 
and the spectral halfwidths obtained at different scattering 
angles are displayed in figure 29. From these, we deduced 
the Stokes radius of 0.51 ± 0.05 p.m. If the vesicles were 
spherical in shape, then modelling them as spherical shells 
was quite reasonable because the bilayer thickness [60] of 
about 75 nm was negligibly small compared to 500 nm for 
the Stokes radius. Analogous to eq (9), one obtains from Eqs 
(5) through (8) in the limit of p = q =0, 

(23) 

for spherical shell. The results of elastic light scattering 
plotted according to eq (23) are shown in figure 30. The 
equilibrium radius calculated from the Bragg condition of 
QR = n7r/2, where the maxima are give~ by n = odd integers 
and the minima by n =even integers, is 0.48 ±O.06 p.m. In 
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FIGURE 28. An example of homodyne power spectrum of the scattered 

light from photoreceptor disk membrane vesicles at 50· scattering angle. 

Each solid curve in the upper figure represents a single Lorentzian profile 

with a halfwidth AVlh of 16 Hz. In the lower figure, the normalized resid· 

uals of fitting to the single Lorentzian is plotted against frequency v. 
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FIGURE 29. AvIfz versus kl/n. Three independently prepared samples are 

distinguished by different symbols. 

model for the vesicles to be valid in this particular suspend
ing medium [61, 62]. 
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FIGURE 30A. The scattered intensity modulation profiles of two indepen. 

dently prepared vesicle suspensions of ROS membranes are displayed by 

plots of 1 .. (fJ) sin1 (fJ/2) against sin (fJ/2). The two sets are vertically shifted 

to exhibit the reproducibility of the extrema positions. The solid curves 

r~x) or(QR.)l<~fJ» is plotted against sin (fJ/2). The parameters used for 
the theoretical profiles are R = 0.48 /Jm for monodisperse shells (h = (0) 

and R. = 0.48 /Jm for polydisperse shells of the indicated distribution 

index h. Zimm·Schulz distribution function is used for the number fraction 

of shells with radius R as 

1 (h + 1)h+1 (h + l)R 
I.(R) = I - R~ exp [ --R--] h. Rw w 

where R. is the weight average radius. 

FIGURE 30B. Comparison of the intensity profiles of solid sphere (solid) 

and sperical shell (dashed) is given by two theoretical curves; the experi· 

mental data for polystyrene latex sphere (0.45 /Jm radius) are represented 
by the circles. Here, the plot is I(fJ) versus sin (0/2) unlike those in (30a). 
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Upon changing the osmotic pressure of the suspending 
medium by an impermeable second solute, e.g., sucrose, we 
observe that the vesicles deform by deswelling, which is 
caused by the chemical potential gradient of the principal 
permeable component, namely H20. From the osmotic 
deformation behavior of the vesicles we were able to 
estimate the lateral compressive modulus of the membrane 
bilayer [63]. This turned out to be around 3 X 103 Pa. 

Since the membrane vesicles respond to the chemical 
potential gradient of water across the bilayer, their defor
mation behavior can be used to probe the permeability of 
ionic components including the hydrogen ion. Elastic light 
scattering studies of the vesicle shape have shown that the 
hydrogen ion is completely permeable within the pH range 
of 6-8 [64]. This is shown in figure 31 where the scattering 
profile of the spherical shell shape of the vesicles is hardly 
affected. 

The binding of Ca+2 on vesicles was then studied by elec
trophoretic light scattering [65]. The Doppler shift spectra 
all at 7° scattering angle and 20°C at a constant ionic 
strength of 1 mM are displayed in figure 32. The corre
sponding electrophoretic mobility profile at different Ca+2 

concentrations is shown in figure 33 where the solid curve is 
drawn with a two-binding sites model. It can be represented 
by 

(24) 

where r is the number average bound Ca+2 per vesicle, ill 

and Kl are respectively the number of high affinity, a sec
ond order cooperative binding sites and the corresponding 
binding constant, and n2 and K2 are the other set of con
stants for low affinity, a first order non-cooperative binding. 
By replotting the data in figure 32, a Scatchard plot shown 
in figure 34 results, from which we estimate n l = 
(1.4 ± 0.1) X 1 Q4 and Kl = (7 ± 2) X 1010 M-2 while n2 and K2 
are subject to a good deal of uncertainty. 

c. Binary Nematic Solutions 

Here, our interest was focused on exaIhining how the 
phase behavior [66] and dynamic twist modes [67] were af
fected by mixing of non-nematogens (biphenyl and benzene) 
to a thermotropic nematic liquid crystal, methoxy benzyli
dene butyl-aniline (MBBA). The scattering technique is the 
FDS method where the director of the nematic system is 
oriented parallel to the polarization of incident light while 
that of scattered light is perpendicular to the director axis 
[68]. Two examples of the FDS power spectra are displayed 
in Fig 35. With use of the twist viscosity of Gahwiller [69], 
we were able to determine the twist elastic constant of pure 
MBBA as a function of the reduced temperature. This is 
shown in figure 36. Incorporating the concentration de-

pendence of a non-nematogen to that of temperature, we 
could deduce the mapping of the twist diffusivity coefficient 
over the entire binary nematic phase region. In figure 37, 
such a mapping is displayed where the non-nematogen is 
biphenyl [68]. Fearing that this might have been unique to 
the biphenyl-MBBA system, benzene-MBBA nematic solu
tion was also examined [70]. The result, as shown in figure 
38, indicates that such a behavior is not restricted to the 
biphenyl-MBBA system. 
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FIGURE 32. Three heterodyne spectra of electrophoretic light scattering, 
all at 7° scattering angle and 10V peak-to-peak (27V / em) at three different 
Ca+2 concentrations at I mM ionic strength solution 
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FIGURE 33. The electrophoretic mobility, corrected to 20°C in water, is 
plotted against Ca+l concentration in log scale. Error bars apply to every 
data point although only three are shown. The solid curve is drawn ac
cording to the model discussed in the text. 
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FIGURE 34. A Scatched plot where the number average degree of binding 
per unit ligand concentration rl C is plotted against the degree of binding 
r. Error bars apply to every data point although only two are shown. Solid 
curve is drawn according to the model discussed in the next while dashed 
line is drawn by ignoring lower five points in r. The intercept with the 
abscissa of the dashed line gives the apparent first order binding site 
number n, and its slope the apparent first order dissociation constant K,-'. 
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FIGURE 36. The elastic constants of pure MBBA versus the reduced tem
perature T{T). The bend (a = 3) and splay (a = 1) elastic constants are from 
the work of Haller and the twist constant (a = 2) is ours with use of the twist 
viscosity of Gahwiller. 
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FIGURE 37 A. Composition reduced twist diffusivity coefficient Kll/y,~X) 
versus the reduced temperature T{T.X) == T - T.v,(X)IT.,(X), where T.,(X) 
= (0)(1-25OX) as observed from the phase diagram. The filled circles are 
from temperature scan of pure MBBA, the open circles are from 
temperature scan of 0.081 mole fraction biphenyl solution and the crosses 
(+) are from composition scan at 23 °C. 

FIGURE 37B. 4l(X), the composition dependent factor of the twist diffusivi
ty coefficient at constant reduced temperature versus mole fraction of 
biphenyl. 
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FIGURE 38. Same as figure 37 for the MBBA-benzene system. 

d. Intramolecular Chain Dynamics of Isotactic Polystyrene 

A typical FDS power spectrum [46] of an isotactic polysty· 
rene sample (Mw =3.5 X 106

, < S2 > 1h = 1270A) in tetrahy· 
drofuran at 4.0 mg/mL is shown in Fig 39. All spectra were 
analyzed according to eq (21) with the Zimm spacing [71] of 
relaxation times up to five relaxation modes. Truncation 
beyond the 6th mode was called for due to the chosen band· 
width of 2 kHz whereby the higher modes were obscured by 
the shot-noise level. Spectral analysis was effected by a 
3-parameter fitting routine; the parameters were the spec
tral intensity, shot-noise level and the terminal relaxation 
time 71' By fixing the spacing to that of Zimm type, what we 
extract from the experiment is 71, the slowest relaxation 
time of internal normal modes. Because all measurements 
were performed at finite concentrations, we had to extrapo
late the data to infinite dilution. This is effected by plotting 
71 against relative viscosity 1'/r of polymer solution and ex
trapolating to '17r = 1. Such a plot is shown in figure 40 from 
which Tl at infinite dilution is determined as (1.2-1.5) X 10-4 
sec with an experimental uncertainty of ±30%. The theo
retical value of 71 for the polymer sample is 1.5 X 10-4 sec. 
Within the experimental error the two are in agreement. 

7. Concluding Remarks 

It is my hope that the readers of this report would be as 
excited as I have been about the potentials of light scatter· 
ing techniques and have some appreciation for what kinds 
of problems can be tackled. I must again emphasize that 
this is intended only as a sketchy review of what my students 
and I have been able to do and not as an up-to-date review 
of the field. I have cited several excellent reviews in the text. 
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FIGURE 40. The terminal relaxation time deduced from the Z5 fit of the 
FDS power spectra of isotactic polystyrene in THF is plotted against rela
tive viscosity at different concentrations (0.65 mglmL - 4.0 mg/mL. Error 
bars define 95 % confidence limit of the fit and the theoretical value of the 
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The ALOHA System, an experimental UHF radio computer communication network, was developed at the Uni
versity of Hawaii, 1970-76_ In this survey paper, we give a general overview of packet communication techniques 
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1. Introduction 

Developments in remote access computing in the 
1970's have resulted in greater and greater importance 
attached to computer-communication networks. In discuss
ing computer-communications it is useful to distinguish 
between communications among computers, and commu
nications using computers. For example, the ARPANET 
[Ii is a computer-communications network that intercon
nects a collection of large or specialized research com
puters and uses both kinds of communications. Com
munications among the ARPANET computers is made 
possible through the use of message switching computers 
called IMP's (Interface Message Processor) and TIP's 
(Terminal Interface Processors). 

In discussing the ALOHA broadcast packet communica
tion network, we concentrate on communications using 
computers. The term "broadcast" implies radio. 
ALHOHA is one of the world's first time-sharing networks 
that uses packet radio as the communications medium. 
By the word "packet" we mean an allocated unit of 
transmitted information in terms of a specific number of 
bits. For example, in the mail system, a packet is a letter 
with a variable number of bits; in the ARPANET, a 
packet is a string of data of 1024 bits. Before we discuss 
the specifics of the ALOHANET, it is useful to examine 
what we mean by packet communications. 

·The writing effort was supported by the Office of Naval Research under Con

tract No. NOOOl4-C-78-0498. 

1 Figures in brackets indicate literature references at the end of this paper. 

2. Packet Communications 

In the early days of time-sharing, remote access to the 
central computer depended almost exclusively on the use 
of leased or dial-up facilities provided by the telephone 
company. Generally the terminal-to-computer access was 
by means of dial-up facilities which made use of 
telephone circuits on a circuit-switched basis. In circuit 
switching the telephone system's exchanges are switching 
nodes which piece together a continuous path or circuit 
from caller to receiver. The connection is maintained un
til either party hangs up. Usually the call is charged on 
an elapsed time and/or distance basis. Circuit switching is 
a technique that was developed at the turn of the cen
tury for voice communications. When applied to com
puter-communications, circuit switching is applicable but 
not totally satisfactory for one reason: cost effectiveness. 
Computer data is usually transmitted as bursts in
terspered between varying quiescent periods. When two 
people are conversing over a voice circuit, the circuit is 
used quite efficiently. However, for interactive computing 
on a time-sharing system, the circuit is utilized only a 
small percent of the total connect time for actual 
transmission of data [2]. 

Packet switching is a technique which has evolved in 
the late 1960's and early 1970's and is ideally suited for 
computer data communications. In a packet switching 
network, the topology takes the form of a highly con
nected (but not fully connected) set of nodes. At each 
node is a computer that acts as a message switch. In the 
case of the ARPANET this computer is the IMP or TIP. 
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Messages from Computer A to Computer B in the net
work are transmitted in the form of packets of a given 
number of bits. Each packet has a ttheader" which con
tains information giving a complete specification of the 
communication desired (e.g. destination, source size se
quence number, priority, etc.). Each packet also has a 
given number of checksum bits for error detection pur
poses. A packet sent from A to B does not have a fixed 
route. It is sent to intermediate nodes in a store-and
forward manner. Each node examines the packet for its 
ultimate destination and makes a parity check to deter
mine any error. If the packet is received with no errors, 
an acknowledgement is sent to the previous node 
traversed and the packet is successively forwarded to the 
next node down the line until it is received, error free at 
its ultimate destination. Route selection is dynamic in 
that each packet is directed along a path for which the 
total estimated transit time is minimum. This path is not 
predetermined but calculated at each intermediate node. 

Since packet switching uses computers so heavily in the 
communications process, it has only become feasible in 
the past few years because of the increasing speed and 
lowered costs of digital computers. Roberts [3] makes 
clear this point in the introduction of his paper: 

"Packet switching (is) strongly dependent upon the cost 
of computing since it uses computers to correct transmis
sion errors, to provide high reliability through alternate 
routing, and to allocate communication bandwidth on a 
demand basis rather than as a preassigned bandwidth." 

Metcalfe [4] gives a good summary of the reasons why 
packet switching is too efficacious for computer com
munications. 

"In pure packet·switching, on the other hand, the com· 
munication system does not dedicate circuits to set up 
connections; rather, the messages which form a conversa· 
tion are injected individually at the exact moment of 
their readiness. Because there is no connection setup to 
amortize over a conversation, short conversations are not 
seriously disadvantaged relative to long ones; because a 
packet.switching system allocates its resources to 
messages rather than conversations, the inactive periods 
in one conversation can be used to support other conver
sations. Packet.switching makes good use of communica· 
tions facilities when the conversations being carried are 
either short or very bursty." 

3. Packet Broadcasting 

Packet broadcasting is a technique whereby data is 
sent from one node in a net to another by attaching ad· 
dress information to the data to form a packet typically 
from 30 to 100 bits in length. The packet is then broad· 

cast over a communication channel which is shared by a 

large number of nodes in the net; as the packet is 

received by these nodes the address is scanned and the 
packet is accepted by the proper addressee (or ad· 
dressees) and ignored by the others. The physical com· 
munication channel employed by a packet broadcasting 
net can be a ground based radio channel, a satellite 
transponder or a cable. 

Packet broadcasting networks can achieve the same 
efficiencies as packet switched networks [1] but in addi· 
tion they have special advantages for local distribution 
data networks, and for data networks using satellite chan
nels [5]. In this paper we concentrate on those charac
teristics which are of interest for a local distribution data 
network. In particular, we discuss the design and imple
mentation of the ALOHANET, a packet broadcasting 
radio network in operation at the University of Hawaii 
during 1970-76. 

The ALOHANET was the first system which success
fully utilized the packet broadcasting concept for on-line 
access of a central computer via radio. Although it has 
not been in operation since 1976, its design principles 
have been applied to a number of successfully operating 
present-day networks including ETHERNET [6], the 
Packet Radio Network (PRNET) [7], and the Packet 
Satellite Net (SATNET) [8]. In the next section we will 
briefly examine the operations of the ALOHANET [5]. 

4. Alohanet operations 

In the ALOHANET, two 100 KHz channels were used 
in the UHF band-a random access channel for user-to
computer communication at 407.350 MHz and a broad· 
cast channel at 413.375 MHz for computer-ta-user 
messages. The original system was configured as a star 
network, allowing only a central node to receive transmis
sions in the random channel; all users received each 
transmission made by the central node in the broadcast 
channel. However, the subsequent addition of ALOHA 
repeaters generalized the network structure. 

A block diagram of the ALOHANET is shown in figure 
1. The central communications processor of the net is an 
HP 2100 minicomputer (32K of core, 16 bit words) called 
the MENEHUNE [5] (Hawaiian for IMP) which functioned 
as a multiplexor/concentrator in much the same way as an 
ARPANET IMP [1]. The MENEHUNE accepts messages 
from the UH central computer, and IBM System 3701158 
running TSO or from ALOHA's own time-sharing com
puter, the BCC 500, or from any ARPANET computer 
linked to the MENEHUNE via the ALOHA TIP. Outgoing 
messages in the MENEHUNE are converted into packets, 
the packets are queued on a first-in, first-out basis, and are 
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then broadcast to remote users at a data rate of 9600 baud. 
The packet consists of a header (32 bits) and a header 

parity check word (16 bits), followed by up to 80 bytes of 
data and a 16-bit data parity check word. The header 
contains information identifying the particular user so 
that when the MENEHUNE broadcasts a packet, only the 
intended user's node will accept it 

The random access channel (at 407.35 MHz) for com
munication between users and the MENEHUNE was 
designed specifically for the traffic characteristics of 
interactive computing. In a conventional communication 
system a user might be assigned a portion of the channel 
on either an FDMA or TDMA basis. Since it is well 
known that in time sharing systems, computer and user 
data streams are bursty [2] such fixed assignments are 
generally wasteful of bandwidth because of the high 
peak-ta-average data rates that characterize the traffic. 
The multiplexing technique that was utilized by the 
ALOHANET was a purely random access packet switch
ing method that has come to be known as the pure 

ALOHA technique [9]. Under a pure ALOHA mode of 
operation, packets were sent by the user nodes to the 
MENEHUNE in a completely unsynchronized manner
when a node was idle it used none of the channel. Each 
full packet of 704 bits required only 73 ms at a rate of 9600 
baud to transmit (neglecting propagation time). 

The random or multi-access channel can be regarded 
as a resource which is shared among a large number of 
users in much the same way as a multiprocessor's 
memory is ffshared." Each active user node is in conten
tion with all other active users for the use of the 
MENEHUNE receiver. If two nodes transmit packets at 
the same time, a collision occurs and both packets are re
jected. In the ALORANET, a positive acknowledgement 
protocol was used for packets sent on the random-access 
channel. Whenever a node sent a packet it had to receive 
an acknowledgement message (ACK) from the MENE
RUNE within a certain time-out period. If the ACK was 
not received within this interval the node automatically 
retransmitted the packet after a randomized delay to 
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avoid further collisions. These collisions, however, limited 
the number of users and the amount of data which could 
be transmitted over the channel as loading was increased. 

An analysis [9] of the random access method of 
transmitting packets in a pure ALOHA channel showed 
that the normalized theoretical capacity of such a channel 
was !he = 0.184. Thus, the average data rate which can 
be supported is about one sixth the data rate which could 
be supported if we were able to synchronize the packets 
from each user in order to fill up the channel completely. 
Put another way, this result shows the ALOHA 9600 
bit/second random access channel could have supported 
between 100 and 500 active teletype users-depending 
upon the rate at which they generated packets and upon 

the packet lengths. 

4.1. ALOHANET Remote Units 

The original user interface developed for the system 
was an all-hardware unit called an ALOHANET Terminal 
Control Unit (TCU), and was the sole piece of equipment 
necessary to connect any terminal or minicomputer into 
the ALOHA channel. As such it took the place of two 
dedicated modems for each user, a dial-up connection 
and a multiplexor port usually used for computer net
works. The TCU was composed of a UHF antenna, 
transceiver, modem, buffer and control unit 

The buffer and control unit functions of the TCU were 
also handled by minicomputers or microcomputers. In the 
ALOHA system several minicomputers were connected in 
this manner in order to act as multiplexors for terminal 
clusters or as computing stations with network access for 
resource sharing. A later version of the TCU, using an 
Intel 8080 microcomputer for buffer and control, was 
built Since these programmable units allowed a high 
degree of flexibility for packet formats and system pro
tocols, they were referred to as PCU's (Programmable 
Control Units). 

Since the transmission scheme of the ALOHANET was 
by line-of-sight, the radio range of the transceivers was 
severely limited by the diversity of terrain (mountains, 
high rise buildings, heavy foliage) that exists in Hawaii. A 
late development allowed the system to expand its 
geographical coverage beyond the range of its central 
transmitting station. Because of the burst nature of the 
transmissions in the ALOHA channel it was possible to 
build a simple store-and-forward repeater which accepted 
a packet within a certain range of ID's and then repeated 
the packet on the same frequency. Each repeater per
formed identically and independently for packets directed 
either to or from the MENEHUNE. Two of the repeaters 
were built which extended coverage of the ALOHANET 

from the island of Oahu to other islands in the Hawaiian 

chain. 

5. Satellite communications 

Because of the geographic isolation, one of the original 
objectives of the ALOHA system was to study the 
feasibility of the computer-communications by means of 
satellite. With the development of digital communication 
systems by COMSAT in which data at the rate of 50K 
baud can be transmitted through a single voice channel 
data transmISSIOn by satellite has become both 
technologically and economically feasible [10]. 

There is a basic and important difference between the 
use of a satellite channel and a wire channel for data 
communications. The satellite channel is a broadcast 
channel as opposed to a point-ta-point wire channel, so 
that a single voice channel, say between ground stations 
A and B can be used in broadcast mode among any set of 
ground stations, providing a full broadcast capability of 
two 50K baud channels. Thus a single commercial satel
lite voice channel could be employed with the following 

characteristics: 

1. The single voice channel could provide two up-link 
and two down-link 50K baud data channels. 

2. Each of these four channels could be simultaneously 
available to any COMSAT ground station in sight 
of the satellite. 

In December 1972, the ALOHA system became the first 
operational satellite node on the ARPA network. The 
satellite used was the Pacific Ocean INTELSAT IV, and 
the mode of operation is the single-channel-per-carrier 
PCM voice link that is employed on the SPADE demand 
assignment system [11]. The PCM voice channel converts 
analog voice into 56 kilobit PCM. With 50 kilobit data 
transmission the conversion is unnecessary. The tariff for 
this service is charged on the basis of a single voice chan
nel, which is a remarkable savings over land-line rates. 

In addition to the operational satellite link on IN
TELSAT, we also worked on the NASA satellite ATA-l 
doing experiments on packet broadcasting. In contrast to 
the standard 97 foot earth station of INTELSAT that 
costs several million dollars, the ATS-1 ground stations 
operating on a VHF channel used an antenna as small as 
ten feet and total ground station electronics costs were 
less than $5,000. In conjunction with NASA-Ames 
Research Center (ARC) and the University of Alaska we 
set up an experimental packet broadcasting network in 
which the ATS-1 VHF transponder was utilized as a 
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broadcast repeater and was operated in the ALOHA ran

dom access burst mode. 

6. Present-Day Packet 
Broadcasting Networks 

When funding ran out from the various U.S. Govern
ment sponsors, the ALOHANET stopped operations in 
the FALL of 1976. However, the spirit of ALOHA lives on 
in the following networks which are in operation today. 

6.1 ETHERNET [6] 

This network was one of the first cable-based local area 
networks ever developed. The basic concept of operation 
of ETHERNET is to use the cable transmission medium 
(The HETHER") in an ALOHA mode with some embel
lishments such as reducing the probability of packet colli
sions by listening before and while transmIttmg. 
ETHERNET, developed by Metcalfe and Boggs at the 
Xerox Palo Alto Research Center in 1973-75, has 
spawned a number of imitators in the burgeoning field of 
local area networks. Thus, it appears that three genera
tions of techology have evolved from the original ALOHA 
technology, developed only 10 years ago. 

6.2 Packet Radio Network [7] 

The PRNET is a direct descendent of the ALOHANET 
and was developed by a constortium, including the 
University of Hawaii, under the sponsorship of the 
Defense Advanced Research Projects Agency (DARPA). 
Although the original ALOHANET did use repeaters, it 
nevertheless represented a centralized system in that 
there existed only a centered computing facility to which 
the remote TCU's served as subscribers. The PRNET is a 
basic extension of ALOHANET and extends the domain 
of packet communications to permit mobile applications 
over a wide geographic area by the extensive use of 
repeaters and sophisticated protocols for addressing and 
routing. The PRNET is in prototype operation in the San 
Francisco Bay area, with its central station located at SRI 
International in Menlo Park, California. 

6.3. Packet Satellite Network [8] 

The Atlantic Packet Satellite System or SATNET, is 
another DARPA-sponsored effort that has led to a quasi· 
operational packet broadcasting system operating on a 
INTESAT IV satellite over the Atlantic. One of the most 
significant achievements of the SATNET experiment was 
the development of a very sophisticated demand· 
assignment protocol called PODA (Priority·Oriented De· 
mand Assignment). Its design represents an integration of 
both circuit and packet·switched demand assignment and 
control techniques. For large populations of low duty· 
cycle stations, random access techniques (known as slotted 
ALOHA) are used in the system known as CPODA (Con
tention-PODA). Thus, it appears that the contention 
techniques, pioneered in the original ALOHANET, are 
being used in some of the most advanced packet com· 
munications systems of the 1980' s. 
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1. Introduction 

In a series ofrecent reports [1, 2,3),1 Ely and Hanley have 
proposed a corresponding states method for the prediction 
of the viscosity and thermal conductivity of pure hydrocar
bons and their mixtures. This work was an extension of the 
previous work of Hanley [4, 5], which dealt with the trans
port properties of liquefied natural gas mixtures, to molecu
lar weight ranges corresponding to C20 and other chemical 
types (e.g., aromatics). The method is based on a one-fluid, 
conformal solution concept and requires only pure compo
nent, equilibrium parameters such as the critical parame
ters as input. No transport data are required. 

Extensive comparisons of the predictions of the model 
with experimental data have been reported and are sum
marized in tables 1 and 2. In general the results are ex
cellent with the average absolute error between experiment 
and prediction being less than 8 percent for both pure 
fluids and mixtures. It was noted, however, that when the 
size difference of two binary mixture species becomes large 
(e.g., V1V~ - 6), the predictions of the viscosity model 
become markedly worse. This failure of the one-fluid model 
for viscosity has been explained by the nonequiIibrium 
molecular dynamics studies of Hanley and Evans [6, 7]. 
These studies have shown that for mixtures of molecules of 
substantially different size, the mean density approximation 
inherent in the one-fluid theory for the binary pair distribu
tion function fails, even for a conformal mixture. A conse-

·Partially supported by the U.S. Department of Energy, Office of Basic Energy 
Sciences, Contract No. DE-AlOl-76PR0601O. 

tThermophysical Properties Division, National Engineering Laboratory. 

I Raised figures indicate literature references located at the end of this paper. 

quence of this failure is that the local or ambient concentra
tion of the mixture components is not the same as the bulk 
concentration. This is shown in figure 1 for a 50/50 mixture 
of a conformal system whose size difference is two [7]. As 
one can see, the concentration of the larger component 
about a central large molecule (x22) is greater than the bulk 

TABLE 1. Summary of One-Fluid Corresponding States Viscosity Results 
for Pure Fluids.· 

Fluid Type N AAD BIAS 

n-Paraffins 1301 4.89 -0.48 
i-Paraffins 155 21.17 -21.17 
Alkenes 58 11.29 7.85 
Cycloalkanes 89 40.56 -40.56 
Alkylbenzenes 155 8.45 -0.69 
Carbon Dioxide III 4.75 -4.53 

Overall 1869 8.42 -4.10 

• AAD = Average absolute percent deviation. BIAS = Average percent 

deviation. 

TABLE 2. Summary of One-Fluid Corresponding States Viscosity Results 
for Binary Mixtures.· 

Mixture Type N AAD BIAS 

Alkanel Alkane 303 5.89 -1.79 
Alkane/Cycloalkane 24 17.31 -16.51 
Alkane/Alkylbenzene 128 7.41 -om 
Overall 455 6.95 -2.07 

• AAD = Average absolute percent deviation. BIAS = Average percent 

deviation. 
These results were obtained using the empirical size difference correc

tion proposed by Ely and Hanley [1]. 
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FIGURE 1. Local mole fractions for a conformal mixture of soft spheres 
with a mass ratio of 10 and size ratio of 2 plotted versus reduced inter· 
molecular separation ,. [7]. 

concentration until one exceeds four or five molecular 
diameters. Since the viscosity (as well as other thermophy
sical properties) are determined from relatively short.range 
forces, the large component dominates the value of the mix
ture viscosity. Ely and Hanley [1] attempted to correct for 
this effect with an empirical relation based on the size ratios 
in the mixture. Although this function was somewhat sue· 
cessful (as is reflected in table 2), the size difference effects 
persist in the model predictions. 

In this manuscript, a systematic correction to the one
fluid viscosity model is proposed for size and mass dif· 
ference effects. This correction is based on the exact solu
tion of the Enskog model for a multicomponent mixture of 
hard spheres [8]. This approach has a rigorous foundation 
in the perturbation expansion of an equilibrium property of 
a fluid [9], but is empirical as applied to transport 
phenomena. In spite of this empiricism, the proposed cor· 
rection does improve the viscosity predictions for mixtures 
which exhibit large size and mass differences, for both the 
dense liquid and dilute gas states. 

Section 2 of this article summarizes the assumptions and 
working equations of the one·fluid, conformal solution 
\'iscosity model (CSVM). Section 3 discusses the hard sphere 
expansion model and describes the Enskog solution for a 
multicomponent mixture of hard spheres which is the ana· 

lytical formulation used to correct the CSVM. In section 4 
the predictions of the corrected and uncorrected models are 
compared with experimental data for both the dilute gas 
and high density fluids. Unfortunately, for methane/no 
de cane like systems where the size and mass difference ef· 
fects would be the most pronounced, no dilute gas experi· 
mental viscosities have been measured. For this reason, the 
model predictions are also compared to calculated Lennard· 
Jones viscosities. 

2. One-Fluid Viscosity Model 

In the one·fluid conformal solution viscosity model there 
are three basic assumptions: (1) the viscosity (1]) of a mixture 
at a density e, temperature T and composition {xa} can be 
equated to the viscosity of a hypothetical pure fluid, i.e., 
1]miz (e. T, (Xa}) =1]ie,n; (2) the viscosity of the hypotheti· 
cal pure fluid may be evaluated via a corresponding states 
principle 

(1) 

where F" is a dimensional factor defined below and (3) the 
reference fluid density and temperature (eo and To) may be 
evaluated via an extended equilibrium corresponding states 
principle [10] viz. 

(2) 

where hz and fx are defined by the relations 

and 

AR denotes the residual Helmholtz free energy of the 
hypothetical or reference fluid (subscripts x or 0, respective· 
Iy) and Z is the compressibility factor, p/eRT. In eq (1), F" is 
given by 

(3) 

where M denotes the mass. 
In order to apply the model to pure fluids or mixtures, 

analytical expressions for In hz, and Mz as well as for the 
reference fluid equation of state and viscosity surface are 
required. In our previous work, methane was chosen as the 
reference fluid owing to the availability of p VT and viscosi· 
ty data for that fluid. The appropriate correlations have 
been reported previously [1] and will not be repeated here. 

598 



For a mixture, In hr, and Mr must be obtained via mixing 
and combining rules for the corresponding mixture compo
nent parameters_ We have adopted a set of one-fluid mixing 
rules given by the following 

(4) 

(5) 

and 

M = [E Ex"'" m l12 #112 h413]2f;lh-S/3 
r a fj ot"'fj afj J afj afj r r (6) 

The combining rules for the binary pair parameters (as 
denoted by an H ex{3" subscript) are given by 

lafj = lfJfj)1/2 (1- kafj) (7) 

hafj = ~ (h~/3 + hA/3)3 (1 -lafj) (8) 

and 

(9) 

In eqs (7) and (8) kafj and lafj are the binary interaction 
parameters which can be set equal to zero in viscosity pre
dictions. The parameters fa and hfj are the equivalent 
substance reducing ratios for the energy and volume for 
component ex in the mixture. They are given by 

(10) 

(11) 

where the subscript He" indicates a critical value, H." 
denotes a value reduced by the critical point and w is 
Pitzer's acentric factor. () and cp are the shape factors of 
Leach and Leland [11, 12] whose detailed functional forms 
are given in reference [1]. T denotes the absolute tempera
ture, V is the molar volume and m is the mass. 

The mass mixing rule given by eq (6) was derived by 
Evans and Hanley [6] in their study of the viscosity of a mix
ture of conformal soft spheres. It arises by examining the 
potential contribution to the pressure tensor in terms of the 
nonequilibrium radial distributio~ function and thus is a 
mixing rule for the potential or in practice, high density 
contribution to the viscosity. This rule was adopted for all 
densities, however, since the emphasis of our previous work 
was on the dense fluid states. One might expect, therefore, 
that the CSVM might be somewhat less accurate for the 
dilute gas, kinetic regime where the mixture mass depend
ence is effectively proportional to m l/2 

f'2 h-2/3 rather than 

m l12 f/2 h4/3 . . (6) Th' . . . as gIven m eq . IS pomt WIll be dIscussed 
further in section 4. 

3. The Enskog Correction 

Mansoori and Leland and their co-workers [9, 13] have 
proposed a conformal solution model for equilibrium ther
modynamic properties in which a dimensionless or reduced 
property of a mixture is expanded about the corresponding 
property of a hard sphere mixture. For example if X . 
represents the value of the real mixture prope~ty, o~~ 
obtains 

In this equation X~1x denotes the value of the property in a 
mixture of hard spheres of diameters (ua ), (xa ) denotes the 
mixture composition, Xljs is the property value in a pure 
hard sphere fluid of effective diameter Ux (e.g., a one-fluid 
approximation) and Xo is the value obtained from a real, 
pure fluid reference substance, evaluated at the state point 
(gm To) where g~ = gU:/~ and T~ = T€j€x. In terms of inter
molecular potentials the parameters u and € correspond to 
the points where u{u)=O and min{u)= -f. Both Ux and €x 

are one-fluid parameters which must be evaluated via mix
ing rules. The difficulty in applying this approach lies in 
assigning values to u and € for the mixture components. 
One possible approach is to assume that 03 - Vc and € -

Tc which leads to factors such as those given in eqs (10-11). 
The choice of parameters used in this work will be discussed 
in section 4. 

Although transport properties cannot, in general, be ex
panded in a perturbation series [14], it is tempting to apply 
the hard sphere expansion (HSE) formalism to the confor
mal solution viscosity model presented in section 2. For
mally this may be written as 

(13) 

where the notation is the same as defined previously. Note 
that in the case of transport we must also consider the 
masses of the particles {rna}. 

In practice, we do not have an exact model for the viscos
ity of a hard sphere fluid (pure or mixed) at all densities. For 
this reason, the Enskog model [15], which has been solved 
for a multicomponent mixture of hard spheres by Tham and 
Gubbins [8], was selected to calculate 11~~x and 11':s, Their 
solution is given by 

nEN.SKOG = E R.(T ) y. 48 ~ ~ 
"mix i fJl ,g I + 1571' 't '1 XiXj U~j )'ij 
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where 

and the 131 are the solutions to the set of linear equations 
defined by the following 

where 

In these equations, bij = 27rutI3, UI; = ~(UI + u;), M;I = 
I( + ) 0 - boo - 5/ (m)cT)lhu-1 m -m; ml m; , Uij - I; n 71ij, 71ij - /16 ~ ij, ij-

2m1M;1t Yij = n bijgij(Uij), n = number density, gij is the 
hard sphere radial distribution function for the ij pair, and 
() is the Kronecker delta function. Although these equations 
are somewhat complex, they may be readily solved on a digi
tal computer. 

The final model, which we shall call the hard sphere 
expansion·conformal solution viscosity model (HSE-CSVM), 
is given by 

71mu (e,T, {XII}' {ma }) = 1171 ENSKOG + 710 (eo, To) F" (14) 

with 

71~SKOG (e~, mz ) (15) 

4. Results 

In order to apply eqs (14) and (15) values for the hard 
sphere diameters Ua must be chosen and mixing rules for 
the one-fluid values Uz and mz in the hard sphere system 
must be selected. As was mentioned previously, consid
erable freedom exists for the choice of the molecular diam
eters. Unfortunately, the hard sphere contributions to the 
viscosity are rather sensitive to this choice, thus several 
possibilities were considered. The relationship which was 
selected is given by 

U. = (V~ ha/3.058 NSIJ (18) 

where h. is the ratio defined in eq (11) and is obtained in the 
CSVM calculations and No is Avogadro's number. The fac
tor 3.058 was chosen so that methane would have a diameter 
of 3.758 10-10 m which corresponds to the Lennard-Jones 

(12-6) intermolecular potential value given by Reid, et al. 
[16]. This choice, although resonable, is still somewhat arbi
trary. The mixing rules for the one-fluid hard sphere system 
were chosen to be consistent with those used in the CVSM, 
eqs (5) and (6), viz. 

(16) 

and 

where Uob = ~ (uo + Ub) and mob is defined in eq (9). 

4.1 Results for the Dilute Gas Limit 

The correction was first tested on the dilute gas viscosity 
of a methane/propane mixture with the results being given 
in table 3. This table gives the experimental data [17], 
CSVM predictions and the HSE-CSVM predictions ob
tained using eqs (14-16). As one can see, the HSE-CSVM is 
consistently more accurate with average absolute percent
age deviation being 3.6 percent as compared to 6.29 percent 
for the CSVM. 

The size and mass difference in the methane/propane 
system is not very great-u1 /u2 - 1.4 and m1 /m2 - 3. One 
would expect that the effect of the correction would be more 
pronounced in a system like methane/n-decane where the 
size and mass ratios are 1.8 and 9, respectively. Unfor
tunately no experimental measurements for the dilute gas 
viscosity of this mixture have been reported. For this 
reason, the Lennard-Jones gas viscosities of this system 
were calculated using the standard kinetic theory formalism 
[15]. Although it is impossible to assess the absolute accu
racy of these values, they do serve as a rational basis upon 
which the HSE-CSVM and CSVM may be compared. 

In order to perform the dilute gas Lennard-Jones (U) 
calculations, values for the intermolecular potential 
minimum eo for the mixture components must be chosen as 
well as values for the uo • The Ua were obtained from eq (18) 
and eolk where k is Boltzmann's constant were calculated 
from the empirical relation 

eolk = nf,./1.282 

where f,. is the CSVM reducing parameter given in eq (10). 
The factor 1.282 was chosen so that methane would have a 
value of elk of 148.6 which is the Lennard-Jones value 
reported by Reid, et al. [16]. 

Table 4 summarizes the results obtained with the U 
kinetic theory model and the HSE-CSVM and CSVM at 
three compositions and four temperatures. Comparing the 
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TABLE 3. Comparison of Calculated and Experimental [17} Dilute Gas Viscosities of Methane/Propane Mixtures at 1 atm. 

Composition Temperature 
1Jup, 107 Paos 

1JCSVM 
calc 

1JHSC-CSVM 
calc 

mol %, methane K 107 Paos % 107 Paos % 

22.07 310.928 89.2 93.1 4.37 90.6 1.57 
344.261 98.8 103.2 4.45 100.7 1.92 
377.594 108.3 113.5 4.80 IlI.O 2.49 
410.928 118.0 123.8 4.92 121.3 2.80 

38.78 310.928 93.0 99.2 6.67 95.6 2.80 
344.261 103.0 109.9 6.70 106.5 3.40 
377.594 1I3.0 120.6 6.73 117.0 3.54 
410.928 122.5 131.2 7.10 127.7 4.24 

61.39 310.928 99.6 107.3 7.73 103.6 4.02 
344.261 109.6 1I8.4 8.03 114.9 4.84 
377.594 1I9.5 129.4 8.28 125.9 5.36 
410.928 129.2 140.1 8.44 136.7 5.80 

79.10 310.928 107.2 Il2.6 5.04 1l0.2 2.80 
344.261 117.4 123.7 5.37 121.4 3.41 
377.594 126.8 134.5 6.07 132.3 4.34 
410.928 136.6 144.8 6.00 142.8 4.54 

Average absolute percent deviation 6.29 3.62 

TABLE 4. Comparison of Calculated and Lennard-Jones (12-6) Dilute Gas Viscosities of Methane/n-Decane Mixtures and CSVM Predictions 

Composition Temperature 
1J.~,107 Paos 

mol %, methane K 

25.0 300 46.5 
400 65.4 
500 86.4 
600 108.8 

50.0 300 56.4 
400 79.2 
500 103.7 
600 129.1 

75.0 300 75.2 
400 103.6 
500 132.2 
600 160.7 

Average absolute percent deviation 
Average percent deviation 

results we see a substantial difference in the CSVM predic
tions and the W calculations. In the case where the methane 
content is high, (75 percent) the HSE-CSVM is in better 
agreement with the LJ calculations by 20-30 percent. Also, 
the overall absolute percentage deviation for the HSE
CSVM is 3.6 percent as opposed to 20 percent for the 
CSVM version. Although the accuracy of the LJ calculations 
is uncertain, similar calculations on the methane/propane 
system where experimental data do exist yielded agreement 
between the Wand experiment of better than 2 percent. 
One can postulate, therefore, that discrepancies similar to 
those shown in table 4 would exist between the CSVM and 
real experimental data for the methane/n-decane system. 

Note that in both comparisons the CSVM predicts values 
which are too large in the dilute gas limit. We attribute this 

1JCSVM 
calc 

1JHSC.CSVM 
calc 

107 Paos % 107 Paos % 

54.9 18.06 43.4 -6.67 
76.2 16.51 62.8 -3.98 
99.2 14.81 84.1 -2.66 

124.2 14.15 107.6 -1.10 
74.9 32.80 50.1 -11.17 

103.1 30.18 74.9 -5.43 
133.4 28.64 102.4 -1.25 
165.2 27.96 132.3 2.48 
104.2 38.56 70.6 -6.12 
140.5 35.62 104.8 1.16 
177.0 33.89 140.5 6.28 
211.5 31.61 175.4 9.15 

20.17 3.59 
20.17 -2.40 

to the potential or high density mass mixing rule which is 
used in F., in eq (3). Thus, we see that in the low density 
limit the HSE Enskog correction is negative and lowers the 
predicted viscosity. 

4.2 High Density Results 

The initial motivation for this work was to obtain a cor
rection for the effect of size differences on the predicted 
high density viscosity of systems like methane/n·decane mix
tures. Figure 2 compares the experimental [18] and CSVM 
predicted viscosities of methane/n·decane mixtures as a 
function of reduced density at three different compositions. 
Note that the predictions are worst for the high methane 
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FIGURE 2. Comparison of calculated and experimental viscosities of 

methane/n-decane mixtures using the uncorrected model. Note that the 

predictions are worst ('" 30 percent error) for the highest methane concen· 

tration. 

composition and improve with increasing decane content. 
This is somewhat surprising since methane is the reference 
fluid in the CVSM calculations. This result was explained in 
the introduction and is attributable to a failure of the one
fluid theory to adequately represent the size difference ef
fects in the high density region. 

Figure 3 compares the experimental and calculated 
results for the HSE-CSVM. We see in this case that there is 
a marked improvement in both the bias and overall devia
tion. Note that in this case the HSE correction is positive. 
The density dependence of the HSE correction is illustrated 
in figure 4 which shows....A!L. = ('I1ENSKOG _ 'I1ENSKOG\/Tih 

Tih "",ix "x J 

plotted against reduced density at a size ratio of a1 /a2 = 2.0 
and mass ratio of m1 /m2 = 8 at three compositions. This 
corresponds approximately to a methane/decane like 
system. In figure 4 the density was reduced by an approx
imation to the critical density of the mixture given by Q~l = 
3.058 No (x1a: + X2~)' This figure demonstrates that the 
correction decreases in magnitude with increasing concen
tration of the larger component (Xl) and is small and 
negative below reduced densities of 1.5. Also the correction 
increases sharply above reduced densities of 1.5. 

Table 5 compares the overall predictions for both the cor
rected and uncorrected model for 24 binary systems. The 
literature references for the experimental data are given in 
[1]. The systems where the size difference is large [a2 la l ~ 

(V~/V~r)] show substantial improvement while those of 
similar size are essentially unchanged. It may be possible to 
further impro',e the corrected model by a judicious choice 
of the aA • This possibility is currently being examined. 
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FIGURE 3. Comparison of calculated and experimental viscosities of 

methane/n·decane mixtures using the corrected model. Note that both the 

bias and average absolute deviations are improved. 
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TABLE 5. Summary of Calculated and Experimental Dense Fluid Binary Mixture Viscosities. a 

Component 1 Component 2 U2 /U1 N AADcSVM BIAscSVM AADHSE.CSVM BIASHSE.CSVM 

Methane Propane 1.273 134 5.91 -5.29 4.62 -3.45 
n·Nonane 1.778 32 6.37 -5.58 4.12 -2.61 
n·Decane 1.839 71 14.43 -14.43 5.35 -1.54 

2,3·Dimethylbutane n·Hexane 1.014 2 5.32 -5.32 5.31 -5.31 
n·Octane 1.110 2 6.03 -6.03 5.65 -5.65 

n·Hexane n-Tetradecane 1.304 10 2.15 -1.15 1.92 0.54 
n-Hexadecane 1.356 26 4.04 -3.85 2.59 -1.97 

n.Heptane n-Dodecane 1.185 3 2.47 2.47 3.44 3.44 
n-Tetradecane 1.242 3 1.19 0.10 1.82 1.51 
n-Hexadecane 1.291 3 3.03 -3.03 2.52 -1.32 
n-Octadecane 1.333 2 2.95 -2.95 1.92 -0.71 

n·Octane n-Decane 1.074 2 3.09 3.09 3.27 3.27 
n-Tetradecane n-Hexadecane 1.040 11 2.31 2.08 2.32 2.10 
Benzene n-Hexane U30 15 5.85 -2.70 5.74 -2.28 

n·Heptane U86 3 4.68 4.68 5.85 5.85 
2,2,4-Trimethylpentane 1.218 26 13.14 -13.14 12.46 -12.46 
n·Decane 1.329 3 4.45 0.73 5.47 3.46 
n-Dodecane 1.406 3 2.87 2.87 6.47 6.47 
n·Tetradecane 1.473 3 2.96 -1.47 3.63 2.55 
n-Hexadecane 1.531 3 3.75 -2.80 3.76 1.46 
n-Octadecane 1.581 3 2.99 -2.99 2.73 1.97 

Toluene n-Heptane UI0 21 5.15 5.15 5.32 5.32 
n-Octane U57 20 9.03 9.03 9.50 9.50 
2,2,4-Trimethylpentane 1.140 28 6.61 -4.64 6.62 -4.37 

Overall 429 7.45 -5.23 5.31 -1.86 

a The CSVM results were obtained without the empirical size difference correction give in [1]. 

5. Summary and Conclusions 

We have shown that a relatively simple correction to the 
one-fluid conformal solution viscosity model may be ob
tained from the Enskog hard sphere theory. This function 
effectively corrects for errors in the mass mixing rules a t low 
density and also for size difference effects at high density. 
Even though the effective correction is not substantial for 
systems of similar size and mass, it does systematically cor
rect the model predictions as is reflected in the BIAS as 
given in table 4. In addition, when the size and mass dif
ference is large, as in the methane/n-decane system, the im
provement in the model predictions is substantial. Further 
work is in progress to extend this approach to other struc
tural features such as branching and polarity which are not 
adequately handled by the one-fluid corresponding states 
model. 
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1. Introduction 

The bond-energy-bond-order (BEBO) method is a procedure for calculating the activation energies of 
hydrogen transfer reactions from bond energies. When combined with absolute rate theory, it also yields 
values for the rate constants. It was formulated over 10 years ago by Johnston and Parr [1),1 and has since 
been app1ied with considerable success to the calculation of a large number of activation energies. Less fre
quently, it has been used to evaluate rate constants. Although the details of the BEBO method itself have 

J Figures in brackets indicate literature references at the end of this paper. 

·Center for Thermodynamics and Molecular Science, National Measurement laboratory. 
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been published by Johnston [2], this aspect represents only a relatively small part of a rate constant calcula
tion. The purpose of this report is to give a detailed account, not only of the BEBO method and its 
theoretical background, but also of the absolute rate theory portion of the calculation. In addition, instruc~ 
tions are provided for the use of a computer program which calculates rate constants based on the BEBO 
method. The discussion is limited to linear transition state models. 

2. Theory 

2.1. Absolute Rate Theory & Transition State Model for BEBO Calculations 

For a bimolecular reaction, A + B - [AB]* - products, absolute rate theory utilizes the concept of a 
molecular complex made up of the two reactants. This complex is assumed to be in equilibrium with these 
reactants. The resulting expression for the classical rate constant k:, is 

kT Q*d e-V"/kT 

QjQ:, 
(1) 

where k is the Boltzmann constant, Tis the absolute temperature, h is Planck's constant, Qj and Q:, are the 
classical partition functions per unit volume for reactants A and B, Qe~ is the classical partition function per 
unit volume for the complex, and P is the potential energy of the complex relative to that of the reactants. 
The complex contains one unstable vibrational mode whose evolution brings about its dissociation into 
product fragments. The partition function Q~ is evaluated with this mode missing. A detailed derivation of 
eq (1) which explains all its inherent assumptions has been given by Mahan [3]. Quantum mechanical correc
tions to the partition functions at room temperature and above need be applied only to vibrational factors. 
For a particular vibration of frequency"" the quantum correction r j is given by the expression 

. ~j~2 12) , where u, = h" ikT sm Uj 
(2) 

We assume that all vibrational modes are independent so that the total quantum correction for a particular 
species is simply the product of terms given by eq (2), one for each vibrational mode. There is also a quan
tum correction to the unstable vibrational mode of the complex which we denote by r*. This results from 
the effect of quantum mechanical tunneling through the potential barrier between reactants and products. 
It will be considered in detail in section 2.5. Applying these quantum corrections to eq (1) yields the rate 
expression 

k = kT (3) 

The general class of reactions we are considering has the form 

A-H + B. - A-H-B - A· + H-B (4) 

Radical B· abstracts a hydrogen atom attached to A. the net result being the transfer of H from A to B. For 
this system, we take the most general transition state to be linear, having up to 5 mass points. Its structure 
and the notation which we shall use are shown in figure lao There can be up to four internuclear distances, 
R., Rb , Ret and Rd' The bonds associated with Rc, and Rd will be assumed to be rigid. (The two vibrational 
modes involving these bonds will have infinite frequencies and need not be formally included in the calcula
tions.) Thus. there are only two vibrational stretching modes to be considered for this molecule, one of which 
will be unstable. These modes arise from the stretching of the two central bonds band c which are shown by 
dotted lines to indicate their unstable character. Of the five possible masses, M3 will normally be that of the 
hydrogen atom; the other masses will be assigned values in the manner described below. The three angles 
if 2' i' 3' and if" are defined by the bonds (a, 6), (b. c), and (c,d) in the plane of the figure while the primed sym
bols denote the corresponding angles in the plane perpendicular to the figure. Changes in these angles from 
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FIGURE lao Notation for five mass point linear transition state. 

180 0 give rise to three doubly degenerate bending vibrations. To calculate the frequencies needed in eq (3), 
we require values for the two stretching force constants associated with bonds band c, and three bending 
force constants arising from the three bond angles. As we shall see, these values can be generated by the 
BEBO process. 

Within the framework of the transition state structure shown in figure la, it is possible to include all types 
of reactions implied by eq (4) by considering four cases; one having a 3 point transition state, two having 4 
point states, and one having a 5 point state. These four cases are shown in figure lb. In this figure, the 
subscript s appearing on the internuclear distances and force constants denote equilibrium values found in 
reactants or products. Because bonds a and d are assumed to be rigid, their bond distances will always be 
denoted by the single symbols Ru and Rib' respectively. The bond distance between M: and M3 goes from 
Rb$ to Rb in the transition state, while that between M3 and M4 goes from 00 to R: in the transition state. In 
the transition state, the force constant Fb$ is modified and combined with that of the newly formed bond be
tween M3 and M4 to produce two force constants Fp and Fa. Fa corresponds to the stable symmetric stretch 
and Fp to the unstable asymmetric stretch. In cases IVa and V, the bending force constant F+2.r becomes F+l 
in the complex. The newly formed bond angle made by M2 , M3 , and M4leads to the force constant F"u in all 
cases. Finally, in cases IVb and V, we also have an additional bending force constant F+4 which goes to F+4$ 

in the second product. The force constants associated with the out.of.plane bends are not shown since they 
are the same as the in.plane constants. 

The way I have chosen to assign values to the mass points is somewhat arbitrary and is best explained by 
an example. Consider the reaction 

CH3·CH2,H + CH3 - CH3,CH2 .. H .. CH3 - CH3·CH:. + H·CH3 

Species ABC D 

which is the abstraction of hydrogen from ethane by methyl radicals. The masses are assigned according to 
the following rules: 

1) The mass of the transferred H is always assigned to M3; therefore M3 == 1.008 atomic mass units 
(a.m.u.). 

2) The mass of the atom joined to the transferred H in reactant A is assigned to M2; in this case M2 = 
12.011 a.m.u. 

3) The masses of all the remaining atoms in A are added and assigned to 1\11; thus in this example Ml == 
17.051 a.m.U. 

4) The mass of the atom joined to the transferred H in the product D is assigned to M4 ; here M4 = 12.011 
a.m.U. 

5) The masses of all the remaining atoms in D are added and assigned to Ms; thus Ms == 3.024 a.m.u. in 
this example. 

Different models for the transition state, and different ways of arranging the masses in linear models have 
been explored in a limited way by Johnston [4J and by Sharp & Johnston [5}. They did find significant dif· 
ferences between various options. Presumably, complete vibrational analyses of the reactant and complex 
would yield more accurate rate constants than the linear models outlined above. Unfortunately, complete 
analyses are extremely complex even for fairly small molecules, and the ability to program the calculations 
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FIGURE lb. Reaction cases to be used in BEBO calculations. All transition states shown here are linear. Masses are denoted by M, inter· 
nuclear distances by R. and force constants by F. The subscript s denotes bond distances and force constants in the stable reactants and 

products. 

in a general manner would be lost by such an approach. Also, it is unlikely that all of the force constant 
values required would be available for a complete analysis. In view of the crudity of the rest of the calcula
tion, it is unnecessary to strive for high accuracy in the vibrational analysis. Intuitively, one expects that the 
major features of these reactions are controlled by the nature of the atoms adjacent to the H atom being 
transferred, with the effects from the remainder of the molecule appearing in the bond energy values. If this 
is the case, then the linear models should at least be able to match trends within homologous series. 

So far, we have seen in this section that evaluation of rate constants by the use of eq (3), based on the 
linear models shown in figure lb, requires a knowledge of the potential energy V· of the complex, two 
stretching force constants, and from one to three bending force constants. The potential energy of all of 
these linear models could, if it were known, be shown on a 2-dimensional contour diagram like that shown in 
figure 2 where the independent variables are the bond distances R" and Reo The required value of the poten
tial energy Vis that at the saddle point position shown by the asterisk. For a region close to the saddle point, 

608 



FIGURE 2. Typical potential energy diagram for H atom exchange reaction. 
The position of the saddle point is shown by the asterisk. The direction Q is 
that in which the potential energy decreases most rapidly. The direction 0 

is perpendicular to the Q direction. 

it is customary to assume that the first derivatives of V with respect to Rb and Re; are negligible, and that the 
potential energy can be approximated by a power series containing only quadratic terms. Thus, for small 
displacements from the saddle point, we have 

20V ::::; Fu (ORb)2 + 2FI2(oRb)(oRe;) + F22(oRe;)2 (Sa) 

a2 v a2 v 
F21 = aRbaR/ F22 = aR; • 

These derivatives are evaluated at the saddle point, and are, by definition, the stretching force constants of 
the complex. In matrix notation, this equation is 

20V ::::; (oR)tF,.(oR) (5b) 

where F .. = [FF.ll FF.12
] and oR = [ ~RR~] • 

21 22 U ~ 

This is the force constant matrix that will be used to calculate the vibrational stretching frequencies. 
Starting at the saddle point, suppose we move in the direction in which V decreases most rapidly; call this 

the e direction, and let C1 denote the direction perpendicular to e. These directions define a rotated set of 
cartesian coordinates which we assume makes an angle a with the Rb axis; (positive a is measured in the 
counter-clockwide direction). The transformation between the two sets of coordinates is given by the equa
tion 

-sinal [e] = UP 
cosa C1 

(6) 

the matrix U can now be used to express changes in Vat the saddle point in terms of changes in e and C1 in
stead of Rb and Re;. Thus, eq (5b) becomes 

2oV::::; (oR)tF,.(oR) = (UoP)tF,.(Uop) = (oP)t(UtF .. U)(op) (7) 
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The matrix UtFrU has the elements 

(8) 

As we shall see in the next section, the BEBO method provides values for the second derivatives of V (i.e., 
the force constants) in the e and (J directions. This will allow us to evaluate the matrix UtFrU. The stretch
ing force constant matrix Fr , can then be obtained by inverting the transformation given by eq (6). 

In this section I have presented a formula (eq (3» for the rate constant and outlined the factors required to 
evaluate it. The details of the BEBO method will be given next. It will provide values for V'" and all of the 
necessary force constants, both the stretching and the bending ones. 

2. BEBO Method 

The BEBO method is based on the concept of bond order. In the reactants the bond b of figure la is said 
to have a bond order of unity, while in the products, its bond order is zero. The reverse of this situation 
holds for bond c. BEBO assumes that during the reaction, the total bond order of the two bonds is con
served; if n is the order of bond b, and m of bond c, then we have always n + m == 1. This is the basic 
assumption of the method. One bond is breaking at the same time that the other is forming. To apply this 
conservation condition it is necessary to relate the energies and lengths of bonds band c to their bond 
orders nand m. 

For the relationship between order and length, Pauling [6] proposed the formula 

R,. == Rs - Aln(n) (9) 

where R. is the length of the bond which is considered to be representative of a single bond between the two 
elements of interest. The parameter A is taken to have the same value for all element pairs. A plot of bond 
length versus the logarithm of the bond order is shown in figure 3 for certain element pairs. The data were 

A • 

0.371 -0-0 

0.327 -·0-- N-N 

0.291 + c-o 

0.306 - 0- c-c 
loin) 

flGrRE 3. Plot of R.. = R, - Aln(n); bond distance versus t/le naturalloga
rithm of the bond order for selected element pairs. 
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obtained from table 4-3 of Johnston's book [2]. Values of>. obtained from least squares fits are given in the 
figure for the different bonds. The constancy of>. does not seem particularly striking. Pauling chose a value 
of 0.26 for >.; he writes, ffThis equation, which is based upon the study of interatomic distances for non
resonating and resonating covalent bonds in simple non-metallic substances of known structure, is found to 
agree reasonably well with those data for metallic crystals which are suited to a check on its validity, and its 
use permits a penetrating analysis of the structure of metals and intermetallic compounds to be made. There 
is some evidence that the constant ... varies with the kind of atom and with the type of bond; but the 
evidence is not sufficiently extensive to lead to the determination of the nature of this variation." Certainly 
Pauling's value doesn't appear to have been based very heavily on the data in figure 3 since none of these >. 
values are close to 0.26. Although 0.26 can hardly be construed as universal, it has nevertheless been the 
value used for most BEBO calculations. There appears to be no reason why a different value shouldn't be 
used if it gave better results. 

Consider next the dependence of bond energy on bond order. Johnston [4] proposed the following rela
tionship between the two quantities 

E,. = E.nP (10) 

where E. is the bond energy of a single bond and is analogous to R. of eq (9). Note that this energy is the 
electronic dissociation energy of the bond in question; the zero point energy is not meant to be included in 
E •. Plots of In(E) versus In(n) are shown in figure 4 for the same bonds used in figure 3. The data are again 
from table 4-3 of Johnston [2]. We see that p depends on the kind of atoms in the bond. If more than one 
bond type occurs for a pair of atoms, then it is possible to extract values for p from plots like figure 4 pro
vided we are not unduly bothered by a lack of linearity. When only a single bond type exists, then some 
other method must be devised. Actually, since we are interested in E,. and R,. for bond orders less than unity, 
even if multiple bonds were available for a plot like figure 4, some method of extrapolating to zero n would 
be necessary. Johnston [2], inspired by Badger's rule for force constants, has devised a way. Let us first elim
inate n between eqs (9) and (10); this yields 

In(E,./E.) = (P/>'XR. - R,.) (11) 

This expression is analogous to Badger's rule (see Herschbach & Laurie [7]), which is a universal empirical 

c 
w 
~ ffi 

• 

• 0-0 

o N-N 

+ c-o 

o c-c 

In(n) 

FIGURE 4. Plots of Ir(EJ t'ersILS In(n) for certain bond.s. 
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relation having the form T = ai} - bi} log(!), where r is the bond distance, f its force constant, aij and bij are 
constants, and i and j are the numbers of the rows in the periodic table in which the bound atoms are 
located. Johnston [8] found that plots of log(!) versus r extrapolated very nicely to two-atom Lennard·Jones 
noble gas clusters. For clusters having Lennard-Jones parameters q and Elk, the Hbond" distance is 2%q and 
the Hforce" constant is 4O.06(Elk~cT. He then examined plots of In(E,.) versus R,. to see if a comparable 
extrapolation would be possible. The results are shown in figure 5. The data are mostly from Johnston [2], 
tables 4-3 and 4-1. Values of E,. and R" for the He-Ne cluster were taken from Gilliom [9]. The energies for 
the bonds examined in figures 3 and 4 are supposed to extrapolate to the Ne-Ne cluster. The lines shown 
were drawn to connect the corresponding single bonds with this cluster. Points corresponding to multiple 
bonds fall more or less in the general direction of these lines. The assumption made in BEBO is that such an 
extrapolation adequately represents the bond energies for n < 1. Therefore, if we have a bond A-H, where A 
is some atom in the first row of the periodic table connected to an H atom, and R& and E. are its bond length 
and energy, then if this bond were perturbed in some fashion so that its bond length were greater than R., 
then its bond energy would fall on the line drawn between the A-H and He-Ne points. Bonds involving atoms 
A from other rows of the periodic table will extrapolate to the appropriate rare gas-helium cluster. The slope 
of the line joining A-H to the cluster is, from eq (11), -pIA. Since the value of A has been chosen, we have a 
way of calculating p for the A-H bond of interest. Formally, in this case, 

(12) 

The parameter p thus depends on A, the bond energy and internuclear distance of A-H, and the interaction 
parameters for the appropriate rare gas cluster. 

fIGURE 5. E%trapolation oJ bond energy to large bond distances. A oJ A·H 
i.. an atom in the first row oJ the periodic table in thi.. case. 

We have now almost all of the information needed for the BEBO calculations. Consider a triatomic com
plex A-H-B; there are three interactions; two between H and the atoms A and B considered above, and the 
interaction between A and B themselves. If H is to form stable bonds its electron spin must be opposite each 
of the spins of A and B. Consequently, A and B will have parallel spins and must repel each other. Johnston 
uses one half the value of the Sato [10] triplet function to represent this interaction. He uses the modified 
function because it more closely approximates the calculated H-B triplet interaction. This function has the 
form 
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v, = E", E(l + E) (13) 

where E = ~e-tJAR" AR, = R, - R" = Rb + Rc - R",. E", is the electronic dissociation energy, R" the 
equilibrium internuclear distance, and {3 the Morse parameter (see Herzberg [11] p. 101) of the ground state 
of the diatomic molecule made up of A and B. Values of these paramaters for a number of such atom pairs 
are given in Table 11-1 of Johnston [2J. ilR, is the difference between the actual distance R, between A and 
B in the complex and the equilibrium distance R" it would have in the diatomic molecule. It is worth point
ing out that many people use E" as an adjustable parameter to fit the BEBO calculations to their experimen
tal data. Other forms of the triplet function have been used and are discussed briefly in the Appendix. V, can 
be expressed as a function of n, the bond order of the b bond, through the conservation condition n + m = 
1, and through eq (9) which gives the distances Rb and Rc in terms of nand m. 

We are now able to give the BEBO expression for the energy of the complex in terms of the bond order n. 
The energy is assumed to be given by 

EbI and Ea are the single bond energies (electronic) for bonds band c, and the parameters p and q are calcu
lated from eq (12) for band c, respectively. When n-l, then m-O, V,-O, and V -0, so that the energy is 
measured relative to the energy of the reactants. When n-O, then m-l, V,-O, and V-Eb,-Eu which is 
the difference in the bond energies. BEBO assumes that the maximum value of V in the range 1 c:: nc::O is 
the desired potential energy of the saddle point. This value 1'*, is obtained by substituting into eq (14) that 
value of n which makes dV/dn O. In what follows, all quantities are considered to be evaluated at the sad· 
dIe point. 

Next, we must determine the stretching force constants in the Q and a directions shown in figure 3. Equa
tion (14) does not give the complete potential surface, but only that portion lying along the line of constant 
total bond order. BEBO assumes that at the saddle point, this path of constant bond order lies in the Q 

direction. This assumption will enable us to calculate the force constant FQ == az v/aQ2 from the second 
derivative of V with respect to n, which we get by differentiating eq (14). 

From eq (9), we can calculate the changes produced in Rb and Rc when n is changed. In vector notation 
these are 

(15) 

Because a change in n for constant total bond order is supposed to produce a move in the '1 direction, the 
slope of a line in this direction can be gotten from eq (15). It is 

oRc1oRb = -n/m = tana (16) 

where a is the angle which Q makes with the Rb axis as discussed earlier. From eq (15) we can show that 

(17) 

The matrix U defined in eq (6) can now be written in terms of nand m. 

U = .J(n2 ~ m2 ) [ ~n ~ ] (18) 

By means of eq (6), oR can be expressed in terms of oP; i.e., 0'1 and oa. Combining the differential form of 
eq (6) with eq (15), we get 

(19) 
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Solving for oP gives 

oP = [~~] = -AU-l [~iim] On = 

~(n2 ~ m2) [~~n] [_li7m]on = -A ~(n2 + m2) [1I0m]on (20) 

As expected, (1 does not change when n changes. From eq (20), we have for the derivative of n with respect to 

e 
on dn 1 nm 
~ - de = --r ~(n2 + m2) 

(21) 

The second derivative of V with respect to e is obtained from the sequence 

dV dV dn 
= de ~de 

cJ2V cJ2V ( dn )2 dV cJ2n ----- -- +----
de2 - dn2 de dn de2 

Since dV/dn = 0 at the saddle point, we have 

d2 V d2 V n2m2 

Fp = de2 = dn2 A2{n2 + m2) (22) 

This gives one of the stretching force constants. 
In the (1 direction, the stretching motion is assumed to be that of a normal molecule. Thus Badger's rule 

should be applicable. This says that the bond distance is proportional to the logarithm of the force constant, 
while eq (9) says that the bond distance is proportional to the logarithm of the bond order. Therefore, the 
force constant should be proportional to the bond order. We assume that 

(23) 

where FbJ and Fa are single bond force constants. Consider the change in V when Rb and Rc are changed by 
motion in the a direction. This is assumed to be given by 

(24) 

To evaluate F .. , we must express (oRb~ (oR~ and (oR,}; in terms of (oa)2. From Eqs (6) and (18), we have 

For oe =0, 

OR= ~:j = -~-(n-2~-m-2-) (25) 

Therefore, 
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Comparing this with eq (24) gives 

Fa = 
FbJnl + F~Jm3 + iF V,laR~ 

n2 + m2 (26) 

The method assumes that if V is expanded at the saddle point in terms of e and (J then there is no cross 
term; i.e., a2Vlaea(J is assumed to be zero. Thus, we have 

20V = (oP)t fFQ ~ (oP) (27) 
LO Fj 

The use of eq (7) shows that 

UtF,U = [:.~ (28) 

Inverting this equation gives 

(29) 

where use has been made of the fact that U -\ = U t. Substituting eq (18) into (29) gives the desired stretch
ing force constant matrix. 

F = 1 r m n l fFQ ol fm -nl 
r n

2 + m2 L-n nj LO Fj L n m J 

(30) 

To complete the discussion of the BEBO method the bending force constants will now be evaluated. Con
sider first the one involving M3 as the center mass. This will be F"'3 and appears in all of the transition states 
shown in figure 2. It is defined as the second partial derivative of V with respect to the angle made by the 
bonds band c, with the bond lengths Rb and Rc held fixed. At equilibrium, this angle is 180 0 for our transi
tion state models. The geometry, when the angle is less than 180 0 is shown in figure 6. To get F"'3' we dif
ferentiate V twice, 

( av ) = a V, = a V, aRt 
aq, R

b
, Rc aq, aRt aq, 

( a2v ) a2v, a2v, ( aR,)2 av, a2R, 
---a;j;2 R

b
, Rc = aq,2 = aR~ ~ + aRt aq,2 (31) 

~ M C 
3 

FIGURE 6. Definition of center bond angle. 

The derivatives of V, with respect to R, can be gotten from eq (13). The dependence of R, on q, can be deter
mined from the following vector relationships, 

615 



Thus, 

R~ = Rr • Rr = R~ + R~ - 2RbRc coscP 

aRr = RbRe sincP _ 0 for cP = 180 0 

acP Rt 

mm·u ~Rcr ~ 1800 - -m SID ~ - - R, lor ~ = 

The other two bending force constants F",z and F"'3 are assumed to obey Badger's rule. We assume 

(32) 

(33) 

(34) 

This concludes the BEBO part of the calculation. It has provided us with the potential energy V* of the sad
dle point, the stretching force constants F11' Fu , and F1Z and the bending force constants F",z' F"'3' and F"'4. 
In the next section we shall use these force constants to carry out a frequency analysis for each of the transi
tion state models shown in figure 2. 

2.3. Vibrational Analysis 

As we have seen in the force constant derivations, the potential energy V of the most generalS mass point 
complex can be considered to depend on the variables R/J' Rb , Re, Rd , ~z, ~3' ~4' ~~, ~;, and ~~. These are 
called the internal coordinates. Because our model is linear, V increases when any of the angles departs 
from 180°. Since we assume a and d to be rigid, R/J and Rd need not be included in the list of variables. For 
the time being, however, they will be included in the analysis. Let F be the complete force constant matrix 
for the complex. We have 

00 

Fll F1Z 0 FZl Fu 
00 

F= F",z (35) 

F"'3 

0 FY,4 
F",; 

F",; 
F",: 

The two infinite force constants come from the use of rigid bonds for a and d. Let S be the (column) vector 
which denotes small changes in the saddle point values of the variables. 

(36) 

The potential energy is assumed to be given by 

(37) 
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Suppose there exists a matrix G, such that the kinetic energy in terms of the internal coordinates is 

(38) 

Consider a new set of coordinates Q, the so-called normal coordinates, related to 5 by the linear transforma
tion 

such that 

V-V· = 1/2QtAQ = ~V 

T = %QtEQ 

(39) 

(40) 

(41) 

where A is a diagonal matrix having elements Ait and E is the identity matrix. In this coordinate system 
there are no cross terms in V and T. 

Let Qi denote the i'th normal coordinate. The Lagrangian equations of motion for the system are 

~( o~) -~=O 
dt OQi OQi 

(42) 

where L T -~V = %[QtEQ - QtAQ] = %[;;OJ - ;;AjQj] , (43) 

oL . 
OQi = Qj, (44) 

oL 
OQi = -AiQi' (45) 

Therefore 

Qi + A.Q. = o. (46) 

The solutions of this equation are 

(47) 

Thus the Aj2 = 211"v/ are the frequencies of the vibrations of the Qj coordinates. These are called the normal 
mode vibrations. 

Solving eq (39) for Q, and substituting into (40) and (41) yields 

v V· = %(L-lS)tA(L-1S) = %St(L-l)tA(L-l)S 

T = %(L-1S)tE(L-1S) = IhSt(L-l)tE(L-I)S 

Comparison with eqs (37) and (38) yields 

LtFL = A 
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(49) 

(50) 

(51) 

(52) 
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Next, solve eq (53) for Lt = L-1G, substitute this into eq (51) and multiply by L on the left. This gives 

GFL = HL = LA (54) 

as the set of equations which determine the transformation L. Written out, eq (54) is 

(55) 

This equation has solutions if the determinant 

o (56) 

This is the so-called secular equation which must be solved to get the Air, the eigenvalues of H and thus the 
normal frequency values. Before doing this, it is first necessary to evaluate the matrix G. 

Equation (38) gives the kinetic energy in terms of the internal coordinates. As such, it does not include the 
kinetic energy of the center of mass or the rotational energy. We need to express the kinetic energy in terms 
of cartesian coordinates, transform the result to internal coordinates, and subtract out the center of mass 
and rotational energy. This will yield G-l. Let us begin by expressing the internal coordinates in terms of 
cartesian coordinates. Assume that the molecule lies along the x axis. A particular mass point M; will have 
coordinates (Xit y" Z/) where YI and Zj are small and describe the departures of the molecule from linearity 
during bending vibrations. Because Yj and Zj are small, the bond distances can be expressed as functions of 
the Xl only. Thus, 

(57) 

Since there are 5 cartesian X coordinates we need one more coordinate for the internal system. This is taken 
to be the x-component of the center of mass of the molecule multiplied by the total mass, and is defined by 
the equation, 

(58) 

where M == "£.s M, (59) 

In matrix form these equations are 

R .. I I 0 0 0 Xl 

R == [~x] 
Rb 0 -1 1 0 0 X2 

= R" 0 0 -1 1 0 X3 =MX (60) 

R" 0 0 0 -1 X4 iUx Ml AI.: M3 M4 Ms Xs 

Note that the vector R is basically that defined by eq (15). Here we have included R ... and Rd. 
We must next express the bond angles in terms of the cartesian coordinates. Consider it.:, the angle 

formed by bonds a and b. The geometry and notation for this angle are shown in figure 7. The two vectors 
along the bonds a and b are given by 
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(70) 

FIGURE 7. Geometry of the bond angle lJ'1. 

'lt2 is related to these by 

(71) 

Substituting eq (70) into (71) gives 

Because the Yi are small compared to Ra and Rb the radical can be expanded to give 

(73) 

Let 'It 2 = 180 0 + c5'1t 2 where c5'1t 2 is small. Then 

Substituting this into eq (73) and keeping terms through second order gives 

To see why the minus sign is needed, let Yl = Y2 = 0; then for Y3 > 0, 'lt2 < 180 0
, so that c5'1t2 must be < o. 

There are analogous equations for the angles 'lt3 and 'It.; there is also a set, identical in form, for the angles 
'It; in the x-z plane. These contain the Zi rather than the Yi coordinates. In these equations, the equilibrium 
values of Ra , ••• ,Rd will be used. 

The set of equations typified by eq (74) gives 3 equations in terms of the 5 Yi coordinates; two more are 
needed. We have one defining the Y coordinate of the center of mass, like eq (58), and another defining a 
quantity T/n which is given by the equation 

(75) 

T/z is related to the Z component of the angular momentum mz by the relation 

(76) 
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The xr are the equilibrium Xi values; these can be gotten relative to the center of mass component x, by in
verting eq (60) and inserting equilibrium values for R,., ... ,Rd' In matrix form, these equations relating YI to 
the bond angles in the x-y plane are, 

01/;2 -ea ea+eb -eb 0 0 11 

[;J= 01/;3 0 -eb eb+ec -ec 0 Y2 
i= 01/;. 0 0 -ec ec+ed -ed Y3 =AY (77) 

'1J~ M1Xi M~; M~; M.X: M5X; 1. 
My M} M2 M3 M. M5 Y5 

where eo, ... ,ed are the reciprocals of the equilibrium values of Ra , ••• ,Rd' There is an analogous equation 
involving the Zj coordinates. 

Having obtained expressions (60) and (77) for the internal coordinates in terms of the cartesian coor
dinates, we can now invert these equations and insert them into the expression for the total kinetic energy 
which we shall call T. Therefore 

T = lJ2 X tD ... X + 112 Y tD ... Y + IhZtD"'z 

= lh Rt(M-l)tD ... (M-l)R + 112 ~t(A-l)tD ... (A-l)~ + z-term 

= lhRtGr-1 It + 112 ~tG~-1 ~ + z~term 

= IhT + lhM(X2 + r + .?) + Ih(m; + mD11 

= lhRtGr-IR + Ih.q;tG,,-I'.i; + z-term + lhM(:? + r + .?) + Ih(m; + m;)/I 

where I = f
1

5 Mjxjl is the moment of inertia, and 

o 
D ... 

o 
We can satisfy eq (78) by writing Gr -1 and Gil in the partitioned forms 

G.-· = [~.-. ~J 

~;l 0 0 J G;1 = 0 1-1 0 G~;l 
o 0 M-l 

We can get Gr and G~ simply by inverting Gr-J and G;I. 

This gives 

G. = ~. 
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Since D", is diagonal its inverse is easily evaluated and we therefore require only matrix multiplications to 
get Gr and G~. 

The complete G matrix for the internal coordinates in partitioned form is 

I~r 
G=~ 

o 
G~ 
o tJ 

In partitioned form, the complete force constant matrix, eq (35), is 

I~r 
F= ~ 

o 
F~ 
o 

(82) 

(83) 

Note that Fr here is like eq (30), but contains the two infinite force constants corresponding to the rigid a 
and d bonds. The matrix H in partitioned form is 

~
rFr 

H = 0 
o ~

r 
= 0 

o 

o 
H .. 
o 

(84) 

Because H factors in this way, we can set up separate secular equations for the stretching and bending 
modes. Note that H is normally unsymmetric. 

Before solvi!!,g the secular equations, let us write down explicit expressions for Gr and G ... The direct 
evaluation of G r from eq (81) yields 

L+~ 
-iL2 0 0 

-JL2 iL2 + JL3 -JL3 0 
0 -JL3 1'3 + JL .. -JL .. 
0 0 -JL .. JL .. +JLs 
0 0 0 0 

Gr = (85) 

where the JLI are the reciprocals of the masses Mi' Comparison of this equation with eq (81) yields Gr. 
Because we are treating the a and d bonds as rigid, the stretching part of the problems is equivalent to a 3 
mass point system where the first mass is Ml + M2 and the third is M3 + M ... The resulting 2 X 2 matrix is 
the one actually used in the calculation. It is 

Gr(rigid end bonds) = (86) 

The stretching force constant matrix to be used with eq (86) is that F r as given by eq (30). 
The G~ matrix elements for this 5 point case are 

(87) 
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There are the expressions used in the calculation. Actually, they were not derived from eq (81) but were ob
tained from Wilson et. al. [12]. However, eq (81) was used for a numerical check of eq (87). To get the matrix 
elements for the two 4 mass point cases, simply delete from eq (87) those elements which contain either a 
missing l! or a missing p. or both. Do the same for the 3 point case, but delete also (G~)13; (there is only one 

element, (G~)22' in this case). 
We are now ready to consider the secular equation. For the rate constant calculation only the hit are re

quired, so that a solution of eq (54) for the transformation matrix L is not necessary. Nevertheless, L is easily 
obtained and is convenient to have for the purpose of illustrating the actual vibrational motions of the com
plex. Thus we shall solve eq (54) as well as eq (56). According to eq (84), there are two secular equations to be 
solved (H~ and H~, are equal). Because we are using rigid a and d bonds, the dimension of Hr is 2 X 2. The 
maximum dimension of H~ is 3 X 3 and occurs for the 5 point model. Thus a solution of a 3 X 3 problem 
will suffice for our purpose and will also illustrate how an n X n problem is to be solved. 

We begin by assuming that eq (56) has been solved. In the present work this was accomplished by expand
ing (56) and solving the resulting polynomial in h. In our case, the maximum degree was cubic, so that this 
part of the calculation was easily performed. As eq (47) shows, the desired frequencies are VIt = hl/1 /27r. For 
the stretching modes of the complex one of the two frequencies will be imaginary because its hit value will be 
negative. As mentioned earlier, this corresponds to the asymmetric stretch. 

Consider now eq (55) for a general 3 X 3 H matrix. Written out in full, it is 

(88) 

where hit is one of the three values of h determined from the solution of the cubic (in this case) eq (56). 
Divide the first two of these equations by Lllt, and define the ratios gilt = Lilt/Lllt. This yields two equations 
to be solved for the two unknowns gilt and gu. 

(90) 

We get two gilt values for each value of hit substituted into eq (89), or six gilt values in all. Using these values, 
we can express L in terms of the product of two matrices defined by 

= rf (90) 

To determine the components of f, insert eq (90) into eq (51). We get 

it rtFrf=A=itf rtFr (91) 

The final reordering is possible because l and A are diagonal and therefore rtFr is diagonal. This equation 
is easily solved for the elements ttl to give 

(92) 

The other elements of L are gotten from these values and the ratios gilt already determined. 
The actual motions in the cartesian system can now be obtained by combining eq (39) with the inverse of 

eq (60) or eq (77). For the stretching motions we have 
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firQi 
X=M-'R=M-' LoJ (93) 

where Lr arises from the secular equation containing Hr. Qr is the normal coordinate vector and the 
x-component of the center of mass has been set to zero. A similar equation results for the bending modes. 
This is 

(94) 

where the z-component of the angular momentum and the y·component of the center of mass have been set 
to zero. 

This completes the frequency analysis. In the next section we will consider the partition functions. 

2.4. Partition Functions. 

Herschbach et. al. [13] have shown how to express the classical partltlOn function for polyatomic 
molecules in terms of local properties. We shall use their method because it allows for cancellations of con
siderable portions of the partition functions of the complex and reactants when their ratios are evaluated in 
the rate constant expression, eq (3). We begin the discussion with the classical partition function for a linear 
polyatomic molecule. This is (see Herzberg [14], pp. 502-509), 

3lV-S 

qcl =q.V(27rMkTlh2)3/2 (k17(uheB» If (k17(wihc» (95) 

where q. is the electronic partition function, V is the volume, M is the total mass of the molecule, e is the 
velocity of light, Wi is the frequency of the i'th vibrational mode in cm-1 (Wi = v;le), N is the number of atoms 
in the molecule, B is the rotational constant; B =hl(8rcl), where lis the moment of inertia of the molecule; 
u is the symmetry number which is the number of indistinguishable positions into which the molecule can be 
turned by simple rigid rotations. For linear molecules u= 1 or 2. Equation (95) neglects nuclear spins, anhar
monicity, and non-rigidity of the molecule. Let us rewrite eq (95) in terms of I and ui=hv;lkT. It becomes 

3lV-S 

qcl =q.V47ru-1 (27rkTh-2)5/2~/2 I If 

qcl can also be written in the form 

lV 

qcl =q.u- 1Z I] A~J 

where 

Z - J J -v/Ir.Tdx d - ••.•• e 1 ••••••• z" 

(96) 

(97) 

(98a) 

(98b) 

Z is the so-called configuration integral, V is the potential energy, and Xl' Yl' zl'" .... . XN' YN, =N are the 
cartesian coordinates of each of the N atoms. Eliminating qcl between eqs (96) and (97) gives 

(99) 

Consider now the matrix H =GF defined by eq (84). A theorem of matrix algebra states that the determi
nant of H equals the product of its eigenvalues (see Hohn [15], p. 283). There is also a theorem (Hohn, p. 65), 
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stating that the determinant of product of two matrices equals the products of the determinants of the 
matrices in the product. Consequently, 

(100) 

Solving for the product over Ui gives 

(101) 

Inserting eq (101) into (99) yields 

(102) 

This can be rearranged to give 

(103) 

The left side of eq (103) does not involve the masses, while the right side does not contain force constants. 
Therefore, the quantity denoted by iN does not depend on either the force constants or the masses, but must 
depend only on geometrical parameters. Herschbach et. al. [13] have shown that for linear molecules 

N-) 

iN = V4r !l RT+l.1 (104) 

where R,+1•1 is the equilibrium distance between mass M, and M,+1• For a general linear molecule, the 
classical partition function per unit volume can now be written 

(105) 

This form of the partition function is suitable for the reactant molecules. 
Let us now consider the partition function for the complex. Using eq (96), we have 

(106) 

Note that the product is over 3N -6; i.e., one less vibration than in a stable linear molecule. Consider next 
the quantity 

= (2rkTlh )3N-S 1'·1 F 1-1h I G 1-1,2 (107) 

where A· is the negative eigenvalue and v· is the associated imaginary frequency; eq (100) has been used. 
Using eq (107) in (106) gives 

(108) 
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This equation is very similar to eq (105), the partition function of a stable molecule. Note that IF 1-112 will be 
imaginary for the complex. 

We can now write down the specific partition functions per unit volume for the four reaction cases shown 
in figure lb. 

Case III. 

Species A == M2 - Ma 
Species B == M. 
Species C == M2 . . . Ma' . . M. 
QA == q.A.U;; 4rRi .. (2rkT)lhF;;;h (~Aat3 
QB == qeaA"43 

QckTlh == q.cac1 4rRiR~"* I F,.I-lhF;~ (2rkT'f (~AaA.)-3 
The matrix F,. is the 2 X 2 one given by eq. (5b), and not the 4 X 4 used in eq (83). 

Case IVa. 

Species A == MI - M2 - Ma 
Species B == M. 
Species C == Ml - M2 • . . Ma . . • M. 
QA == q.A.U;: 4rR!.Ri .. (2rkT'f (FfUFblltlhF;~ (Al~Aat3 
QB == q"BA43 

QckTlh = q.cac1 4rR;"Rm~,,*F;lhIF,.I-lhF~~F;! (2rkT)7/2 (Al~AaA.t3 
Note that I have included F fU in QA and Qc even though it is supposed to be infinite; it will cancel out when 
the ratio QCIQA is taken. Also note that the bending force constants appear with twice the power of the 
stretching force constants. This is because of the degeneracy. 

Case IVb. 

Species A == M2 - Ma 
Species B == M. - Ms 
Species C == M2 . . . Ma' . . M. - Ms 
QA == q.A.U;; 4rRi .. (2rkT)lhf';!h (~Aat3 
QB == q"sui1 4rR~ (2rkT)lh F7sh (A.Ast3 

QckTlh == q.cac1 4rRiR~Ra."*IF,.I-lhP~~F;~ (2rkT)712 (~A3A.Ast3F;j~ 

Case V. 

Species A == Ml - M2 - Ma 
Species B == M. - Ms 
Species C == MI - M2 • . . Ma· . • M. - Ms 
QA == q.A.U;; 4rR!sRi" (2rkTftF Jb .. tlh~~ (Al~Aat3 
QB == q.sui1 4rRa. (2rkT)lh~h (A.Astl 

QckTlh == q.cac1 4rR!sRiR~R~ ,,*F~h I F,.I-lhFi1AzF:;,~~!~~ (2rk1.JS (AI~A3A.A5tl 
We now have everything for eq (3) except the tunneling correction. This will be taken up in the next 

section. 

2.5. Tunneling Corredion 

The one-dimensional Eckart potential function was used to approximate the barrier to quantum 
mechanical tunneling from reactants to products. Three parameters are required for its definition; these are 
shown in figure 8. Its functional form is 
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where 

Ay By 
V(x) = l-y - (1-y)2 

y = _e2r;rIL 

A = V1 -V2 

B = (~h + ~h)2 
L = 211'( -21F)IfJ (V~1fJ + V;1f.!t" and 

F = 02V 
ar 

(109) 

evaluated at the maximum in the curve. F is a force constant. Using this potential function, Eckart [16] 
solved the wave equation and obtained the transmission coefficient for a particle with mass m approaching 
the barrier from the left with an energy E. His result is 

K(E V. V. F) = 1 _ cosh[211'(a} - a2)] + A 
, l' 2' cosh[211'(a1 + aJ] + A 

(110) 

where A = cosh[27ro] if {, is real, and A = cos[27r r 0 I] if 0 is imaginary. The relationships of ai' a2, and 0 to 
the parameters of figure 8, are 

v 

a 1 = Ih(EIC)'h 
a2 = Ih[(E-A)/C]'h 
{, = Ih[(B - C)I C]'h 
C = h2/(8mL2) 

F 

x 

FIGURE 8. Eckart potential function. 

(111) 

Given the transmission coefficient, Johnston [2], pp. 42 and 43, has derived the correction factor r* which is 
the ratio of the quantum barrier crossing rate to the classical crossing rate. His result is 

(112) 
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Let us rewrite this in a more symmetrical form. We define a new variable e (E V1)/kT. E = kTe + Vi" 
Equation (112) becomes 

(ll3) 

With this substitution, the parameters a l and 0!2 become 

ai = lh.(kTdC + V;!C)'h, i = I & 2 (ll4) 

From eq (l10) we have 

But 

BIC = V/C + 2[(V/C)(V/C)]'h + V/C (ll5) 

is a function of V/C and V/C. Therefore 

(116) 

where 

P = kTIC. PI = V/C and pz = Vz IC. 

r* thus depends on three parameters. Furthermore, it is invariant when PI and P2 are interchanged; i.e., 
r*(p,PI,pJ = r*(p,P2,Pl)' To see this let P; = P2 and p~ = Pl' From eq (115) we see that 

(BIC)' = p~ + 2(p;p~y" + p~ = pz + 2(P2PI)'h + PI = BIC 

Thus, 0' = o. From eq (1l4) we have 

a; = lh(pe + p;y" = lh.(pe + pJ'h = 0!2 

a~ = a l 

Using these results in eq (l10), we get 

Suppose that P; > p~; i.e., V; > V~. Using eq (117), eq (113) becomes 

(117) 

The way Eq (l13) was integrated to get r* will be considered later when the computer program is 
discussed. 

In applying this correction, it is assumed that the x coordinate of Eckart's potential lies in the e direction 
discussed earlier. This is that direction at the saddle point in which the potential energy decreases most 
rapidly. It is also the direction of the path of constant total bond order. We therefore use the force constant 
Fp given by eq (22) for the second derivative of the Eckart potential at its maximum. The effective mass for 
tunneling, M" is the proportionality factor between the kinetic energy and lh.e2• We can calculate M, in the 
following way: As far as tunneling is concerned, in the 4 and 5 mass point cases there are effectively 3 
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masses, since the end bonds are supposed to be rigid. Thus, there are only the two variables, Rb and Re, 

involved. (Bending modes are not considered.) The kinetic energy T, for changes in these two bonds is given 
by 

(118) 

where R is the 2-dimensional vector defined by eq (6), and G, is the 2 X 2 matrix given by eq (86). The 
inverse of this matrix is easily calculated and found to be 

(119) 

where M~ = MI + M2 and M; M.,. + Ms in the 5 point case. The transformation between Rb, Rc and e, U 

is given by the matrix U whose value, determined by the BEBD calculation, is given by eq (18). U can be 
used to express T, in terms of e and u. Thus 

The desired quantity M, is simply the matrix element (UtG;lU)QQ' This is 

M, = M;{Ma + M;)m2 - 2M;M;nm +(M; + M;JM;n2 
(n2+m2}M (120) 

where nand m are the bond orders from the BEBD calculation, and M is the total mass of the molecule. 
The bases from which the tunneling parameters VI and V2 are measured are taken to be the zero point 

energies of the reactants and products, respectively, and not the potential minimums as might be expected. 
The maximum of the potential, on the other hand, is placed at the potential minimum of the complex; i.e., at 
the saddle point. Johnston [2], pp. 190-196, gives reasons for this particular method of using the Eckart 
function for tunneling corrections. 

We finally have everything needed for eq (3). In the next section explicit rate constant expressions will be 
given for the four reaction cases of figure 2. 

2.6. Rate Constant Expressions 

The rate constant expression eq (3) is not quite complete. It should be multiplied by the number of 
equivalent H atoms on the molecule being attacked. Let us call this factor the chemical multiplicity, Oc/t. For 
example, there are 6 identical reaction paths for H abstraction of the 6 terminal H atoms on propane, and 2 
paths for abstraction of the 2 central H atoms. Thus Och = 6 in the first case, and 2 in the second. With this 
factor added, the rate constants for the four cases shown in figure 2 are 

(121) 
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The common factor in all these expressions is 

S q.c (JA(JS R~R~ * Fi3 r: r* -v' ItT 

(Jell qeAq.S (JC RL V I Frllh r: e . 

The calculated factors in S are: 
1) R" and Re; these are calculated from nand m through Pauling's relation, eq (9). 
2) ,,* is the imaginary frequency obtained from the vibration analysis for the asymmetric stretch. 
3) IF r I is the determinant of the matrix given by eq (30). It is negative. 
4) r: is the quantum correction factor for the symmetric stretching frequency obtained from the vibra

tional analysis. 
5) r* is the tunneling correction factor obtained in section 2.5. 
6) V* is the saddle point potential energy given by the BEBO calculation. 

Other calculated factors are: 
1) F"'3 is the bending force constant given by eq (33). 
2) F"'1 and F"'4 are the bending force constants given by eq (34). 
3) The quantum correction factors r;, rt, r: for the bending modes come from the frequency analysis via 

eq (2). 

This concludes the theoretical part of this discussion. The next section contains a brief discussion of the 
computer program which was written to implement the rate constant calculations. This will be followed by 
instructions on how to use it. 

3. Computer Implementation of SESO 

The computer program consists of a main section and six subroutines. It is written in an enhanced form of 
BASIC for use on a Hewlett-Packard 9845A computer. 

3.1. Description of the Main Program 

The main program begins by reading the following data: 
1) RunidS 

This is a string variable having up to 79 alphanumeric characters to be used for the run identification. 
2) Opt(M), M= 1,7 

These are flags which provide a series of available options. These will be described in detail in the instruc
tion section. 
3) Ntemp 

This is the number of temperature values at which the rate constant is to be evaluated. A maximum of 16 
values will be allowed. 
4) Tmin, Tmax 

The minimum and maximum temperature values desired. The reciprocal temperature scale is divided 
into Ntemp - 1 equal intervals and the temperature evaluated from the reciprocal values. This gives a better 
distribution on an Arrhenius plot than if the temperature scale were divided into equal intervals. 
5) Ml,M2,M3,M4,M5 

These are the five mass point values determined according to the rules given in section 2.1. 
6) Ras,Rbs,Rcs,Rds 

These are the equilibrium bond distances for single bonds. 
7) Ebs,Ecs,P,Q 
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The first two parameters are the electronic energies for single bonds band c; the last two are the BEBD 
parameters obtained from eq(12). 
8} Rts,Ets,Beta 

These are the bond distance, bond energy, and Morse parameter fJ for the triplet interaction. 
9} Fbs,Fcs,Fpsi2s,Fpsi4s 

These are the stretching force constants for single band c bonds, and the bending force constants about 
the M2 and M4 masses. 
10) Sa,Sb,Sc 

These are the partition function symmetries O,h 0o, and 00' 

ll) Schem 
This is the chemical multiplicityoc;h' 

12) Sea,Seb,Sec 
These are the electronic degeneracies qeA, q .. Ot and q .. c. 

The program next prints out this input data to provide an easily read record and a check of the numbers. 
After these preliminaries, the program then determines the saddle point position. This is done by an 

iterative procedure; n is initially set to 0.5; then the potential energy V is calculated according to eq (14) 
along with its first and second derivatives, Vn and Vnn, with respect to n. The subroutine Trpl is used to 
calculate the triplet part of V. A new n is estimated by the Newton, Raphson method from the formula n' = n 
-Vn/Vnn. The process is repeated using n' and continued until covergence is obtained. This yields a value 
of n which makes Vn zero; this will correspond to the desired maximum in V. (I have not investigated the 
conditions for which a maximum is expected or if there could be more than one maximum.) 

Having obtained the value of n for the saddle point, the program calculates the stretching force constant 
matrix Fr given by eq (30), its determinant, and the saddle values of Rb and Rc from Pauling's relation eq 
(9). It then evaluates the mass to be used for tunneling from a somewhat rearranged eq (120). Next, the 2 X 

2 matrix Gr is calculated from eq (86). This is then combined with Fr to form Hr, and the stretching frequen
cies obtained by solving the resulting quadratic secular equation. The bending frequencies are next deter
mined through the matrices F (eq (35)) and G (eq (87). The sizes of these matrices will depend on the type of 
reaction. For the three mass point model there is only one element and thus a linear secular equation with 
one bending frequency. The two four point models require solving a quadratic secular equation for two fre
quencies. The five point model uses the subroutine Cubic to solve the cubic secular equation for three fre
quencies. The subroutine Normod then calculates the matrix for the normal coordinate transformation of 
the stretching modes. 

At this point, the program prints out a number of properties of the complex. This will be discussed in 
detail in the instruction section. 

The rate constants are then evaluated from eqs (121) at the different temperatures. The activation energy 
is gotten by numerically differentiating the logarithm of the rate constant by means of suitable finite 
difference formulas. Subroutine Fit is a least-squares routine which is used to fit Arrhenius equations 
through the calculated points. The program concludes with subroutine Pltk which draws an Arrhenius plot 
of the results. 

3.2. Discussion of Subroutine Tun 

The only subroutine worth discussing is Tunl, the routine for evaluating the integral of eq (l12) for the 
tunneling correction factor r·. Johnston and Heicklen {l7] calculated this integral numerically by an 
unspecified method for a range of input parameter values. The three input parameters which they used were 
hv-lkT, where II· = (-Flm)t2/(2ir), 211"Vl/(hv*), and 21rVJ(hv·). Their results are in the form of a table. The 
method used in the present program is a modified 6-point Gaussain quadrature formula based on Legendre 
polynomials (see Abramowitz and Stegun [lBD. This was used even though the nature of the integral sug
gests using a formula based on Laguerre polynomials. Neither of these formulas was satisfactory for the 
whole range of parameter values given by Johnston and Heicklen, so a modification of the first method was 
de'reloped. It was based on the following ideas: When f gets large, the transmission approaches unity. The 
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idea is to use the Gaussian formula for that part of the integral where K(e) < 1. After K(e) has gotten suffi
ciently close to unity, the remainder of the integral can be evaluated analytically; i.e., if K(e)= 1 for e >eb, 
then 

The problem is to estimate Eb' Let us examine eqs (114) as E - 00. We get Q'1- 1hEl-2, where E = kTflC. From 
eq (110), we have 

We can set Kb to some arbitrary value close to unity and solve this equation for E: and then ~ and then E.b 

which will be our cutoff point The result is 

It turns out that this value is not entirely satisfactory and subtracting from this the average value of VI and 
V2 works better. Also it can happen that Eb as calculated from this formula can be very large when K is close 
to unity. Thus, exp( -Eb) will be very small. There is no point in using a value for E as the upper bound to the 
Gaussian formula if the integrand at this point is negligible because of the exponential factor. Thus Eb was 
kept below a certain fixed value Emu. This yielded two parameters, Kb and Emu which were adjusted to 
minimize the squares of the differences between the results of this method and the results of Johnston and 
Heicklen. The differences averaged 1.3 percent with only two value differing by as much as 6 percent Such 
accurancy should be quite adequate for the rate constant calculations . 

.4. INSTRUCTIONS FOR USING BEBO 

4.1. Input 

I t will be assumed that the reader is familiar with the general operation and command system of the 
HP9845A. The program lines 5000 to 5240 contain a series of DATA statements which hold the input data. 
As an example, data for the ethane plus methyl radical reaction is contained in these statements. The 
general nature of the input has been discussed briefly in the last section; here this is considered in more 
detail. 

1) Runid$ is a string variable containing identifying information; 79 characters can be used. 
2) Opt(M),M = 1,7 are flags for the following options: 

Opt(O): This picks out the version of the triplet function V.; these different forms of V. will be discussed in 
the Appendix. 

Opt(l): As mentioned earlier, the activation energy Eact at any temperature is obtained by numerically 
differentiating the logarithm of the rate constants. This is done in either of two ways. The more accurate 
method evaluates the rate constant three times at each temperature; at the particular point and slightly 
above and below the point The derivative is then estimated from a 3 point finite difference formula. This is 
automatically the method used when only a single temperature point is requested. The second, less accurate, 
but faster method uses the rate constants calculated at N temp (see last section or below) points and uses a 5 
point difference formula for the derivative. The more points requested and the narrower the temperature 
range, the more accurate is this method. The value of Opt( 1) determines which of these methods will be 
used. Thus, when 

Opt(l)= 1,5 point difference formula used to get Eact(fastest method). 
Opt(1)=2,3 point difference formula used to get Eact(most accurate method). 

631 



Op~2~ When 
Op~2)= 1, the lnaturallogarithm of the rate constant is calculated. 
Op~2) = 2, the logarithm, base 10 of the rate constant is calculated. 

Op~3~ When 
Op~3)= 1, the cathode ray tube is used for the printout. In this mode, execution of the program pauses 
before the Arrhenius plot is produced, and before the caption to the plot is generated. In each case execu
tion can be resumed by pressing the "cont" key. 
Opt(3) =0, the internal printer is used for the output. 

Op~4~ When 
Op~4)= 1, the rate constant is in cm3 /mole-s. 
Op~4)=2, the rate constant is in cm3/molecule-s. 
Op~4)= 3, the rate constant is in liters/mole-so 
Op~4)=4, the rate constant is in liters/molecule-so 

Op~5~ Not used. 

Opt(6~ When 
Opt(6) =0, the Eckart tunneling correction is not applied. It will automatically not be applied if the zero 
point energy of the reactants is greater than the potential energy r of the saddle point. 
Op~6)= 1, the tunneling correction is applied. 

Op~7): When 
Op~7)=3, the three parameter Arrhenius type equation, Al"c-Ezact+RT is fit to the calculated rate constant 
values. 
Op~7)=2, the standard two parameter Arrhenius equation Ae -Eact+RT is fit to the calculated rate constant 
values. 
3) Ntemp is the number of temperature values (up to 16) at which the rate constant is to be evaluated. Use 
the absolute temperature scale. 

4) Tmin, Tmax are the minimum and maximum temperature values to be used. If Ntemp= 1, then only one 
temperature value should be entered on this line. 
5) Ml,M2,M3,M4,MS are the five mass point values determined by the rules on page 5. For 3 point models 
set Ml and M5 to zero. The 4 point models will have either Ml or M5 equal to zero. Atomic mass units are to 
be used. 

6) Ras,Rb5, RC5, Rds are the single bond distances in A. For 3 point models set Ras and Rds to zero. For 4 
point models, set either Ras or Rds to zero. 

7) Eb5,Ec5,P,Q; the first two parameters are the electronic energies for single bonds in kcal/mole. The 
quantity normally available is the bond dissociation energy DIr which is defined as the enthalpy change in 
the process in which one mole of the bond of interest is broken, with reactants and products being in their 
standard states as ideal gases at 1 atm and 25 ·C. This is not the energy we want. The desired energy E is 
shown in figure 9, which illustrates the energy relationships involved in the removal of an H atom from some 
group A. ZA-H and ZA. are the zero point energies for the reactant and molecular product, and Hl-H, Hl., 
and H~. are enthalpies of the speices A·H, A·, and H·, respectively. In genera~ a particular enthalpy is the 
sum of the translational, rotationa~ vibrationa~ and PV contributions. We have 

1fT = 1fT(trans) + W(rot) + W(vib) + PV 

By examing figure 9 it is easy to derive the relationship between E and DIr. I tis 

E = DIF + (ffl-H - m.) + (ZA-H - ZA.) - HJ;. 
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FIGURE 9. Bond energy relationships. 

The second term is 

m-H - Hl. == ffl_J.trans) - Hl. (trans) + m-J.rot) - H;..(rot) + m_J.vib) 

m-H - m. = ffl_J.trans) m. 

Assuming equipartition of energy, the translational and rotational enthalpies will be the same and the dif
ference in vibrational enthalpies will normally be negligible. Thus, the second term in eq (122) can be 
neglected. The last term m. = EJ;. + PV = 3RT!2 + RT. where 3RTl2 is the translational energy of the H 
atom and RT is PV for an ideal gas. Thus, eq (122) becomes 

As an example, consider the process CHJ-H-CHJ' + H·. To estimate the difference in zero point energies 
between CHJ-H and CHJ', I have assumed that one C·H stretch of 3100 cm-1 and two H·C·H bends of 1450 
cm-1 have been lost in going from A-H to A· and H· .This corresponds to a zero point energy difference of 
8.575 kcal. For cases like this, the bond energy will be 

Ecs = DE + 8.575 -5RT29S/2 = DH + 7.095 kcal 

The zero point energy difference for other types of bonds can probably be satisfactorily estimated in a simi· 
lar manner, Having obtainedfEbs and Ecs in this manner we can calculate P and Q from eq (12). 

8} Rts,Ets,Beta are the triplet interaction parameters in A kcal and A-I, respectively. I have been using the 
values given inlohnston[1966], table 11-1. 
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9) Fbs,Fcs,Fpsi2s, Fpsi4s are the single bond force constants. The first two are the stretching constants in 

dynes/ cm; the second two are bending force constants in dyne-cm. In the 3 mass point case, both the bend· 

ing force constants are set to zero. For 4 point models, only one of the bending force constants will have a 
value of zero. 

10) Sa, Sb, Sc are the partition function symmetries for A·H, B· , and A· . H· . B, respectively. 

11) Schem is the chemical multiplicity. 

12) Sea,Seb,Sec are the electronic degeneracies for A·H, B', and A· . H· . B. Sea will normally have the 
value one. Since B· and A· . H· . B each have an unpaired electron, Seb and Sec will normally have the value 
two. 

A.2. Output 

BEBO first prints out the input data. It then the following properties of the complex: 
1) The potential energy of activation V· in kcallmole. 
2) The bond orders nand m of the band c bonds. 
3) The bond distances Rb and Rc in A. 
4) The force constant in the e direction in dynes/ cm and the angle e makes with the Rh axis on a contour 
plot like figure 3. 
5) The force constant in the a in dynes/cm, and the angle to the Rb axis. 
6) The force constant in the unstable normal mode direction in dynes/ cm, and the angle to the Rb axis. 
7) The force constant in the stable normal mode direction in dynes/ Cpl, and the angle to the Rb axis. Note 
that the normal mode directions are usually not orthogonal. 
8) The stretching force constant matrix Fr in dynes/ cm. 
9) The equations for transforming back and forth between the normal mode and valence bond coordinates. 
10) The bending force constants in dyne-em. 
11) The two stretching frequencies in cm- I

• 

12) The one to three bending frequencies in cm- I
• 

13) The zero point energy of the complex in kcallmole. 
14) The zero point energy of the reactants in kcallmole. 
15) The zero poi~t energy of the products in kcall mole. 
16) The Eckart potential function parameters VI and Jl2 in kcal/mole. 
17) The reduced mass for tunneling M, = Mrho. 
18) The second two of Johnston and Heicklen's tunneling parameters (see section 2.5). 
The program then prints out the rate constants as a function of temperature. Also given at each temperature 
is the logarithm of the rate constant, the logarithm of the Arrhenius preexponential factor, the activation 
energy, the tunneling correction factor, and the first of Johnston and Heicklen's tunneling parameters. 
Since the tunneling algorithm has not been checked outside the parameter ranges used by Johnston and 
Heicklen, their parameters values are listed to make sure that they are within the proper ranges. The limits 
areAl andA2 = 0 t020, and U· = 0 to 16. 

Finally, there are listed the differences between the calculated values of the logarithm of the rate constant 
and the values predicted by the least squares fitted Arrhenius equation. This fitted curve is shown by the 
dotted line on the Arrhenius plot. The fitted Arrhenius parameters are given in the caption ot the plot. On 
the next two pages there is a sample output for the ethane and methyl radical reaction. 
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6. APPENDIX: Various Triplet Functions 

The subroutine Trpl is able to provide three different triplet functions which are selected according to the 
value of flag Opt(O). They are as follows: 

Opt(O)= 0: This is the modified Sato triplet function with a small portion neglected. Instead of Eq. (13), Vt 

= Ets is used. This simpler formula seems to have been used in the days of mechanical desk calculators. This 
option is useful when attempts are being made to reproduce the results of earlier workers. 

Opt(O)= 1: Eq. (13) is used. 
Opt(O)= 2: Arthur el al. [19] have developed a triplet energy formula by fitting a function to the H-H 

triplet potential energy values given by Hirschfelder and Linnett [20]. Their formula is 

They claim better results in certain cases when this function is used. 
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BEBO· Calculations 

P~n Identific~tion: 

CH3CH2-H + CH3 = CH3CH2 + H-CH3 

Options Used in Calculatians: 
Modified Sato triplet function. 
F i ' . .!E·-pO i nt, d i ff.;,t'.;'nc €. f';'f'·m .. ~ 13.:: I.Js·ed t"J get ,3.': t. l' '.3.t i ':'n .;'net·'9~/. 

I:.01::€· Ie I ogar it hrll .;.f t h€· "·3.t e c c.ns. t .3.nt • 
Rat~ con::tant units in I it.ers/mole-s. 

i't.:ts::;:.es, if, At.::.r(li.: N·3.:':;.s Unit.s. 
1'11= 17.~510, M2~ 12.01113, M3= I.D080, M4= 12.0110, M5= 3.0240 

:; i (II~ I €. Bc.nd D i t3.n.: ",. s" in Angs. t r,.:,rl'IS. 
F: 3..~. = 1 .526 (Hj. Rt.::;:·= 1 • 09.) (H) , Rc s· = 1 • 09(t(n), R.js= 1 • o ,?(t (H) 

Slngle Band Energies of Center Bonds, in kcal; also p & q Parameters. 
E b s· = 1 ~ 5. 1 (1 (1 , E.::.:. = 1 1 1 • 1~) 0 , p = 1 • () 8 5 , q = 1 • (I'~:3 

Si~gle Bond Energy, Distance, & Morse Parameter for Triplet Inter3.ction. 
Et. S·= 84. 4(tO, Rt s= 1 • 54~)(1IJ. I:€·t ·a= 1.42513 

Single Bond Stretching Force Constants in dynes/cm for Cent€r Bonds. 
Fbs=4.790BOE+05, Fcs=4.79BeBE+05 

Single Bond Bending Force Constants in dyne-em for Outer Masses. 
Fpsi2s=9.14837E-12, Fpsi4s=5.46530E-12 

Partition Function Symmetry Numbers for Species A, B, & C. 
:3A=I. ~;B=I, 8C=1 

t:: f', e' rn i e .::s I t'l u I t. i p 1 i cit. ~,.J • 

':;c h€fu=6 
Electronic Dageneracy for Species A, B, & C. 

SeA=I, SeB=2, SeC=2 
P::suling's Bond-Order Parameter. 

L.:"fitd::s=0.2800 

Properties of Complex. 
Pot '" n t. la 1 Ene r' g~;, IJ f A c 1: 1 I.}~ t Ion: V = 1 4 • 5 ';=.I 6 k ': a 1 
Bond Order Parameters: N=O.5804, M=0.4196 
Bond Dist3.n~es for Center Bonds: 
Fcrce Canst. 1n Rho Direction: 

Rb=1.24235, Rc=1.3331S Ang:.:.t.roffis 
Frho= -8.25841E+04 dvnes/c~: Angl 

F .:d" :: e' (;.:. tE t. 1 !-. S i .-;;: fll a D i r" t?: ti" n: F ;E. ; q fit a = 2 • 9 (1 2 2 7 E + (t 5 d ~, .. ' n e s· .... >: f," : An 9 1 
F C~· I: e C c. n E· t. 1 nOr n. ril • d ; r e .: t i .:, n : F q r" = - 7 • 5 ':; ::: (t 1 E +- (t 4 d V n o? S .. ··· 0: rtt : An q 1 € 

F Col- ':';' :::':..r,.: t .• 

F" t'l.::..t. 1",,( f.jl~ 

in Os n.m. dir~ction: Fqs~ 2.21465E+05 
Stretche::: in dynes/cm 

1.6222..JE+05 
1 • -;-702~)E +(t5 

1. 77(12~)E+05 
4.5418SE+04 

tic, r' rlt.~! C -::. 0::: r' din :t t e T I~ 3.n sf.;. 1-' ril:" t. i Q n;:. 
0.== 3.2115 Rb + 3.0558 Rc Rb= 0.2649 Qs + -0.9779 Qr 
Or= -0.15~5 Rb + 0.8279 Rc Rc= 0.0488 Os + 1.0277 Qr 

F Matri EleMents for Bends; (these equal th€ bending ior~e constant 
FPS12=5.30926E-12, Fpsi1=7.5 4 613E-13, Fp:.:.i4=2.29351E-12 dyne-em 

:tr'.::t,:"'il-II~ FI''''qw"ncie.E: 1"';10.40;. 522.47 1,1.::;",,,; r .. :o:.:·. 
E e ,'"j i n';l F t' '" q 1.1 e n c ~ .;. s: 1 1 :3.2 • .3 -;' , 1 4::: . '? '? • 441) • 72 ' .. I.::s '.' € IK'S. 
Zero Point Ent?r';!y of COMple~= 5.669 ~c~1 

2';1'.:, P':.lnt En-:Tq',.i c.f P",::sct.3.nt,;::.: 7.':-"0':: k,::..l 
:",r,:. F':'ll,t Enet'';I',' .:.( Pr-cldlJl:t.:= 7.47::: ~:.:al 

En.;r.,;',' !::i.:es fat' Eo:l:"t'·t T' .. mnellt-p;t: './1= 6.6'?(t, '·/2=1::::.117 ko:3.1 
R .; d u ': .J d r'T::J.= sf.:, r-' nom r', 0: lIn ';;1 : rh- h ':. = • '? 3 ! 4 
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-54. 13 d€"~ 

35. ::::7 de',;! 
-46.42 de·q 

1::.44 de·q 



Ten·,p. , 
10(10/T 

10.50 
0.78 
1. 06 
1 .3:3 
1 .61 
1 • :39 
2. 17 
2.44 
2.72 
3.0(1 

(/, 
I 
m 

"'-". 

Rat >? C,)t-.st .• , A fa,:tor·, Ac~ .. Et-Iet~q') ~ Ec k ·:tr·t u* F ·:te t c. r' ~ De-'."'; .:'It i .:'t-I frol'(l Fi t 
T K LogO~) Lo,;p:A) E.:rt.t t Ga.m u* Fit 

2~)0\) 1.796E+[19 9.254 11. 724 22.597 1- 041 1.200 -0.01E: 
1286 1. ~):3(1E+08 8.013 It. 1"'0:, I" 18.626 1.091 1.867 0.019 
947 *:; • 106E+06 6.959 10.718 16.294 1. 166 2.5:34 0.017 
750 1.036E+06 6.015 10. :347 14.866 1.273 :3.2(1(1 O. \)(16 
6;~'1 1 • ::96EH~15 5. 145 10.022 1:;:. :::50 1.422 '3.867 -(1.006 
529 2. 129EHj4 4.328 9. 727 13.079 1.627 4.584 -0.013 
462 :3. 577E+0S 3.553 9. 454 12.462 1.909 5.201 -0.016 
409 6.501E+(!2 2.813 9. 193 11.943 2. 300 5.867 -0.011 
:;:~67 1.264E+02 2. 102 8. 944 11.502 2.851 6.534 0.001 
:3'.33 2.599E+Ol 1.415 8. 716 11. 135 3.627 7.201 n.020 

U3. 80 ..-------~-------......_o;_-

'''', 
............... - -:-~ ... --= .... - .. ,. ....... : .... "" ........ - ........ - .......... ~ - ... ~ ........................................ '" _ .. ~ ................................ - _ .......... ~ .................. "' ................... '"' 

""", 1 : 1 : 
1p.,~. : : 
;'~ . : 
~ ~~~ ~ 

8.00 

...... I 

6.EHJ .- .................. } .......... -:.:.' .... ::.~~~. j~ '" -.......... , _ .... , +. "" ... '" .. , ·······f· -""'" ............ . 
: ...... ~ · . · . 

4. e:10 - --- .. , ..... -- -.---~.---.- .... _ ........... ~ .......... _. -., -.. ::~.:.:: ..... -.-. -. _ ....... ~ .. -_ .. _. -"" .. -.. -.. . 
: .. .. 

2 .EH:t 

.-r .... , .. · ". 
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Figure 1. Plot of logarithm of rate constant as a function of the reciproca.l of 
the temper-·.atl.H"e. . _ . _. __ •. ' ~ _ .. _.' .... 
A l€·.:'lst :=-ql.!.:'lt"·E·$. fit .:,f ~hE c.:'llcul.ated t~·:'lt>? ce.n:::·t:'lnt ~.o t.h.: F!t·rl·")I::nl l

.1.: . .: .. · ..••• t"'.:·::;,l'_t"l, 

k"'A*(T···'nJ*EXP(-Ean-·/RT), )'leld:: the +'01101 . .l1n9 I.}.:'lll.l€·s for t.h':· para,,,':1.e·r : 
Lc'g(A)=-2.362E+OO, n= 3.821, E·:aY·r= 8. ~74 
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This is a listing of the computer program for calculating the rate 
constants of hydrogen atom transfer reactions according to the 
bond-energy-bond-order method (customarily referred to as BEBO). 
It is written in an enhanced form of the BASIC language for use 
on a Hewlett-Packard 9845A computer. 
OVERLAP 
READ H K Lam Pmass Econv Prec1 Imax C Null 
DATA S ~S234E.!.27 ,1 .~8033E!.1S, .28,1 .S5972E-24,S .94612E-14,1 E-9 ,15,2 .9977SE1 0,0 
Tpfac=2*PI*K*1.q39S51E13 
DIM Runid$[79] 
DIM Opt(71 1 Temp(1 :1S1 rTPktkcal(1 :16).r.Ktkcal(1 :1S) ,Kqpr(1 :1S) ~Eactpr(1 :1S] 
DIM Gam p r (-I : 1 6] , L k q p r 1: 1 S 1 , Lap r (1 : 1 b ) J. U s t r (1 : 1 6 ) ;z. Err 0 r (1 : 1 6 J ,P a r 1 1 : 3 ) 
COM Delta,Lam,Nbebo,RbsJ.RcsrRts,Betab,~etac,Beta,ebs,Ecs,Ets 
READ Runio$ IHun ldentification. 
READ Opt(O] ,Opt(1] ,Opt(2) ,Opt(31 ,Opt(4] ,Opt(5) ,Opt[S) ,Opt(7) 
READ Ntemp INumber of temperature values. 
IF Ntemp<=16 THEN LS2 
PRINT ItError-03" 
BEEP 
STOP 

LS2: IF Ntemp<5 THEN Opt(1]=2 
REDIM Temp(1 :Ntemp) ,Tpktkcal[1 :Ntemp) ,Ktkcal[1 :Ntemp) ,Kqpr(1 :Ntemp) 
RED I MEa c t p r (1 : N t em p ) .:. Gam p r (1 : N tam pJ r l k 9 P r [1 : N t e m p ) , Lap r 1 1 : N t e m p ] , Err 0 r [1 : N t e m p ] 
IF Ntemp=1 THEN READ Imax fA slngle temperature entered. 
IF Ntemp=1 THEN Tmin=1 
IF Ntemp=1 THEN Opt(1]=2 
IF Ntemp)1 THEN READ Tmin,Tmax fThe minimum and maximum temperatures. 
Rtmin=1000/Tmax 
Rtmax=1000/Tmin 
IF Ntemp)1 THEN Delrt=(Rtmax-Rtmin]/(Ntemp-1) 
FOR L=1 TO Ntemp 
Temp(L)=1000/{Rtmin+(L-11*DelrtJ 
Tpktkcal(Ll=Tpfac*Temp'(Ll 
Ktkcal(L)=Tpktkcal(Ll/[2*PIl 
NEXT L 
Delrt=Delrt/1000 
READ M1,M2;z.M3,M4,M5 
IF M1)0 THeN Mu1=1/M1 
IF M5)0 THEN Mu5=1/M5 
READ Ras,Rbs,Rcs,Rds 
IF Ras)O THEN Rhoa=1/Ras 
IF Rds)O THEN Rhod=1/Rds 
READ Ebs,Ecs,P,Q 
READ Rts,Ets,Beta 
READ Fbs,Fcs,Fpsi2s,Fpsi4s 

READ Sa,Sb,Sc 
READ Schem 
READ seafSeb~Sec 
PAINTER S 1b 

!Atomic mass units. 

fAngstroms. 

fEnergies in kcel/mole. 

IStretching constants in dynes/cm. 
I Bending constants in dynes-cm. 
(Partition function symmetries. 
fChemicel multiplicity. 
IElectronic degeneracy. 
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L72: IF Opt[31=0 THEN PRINTER IS 0 
PRINT" BEBO Calculations" 
PRINT "********************************************************************************,. PRINT "Run Identification:" 
PRINT Runid$ 
PRINT "********************************************************************************ff 
PRINT "Options Used in Calculations:" 
IF Opt(O]=O THEN PRINT "Simplified, modified Sato triplet function." 
IF Opt(0)=1 THEN PRINT "Modified Sa to triplet function." 
IF Opt(0)=2 THEN PRINT "Two-parameter Arthur et.al. triplet function." 
IF Opt(O)=3 THEN PRINT "Three-parameter Arthur et.al., style triplet function." 

L64: IF Opt(1 )=1 THEN PRINT If Five-point difference formulas used to get activation energ 

IF
Y 6~t (1)=2 THEN PRINT "Three-poi nt di fference formu las used to get the act; vati on ene rg 

IF
Y

Opt(21=1 THEN PRINT "Natural logarithm of the rate constant." 
IF Opt(2)=2 THEN PRINT "Base 10 logarithm of the rate constant.1f 
IF Opt(4)=1 THEN PRINT If Rate constant units in cc/mole-s." 
IF Opt(4)=2 THEN PRINT "Rate constant units in cc/molecule-s. 1f 
IF Opt(4]=3 THEN PRINT "Rate constant units in liters/mole-s." 
IF Opt[4)=4 THEN PRINT "Rate constant units in liters/molecule-s. 1I 

IF OQt(6)=0 THEN PRINT "Tunnelina correction not aeelied." 
PRINT "*************************t:t*****************~~***********************************11 PRINT "Masses, in Atomic Mass Units." 
PRINT USING Format31 "M1 ,M2,M3,M4,M5 

Format31: IMAGE" wl=",3D.4D,", M2=",3D.4D,", M3=",3D.4D,", M4=",3D.40,", M5=",3D.4 
D 

PRINT "Single Bond Distances, in Angstroms." 
PRINT USING Format32;Ras,Rbs Rcs,Rds 

Format32: IMAGE If Ras="rZ.5D" Rbs=",Z.5D,", Rcs=",Z.5D," Rds=",Z.5D 
PRINT "Single Bond Energles of Center Bonds, in kcal; also p &. q Parameters." 
PRINT USING Format33;Ebs,Ecs p,a 

Format33: IMAGE" Ebs=",3D.3D,", Ecs=",3D.3D ", p=",Z.3D,", q=",Z.3D 
PRINT "Single Bond Energy1. Distance, & Morse Parameter for Triplet Interaction." 
PRINT USING Format34;Ets,Hts Beta 

For mat 3 4 : I f4 AGE" E t s = II ,3D • 3 D ", R t s = " , Z • 5 D , " , Bet a = " , Z • 4 D 
PRINT "Single 80nd Stretching Force Constants in dynes/cm for Center Bonds." 
PRINT USING Format35;Fbs,Fcs 

Format35: IMAGE II Fbs=",Z.5DE,", Fcs=",Z.5DE 
PRINT If Single Bond Bending Force Constants in dyne-cm for Outer Masses." 
PRINT USING Format36jFpsi2s,Fpsi4s 

Format36: IMAGE" Fpsi2s=" Z.5DE" Fpsi4s=" Z.5DE 
PRINT IIPartition Function S~mmetry Numbers for'Species A, B, & C." 
PRINT USING Format37'Sa,Sb Sc 

Format37: IMAGE If sA=" Z" S8=1I Z" SC=",Z 
PRINT IIChemical Multi~l{c~ty.II ", 
PRINT USING Format38;Schem 

For mat 3 8 : I r~A G EllS C hem = " , Z 
PRINT "Electronic Degeneracy for Species A, B, & C." 
PRINT USING Format39;Sea,Seb,Sec 
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Format39: IMAGE" SeA=",Z," SeB=",Z ", SeC=",Z 
PRINT "Pau ling's Bond-Order Paremeter." 
PRINT USING Format41 ;Lem 

Format41: IMAGE" Lamde=" Z.4D PRINT 11*******************'************************************************************" 
Sym=Schem*Sec*Sa*Sb/£Sea*Seb*Scl Fbs=1E-16*Fbs/Econv IForce constants are converted to kcel energy units. 
Fcs=1E-16*Fcs/Econv 
Fpsi2s=Fpsi2s/Econv 
Fpsi4s=FDSi4s/Econv I ******~****************************************************************** 
, The saddle point position is calculated. 
N=.5 
Icount=O 
L11: IF N<O THEN N=.5*Nold 
IF N>1 THEN N=.5*£Nold+1J 
Nold=N CALL TrplfRbs,Rcs,Rts,Ets,Beta,Lam,N,Vt,Vtn,Vtnn,Vtr,Vtrr,Opt£OJJ 
M=1-N V=Ebs*(1-NAP)-Ecs*MAQ+Vt 
Vn=_Ebs*P*NA(P-1J+Ecs*a*M Aca-1)+Vtn 
Vnn=_Ebs*P*£P-1)*NA(P-2J-Ecs*a*(a-1)*MA(Q-2)+Vtnn 
N=Nold-Vn/Vnn 
IF ABS[(N-NoldJ/Nold)<Prec1 THEN L10 
Icount=Icount+1 
IF Icount>Imax THEN L12 
GO TO L 11 
L12: PRINT "Error-01" 
STOP 
L10: N=Nbebo=Nold , ************************************************************************* 
I Next~ the stretching part of the force constant matrix is calculated. 
Nsq=NAi:! 
Msq=M"'2 
N2m2=Nsq+Msq 
Nm=N*M 
Frho=Vnn*Nm"'2/(N2m2*Lam"'2J 
Fsigma=fFbs*N"'3+Fcs*M"'3+Vtrr)/N2m2 
DIM Frf1 :2,1 :2) 
Fr!1,11=fFrho*MSg+Fsi gma*NSqJ/N2m2 
Fr 1 ,21=Fr£2,1 J=r-Frho+Fsigma)*Nm/N2m2 
Fr 2,21=£Frho*Nsg+Fsigma*Msq)/N2m2 
Rb=Rbs-Lam*LOG(NJ 
Rc=Rcs-Lam*LOG(MJ 
Dfr=DET{FrJ 
Dfr=SGN{DfrJ*SQR£ABS£DfrJl 
Jfac=[Rb*Rc/Rbs)"'2 
Rhob=1/Rb 
Rhoc=1/Rc 
Cc=-Nbebo/(1-NbeboJ 
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Ma=M1+M2 
Mx=M3 
Mb=M4+M5 
Maxb=Ma+Mx+Mb 
Mrho=(Ma*Mb*(1+Cc)·2+Mb*Mx*Cc·2+Ma*Mx)/(Maxb*(1+Cc·2]) 
DIM Azr(1 :3,1 :2) IALq(1 :3,1 :2] 
Azr[1,11=-(Mb+Mx /Maxb 
Azr(1 ,2}=Azr(2,2 =-Mb/Maxb 
Az r ( 2,1 1 =Az r (3 ,1 1 =Ma/Ma xb 
Azr(3,2)=(Ma+Mx)/Maxb 
I Mrho=1 
I ************************************************************************* 
I Next, the Gr matrix is caLcuLated. This wiLL hoLd for 3,4,&5 atom modeLs 
I with rigid bonds on the ends. 
I First j the type of modeL being used is determined. (Note, aLL are Linear) DIM Gr(-I :2,1 :2] 
Model=5 
IF [M1=0) OR (M5=0) THEN ModeL=4 
IF (M1=0) AND [M5=0] THEN ModeL=3 
MOdeL2=ModeL-2 
Mu2=1/M2 
Mu3=1/M3 
Mu4=1/M4 
Gr{1,1 ]=Mu2/(1+M1/M2]+Mu3 
Gr(1 ,21=Gr(2,1 )=-Mu3 
Gr(2,2]=Mu3+Mu4/(1+M5/M4] 
I Stretching frequencies evaLuated. 
DIM Hr(1 :2,r.1 :2] 
MAT Hr=Gr*rr 
Bh=Hr(1,1 ]+Hr(2,21 
Ch=Hr(1,1.1 )*Hr[2,2)-Hr(1 ,2)*Hr(2,1] 
Dh=SQR(~h·2-4*Ch) 
DIM Evs(1 :2] ,Frqs(1 :2) ,Ls(1 :2) 
Evs(1 }=.5*(Bh+Dh) 
Evs(2}=.5*(Bh-Dhl 
FOR 1=1 TO 2 
Frqs(I)=SGN(Evs[I))*682.427*SQR(ABS(Evs[I)))/(2*PI) lIn 1/cm. NEXT I 
I ************************************************************************* 
I Bending frequencies now caLcuLated. 
Fpsi3=-Rb*Rc*Vtr/(Rb+Rc) 
DIM G(1 :3,1 :3) ,F(1 :3,1 :3) JH(1 :3,1 :3),lEvb(1 :3),lFrqb(1 :3] ,Lb(1 :3) 
RED I M G (1 : Mod e L 2 r 1 : f4 ode l 2 , F (1 : Mod e L c , 1 : ~1 ode L c) , H (1 : Mod e L 2 ,1 : Mod e L 2 1 
RED I MEv b (1 : ~1 ode L 2 1 , F r q b (1 : Mod e L 2) , L b l 1 : ~1 ode L 2 ] 
ON ModeL2 GOTO La3,La4,La5 
I •••••••••••.••.•••••••••.••••.•••••••••.•.•••••• ' •••••••••••••••••••••••••. I Three atom modeL. 
La3: G(1 ,11=Mu2*Rhob·2+Mu4*Rhoc·2+~"u3*(Rhob+Rhoc].2 F(1 ,1 ]=FQsi3 
MAT H=G*F 
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Evb(1 )=H{1,1) 
GOTO L20 
I •••••••••• 11 11 11 11 11 11 11 11 • 11 11 11 11 11 11 • 11 11 • 11 11 11 • 11 11 11 11 11 11 11 11 11 • 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 

I Four atom modeLs. 
La4: IF M1=0 THEN La4sub 
G11,1 =Mu1*Rhoa"2+Mu3*Rhob"2+Mu2*(Rhoa+Rhob)"2 
G 1, 2 = G ( 2, 1 1 = - Rho b * ( r Rho a + Rho b ) * M u 2 + ( Rho b + Rho c ) *~, u 3 ) 
G 2,2 =Mu2~Rhob"2+Mu4iRhoc"2+Mu3*(Rhob+Rhocl"2 
F(1,1 =Fl?si2=Fl?si2s*N 
F (1 ,2 =F ( 2 ,1 ) =0 
F{2,2 =F{lS13 
MAT H=G*F 
GOTO La4end 
La4sub: G(1 11=Mu2*Rhob"2+Mu4*Rhoc"2+Mu3*(Rhob+Rhocl"2 
G(1,2J=G[2,1)=-Rhoc*(rRhob+Rhocl*MU3+(Rhoc+Rhod)*Mu4) 
G(2,21=Mu3 Rhoc"2+Mu5 i Rhod"2+Mu4*(Rhoc+Rhod)"2 
F(1,1 )=Fl?si3 
F(1 ,2)=F(2,1 )=0 
F{2,21=F~s14=Fpsi4s*M 
MAT H=G*F 
La4end: 8h=H[1 1 )+H[2 21 
Ch=H(1,1 )*H(2,21-H(1 ,21*H(2,11 
Oh=SQRlBh"2-4~Chl 
Evb{11=.5*(Bh+Ohl 
Evb(21=.5*(Bh-Dhl 
GOTO L2D 
I 11 11 11 11 • 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 • 11 11 11 11 11 

I Five atom modeL. 
LaS: G(1,11=Mu1*Rhoa"2+Mu3*Rhob"2+Mu2*(Rhoa+Rhobl"2 
G(2,21=Mu2*Rhob"2+Mu4*Rhoc"2+Mu3*(Rhob+Rhocl"2 
G(3,31=Mu3*Rhoc"2+Mu5*Rhod"2+Mu4*(Rhoc+RhodJ"2 
G(1 ,2J=G(2,1 J=-Rhob*{ (Rhoa+Rhob)*Mu2+(Rhob+RhocJ*Mu3J 
G(2,31=G(3,2J=-Rhoc*((Rhob+Rhocl*Mu3+(Rhoc+Rhodl*Mu41 
G{1 ,3 )=G(3,1 )=Mu3*Rhob*Rhoc 
MAT F=ZER 
F(1,11=Fpsi2=Fpsi2s*N 
F(2,2]=Fpsi3 
F(3,3J=F{lsi4=Fpsi4s*M 
MAT H=G*F 
DIM Rz[O:21 
Rz(0)=H(1 1 )*H(2 2J*H(3 3)+H(2 11*H(3 2J*H(1 3l+H[3 11*H(1 2J*H[2 3) 
Rz(O)=Rz(Ol-H(2J2)*H(3~1J*H(1~Sl-H(1~1J*H(312)*H(2,S)-H(3,SJ*H(2,11*H(1 ,21 
Rz[1J=H(3 1 l*H(l 31+H[~ 21*H(~ 31+H(~ 1)*H('1 21 
Rz(1)=Rz[il-H{1~11*H[2~2)-H[1 ,1J*H{3,SJ-H[2,2J*H{3,31 
Rz(2l=H{1,1 )+H(~,2l+Hl~,31 
CALL Cubic(Rz(*),Evb( JJ 
I 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 

I Bending freguencies. 
L20: FOR 1=1 TO ModeL2 
Frqb(Il=S82.427*SQR£Evb(I))/{2*PI) 
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NEXT I 
PRINT "Pro~erties of Complex." 
PRINT USING Format1;V 
Format1: IMAGE "Potential Energy of Activation: V=",DD.3D," kcal" 
PRINT USING Format2;N M 
Format2: IMAGE "Bond Order Parameters: N=",Z.4D,", M=",Z.4D 
PRINT USING Format3;Rb r Rc 
Format3: IMAGE "Bond Dlstances for Center Bonds: Rb=",Z.5D,", Rc=",Z.5D," Angstroms" 
PRINT USING Format4;Frho*Econv*1E16,ATN(Cc]*180/PI 
Format4: IMAGE "Force Canst. in Rho Direction: Frho= ",MZ.5DE," dynes/cm:"," Angle=",M 

DDZ.DD " deg" 
PRINT USiNG Format5;Fsigma*Econv*1E16,ATN(-1/Cc)*180/PI 
Format5: IMAGE "Force Canst. in Sigma Direction: Fsigma=",Z.5DE," dynes/cm:"," Angle=",M 

DDZ.DD " deg" 
DIM Lqi(1:2 1:2) Lg(1:2 1:2) 
CALL NormodlHr(*J ,Evs(*J ,Fr(*] ,Lqi (*]) 
MAT Lq=INV(Lqi] 
DEF FNGg(Z1=Fr(1 11 )*COS(Z) "2+2*Fr(1 ,2)*SIN[Z)*COS[Z)+Fr(2,2)*SIN[Z)"2 
Z= Lq ( 2 ,2 ) / Lq (1 ,2 
Zr=ATNlZ) 
PRINT USING Format4a;FNGg(Zr)*Econv*1E16,Zr*180/PI 
Format4a: IMAGE "Force Canst. in ar n.m. direction: Fqr=",MZ.5DE," dynes/cm:"," Angle=", 

MDDZ.DD," deg" 
Z= Lq ( 2,1 ) I Lq [1 ,1 ) 
Zs=ATNlZ) 
PRINT USING Format4b;FNGg(Zs]*Econv*1E16,Zs*180/PI 
For mat 4 b: I MAG E " For c e Can st. i nOs n. m. d ire c t ion: F q s = " , t~ Z • 5 DE," d Y n e s / c m : " ," A n 9 l e = " , 

MDDZ.DD," deg" 
MAT Alq=Azr*Lq 
I MAT PRINT Alq" 
DIM Rcomglex(1 :2) ,Zeq(1 :3) 
Rcomplex(1 ]=Rb 
Rcom(llex(2]=Rc 
MAT Zeq=Azr*RcompLex 
I MAT PRINT Zeq 
PRINT "F Matrix for Stretches in dvnes/cm" 
P R I NT U SIN G " 2 X , ~1 Z • 5 DE, 2 X " ; F r (1 , 1 ) ~ E can v * 1 E 1 6 , F r (1 , 2 ) * E can v * 1 E 1 6 
PRINT USING "2X,MZ.5DE,2X";Fr[2,1 )*Econv*1E16,Fr(2,2)*Econv*1E16 
PRINT "Normal Coordinate Transformations" 
PRINT USING Format45;Lqi (1-,1 ).l.Lai (1,2) ,Lq(1,1) ,Lq(1 ,2) 
For mat 45: I MAG E" 0 s = " ~1 L • 4 U II R b + "M Z • 4 D ," R c " , " R b = ", t~ Z • 4 D ," as + " , M Z • 

4D " Or" ", 
PRINt USING Format46 ;Lqi (2-,1 J.l.Lai [2,21 ,Lq(2,1 J ,Lq[2,21 
Format46: IMAGE" Or=" ML.4u II Rb + "MZ.4D" Rc" " Rc= ",MZ.4D," as + ",MZ. 

4D " Or" "", 
PRINt "F Matrix Elements for Bends; [these equal the bending force constants)" 
PRINT USING Format6;Fpsi2*Econv,Fpsi3*Econv F(lsi4*Econv 
Format6: IMAGE" Fpsi2=" Z.5DE," Fpsi3=",i.5DE,", Fpsi4=",Z.5DE," dyne-cm" 
PRINT USING Format7;-Frqsf2J ,FrqsI1) 
Format7: IMAGE "Stretching Frequencies: ",4D.DD,"i, ",4D.DD," wave nos." 



2700 IF Model=3 THEN PRINT USING Format8 Frqb[1] ,Null Null 
2710 IF Model=4 THEN PRINT USING Format8 Frqb(11,Frqbf21,Null 
2720 IF Model=5 THEN PRINT USING Format8 Frqb(1} Frqb[21 Frgb[3} 
2730 Format8: IMAGE "Bending Fraquencies ",40.00,", ",40.00,", ",40.00," wave nos." 2740 Zcmplx=Frqs(1) 
2750 FOR 1=1 TO Model2 
2760 ZcmQlx=Zcmplx+2*Frqb(I) 
2770 NEXT I 
2780 Zcmplx=.5*Zcmplx*2.8585E-3 
2790 PRINT USING Format9;Zcmplx 
2800 Format9: IMAGE "Zero Paint Enerav of Comolex=" 30.30 II kcal" 
2810 PRINT "************************"#*******101*****'*****'**********************************" 
2820 I ************************************************************************* 
2830 I The rate constants are now evaluated at the different temperatures. 2840 Unit=1 
2850 ON Opt(4) GOTO Lunit1 ,Lunit2,Lunit3,Lunit4 
2860 Lunit2: Unit=6.02E23 
2870 GOTO Luni t1 
2880 Lunit3: Unit=1000 
2890 GOTO Lunit1 
2900 Lunit4: Un1t=6.02E26 
2910 Luni t1: I Conti nue 
2920 OEF FNG[Z)=Z*EXP[-.5*Z)/(1-EXP{-Zl) 
2930 DIM Lograte (-1 :11 
2940 NRt=O 
2950 IF Opt(1)=1 THEN L61 
2960 Oelrt=1.987E-3*.05/V 
2970 Npt=1 
2980 L61: Evbs=Fbs*(Mu2+Mu31 
2990 Frqbs=682.427*SQR(Evbs)/(2*PI) 
3000 Zreact=Frgbs/2 
3010 Evcs=Fcs*[Mu3+Mu4] 
3020 Frqcs=682.427*SQR[Evcs]/(2*PI) 
3030 Zprod=Frqcs/2 
3040 IF Model=3 THEN L40 
3050 IF (Model=4) AND (M1<>0) THEN L46 
3060 Rhocs=1/Rcs 
3070 Rhods=1/Rds 
3080 Evpsi4s=Fpsi4s*(Mu3*Rhocs-2+Mu5*Rhods-2+Mu4*(Rhocs+Rhods]-2] 
3090 Frqpsi4s=682.427*SQR[Evpsi4s)/{2*PI] 
3100 Zgrod=Zprod+Frqpsi4s 
3110 L~6: IF (Model=~l AND (M1=0) THEN L40 
3120 Rhoas=1/Ras 
3130 Rhobs=1/Rbs 
3140 Evpsi2s=Fps;2s*[Mu1*Rhoas-2+Mu3*Rhobs-2+Mu2*(Rhoas+Rhobs)A21 
3150 Frqpsi2s=682.427*SQR{Evpsi2s]/{2*PI) 
3160 Zreact=Zreact+FrqRs;2s 
3170 IF Opt(6)=0 THEN Tunnel=O 
31.80L40: IF Opt [6)=0 THEN L85 
3190 Zreact=Zreact*2.8585E-3 
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ZQrod=ZQrod*2.8585E-3 
PRINT USING Format1 0 iZraaet 
Format10: IMAGE "Zero Point Energy of Reactants=II,DD.3D,1I keal" PRINT USING Format11 ;Zprod 
Format11: IMAGE "Zero Point Energy of Produets=II,3D.3D," keal" V1=V-Zreact 
Tunne l=1 
IF V1>O THEN L84 
Tunnel=O 
PRINT "Eckert tunneling factor not applied because zero point energy of reactants is" PRINT "greater than the barrier height." GOTO La5 
LB4: V2=V-Ebs+Ecs-Zprod 
PRINT USING Format12;V1 ,V2 
Format12: IMAGE "Energy Bases for Eckart Tunneling: V1=",DD.3D,", V2=II,DD.3D," keal ll PRINT USING Format13;Mrho 
Format13: IMAGE "Reduced Mass for Tunneling: Mrho=",00.40 
I Johnston's tunneling factors calculated. 
Nu=SQR[-Evs r 21*Econv*1E16/[Mrho*Pmassll/(2*PIl 
A1=V1*Econv~2*PI/[H*Nu) 
A2=V2*Econv*2*PI/[H*Nu) 
IF (A1<201 AND [A2<20] THEN L300 
Tunnel=O 
PRINT IIEckart tunneling factor not calculated because A1 or A2 is greater then 20." GOTO L85 
L3DO: PRINT USING Format16;A1,A2 
Format16: IMAGE "Johnston's tunnelina oeremeters' A1=" OZ 3D" A2=" OZ.30 
L85: PRINT "************************~*~***************'*****'*'*****,******************* ****11 
IF Opt[31=0 THEN PRINTER IS 16 
FOR L=1 TO Ntemp 
PRINT USING Format20;L Ntemp 
Format20: IMAGE "Calcutating rate canst. at II,OO,"'th temperature value out of ",DO," va lues." 
Rtemp=1/Temp[Ll 
FOR Nt=-Npt TO Npt 
Rt=Rtemp+Nt*Oelrt 
T=1/Rt 
Tpktkcalsub=Tpfec*T 
Ktkcalsub=Tp.ktkcalsub/r2*PIl 
Kfac=EXP£-VtKtkcalsubl*Sym*Jfac*C*Frqs{21*SQR[FbsJ/[Ofr*Unitl Tf=1.439/T 
ON Model2 GOTO Lb3,Lb4,Lb5 
Lb3: Kcl=Kfac*Tpktkcalsub"'1.5/Fpsi3 
G3=FNG{Tf*FrQs(1JJ*FNGITf*FrQb[111"'2/FNGCTf*Frqbsl Kg=G3*Kcl 
GOTO L30 
Lb4: IF M1=0 THEN Lb4sub 
KCl=Kfac*Toktkcalsub"'1.5*Fpsi2s/(FpSi2*FpSi31 
G4a=FNG(Tf~Frqs{1)1*{FNG{Tf*FrQb[1JJ*FNGITf*FrQb{2JJ)~2 
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G4a=G4a/(FNG[Tf*Frqbs}*FNG(Tf*Frqpsi2s}~2} 
Kg=G4a*KcL 
GOTO L30 
Lb4sub: Kcl=Kfac*Tpktkcalsub~2.5/[4*PI*FpsiS*Fpsi4} 
G4b=FNG(Tf*Frqs{11J*(FNG[Tf*Frqb(1))*FNGLTf*Frqb[21))A2 
G4b=G4b/FNG[Tf*Frqbsl 
Kg=G4b*KcL 
GOTO LSO 
Lb5: KcL=Kfac*Tpktkcalsub A2.5*Fpsi2s/[4*PI*FpSi2*FpsiS*Fpsi41 
G5=FNG(Tf*Frqs[111*(FNG{Tf*Frqb[11)*FNG(Tf*Frqb(21]*FNG{Tf*Frqb(S)))~2 
G5=G5/(FNG(Tf*Frqbs)*FNG(Tf*Frqpsi2s)A2) 
Kg=G5*Kcl 
LSO: Gam=1 
IF TunneL=O THEN L87 
CALL TunL(V1*Econv J V2*Econv,Frho*Econv*1E16,Mrho*Pmass,T,Gam) 
L87: KcL=6.025E23*"IE-24*Kcl 
Kq=6.025E23*1E-24*Kq*Gam 
IF Nt=O THEN Kqtab=Kg 
IF Nt=O THEN Gamtab=Gam 
Lograte[Nt)=LOG(Kql 
NEXT Nt 
IF Npt=O THEN L59 
Eact p r(Lj=-1.987E-3*(-LOgrate(-1 1+Lograte(1) )/(2*Oelrt) 
IF Opt(2 =1 THEN Lapr[Ll=LOG(Kqtab*EXP(Eactpr(L)/Ktkcal[LJ1) 
IF Opt(2 =2 THEN Lapr{LJ=LGT(Kqtab*EXP(Eactpr(LJ/Ktkcal(LJ)J 
L59: K1~r[L)=Kqtab 
IF Opt 2}=1 THEN Lkqpr(Ll=Lograte(Ol 
IF Opt 21=2 THEN Lkqpr(L)=LGT(Kqtabl 
UstrlLl=Nu*H/(K*Temp[L)l 
Gampr(L)=Gamtab 
NEXT L 
IF Opt(3)=O THEN PRINTER IS 0 
IF Npt=1 THEN L60 
OIM 00[1 :5).101 [1 :5).10i (1 :5) 
00(1 J=-2.08~3333333~ 
00(2)=4 
00(3J=-S 
00 (4) =1 .33S33333333 
00(51=-.25 
01 (1 ) =- .25 
01(2)=-.833333333333 
01(3)=1.5 
01(4)=-.5 
01(5)=8.33333333333E-2 
Oi(1)=8.3333S333333E-2 
Oi(2]=-.666666666667 
0; {3 ) =0 
0;(41=.666666666667 
Oi (51=-8.33333333333E-2 
MAT Ea at p r=ZER 
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FOR J=1 TO 5 
Eactpr(1)=Eactpr(11+00(Jl*Lkqpr(J1 
Eactpr[21=Eactpr(21+01(J1*Lkqpr[Jl 
Eactpr(Ntemp-11=Eactpr(Ntemp-11-01(Jl*Lkqpr(Ntemp-J+11 
Eactpr[Ntemp1=EactprlNtemp)-OO(J1*Lkqpr(Ntemp-J+1) 
FOR Na=3 TO Ntemp-2 
Eactpr(Na1=Eactpr(Na]+Oi(J1*Lkqpr(Na+J-31 
NEXT Na 
NEXT J 
IF Opt (21 =1 THEN MAT Eactpr=Eactpr * (-1 .987E-3/De L rt J 
IF Opt(2]=2 THEN MAT Eactpr=Eactpr*[-1.987E-3*LOG[101/0eLrt] 
L60: FOR L=1 TO Ntemp 
Afac=Kqpr(L1*EXP(EactprCLJ/KtkcaL(L11 
IF Opt[21=1 THEN LaprIL)=LOG[Afac) 
IF Opt(21=2 THEN Lapr[L)=LGT[Afac] 
NEXT L 
IF [Opt(3]=O) AND [Ntemp)1) THEN PRINT PAGE 
IF Ntemo)1 THEN CALL Fit[Oot[2] Ntemo Temo[*l Lkoor[*l Error(*l Par[*l Variance Ootr7]) 
PRINT "~******************~*********~****~******'4~*******************************~*****" 
PRINT "Tempo t Rate Canst.,. A factor, Act. Energy, Eckart U* Factor, Deviation from Fit" 
IF Opt(2)=1 HEN PRINT "1uOO/T T K Ln[K) Ln[A) Eact Gam U* 

Fit" 
IF Opt(2)=2 THEN PRINT "1000/T T K Log(K1 Log(A) Eact Gam U* 

Fit" 
FOR L=1 TO Ntemp 
PRINT USING Format14;1000/Temp(L) ,Temp(L) ,Kqpr[L) ,Lkqpr(L) ,Lapr[Ll ,Eactpr(L] ,Gampr[L] ,Us 

tr[Ll,Error[L) 
NEXT L 
Format14: IMAGE 1X Z.OO 2X 40 2X Z.30E 6(1X MOZ.30) 
PRINT "********************************************************************************" 
IF Ntemp=1 THEN L63 
IF Opt [3] =1 THEN PAUSE 
CALL Pltk(Opt(*l ,Ntemp,Temp(*l ,Lkqpr[*) ,Error(*l) 
IF Opt(3)=1 THEN PAUSE 
IF Opt(3)=O THEN DUMP GRAPHICS 
EXIT GRAPHICS 
PRINT "Figure 1. Plot of logarithm of rate constant as a function of the reciprocal of" 
PRINT "the temperature." 
PRINT "A least squares fit of the calculated rate constant to the Arrhenius expression," 
IF Oot(7]=2 THEN PRINT "k=A*EXP[-Earr/RT], yields the following values for the parameter 

s:h 
IF Opt[71=3 THEN PRINT "k=A*(TAnl*EXP(-Earr/RT), yields the folLowing vaLues for the par 

ameters:" 
IF (Opt(7)=2) AND (Opt(2)=1] THEN PRINT USING Arrhen;us1a;Par(11,Par(3)/1000 
IF (Opt(7)=2] AND (Opt(2]=2J THEN PRINT USING Arrhen;us2a;Par(1] ,Par(3)/1000 
Arrhenius1a: IMAGE" Ln(A)=" MZ.30E" Earr=" MOZ.30 
A r r hen ius 2 a: I MAG E" LOG ( A ) = ,. , M Z • 3 0 E , ,. , Ear r = ,. , M 0 Z • 3 0 
IF (Opt(7)=3] AND (Opt{2)=1] THEN PRINT USING Arrhen;us1b;Par[1) ,Par(2) ,Par(3]/1000 
IF (Opt[7)=3) AND [Opt(2)=2] THEN PRINT USING Arrhenius2blPar(11 ,Par[21 ,Par(3]/1000 
A r r hen ius 1 b: I MAG E" L n (A ] =" , M Z . 3 0 E , " , n = " , M Z • 3 0 , " , t: a r r = " , ~1D Z • 3 0 
Arrhenius2b: I~1AGE II Log[A)=" MZ.30E" n=" MZ.30" Earr=" r~OZ.30 L63: PRINTER IS 16 " , t ,t , 

IF Opt(5]=0 THEN L82 
I Position of normal coordinate plot. 
L82: PRINTER IS 16 
SERIAL 
END 
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5021 
5030 
5040 
5050 
5060 
5070 
5080 
5090 
5100 
5110 
5120 
5130 
5140 
5150 
5160 
5170 
5180 
5190 
5200 
5210 
5220 
5230 
5240 

I Run Identificetion 
DATA CH3CH2-H + CH3 = CH3CH2 + H-CH3 
I Options: 
I 0,1,2,3,4,5,6,7 
DATA 1,1,2 ... 1,3,0,1,3 
I Number aT temperature values. 
DATA 10 
I Minimum and maximum temperatures, [or a single temperature if Ntemp=1). 
DATA 333.3333333,2000 
I Masses: M1 M2 M3, M4, M5 
DATA 17.051 ,i 2 .oi1 ,1 .008,12.011 ,3.024 
I Single bond distances: Ra, Rb, Rc, Rd 
DATA 1 .526,1 .09,1 .09,1 .09 
I Bond energies: Ebs and Ecsl BEBO parameters: p and q 
DATA 105.1 ,111 .1 ,1 .0852,1 .09~5 
I Triplet single bond dlstance, bond energy, and Morse parameter: 
I Rts Ets and Beta 
DATA 1.54,84.4,1.425 
I Stretchlng constants Fbs Fcs and bending constants Fpsi2s, Fpsi4s 
DATA 4.79E5,4.79E5,9.14837E-12,5.4653E-12 
I Partition function symmetries for species A, B, and C 
DAT A 1 r 1 ,1 
I Chemlcal multiplicity 
DATA 6 
I Electronic degeneracies for species A, B, and C 
DATA 1 ,2,2 



5400 
5402 
5404 
5406 
5410 
5412 
5414 
5416 
541 B 
5420 
5422 
5426 
5428 
5430 
5440 
5442 
5444 
5446 
5448 
5450 
5452 
5454 
5456 
5458 
5460 
5462 
5464 
5466 
5468 
5470 
5472 
5474 
5476 
5478 
5480 
5482 
5484 
5486 
5488 
5490 
5492 
5494 
5496 
5498 
5500 
5502 

SUB Trpl[Rbs,Rcs,RtstEts,BetaLLam,N,Vt,Vtn,Vtnn,Vtr,Vtrr,Version) 
I Version=O; Simplif1ed, modiried Sato function. 
I Versi on=1; Modi fi ed Sa to functi on. 
I Version=2; Arthur et.al., function [2 parameter form). Delrs=Rbs+Rcs-Rts 
IF Version=2 THEN Delrs=Delrs+Rts 
M=1-N 
R=Delrs-Lam*LOG[N*Ml 
Rn=Lam*r1/M-1/Nl 
Rnn=Lam*[1/N A2+1/M A21 
IF (Version=1] OR (Version=Ol THEN L10 
P1=5.873 
P2=1.747 
P3=1.525 
O=Ets*P1*Beta AP3 
E=EXP[-P2*Beta*Rl 
Er=-P2*Beta*E 
En=Er*Rn 
Enn=-P2*Beta*[Rnn*E+Rn*Enl 
Err=-P2*Beta*Er 
Rp3=RAP3 
Vt=O*E*Rp3 
Vtn=O*Rp3*rEn+E*P3*Rn/Rl 
Vtnn=O*RP3*[Enn+P3*[[2*En+E*(P3-11*Rn/Rl*Rn+E*Rnnl/Rl 
Vtr=O*Rp3*fEr+P3*E/Rl " 
Vtrr=O*Rp3*[Err+2*P3*Er/R+P3*(P3-11*E/R A 21 
SUBEXIT 
L10: E=.5*EXP[-Beta*Rl 
Er=-Beta*E 
En=Er*Rn 
Enn=-Beta*(Rnn*E+Rn*Enl 
Err=-Beta*Er 
IF Version=O THEN L15 
Vt=Ets*E*(1+E] 
Efac=1+2*E 
Vtn=Ets*En*Efac 
Vtr=Ets*Er*Efac 
Vtnn=Ets*(Enn*Efac+2*En A 21 
Vtrr=Ets*(Err*Efac+2*Er A 2] 
SU8EXIT 
L15: Vt=Ets*E 
Vtn=Ets*En 
Vtnn=Ets*Enn 
Vtr=Ets*Er 
Vtrr=Ets*Err 
SUE1ENO 



5600 
5602 
5604 
5606 
5608 
5610 
5612 
5614 
5616 
5618 
5620 
5622 
5624 
5626 
5628 
5630 
5632 
5634 
5636 
5638 
5700 
5710 
5720 
5730 
5740 
5750 
5760 
5770 
5780 
5790 
5800 
5810 
5820 
5830 
5840 

SUB CubicCCfC*),Rt[*)) 
R=-CfIOj O=-Cf 1 
P=-Cf 2 
A=[3*O-P'"2}/3 
B=(2*P'"S-9*P*O+27*A)/27 
Fc1=A"'3/27 
Fc=B"'2/4+Fc1 
IF Fc<O THEN L89 
PRINT "Error-005 u 
STOP 
L89: PSi=-B/(2*SOA(-Fc1)1 
DEG 
Ps;=ACS[Psi)/3 
Fc=2*SORf-A/31 
Rt!11=FC*COS(PSil-P/S 
Rt 2)=Fc*COS(Psi+120}-P/3 
Rt 3)=Fc*COS(Psi+240)-P/3 
RAD 
SUBEND 
SUB Normod(H(*l Ev(*l,F(*l,L;(*ll 
DIM G ( 1 : 261 : 2) , G t (1 : 2 , 1 : 2) , F 9 (1 : 2 , 1 : 2) ,G f 9 (1 : 2 , 1 : 2) , L (1 : 2 ,1 : 2' 1 
FOR 1=1 T 2 
G (1 ,I ) =- H [ 1 ,2) I { H {1 ,1 1 -E v { I 1 1 
G ( 2t,I ) =1 
NEX I 
MAT Fg=F*G 
MAT Gt=TRN(G) 
MAT Gfg=Gt*Fg 
FOR 1=1 TO 2 
Ll2,Il=SOR[ Ev lI)/Gfg[I,I)) 
L(1

f
I)=G(1,I) L(2,I] 

NEX I 
MAT Li=INV(Ll 
SUBENO 



6000 
6005 
6010 
601 5 
6020 
6025 
6030 
6035 
6040 
6045 
6050 
6055 
6060 
6065 
6070 
6075 
8080 
6085 
6090 
6095 
8100 
6105 
6110 
8115 
6120 
6125 
6130 
6135 
6140 
6145 
6150 
6155 
6160 
8165 
6170 
6175 
6180 
6185 
6190 
6195 
6200 
6205 
6210 
6215 
6220 
6225 
6230 
6235 
6240 
6245 
6250 
6255 

SU8 Tunl[V1 ,V2,F,M,T,Gam) I 6 point Gaussian Lengendre 
OPTION 8ASE 1 
D I ~1 X ( 6) \H 8 ) 
DATA .238619186083,.661209386466,.932469514203 
FOR N=4 TO 6 
READ X[N) 
X[7-N)=-X[N) 
NEXT N 
DATA .467913934573,.360761573048,.171324492379 
FOR N=4 TO 6 
READ \'I(N) 
\'1 ( 7 - N ) = W [ N ) 
NEXT N 
H=6.6234E-27 
K=1.38033E-16 
Kt=K*T 
A=V1-V2 
V1 h=SQR [V1 ) 
V2h=SUR(V2J 
B=[V1 h+V2h}"2 
Pi2=2*PI 
L=Pi2*SUR(-2/F)/[1/V1h+1/V2h) 
C=H"2/(8*M*L"21 
DEF FNCosh(Z)=.5*[EXP(Z)+EXP(-Z)) 
Delta=[8-C)/C 
IF Delta(O THEN L10 
Dfac=FNCosh(PI*SUR[Delta)) 
GOTO L 11 
L10: Dfac=COS[PI*SUR[-Delta)) 
L11: IF V2>=V1 THEN EO=-V1/Kt 
IF V1>V2 THEN EO=-V2/Kt 
Va v = .5* ( V1 + V2 1 
Eb1=[C*[LOG£2*{1+Dfac)/.0141/Pi2)"2-Vav)/Kt 
Eb2=3.2 
Eb=~lIN [Eb1 J.Eb2) 
Em=.5*(Eb-t:0) 
Ep=.5*[Eb+EO) 
Gam=O 
FOR N=1 TO 6 
E=Em*X£NJ+Ep 
Kte=Kt*E 
Alph1=PI*SUR[ [Kte+V1 l/C) 
Alph2=PI*SUR([Kte+V2)/Cl 
Facp=FNCosh(Alph1+Alph2) 
Facm=FNCosh[Alp.h1-Alph21 
Ke=(Facp-Facmli[Facp+Dfacl 
Y=Ke*EXP(-E) 
Gam=Gam+\'I(N)*Y 
NEXT N 
L50: Gamfac=EXP(-Eb} 
Gam=Em*Gam+Gamfac 
SUBENO 



6500 SUB PltkCOptC*] ,Nm,TC*] ,LkC*) ,EC*)) 
6502 DEG 
6504 PLOTTER IS 13,"GRAPHICS" 
6506 GRAPHICS 

~~~8 5~~A*~i~~l~~~~1BY~1cs(1 :11) 
651 2 DATA .01,.02,.025,.05,.1,.2,.25,.5,1,2,2.5 
6514 MAT READ Xtics 
6516 Xmin=1000/T(1] 
6518 Xmax=1000/T(Nm] 
6520 Xspan=Xmax-Xmin 
6522 FOR 1=1 TO 11 
6524 Itab=I 
6526 IF INTCXspan/XticsCI]J<=6 THEN L30 
6528 NEXT I 
6530 L30: Xtic=Xtics(Itabl 
6532 Xstart=INT(Xmin/Xtic *Xtic 
6534 Xstop=INTCXmax/Xtic) Xtic 
6535 IF (Xstop>Xmax] AND (Xstop-Xmax>1E-2*Xtic) THEN Xstop=CINTCXmax/Xtic)+1)*Xtic 
6536 Ymin=Ymax=Lk(1) 
6538 FOR N=2 TO Nm 
6540 IF Ymin>Lk(N] THEN Ymin=Lk(N) 
6542 IF Ymax<Lk(N) THEN Ymax=Lk(N) 
6544 NEXT N 
6546 Yspan=Ymax-Ymin 
654B MAT Ytics=Xtics 
6550 FOR 1=1 TO 11 
6552 Itab=I 
6554 IF INTCYspan/YticsCIll<=6 THEN L40 
6556 NEXT I 
6558 L40: YtiC=YtiCS(Itabj 
6560 Ystart=INT(Ymin/Ytic *Ytic 
6562 Ysto~=(INT(Ymax/Ytic +1)*Ytic 
6564 SCALE Xstart,Xstop,Ystart,Ystop 
6566 LINE TYPE 3 
6568 GRID Xtic,Ytic,Xstart,Ystart 
6570 LINE TYPE 1 
6572 AXES Xtic,Ytic,Xstart,Ystart,2,2,6 
6574 FRAME 
6576 CSIZE 3 
6578 LOAG 8 
6580 FDA Ypos=Ystart TO Ystop STEP Ytic 
6582 MOVE Xstart Ypos 
6584 LABEL USING'''MDD.DDX'';Ypos 
6586 NEXT Ypos 
6588 LOAG 6 
6590 FOR Xpos=Xstart+Xtic TO Xstop STEP Xtic 
6592 .MOVE Xpos~Ystart-Ytic/10 
6594 LABEL USING "Z.DD";Xpos 
6596 NEXT Xpos 



659B 
6600 
6602 
6604 
6606 
6608 
6610 
6612 
6614 
6616 
6618 
6620 
6622 
6624 
6626 
662B 
6630 
6632 
6634 
6636 
6638 
6640 
6642 
6644 
6646 
6648 
6650 
6652 
6654 
6656 
6658 
6660 
6662 
6664 
6666 
666B 
6669 
6670 
6674 
6676 
6680 
6682 
6684 

LOIR 90 
CSIZE 4.5 
LORG 1 
ON Opt(2) GOTO L1 L2 
L1: ON Opt(4) GOTO La1 La2,La3,La4 
La1: MOVE Xstart-Xspan'.15,Ystart+Yspan*.27 
LABEL USING "K";"Ln(k) cclmola-s" 
GOTO Lout 
La2: MOVE Xstart-Xspan*.15,Ystart+Yspan*.1B 
LABEL USING "K";"Ln[kJ cclmolecule-s" 
GOTO Lout 
La3: MOVE Xstart-Xspan*.15,Ystart+Yspan*.1B 
LABEL USING "K";"LnlkJ liters/mole-s" 
GOTO Lout 
La4: MOVE Xstart-Xspan*.15,Ystart+Yspan*.12 
LABEL USING "K";"Ln[kl liters/molecule-s" 
GOTO Lout 
L2: ON Ollt(41 GOTO Lb1 Lb2,Lb3,Lb4 
Lb1: MOVE Xstart-Xspan'.15,Ystart+Yspan*.25 
LABEL USING "K";"Log(kl cc/mole-s" 
GOTO Lout 
Lb2: MOVE Xstart-Xspan*.15,Ystart+Yspan*.16 
LABEL USING "K"j"Log[kl cc/molecule-s" 
GOTO Lout 
Lb3: MOVE Xstart-Xspan*.15,Ystart+Yspan*.16 
LABEL USING "K"j"Log(kl llters/mole-s" 
GOTO Lout 
Lb4: MOVE Xstart-Xspan*.15,Ystart+Yspan*.08 
LABEL USING "K"j"Log[k) llters/molecule-s" 
Lout: LOIR 0 
MOVE Xstart+.43*Xspan,Ystart-Yspan*.12 
LABEL USIrJG "K'" "1 OOOIT" 
t~OVE T{1 1~Lk(1 l' 
FOR N=1 Tu Nm 
PLOT 1000/T(N) ,Lk(N) 
NEXT N 
LINE TYPE 3 
~10 V E 1 0 0 0 I T [1 ) , L k ( 1 1 - E ( 1 J 
FOR N=1 TO Nm 
PLOT 1000/T(Nl ,Lk[Nl-E{Nl 
NEXT N 
RAD 
SUBEND 



6800 
6801 
6810 
6820 
6830 
6831 
6850 
6860 
6870 
6880 
6890 
6900 
6910 
6920 
6930 
6940 
6950 
6960 
6970 
6980 
6990 
7000 

EoF 
/ 

SUB Fit (0 pt 2) N , T ( * 1 , Xo b ( * ) , E [ * ) , P ( * ) , E2 ,0 p t 7 1 
OPTION BASE "I 
DIM A(N,3J ,At(3,N) ,Ata(3,31 ,Ata; (3,3) ,Atx(3) ,XCN) 
FDA I=1 TO N 
A (I ,1 ) =1 
ACI 2)=0 
IF Opt2=2 THEN L10 
IF opt7=3 THEN Arl r21=LoGCTCIJJ 
A C I J. 3 ) =-1 / ( 1 • 987 * T I)) 
GoTu L11 
L1o: IF opt7=3 THEN A(I f 21=LGT[T[I)) 
A[I ,3)=-.43429/(1 .9B7*TC )) 
L 11: N EXT I 
MAT At=TAN(A) 
MAT Ata=At*A 
MAT Atai=INVCAtaJ 
MAT Atx=At*Xob 
MAT P=A t a i *A t x 
MAT X=A*P 
MAT E=Xob-X 
E2=DoT[E,E) 
SUBEND 
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A test substance with characteristics and properties similar to those of cellulose· based solid waste products 
is needed to calibrate calorimeters and combustors which will be routinely burning these materials to determine 
their calorific values precisely for use in commerce. Microcrystalline cellulose was found to be a good calibrant 
for this purpose. The enthalpy of combustion of microcrystalline cellulose ~H~ at (25 0q, and its estimated 
uncertainty, was determined to be -2B12.401±1.725 kllmol based upon the sample mass. 

A calculated heat of wetting correction of 1.514 kl Imol was applied to the combustion data. 

Keywords: alternative fue~ bomb calorimetry, cellulose, enthalpy of combustion, refuse·derived·fue~ test 
substance. 

1. Introduction 

The enthalpies of combustion of heterogeneous 
feedstocks such as refuse-derived-fuel (RDF) and wood 
wastes, are important thermochemical data because of the 
potential application of these materials in commerce as sup
plemental or alternative fuels. When determining the en
thalpy of combustion of RDF in a conventional bomb 
calorimeter or a newly designed multi-kilogram flow 
calorimeter, it is desirable to have a "test substance"[I]1 
which can be used for their calibration which is as close to 
RDF in character as possible. This test substance will per
mit the intercomparison of the thermochemical results of 
different investigators in the new field of fuels from 
cellulose-based solid wastes and will essentially serve to con
trol the chemical part of the investigation. Since there is a 
large fraction of cellulosic materials (i.e., paper products) in 
municipal solid waste (MSW), we decided to investigate the 
possibility of using a pure cellulose as a test substance. 
Cellulose not only has a close compositional relationship to 
the major components of MSW, but also possesses a similar 
kinship to wood species, wood wastes from the manufacture 
of paper, bagasse from the sugar refining industry, 
agricultural wastes, and some forms of peat. These 
materials have a potential as supplemental or alternative 
fuels just like RDF. 

tGuesl worker from July 1980-February 1981, Chemistry Laboratory, National 

Institute of Metrology, P.O. Box 2112, Peking, People's Republic of China. 

·Center for Chemical Physics, Chemical Thermodynamics Division 

'Numbers in brackets indicate literature references at the end of this paper. 

A search was carried out to find a suitable cellulosic test 
substance. We needed a cellulose which was high in purity, 
homogeneous, inexpensive, easy to pelletize, and one which 
could be obtained in large quantities. Avicef,2 a readily 
available commercial cellulose, was chosen because it pos
sesses most of the requirements for use as a calibrant in a 
bomb calorimeter. This cellulose is very homogeneous, 
99.81 percent pure, and presses into a pellet very easily. 

Calibration of the oxygen bomb calorimeter was per
formed using SRM benzoic acid, standard sample, 39i, 
which is the accepted primary standard substance for 
calibrating bomb calorimeters. Comparative calorimetric 
measurements were conducted on the cellulose sample. 
These measurements for benzoic acid and cellulose, along 
with the heat of wetting correction for cellulose, are 
presented in this paper. 

2. Experimental 

2.1 Sample Characterization 

Avicel, pH-lOI, lot 1018-152, is a microcrystalline 
cellulose, which is an acid hydrolyzed derivative of a dissolv· 
ing grade of wood pulp. It has an average particle size of 50 
micrometers and a pH of 5.5 to 7. 

The sample was not subjected to any further purification 
but these additional analyses were made to further 

'The commercial sources cited in this paper are included to adequately de~cribe 

the experimental procedure. Such identification does not impl~· recommendation or 

endorsement by the National Bureau of Standards. 
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characterize the cellulose. The percent moisture of seven 
cellulose samples was 4.910 ± 0.060 (sd.) at a relative 
humidity of 36 percent, as determined by drying in a 105 
°C oven until a constant weight was reached. 

The water soluble impurities of fluoride, chloride, nitrate, 
and sulfate were analyzed for by the method of ion
chromatography.3 Two cellulose samples of different 
masses,0.51 g and 1.62 g were diluted in a solution contain
ing the buffer: 0.003M NaHC03 /0.0018M Na2C03. The 
diluted sample was mixed, allowed to settle, and filtered 
through a 0.2 micrometer syringe filter. The average con
centration of water soluble impurities for the two samples 
was 62.46 ppm. This level of anions is negligible when look
ing at the overall sample purity. 

The amount of ash was found to be negligible when deter
mined according to the American Society for Testing and 
Materials (ASTM) Standard Test Method D-3174-73 for 
Coal and Coke. The samples were fired for two hours in a 
furnace Qperating at 575-600 °C. 

The purity of the Avicel was determined in duplicate CO2 

analyses of the bomb combustion products. The gaseous 
products of combustion were released from the bomb and 
passed through absorption tubes containing Ascarite and 
magenesium perchlorate for removal of CO2 and H20, 
respectively, and phosphorus pentoxide [2] to prevent the 
back-flow of moist room air into the absorption system. The 
amount of CO2 was then determined gravimetrically. The 
purity of the cellulose was found to be 99.809 ± 0.103 (sd.) 
percent. 

2.2. Description of Colorimeter 

The combustion measurements were made in an iso
peribol oxygen bomb calorimeter. This is an isothermal
jacket calorimeter with the calorimeter reaction vessel 
submerged in a water bath at 301 K and controlled to 
±0.OO3K. This prevents any thermal leakage between the 
laboratory environment and calorimeter. The heat gen
erated when a measured amount of sample is burned is 
compared to the heat evolved when a measured amount of 
standard substance is burned in the same calorimetric sys
tem. Benzoic acid, the primary calibrant, is burned and 
produces a three degree temperature rise in the calorimeter. 
The energy equivalent of the calorimeter is determined 
from the amount of energy produced by the benzoic acid 
and divided by the temperature rise. The temperature rise 
is corrected for the stirring energy produced in the stirred 
water of the calorimeter vessel and any thermal leakage 
between the environment and calorimeter. 

In a cellulose experiment, the corrected temperature rise 

'The analyses were performed by the Inorganic Analytical Research Division of 

the National Bureau of Standards. 

is multiplied by the energy equivalent of the calorimeter. 
This calulation gives the total energy produced in a cellu
lose combustion experiment. This total energy is finally cor
rected for any side reactions, or thermal corrections, and is 
divided by the mass of the cellulose sample to produce the 
internal energy of combustion at constant volume, l::..CJ;. 
Conversion to the enthalpy of combustion at constant pres
sure, l::..H;, carried out by applying a correction term for 
pressure-volume expansion (l::..nRT). The l::..nRT term for 
this reaction is 0, therefore l::..CJ; = l::..H;. 

All of the cellulose samples for combustion are pressed 
into pellets under an approximate force of 44.4 kN. A sam
ple weight of 2.3 g was pre-determined in a trail experiment 
as the necessary amount of sample required to produce a 
three degree temperature rise. 

2.3 Sample Preparation 

A dried sample weight is necessary for the combustion 
experiments. Since cellulose is very hygroscopic, this was 
very difficult. The samples were placed into pre-weighed 
ground glass neck weighing bottles, dried at 105°C until a 
constant weight of ± 0.3 mg was obtained, and stored in a 
desiccator over PzOs until ready for testing. 

2.4 Example of Colorimetric Procedure 

A dried pellet was transferred from the weighing bottle to 
a preweighed platinum crucible. The empty weighing bottle 
was again weighed to account for any cellulose remaining in 
the bottle. The platinum crucible with pellet was placed on 
the crucible support of the bomb head. The fuse leads had 
been previously connected with a 2 cm length of 0.075 mm 
platinum wire which is placed in contact with the top of the 
pellet. Normally, 1 ml of wa ter is added to the bottom of the 
bomb to provide a saturated atmosphere and ensure that 
water formed as a combustion product is present in the 
liquid state. For this series of cellulose combustions, 0.2 ml 
of water was added directly to the pellet in the crucible and 
0.8 ml added to the bottom of the bomb. The sample was 
wetted before burning because it was found in the previous 
study by Jessup and Prosen [3]4 that a more complete com
bustion results with a wetted sample rather than a dry one. 

The sealed bomb is charged with 3.10 MPa (30.62 atm) of 
high purity oxygen and placed on the bench for approxi
mately 1 hour for the sample to equilibrate with the moist 
environment inside the bomb. The calorimeter vessel is 
fined with a known amount of water, the bomb is lowered 
into the vessel, and the covered calorimeter is submerged in 
the constant temperature water bath. The rate of tempera-

• In a private consultation with EJ. Prosen, who had done a similar study in 1950, 

we were advised to wet the ceUulose sample before placillg it in the bomb. 
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ture rise is measured during the period before the sample is 
ignited, during the reaction period immediately after the 
sample is ignited, (main reaction period), and during the 
period after the reaction is completed. The difference be· 
tween the temperature at which the final drift rate begins, 
and the temperature at which the sample is ignited, gives 
the observed temperature rise. The slope of the. fore- and 
after.periods allows one to calculate that portion of the 
temperature rise due to stirring energy and thermal leakage 
[4]. 

3. Results and Discussion 

3.1 Correction for Heat of Wetting of Cellulose 

Since the samples were wet when they were ignited in the 
bomb, the heat produced in the combustion reaction is 
lower than for a dry sample. This amount of heat is equal to 
the heat of wetting and has to be corrected for in the calcu· 
lation for the enthalpy of combustion. These heat of wetting 
determinations were not experimentally performed in the 
laboratory because of time constraints, and after searching 
the literature, it was felt an adequate amount of data 
already existed so that a calculated correction could be 
made. 

The literature search extended back to 1948 or to about 
the time period when Jessup and Prosen's calorimetric work 
on cellulose was carried out at NBS [3]. Table I gives a sum
mary of the heat of wetting data on cellulose in the litera
ture. Rees' result of 46.02 [12] was in the same range as the 
other data listed, but his heat of wetting data also included 
the actual data points at different moisture contents of the 
sample. It was also presented in such a way as to easily 
select which sample was the closest counterpart to our 
Avicel sample. 

TABLE I. Published Data on Ml Wetting o/Cellulose 

~H wet. 

Researcher Type of cellulose callg(J/g) 

Jessup, et ai, 1950[3] wood pulp 30 14.1 (58.95) 

Jessup, et aI. 1950[31 cotton linters 30 11.2 (46.80) 

Wahba, et ai, 1952[5] standard cellulose 20 11.0 (46.02) 

Wahba, 1948[6] raw cotton 30 12.2 (51.04) 

Wahba, 1950[7] standard cellulose 30 10.72 (44.85) 

Wahba, 1959[8] stabilized cellulosea 30 10.52 (44.02) 

Wahba, 1959[8] unstabilized cellulose 29.8 10.70 (44.77) 

Wahba, 1975[9] stabilized cellulose 15 11.48 (48.03) 

Argue, et aI, 1935[10] standard celluloseb 10.16 (42.51) 

Morrison, et aI, 1959[11] cotton cellulosec 12.33 (51.59) 

Rees 1948[12] American cotton 25 11.0 (46.02) 

a Cellulose treated by repeated wetting and drying. 
b Heated samples in air at 100°C. 
e Dried at room temperature. 

Using his data for cotton we were able to fit it to a least 
squares program and generate a polynomial expression for 
the data. Using that curve we selected hypothetical mois
ture contents for the cellulose sample that gave a calculated 
heat of wetting that reached a minimum value. The equa
tion which was generated is given below: 

y= 10.8719-2. 16135X +0.13516X2 

where Y is the resulting calculated heat of wetting correc
tion, 2.23134 callg (9.33592 JIg), and where X is the mass 
fraction of the moisture present in the cellulose sample 
before absorption begins. The value for the heat of wetting 
of cellulose was multiplied by the mass of cellulose burned 
in each experiment and the resulting numbers used as the 
correction for each heat of combustion measurement. 

3.2 Bomb Calorimetric Measurements 

Standard Reference Material, benzoic acid (SRM 39i), 
was used as the calibrant for the calibration experiments 
and has an energy of combustion of 26434 ± 3 JI g at 25°C 
and standard bomb conditions. The average energy equiva
lent of the calorimeter (Esi) was determined from nine 
benzoic acid combustions and was found to be 14347.75 ± 
0.82 J IK (sdm) at 301 K. Table II contains the detailed 
presentation of the nine calibration experiments, numbered 
from 1000-1013. The headings, in the order in which they 
appear in the table, are defined as follows: 

Expt. No., the number of the experiment, which can easi
ly be traced back to our records. 

t::..l!; (28°C), the internal energy evolved by the combus
tion of benzoic acid at the selected final temperature in JI g. 

m-BA(vae}, the mass of the benzoic acid sample, in g, 
reduced to mass in vacuum. 

q-BA, the energy evolved by the combustion of benzoic 
acid, inJ. 

q-ign, the electrical energy added to the system to ignite 
the sample, in J. 

q-HNOJ , the energy evolved by the formation of nitric 
acid in the combustion process, in J. (usually due to nitro
gen impurities in the oxygen). 

q-WC, The Washburn Correction [13, 14, 15] applied to 
correct the combustion data from bomb conditions to condi
tions in which the reactants and products are in their pure 
standard states at one atmosphere pressure, in J. 

Q-totat the total energy delivered to the calorimeter after 
corrections for ignition energy, formation of nitric acid, and 
Washburn correction, inJ. 

l:i T-eo"_ the observed temperature rise of the calorimeter 
corrected for stirring energy and thermal leakage, in K. 

E·ca~ the energy equivalent of the actual calorimeter 
system at the final temperature, (28°C) in J/K. 
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TABLE II. Benzoic Acid Calibration Results. 

.1U~(28 0c) m·BA(yac) q-BA q-ign q-HN03 Expt. No. 
JIg g J J J 

1000 -26410.68 1.636294 -43215.64 1.16 6.24 

1001 -26410.68 1.629256 -43029_76 1.16 5.72 
1002 -26410.68 1.632134 -43105.76 1.21 5.07 
1004 -26410.68 1.630985 -43075.41 0.94 3.44 

1008 -26410.68 1.629405 -43033.69 1.16 5.66 

1010 -26410.68 1.630515 -43063.02 0.94 4.55 
1011 -26410.68 1.630601 -43065.29 0.94 2.99 

1012 -26410.68 1.630203 -43054.76 1.06 6.04 

1013 -26410.68 1.630414 -43060.33 1.16 5.33 

Ei-cont, the heat capacity of the initial bomb contents, 
including the sample, crucible, water, and oxygen, inJ/K_ 

E,si-empty, the energy equivalent of the empty calorime
ter at 28°C, in J/K. 

E,si-mean, the mean value of the measured energy equiv
alent, in J/K. 

Std. Dev_, the standard deviation of a measurement, (sd), 
in J/K (and the percent standard deviation, %sd). 

Std. Dev. Mean, the standard deviation of the mean, 
(sdm) in J/K (and the percent standard deviation of the 
mean, % sdm). 

The combustion data for Avicel are presented in table III. 
These are additional headings used in the table that were 
not described previously and are identified as follows: 

q-wetting, a correction to the overall energy due to the 
combustion of the wetted sample, in J. When the sample is 
wetted, heat is evolved. During the burning process, that 
amount of water used in pre-wetting the sample is dried 
during the combustion. Therefore, the amount of heat gen
erated in the combustion reaction is less than would be 
expected due to the amount of heat required to dry the sam
ple. The number of joules due to the combustion of the com
pound initially is smaller and the amount of heat due to the 
wetting must be put back in to produce the correct enthalpy 
of combustion. 

q-corr to tf , A correction applied for the deviation of the 
actual final temperature from the selected standard final 
temperature (ussually 28 0c), in J. 

Q-cellulose, total energy delivered to the calorimeter after 
corrections for ignition energy, formation of nitric acid, 
sulfuric acid, heat of wetting and the like, in J. 

m-cellulose, mass of the Avicel (cellulose) sample, in g, 
reduced to mass in vacuum. 

l:1U: (28 ° C), the internal energy of combustion of the cel
lulose sample at constant volume in JI g. 

q-WC Q-total 
J J 

34.646 -43257.62 
34.415 -43070.99 
34.461 -43146.44 
34.463 -43114.21 
34.503 -43074.97 
34.580 -43103.42 
34.500 -43103.98 
34.625 -43096.67 
34.567 -43101.69 

E,si-mean J/K 
Std. Dey. J/K 
Std. Dey. Mean J/K 

.1T-corr E-cal 
K J/K 

3.010633 14368.28 
2.997890 14367.10 
3.002835 14368.57 
3.001051 14366.37 
2.998000 14367.90 
3.001390 14361.15 
3.000125 14367.39 
2.999317 14368.83 
3.000575 14364.48 

14347.75 
2.47(0.017%) 
0.82(0.006%) 

Ei-cont E,si-empty 
J/K J/K 

18.92 14349.36 
18.89 14348.21 
18.88 14349.69 
18.89 14347.48 
18.93 14348.97 
18.95 14342.20 
18.91 14348.48 
18.97 14349.86 
18.95 14345.53 

l:1nRT, the correction term needed to change l:1U: to t:JI: 
at a given temperature. 
~28 ° C), the enthalpy of combustion of the sample in 

pure oxygen at the final temperature, in kJ/mole. 
l:1Cp l:1T, a correction which includes the calculated 

change of heat capacity of the calorimeter system with tem
perature (25-28 CC), in kJ/mole. The following values for 
CplJmol-1 at 298 K were used: a-cellulose C6 H100S(c), 
188.554 [16]: 02(g), 29.355: CO2(g), 37.112: H20(liq), 75.29l. 

1ll/J.25 °C), the enthalpy of combustion of the sample at 
the standard temperature, in kJ/mole. 

A mean value of -17 340.76 ± 3.44 Jig (2 sdm) was 
obtained for the internal energy of combustion, l:1U:, of the 
Avicel sample at 28°C, according to eq. (1). 

The formula weight of cellulose used in this study is 
162.1439 g/mole. 

The results of this study and the values derived from the 
results are summarized in table IV. The uncertainties 
assigned to l:1U: and t:JI: were obtained by combining 
(square root of the sum of the squares) 2 sdm (in %) for the 
calib.ration experiments, 2 sdm (in %) for the combustion 
experiments, 0.01 percent for the possible effect of organic 
impuri ties in the sample, 0.01 percent for the uncertainty in 
the certified value for benzoic acid and reasonable esti
mates of all other sources of error, 0.01 percent 

Our values are calculated at 30°C for purposes of com
parison with work that was carried out by Jessup and Prosen 
[3]. Their l:1U: (30°C) for wood pulp is -17 385.9 ± 18.9 
J/g(sdm) which is a mean of three experiments. Our results 
are l:1~30 0c) = -17337.86 ± 3.44 Jig (2 sdm). Both of 
these values are calculated based upon the mass of sample 
burned. A 0.276 percent difference exists between the two 
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TABLE III. Combustion Data on Cellulose 

Expt. No. 1014 1015 1016 

E.si·empty JIK 14347.75 14347.75 14347.75 
Ei·cont JIK 28.04 28.62 28.79 
E-cal JIK 14375.79 14376.37 14376.55 
.1T -corr K 2.755973 2.894679 2.941978 
Q-total J -39619.30 -41614.99 -42295.48 
q·ign J 1.16 1.16 1.49 
q·HNO. J -44.5308 -45.3003 -23.7486 
q.wetting J -21.2809 -22.3577 -22.7384 

q·WC J 34.6815 36.8266 37.5677 
q-corr to t, J -2.0237 -1.4655 -1.2200 
Qcellulose J -39562.23 -41555.25 -42256.64 
m-cellulose g 2.281250, 2.396698 2.437510 
.1U:'(28 "C) Jig -17352.35 -17338.66 -17355.98 
°.1nRTa kJ/mol 0 0 0 
.1 H:'(28 0c) kJ/mol -2811.956 -2811.358 -2810.923 
.1C,I,.1n kJ/mol -0.703 -0.703 -0.703 
.1 H:'(25 OC) kJ/mol -2812.659 -2812.061 -2811.626 

aThe values of atomic weights used in this work are: 

o = 15.9994, C = 12.0112, H = 1.00797 

Mean, Ml:'(28 0c) 

Std. Dev. 

Std. Dev. Mean 

kJ/mol 

kJ/mol 

kJ/mol 

-2811.698 
0.84 (.030%) 
0.28 (.010%) 

1018 

14347.75 
28.47 

14376.23 
2.858541 

-41095.04 
1.22 

-45.0477 
-22.0796 

36.2776 
-1.5837 

-41036.15 
2.366881 

-17337.65 
0 

-2811.194 
-0.703 

-2811.897 

T ABLE IV. Data Summary with Estimated Uncertainty. 

AU~(28 QC) 
AH:'(28 QC) 

-17 340.76 ± 10.64 Jig 
- 2 811.698 ± I. 725 U/mol 
-2 812.401 ± 1.725 U/mol 

values, but considering that Jessup and Prosen's sample 
was not well characterized and its purity uncertain, the 
values are in very good agreement Our precision indicates 
that the Avicel can be burned very reproducibly. 

4. Summary and Conclusions 

A test substance with characteristics and properties simi· 
lar to those of cellulose·based solid waste products is needed 
to calibrate calorimeters and combustors which will be rou
tinely burning these materials to determine their calorific 
values precisely for use in commerce. 

Microcrystalline cellulose is a good calibrant for this pur
pose because it is ashless, of high purity, homongeneous, 
inexpensive, and easy to pelletize. For hygroscopic cellu
lose materials a heat of wetting correction is neccessary. 
Extremely dry ceIlut'ose does not produce a complete burn 
in a combustion calorimeter. Our heat of wetting correction 
of 1.514 kJ/mol was calculated based upon previous data in 
the literature. The enthalpy of combustion of microcrystal
line cellulose, !:::..Jt: at (25°C), and its estimated uncertainty, 
was determined to be -2812.401 ± 1.725 k.l/mol based 
upon the sample mass. Microcrystalline cellulose appears to 

1020 1021 1023 1024 1032 

14347.75 14347.75 14347.75 14347.75 14347.75 
28.24 28.28 28.15 28.46 28.29 

14375.99 14376.03 14375.90 14376.22 14376.04-
2.801024 2.8Il611 2.779214 2.851034 2.816332 

-40267.49 -40419.82 -39953.71 -40987.08 -40487.71 
1.49 l.l8 1.24 0.92 0.84 

-45.9112 -44.7364 -45.6938 -43.9845 -29.0646 
-21.6333 -21.7140 -21.4625 -22.0711 -21.7420 

35.3811 35.5512 35.0807 36.2219 35.6218 
-1.7402 -1.8014 -1.9352 -1.6774 -1.7742 

-40208.08 -40361.86 -39895.09 -40929.65 -40445.70 
2.319141 2.327693 2.300729 2.360262 2.330697 

-17337.49 -17339.86 -17340.20 -17341.15 -17353.48 
0 0 0 0 0 

-2811.168 -2811.553 -2811.608 -2811.762 -2813.761 
-0.703 -0.703 -0.703 I -0.703 -0.703 

-2811.871 I -2812.256 -2812.311 I -2812.465 -2814.464 

have good potential for serving as a test substance in the 
combustion calorimetry of cellulose-based solid waste pro
ducts. 
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Accurate, efficient, automatic methods for computing the complex error function to any precision are 
detailed and implemented in an American Standard FORTRAN subroutine. A six significant figure table of erfc 
z, ell erfc z, and eEl erfc( -z) is included for z in polar coordinate form with the modulus of z ranging from 0 to 
9. The argand diagram is given for erf z. 

Key words: Argand diagram; complex error function; continued fraction; Dawson's function; FORTRAN 
subroutine; Fresnel integrals; key values; line broadening function; plasma dispersion function; Voigt function. 

1. Introduction 

In computing many of the functions of mathematical physics, for example, Fresnel integrals, Dawson's 
integral, Voigt function, plasma dispersion function, etc., difficulties are frequently encountered. Since 
these functions may be expressed in terms of the error function of complex argument, we have chosen this 
function for Part IV.l The major part of the coding of the power series, continued fraction and asymptotic 
expansion computations for complex arguments will carryover equally well for other functions. 

As Part I was devoted to the error function of a real variable, the probability function and other related 
functions, Part IV will only emphasize those functions and pitfalls due to complex arguments. 

While accuracy over the entire domain of definition remains our main concern, the methods employed 
ensure efficiency, portability and ease of programming and modification. 

If one supplies approximate values for the maximum machine value, minimum machine value, the upper 
bound of the sine, cosine routine, and the upper bound to the acceptable relative error and gives the square 
root of 1r to the required number of significant figures, the detailed methods will work for computations 
ranging from very low precision to multi-precision. 

The argand diagram of erf z is included as well as the implementing ANS FORTRAN program and a six 
significant figure table of erfc z, e,l erfc z and e,l erfc( - z) for z in polar coordinate form with the modulus 
of z ranging from 0 to 9. 

2. Mathematical properties 

Relevant formulas are collected here for completeness and ease of reference. In keeping with the conven-
tion of the Handbook [1],2 z X + i y is a complex variable. 

"Mathematical Analysis Division, Center for Applied Mathematics. 

I Part I. Error, Probability, and Related Functions. 1. Res. Nat. Bur. Stand. (U.S.). 74(3): 211-22'l; 1970. Part II. The Exponenliallnte~ral E.h). J. Res. 

Nat. Bur. Stand. (U.S.). 78(4): 199-216; 1974. Pari III. The Sine. Cosine. Exponential Integrals. and Related Functions. 1. Res. Nat. Bur. Stanc!. (U.S.). 

~2): 291-311; 1976. 

2 Figures in brackets indicate literature references at the end of this paper. 
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A. Definitions 

erf z = J7r 1~ e-
t2 

dt 

erfe z = 7 100 e-t2 dt = 1 - erf z ,,7r % 

(The path of integration is subject to the restriction arg t - ex with I ex I < ~ as t - 00 along the path. If 

Rt2 remains bounded to the left, ex = ~ is permissible.) 

with 

and 

where 

F(z) 

Z(z) = 

w(z) = e-%2 (1 + j~ I~ e
t2 dt) = e-z2 erfc (-iz) = e

t2 erfc ~ (~= -iz) 

_ i 100 e-
t2 

dt _ 2iz roo e-
t2 

dt (/ 0) 
- 1r -00 --;:::t - -;- J 0 zZ-t2 z > 

J 
00 e-t2 dt 
-00 t- z 

(Dawson's Function) 

(Plasma Dispersion Function) 

E(z) = C(z) + i S(z) = J~ e i ... 1'/2 dt = 1~ cos ( 7r: ) dt + i I~ sin 7rt2 dt 

1 +i .J7r 
= -2- erf[-2- (1-1) z] (Fresnel Functions) 

-u2 d 
W( ) - w 100 e u (7r )112 2 

X,t - (47rt)1I2 -00 u2 +w2 = -:re- e'" erfc w 

w = (1- ix)/2 t1/2 

= U(x,t) + i V(x,t) (Voigt Function) 

1 100 

== (47rt)/2 -00 

ye-(r-y )2 /4t 

l+r dy 

e-t2 dt 
H(a,u) == !:.. 100 = 7r -00 (u-t)2+a2 U(u/a, 1I4a2) (Line Broadening Function) 

B. Series Expansions 

erf z = 

= 

2 f (-I)"z2,,+1 
,,=0 n! (2n + 1) 

C. Continued Fraction (Rz> 0) 

el2 erfc z == ~ _1_ 3/2 _2_ ] 
z+ z+ z+ z+ ... 

2z [ 1 
== .J 7r 2zZ + 1 -

3-4 ] 
_ 2zZ+9 _... CEven" Form) 
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D. Asymptotic Expansion 

erfc z - _1_[~ + E 
...)11" Z ,,=1 

(-1)"1-3 •. . (2n -1) ] ( I I < 311" 
z(2z2)" z- 00, arg z 

E. Symmetry Relations 

erf (-z) = - erf z 

erf z= erf z 

w(z)= w( -z) 

C(-z)= - C(z),S(-z)= - S(z) 

C(iz)= i C(z), S(iz) = - i S(z) 

C(Z) = C(z ), S(Z) = S(z) 

3. Method 

The main functions under consideration are the error function ERFZ, the complementary error function 
ERFCZ, and the exponential of z2 times the complementary error function EZ2CZ. All other functions may 
be obtained from these three. To simplify testing, computations are performed for z in the first quadrant AZ 
and symmetry relations are then employed to make adjustments for other quadrants. For the special case z 
= 0, no computations are performed and the following function values are returned: ERFZ = 0, ERFCZ = 
1 and EZ2CZ = 1. 

Real type variables are used throughout to readily allow for double precision computation if greater accu· 
racy is needed. The machine dependent constants are placed in a labeled section at the beginning of the 
subroutine. Function references are likewise grouped together when possible and attention called to the 
statement labels of the remaining function references. Real and imaginary parts of complex variables have 
R and I as final characters. 

Since EZ2CZ for z in the first quadrant is machine representable even with the real and imaginary parts 
of z equal to the maximum machine value CMAX (provided its reciprocal is larger than the minimum 
machine value CMIN), checking for the range of the argument z has been omitted. However, the extensive 
range necessitates a fair amount of testing for overflows. Underflows are assumed to be set to zero. 
Overflows are set equal to the maximum machine value and an error indicator IERR set for the number of 
functions affected. If only EZ2CZ lies outside the machine range, IERR 1, otherwise IERR = 3. As often 
as possible, computations are arranged so as to give the correct results for the three functions if they lie 
within the range of the machine. 

In computing the modulus RHO = ...)(AZR)2 + (AZI)2 of a complex quantity AZ AZR + i AZI in the 
first quadrant, RHO may lie in the machine range but (AZR)2, (AZI)2 or their sum may be outside the range. 
We select the larger ARIMX and smaller ARIMN of either AZR or AZI, and compute the ratio RMNMX = 
ARIMN/ARIMX. A factor of RHO called PRHO is computed as the square root of (RMNMX"'RMNMX + 
ONE). This factor, which is greater than or equal to one and less than or equal to the square root of 2, can 
then be used to check for overflow. The quantity ARIMX must be less than CMAX divided by PRHO for 
RHO to lie in the machine range. A similar procedure is followed in computing the real and imaginary parts 
of (AZ)2 = Z2R + i AZ21 := (AZR)2 - (AZI)2 + i 2AZR'" AZI with first checking to ensure ARIMX is 
greater than or equal to 1. 

Analysis has indicated and testing confirmed that the power series PS is most useful from the standpoint 
of accuracy and efficiency for RHO less than RHOLS( := 1.5) and when AZR is less than or equal to I provid. 
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ed RHO is less than AELL (=v -In(TOLER)) where TOLER is the upper limit for the relative error. The 
continued fraction expansion CF is most useful for AZR greater than 1 and RHO greater than or equal to 
RHOLS. The asymptotic expansion AE is most useful for AZR less than or equal to 1 for RHO greater than 
or equal to AELL. For RHO greater than or equal to RHOLC (=VO.5/TOLER) a rearrangement of arith
metic operations for the first term of the asymptotic expansion is necessary to maintain the accuracy of 
EZ2CZ. In the continued fraction and asymptotic expansion regions only, EZ2CZ is first computed; it tends 
to zero for large I z I and the exponential of - z2 tends to infinity for small AZR. To maintain accuracy 
here, we compute the exponential of - Z2R16 and do continuous multiplication and testing with appropriate 
factors to obtain ERFC. The imaginary part of (AZ)2 is tested against ULSC, the upper limit of the sine, 
cosine routine. 

Figure I below maps the regions for the various methods. 

y: _R~O~C 

", 
6 

AE 
5 -

........... 

3 
Ps CF 

2 -
.f. 
10 
·<'S 

X 
I I I 

~ '1 3 4 5 L 

FIGURE 1. Parameter plane. 

The dividing line RHO = AELL between the use of the power series and the asymptotic expansion and 
RHO = RHOLC are the only boundaries subject to the required precision. Single and double precision 
results, for example on the Univac 1108, are the results of two different methods in the region where RHO 
roughly lies between 4.3 and 6.4. 

This mapping of the region ensures for the required precision that the least number of terms are com
puted and the loss of significance is kept to a minimum. While the second form of the power series is prefer
able for real positive z, since all terms are positive, the first form ensures greater accuracy for complex z 
since the real and imaginary parts of the terms may be positive, negative or zero for any RN( = n). The power 
series is there more rapidly convergent; the relative error may then be approximated by the ratio of the term 
to the sum of terms; comparison of this approximant with the tolerance for the relative error controls the 
number of terms needed. Since the terms tend to zero through underflow, there will always be convergence 
even if the tolerance is made considerably smaller than the precision of the machine. The power series is 
evaluated using recurrence relations in the following form: 

ERFZ 
TWO RNF TWO 

= SQRT(PI) Rrf =0 SGN(RN)*TM(RN) = RTPI * SUM 

where 

SGN(O) = I, SGN(RN + 1) == -SGN(RN) 
TM(RN) = ((AZ**(2*RN + 1»/1*2* ... RN)/(2*RN + 1) 
TM(RN) = PTM(RN)/DN(RN) 
PTM(O) == AZ, PTM(RN + I) = (AZ**2)*PTM(RN)/(RN + 1) 
DN(O) = I, DN(RN + 1) DN(RN) + 2 
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In determining the terminal value of RN, normalization is necessary to avoid overflows and underflows. 
The normalization factor TMAX is the maximum of the absolute value of the real and imaginary parts of 
TM and SUM. If TMAX equals zero or !TM/TMAX!2 underflows, RNF = RN. 

If 1 SUM/TMAX 12 underflows, additional terms are obtained. Otherwise, if ! TM/TMAX 12/1 SUMI 
TMAX 12 is less than TOLER2, then RNF = RN. 

The continued fraction expansion starts to converge more slowly as z tends to zero. The "even" form is 
used since the required number of terms is halved at the expense of very little extra computation for suc
cessive numerators and denominators. The continued fraction is evaluated by using the recurrence relations 
in the "forward" direction. The number of terms needed is determined by checking to see if the relative 
error of two successive convergents is less than the tolerance. On the other hand, if the relative error 
remains constant or starts to increase, the recurrence is terminated and the prior convergent taken as the 
value of the continued fraction. In this way, the process is always terminated when maximum precision is 
attained. 

The "even" form of the continued fraction takes on the following implementation: 

RNF 

2*AZ II AM(RN) 
EZ2CZ = RTPI RN = 1 BM(RN) 

with AM(l) = 1, AM(RN + 1) = - WM(RN + 1)*(WM(RN + 1) + 1) 

BM(l) = 2*(AZ**2) + 1, BM(RN + 1) = BM(RN) + 4 

where WM(l) = -1, WM(RN + 1) = WM(RN) + 2 

EZ2CZ = (AZ*(FM/GM»*2IRTPI = (AZ*F(RN»*2IRTPI 

where FM(-I) = 1, FM(O) = 0 

GM( -1) = 0, GM(O) = 1 

and FM(RN) = BM(RN)*FM(RN - 1) + AM(RN)*FM(RN - 2) 

GM(RN) = BM(RN)*GM(RN - 1) + AM(RN)*GM(RN - 2) 

The relative error may be approximated by [F(RN) - F(RN - 1)]/F(RN) = RE(RN). If the modulus 
squared of the relative error REM2(RN) is less than the square of the tolerance divided by 8, RNF = RN. If 
REM2(RN) is greater than or equal to REM2(RN - 1), then RNF = RN - l. Normalization is likewise 
necessary here to avoid overflows in computing the relative error and its modulus squared and also in the 
generation of the successive convergents. 

The asymptotic expansion is likewise evaluated using recurrence relations in the following form: 

1 RNF 
EZ2CZ = SQRT(PI) RJ =0 SGN(RN)*TM(RN) = SUMIRTPI 

where SGN(O) = 1, SGN(RN + 1) = -SGN(RN) 

TM(RN) = (l/AZ)*(l*3* ... (2*RN - 1»/(2*(AZ**2»**RN 

TM(O) = l/AZ, TM(RN + 1) = DN(RN + 1)* TM(RN)*(l/(2*(AZ**2))) 

with DN(l) = 1, DN(RN + 1) = DN(RN) + 2. 
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The relative error may be approximated here by the ratio TM/SUM. The convergence test precedes the 

divergence test and is implemented as REM2less than (TOLER**2)/8 to attain greater accuracy in both the 
real and imaginary parts. If the modulus squared of the term remains the same or increases, the prior sum is 
taken as the final sum. 

For z along the imaginary axis, the error function is purely imaginary; the real part of erfe z == I and of 
e.2 erfc z == e-(AZI)2. No difficulties arise in the use of the power series. However, since the asymptotic expan
sion is given for 1 z 1- 00, the correction must be applied for AZR - O. 

The following table gives an indication of the number of terms needed to obtain maximum machine accu
racy on the Univac ll08 with the various methods of computation. 

Method 

Power Series 
Continued Fraction 

Single Precision 
TOLER = .745E-8 

50 
25 
22 

4. Range 

Number of Terms 

Double Precision 
TOLER = .B67D·IB 

112 
99 
45 

If the real part of z is zero or positive, e.2 erfc z is valid for z throughout the entire machine range. Other
wise, the real part of z2 is essentially limited by the range of the exponential library subroutine with the 
imaginary part of z2 limited by the range of the sine, cosine library subroutine. 

5. Accuracy and Precision 

The maximum relative error, generally in erfc z, except for regions in the immediate neighborhood of 
zeros of the real and/or imaginary parts of the functions is BE-6 for single precision computation on the 
Univac 1108. 

The precision may be varied by changing the value of TOLER. 

6. Timing (Univac 1108 Time/Sharing Executive System) 

The time estimates given below are highly dependent on the operating system environment and conse
quently should not be relied on for critical timing measurements. 

Region 
ZR 0(.1)4, ZI = 0(.2)8 (1681 values) 

Method 

Power Series 
Continued Fraction 

Single Precision 
TOLER .745E·8 

5.94 

.OlD1 

.0088 

7. Testing 

Time (Seconds) 
Double Precision 

TOLER = .867D·IB 
22.5 

.038 

.052 

The language of the subroutine was checked for conformity with the PFORT VERIFIER.3 Test argu
ments were devised and used in the analysis of the subroutine with the PROFILER.4 

• The PFORT Verifier. A. D. Hall and B. G. Ryder. Bell Laboratories, Murray Hill, N.J. Proceedings of the Computer Science and Statistics Eighth 
Annual Symposium on the Interface. University of California. Los Angeles, February 13-14, 1975. 

• Program Execution Profiles. G. Sande. World Bank, Washington, D.C. Proceedings of the Computer Science and Statistics Eighth Annual Symposium 
on the Interface, University of California, Los Angeles, February 13-14, 1975. 
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The subroutine was used to obtain related functions which were checked against available published 
tables ([1]-[5], [7]-[9], [13], [15D. Single precision results covering the 9 X 9 grid were compared against 
double precision results. This precision test particularly verified that the scaling operations were valid and 
undetected overflows had not occurred. 

Where applicable, results were obtained by independent methods, for example, the power series and con
tinued fraction, the power series and asymptotic expansion or all three methods. Otherwise, both forms of 
the power series or continued fraction were used. In addition, numerical integration of various forms of the 
integral representation was employed. 

8. Test Values 

Six-significant figure tables of erfc z, e.!2 erfc z and e,2 erfc( - z) are included in the appendix. The com
putations were performed with double precision arithmetic to provide more accurate values for checking 
purposes. The arguments are in polar coordinate form z = eel/J for e 0(.02).2(.1)3(.5)9, e = 0°(15°)30°, 
37.5°, 45°, 50 °(10 °)90 0. Values of the functions for z in other quadrants are readily obtainable with sym
metry relations. 

9. Argand Diagram of erf z = 

Since erf z and erfc z are complementary functions, erf z is not tabulated but the argand diagram of the 
function is included to illustrate divergent and convergent spirals. 

~~ 

..... 
.... 
(I) 

'-1 

,erf :::. e=oo 
Convergent e<45° 
Cornu's of Fresnel integrals. 
Divergent spirals, 6>45° 

~ 2i fp e~90o 
7;0 

! 
! 

3~ 
I 

... L 
! 
i 

I~ 
! • 
1· 1 ~\ 
i 
I 
i 
1 
I 
I -Ir 
I 

I 
I 

\ 

! 

I 

I 
I 

I 

p= f4-~ 

\ 

\ 

/ 

\ 

/ 

/ 

':.:7.. 

.' ........ _.--- I 

I .I 
/ ~!J! 

,.~. /"'1' 

. ~~ .~./ 
~. ........-.~".-. 

-.;+ 
I 

J • -'I 
I 

-2. 

. - ... -----. 
-/ 

R erf z 

667 

, 
a • ::/. 



10. Special Values 

Relevant values are collected here for completeness and ease of modification and checking of the 

program. 

Zeros 

erf z.=O 
s z. 
1 1.45061616 + i 1.88094300 
2 2.24465927 + i 2.61657514 
3 2.83974105 + i 3.17562810 

w(z.) =0 
s z. 
1 1.99146684 - i 1.35431013 
2 2.69114902 - i 2.17704491 
3 3.23533087 - i 2.78438761 

C(z.) =0 S(z.) =0 
s z. z. 
1 1.7437 + i .3057 2.0093 + i .2885 
2 2.6515 + i .2529 2.8335 + i .2443 
3 3.3204 + i .2240 3.4675 + i .2185 

Maxima and Minima of Fresnel Integrals 

s M. = C(.J4S+1) m. == C(..J4'S+'3) 
0 .779893 .321056 
1 .640807 .380391 
2 .605721 .404~61 

3 .588128 .417922 

Radius of Univalence e 
J;e~t1 dt e%:l f~ e-iJ dt 

e = 1.5743376 .92413887 

Maximum and Inflection Point for Dawson's Integral 
F(.92413 88730) = .54104 42246 
F(1.50197 52682) = .42768 66160 
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M: = S(.J4s +2) 
.713972 
.628940 
.600362 
.584942 

m: S(.J4s+11) 
.343416 
.387969 
.408301 
.420516 



Related Constants 
10 = 1.74532 92519 94329 57692 36907 68488 61271 (-2)r 
7r = 3.14159 26535 89793 23846 26433 83279 50288 

7r/2 = 1.57079 63267 94896 61923 13216 91639 75144 
~7r = 1.77245 38509 05516 02729 81674 83341 14518 

~7r/2 = .88622 69254 52758 01364 90837 41670 57259 
27r = 6.28318 53071 79586 47692 52867 66559 00576 

2~7r = 3.54490 77018 11032 05459 63349 66682 29036 
e = 2.71828 18284 59045 23536 02874 71352 66249 

lI7r = .31830 98861 83790 67153 77675 26745 02872 
2/7r = .63661 97723 67581 34307 55350 53490 05744 

I1~7r = .56418 95835 47756 28694 80794 51560 77258 
2/~7r = 1.12837 91670 95512 57389 61589 03121 54517 
I127r = .15915 49430 91895 33576 88837 63372 51436 

lI2~7r = .28209 47917 73878 14347 40397 25780 38629 
lie = .36787 94411 71442 32159 55237 70161 46086 

erf I = .84270 07929 49714 86934 12206 35082 60926 

III 00 (-1)" 
e-r dt = (~7r/2) erf I = E = .74682 41328 12427 02539 94674 36131 85300 

o .. ",0 n!(2n + 1) 

00 2" 
(~7r/2)elerf 1 = .. ~o 1-3 .. . (2n + 1) = 2.03007 84692 78704 97553 90899 25665 95044 

Coletldt = E I 146265 17459 07181 60880 40485 86856 98815 
J ... 0 n!(2n + 1) = . 

00 1 
.. ~o (2n )I( 4n + I) = 1.10473 79393 59804 31710 17580 11494 42058 

~o (2n + 1)~(4n +3) = .35791 38065 47377 29170 22905 75362 56757 

f 21ft 
89880 95736 69733 77386 73036 75360 

.... 0 1-3 .. . (4n + 1) = 1.28407 

00 22 .. +1 
94811 82968 27820 13512 52629 19684 E 1-3 .. . (4n +3) = .74599 

.. "'0 

e-I I :er2 dt = f ( -1)"2" 
= .53807 95069 12768 41913 63874 20407 55675 

,,"0 1-3 .. . (2n + 1) 

Typical Tolerances and Their Natural Logarithms 

2-16 = 
2-24 = 
2-27 = 
2-36 = 
2-48 = 
2-56 = 
2-60 = 

2-108 = 

0.15258 78906 25( - 4) 
.59604 64477 53906 25(-7) 
.74505 80596 92382 8125( - 8) 
.14551 91522 83668 51806 64062 5( -10) 
.35527 13678 80050 09293 55621 33789 0625( -14) 
.13877 78780 78144 56755 29539 58511 35253 90625( -16) 
.86736 17379 88403 54720 59622 40695 95336 91406 25( -18) 
.30814 87911 01957 73648 89564 70813 58837 09660 96263 71446 21112 

38390 20729 06494 14062 5( - 32) 

log.(2-U') = -11.09035 48889 59124 95067 57139 43330 82508 
log.(2-24) = -16.63553 23334 38687 42601 35709 14996 23763 
log.(2-z') = 18.71497 38751 18523 35426 52672 79370 76733 
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log.(2-36
) = -24.95329 85001 58031 13902 03563 72494 35645 

log .. (2-48) = -33.27lO6 46668 77374 85202 71418 29992 47526 
log .. (2-S6

) = -38.81624 21113 56937 32736 49988 01657 88781 
log .. (2-

6
<l) = -41.58883 08335 96718 56503 39272 87490 59408 

log .. (2-108
) = -74.85989 55004 74093 41706 10691 17483 06935 

Maximum and Minimum Machine Values and Their Natural Logarithms 
(Univac llO8 Single and Double Precision Limits) 

NBC =Number of binary digits in the (biased) characteristic of a floating point number 

log .. (2 12
,,) 

log .. (2-12~ 

0.17014 
.14693 

88.02969 
= -89.41598 
== 

NBC 8 

11834 60469 23173 16873 03715 88410(39) 
67938 52785 93849 60920 67152 78070( - 38) 
19311 13054 29598 84794 25188 42414 
62922 32944 91482 29436 68104 77728 

NBC = 11 

21023 = 0.89884 65674 31157 95386 46525 95394 51236(308) 
2-1025 = .27813 42323 13400 17288 62790 89666 55050( - 308) 

log .. (2102~ = 709.08956 57128 24051 53382 84602 51714 62914 
log .. (2-102S

) -7lO.47586 00739 43942 15266 29244 94630 98227 
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C**** APPEND IX 
2 C I ,"PLE.,ENT ING PROGRAM 
J C LANGUAGE. PMERI(A~ ~ATICNAL STANDARD FORTRAN 
4 ( (SUBROUTINE SUBJE(TED TO PFORT VERIFIER*) 
5 C DEFINITICN~. Z. A (OMPLEX VARIABLE:ZR+I ZI 
6 ( ERF(Z'=(2/S0Rl(PI»*INTEGRAL(EXP(-T**2»DT FRCM 0 TO Z 
7 ( =ERF1JaI ERF1I 
8 ( ERFC(Z)=(2/S0~T(FI')*INTEGRAL(EXP(-T**2»DT FROM Z TO 
C; ( INFINITY 

10 
11 
12 
1~ 

14 

1= 
16 
17 
18 
1<; 

20 
H 
22 
23 

C 
C 
C 
C 
( 

( 

( 

( 

( 

C 
( 

C 
( 

C 

=l-Ef<F(Z) 
=Ef<FCZf<+ 1 ERFCZ I 

EXPCZ**2'*ERF(Z)=EZ2CZR+I EZZeZI 
SVMMET~Y RELATI(~S 

ERF(-Z'=-ERF(Z' 
ERF(Z CCNJG)=(CNJG(ERF(Z» 
ERFC(-Zj=2-ERFC(Z) 
ERFC(Z CGNJG)=CCNJG(ERFC(Z)' 
EXP(Z**2)*ERF(C-Z)=2*EXP(Z**2)-EXP(Z**2)*ERFC(Z) 
EXP(Z (CNJG**2'.ERFC(Z CONJG)=eCNJG(EXP(Z**2'*ERF(CZ') 

SPECIAL (ASE, Z=O 
ERF(Z)=O 
ERFC(Z'=l 
EXP(Z**2)*ERFC(Z'=1 

24 ( USAGE. (ALL ERRl (ZR.ZI.ERFZR.ERFZI.ERF(ZR,ERFCZI.EZ2CZR. 
25 C EZ2(ZI.IERR) 
2c ( ARGU~ENTS 

27 
28 
2<; 

30 
~1 

:':2 

3f 
::7 
.::e 
39 
40 
41 
42 
1.11 
1.14 

45 
4f 
47 
4S 
49 
50 
~ 1 
f(;! 

54 
55 

( 

( 

C 
( 

( 

C 
( 

C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
( 

C 
C 
C 

(REPL TYPE VARIABLES ARE USED T~RCUGHOUT TC READILY 
ALLC~ FC~ DC~ELE PRECISION CCMPUTATION. REAL AND 
I~AGINARV PAR1S OF COMPLEX VARIABLES HAVE RAND 
I AS FINAL (~~RACTERS.) 

ZRpZI REAL(OR DOUBLE PRECISICN) T~FE INPUT 
ERFZR,ERFZI (SAME TyPE AS Z) OUTPUT 
ERFCZR.EFFCZI OUTPUT 
EZZCZP,EZ2CII 
IEf;R 

I Ef<I1 
INTEGER TYPE 

OUTPUT 
OUTPUT 

o NORMAL RETURN 
EXP(Z**2'*ERF(Z) INVALID 

2 ERF(Z),ERFC(Z) INVALID 
3 E~F(Z).ERFC(Z),EXP(Z**2)*ERFC(Z' INVALID 

(Z IN 2ND OR 3RD OU~DRANTS(ZR .LT. 0') 
(CMMC~LY LSEO INTERNAL V~RIABLES 

AELL LOwER LIMIT OF fIr FOR ASYMPT~TI( 
EXPA~SlCN(A.E.' ABS(ZR' .LE. 1 

AZI AcS(ZI' 
AZR AES(ZR) 
AZ21 AES(IMAG(Z**~)) 

(MAX ~AXIMUM MACHINE VPLUE 
CMI~ ~INIMUM MACHINE VALUE 
f<EM2 MODULUS saUARED OF RELATIVE 

REPJl2 
RHO 
.. HeLC 

ERROR(R.E.) 
IR.E.I**2=REM2(N) 
I1EM2(N-l' 
tZI=SORT(ZR**2+Zr**2' 
LO~ER LIMIT OF RHC FOl1 USI~G ONLY 

1ST TERM OF A.E. 
UFPER LIMIT OF RHO, UNRESTRICTED 
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5E C 
~<; C 
to ( 

E1 C 
t2 C 
f3 ( 

t4 C 
t5 C 
H: ( 

t7 ( 

fe C 
fG C 
70 C 
71 ( 

72 C 
73 C 
74 C 
75 ( 

16 ( 

77 ( 

7e C 
7e; ( 

eo ( 

El ( 

E2 C 
1:3 ( 

E4 ( 

ES C 
et: C 
E7 C 
ee C 

ee; C 
e;o C 
<;1 C 
<';2 ( 

<;3 ( 

<;4 ( 

<;S ( 

Cit; C 
<;7 ( 

e;a ( 

<;9 ( 

ICO ( 

101 ( 

102 C 
103 ( 

104 C 
10~ C 
let; ( 

107 ( 

108 C 
ICC; ( 

110 C 
III ( 

112 ( 

113 C 
114 ( 

115 ( 

RTPJ 
SUMM2 

TMAX 
TMM2 

TOLER 
TCLE~2 

TOL2 
l..LSC 

"'OCIFI(ATICt-.S. 

AeS(ZR). FOR POWER SERIES 
SORT(PI=.3.14 ••• ) 
ISUMr**2=SUMR**2+~U~I**2 

OR ISUM/TMAXI**2 
NORMALIZATION FA(TOR 
ITMI**2=TMR**2+TMI**2 

OR ITM/TMAXI**2 
UPPER LIMIT FOR RELATIVE ERRORS 
TOLER**2 
TCLER2/8 
MAXIMUM ARGUMENT FOR ~IN/COS ROUTINE 

THE (ODE IS SET UP FOR SINGLE PRE(ISION COMPUTATION 
~ITH SI~GLE ~RECISION FUNCTION REFEREN(ES AND SINGLE 
PRECISIC~ MACHI~e DEPENDENT CONSTANTS. FOR THE UNIVA( 
1108, C~AX A~P~CX. 2**127.CMIN=2**(~129).ULSC=2**20 AND 
TOLER=.745E-8. ~TPI IS GIVEN IN DOUBLE 
PRECISIC~ FORMAT TO 19 SIGNIFI(ANT FIGURES. 

DOUBLE P~ECISI(N RESUL1S ARE OBTAINED BY INSEPTI"G 
(I) THE DCUBLE P~E(ISION TYPE STATEMENT 
(2) oCUELE P~ECISIO~ INTRINSIC FUNCTION REFERE~CES -

DA8S,CMAXI ANt CMINI 
(3) DOUBLE PRECISION EXTERNAL FUNCTION REFEREN(ES -

OC[S,DEXP.CLOG,DSIN AND OSQRT AND 
(4) FO~ ThE UNIVA( 1108 ADJUSTING THE CONSTA~TS 

(MAX APPROX. 2**1023.CMIN=2**(-1025,.ULSC=2**56 ANO 
TCLE~=.ef1C-18. 

THE DETAILED ~ET~[DS SHOULD WORK FOR ANV PRECISION 
IF T~E M~(hINE CEFENDENT CONSTANTS ARE CHANGED 
WITH RTPI GIVEN TG T~E REOUIRED NUMBER OF SIGNIFICANT 
FIGURES. 

~ETHOD. 2=ZR+I ZI =~H[*EXP(I*ARCTAN(ZI/ZR') 
ALL METhODS APPLY TO AZ=ABS(ZR'+I ABS(ZI,=AZR+ 
I AZI. l..SE IS THEN MADE OF SYMMETRV RELATIONS. 

POWER SERIES 
RHC .IT. RHOLS(=1.5) 
AZR .lE. 1. HHOLS .LE. RHO .IT. AELL 

AELl=SQRT(-lOG(TOlER» 
ERF(AZ)=(2/SQRT(PI) )*SUM(SGN(RN)*TM(RN» 

RN=O.l ••••• RNF 
SG~(O)=I 

5G~(RN+I)=-SGN(RN) 

T~(RN)=«AZ**(2*RN+I')/1*2 ••• RN)/(2*RN+I) 
TM(RN)=PT~(RN)/DN(RN) 

PTM(O)=AZ 
PTM(RN+I)=(AZ**2)*PTM(RN)/(RN+I) 
ON(O)=I 
DN(RN+I)=DN(RN)+2 

~~F=RN IF T~=O AND SUM=O. IF ITM/TMAXI**2(=TMM2) 
=0 OR IF ISUM/TMAXI**2(=SUMM2) .NE. 0 A~o 

~EM2(=T~M2/SUMM2) .LT. TOLER2 
CONTIN~Eo F~ACTICN 

AZR .GT. I. RHOLS .LE. RHO .LT. RHOlC 
RHOLC=SQ~T(ONE/(~~C*TOLER') 

EX~(AZ**2)*ERFC(AZ)= 

(2*AZ/SORT(PI»*(1 1/1 (2*(AZ**2)+I)-
1*2 1/1 (2*(AZ**2)+5)-
3*4 1/1 (2*(AZ**2)+9)-••• ) 
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lit 
117 
ll~ 
11 S 
12;.; 

I" 1 
12'2 
12 :; 
124 
1.:: 

HI' 
1';;", 

1'::0 
I::: 1 
1:: <: 
1:::: 
1.34 
I'" 
l:!c 
1::7 
1 

14C 
I'll 
142 
14~ 

144 
\45 
14(:; 
147 
14S 
IllS 
I~O 

1~1 

1!:2 
1!:~ 

1!:4 

I'''' 
U:~ 

1!:7 
1!:€ 
I!:S 
HO 
Ifl 
1(:;2 
H:: 
H4 
He 
He: 
It7 
ItS 
He; 
170 
171 
11.2 
17;:: 

(, 

c 

<. 
c 
( 

c 
c 
c 
c 
( 

;(~~AZ/~TPI)*II(AM(RN) 1/1 E~(RN» 
~N=l.c ••••• RNF 

A/II( 1 )=1 
A~(~htlJ=-~~CRN+l)*(W~(~N+l)+l) 

f~/01( 1l=,'*CAZ**2t+l 
8M(R~tl)=E~(~~)+4 

WM( 1 )=-1 
.M(~N+l)=WM(~N)+2 

=(Al~(FM/GM')*2/~TPI 

=(AZ*F(~~»*2/~TPI 
F/,f(-1 )=1 
<;11(-1);;0 

F/oICQ'=(J 
<;"'(0):::1 

F~(~N'=8M(RNJ*F~(RN-l)+AM(RN)*F~(RN-21 
G"'("~'=~~(R~'.GM(~N-l)+~MCRN).G~(~N-21 

~NF=~~ IF k(M2(FGR R.E.=(F(RN)-F(~N-l)'/F(RN)' 
.ll. TCl2 OR 

c 
C 
<. 
C 
C 
C 
( 

( 

( 

c 
c 
c 
( 

~~F=~~-l IF REM2(RN) .GE. ~E~2(RN-i) 
AS~~~TCTIC EX~ft~SICN 

c 
c 
< 
< 
( 

c 
c 
< 
C 
C 
C 

< 
C 
< RA~GE. 

AZ~ .lE. 1. AELl .LE. ~~c .IT. ~HOLC 
(FC~ ~rClC .LE. RHC .Le. CWAX. TO P~ESERVE 

~CCUkACY AN ALTERNATIVE COMPUTATIC~ OF 
T~e FIRST TER~ GF l~E A.E. IS EM~lCYEO.' 

EX~(AL**~).E~FC(AZ)=(SUM(SGN(~N).TM(RNI»/SQRT(PI' 

J;lN=O.I ••••• RNF 
SGN(O'=1 
SG~(F~+l'=-SGh(RN) 

T~(~~)=(1/AL).(1.3 ••• (2*Rh-l"/ 

(2"(AH"2) ' .... RN 
TM(CJ-=l/AZ 
T~(~~+1)=CN(~~+1'*'TM(RN)*'I/(2*(AZ*.2'»)' 

r:~( lJ=1 
Ch(~N+l)=ON(RN)+2 

~~F=F~ IF ~EM2(FCR K.E.=T~/SUM' .LT. TOl2 
~~F=~~-1 IF TMM2(RNj .GE. TMP~2(=TN~2(RN-l)j 

(DIVERGe"CE) 

( cXP(Z~.2,.e~FC(2' IS VALID FOR ZR .GE. 0 THRC~GHOUT 

C THE E"tI~c ~A(~I~E RANGE. ERF(Z).ERFC(Z) AND 
C EXF(l.*2'.EMfC(Z)(FCR lR .LT. C) ARE LIMITED EY THE 
C ~A"GE ~"D AC(~R~CY OF T~E SINE.COSI~E AhO/OR l~E 

( EXFC"c~llAl llE"A~V ROuTINES. 
C ACC~~ACY. l~E ~AXIMUN RELATIvE ERRCR (GENERALLY I~ ERFC' 
C eXCEPT IN T~~ IM~EOIATE ~EIGHECRHCCO CF ZERCS. 
C IS e(-~) (~ T~E U~IVAC 1108 FCR 
C SI~GLE FFEctSICN CLMPvTATICN. THE RE~L 

C ~"c I~AGI~ARY PARiS INDEPE~DE~TlY AS ~ElL 

C ~s T~eIF ZE~CS ENTER INTC CONSIOEPATIC~. 
C PRECISICN. ~ARIAelE - EY SETTING A PRED~TER~INEC ~ALUE OF 
C TCLER 
C "'A)CIMUM LNI~~C lloe TIME/SHARING EXECUTIVE SYSTEM 
C TillING. S.P. O.P. 
e (SEC~NCS) .0101 .052 
C STORAGE. 1171 weRes RECUIREO EY THE UNIVAC lloe CCMPILER 
c (31! f[~iRAN STATEMENTS. 95 ~ARIABLES) 
c* T~E PFCRl VE~IFIER.~.C.HALL AND B.G.RYOER 
C (SELL LAeC~ATCRI~S.~URRAY HILL. N.J.' PROC.CF T~E ca~PUTER 

673 



174 
175 
176 
177 
178 
17~ 

120 
181 
le~ 

183 
lE4 
lE5 
lEf. 
1E7 
le8 
lee; 
1«;0 
191 
1«;2 
le;~ 

1<;4 
1Ci5 

C SCIENCE AND STATISTICS EIGHTH ANNUAL SYMPOSIUM ON THE 
C INTERF~CE. U~IV. CF CPLIF •• LOS ANGELES. FEE.13-14.197S. 

c***** 
SUB~OUTINE E~~Z(ZR.ZI.ERFZR.ERFZI.EAFCZR.ERFCZlt 

1 EZ2CZR.EZ2CZI.IERRJ 
C MACHINE CE~ENDE~T CONSTANTS 

CMAX=.1701411e2E~9 

CMI~=.146q~~7<;4E-3e 

ULSC=.104857fE1 
TOLER=.745E-8 

C NCTE TOLER IS SET TC T~E PRECISION CF 
C THE UNIVAC 110e SI~GLE PRECISIGN A~ITHMETIC. 

RTPI=1.772453ES0905S16027DO 
C Cl~ER CC~STANTS 

C 

ZE~C=O 

C~E=1 

T_0=2 
THPEE=:: 
FOUf;=4 
CNPTFV=THREE/T~C 

INITIALIZA1IO~ OF ERROR INDICATORS 

1«;6 10=0 
1<;7 c F~~CTi(~ ~EFERENCES 
le;~ C NOTE FUNCTIC~ REFERENCES CCCUR IN THE REGIONS OF STATEMENT 
I~G C LABELS 5,15 AND 85 AND IN STATEMENT LABELS 110.31~.SlS. 
20e C ~17 AND 9~~. 

201 C SET UP FC~ Z IN FIRST QUADRANT AZ=AZR+I AZI 
202 
203 
2C4 
205 
2Cf 
2C7 
2ce 
20" 
cl0 
ell 
~12 

21:: 
c14 
215 
2H 
217 
,Ie 
,1<; 

"N 
"el 
22;' 
22~ 

224 
22~ 

22(: 
227 
2;E 
229 
22J 
,::1 

C 

C 

( 

C 

C 

5 AZR=AES(ZR) 
AZ I=AE!H Z I) 

ARI~~=~~I~I(AZ~.AZI' 

ARI~X=AMAXl(A2R.AZI) 

IF (ARIMX .~T. ZERO) GO TO 10 
S~ECIAL CASE, Z=O 

ERFZ~=2E~O 

EPFZI=ZEf;O 
E~FCZ~=CNE 

e:~FCZI"ZEf.iC 

EZ2CZf;=CNE 
EZ2CZI=ZERC 
RETURN 

CCNT~aL VARIAELES 
10 TOLER2=TCLE~*TCLER 

TCL2=TCLER2/F(L~/T-C 

~HCLS=C"PTFV 

RM~~X=AFI~~/AFI~X 

1~ C~AXL"=ALCG(C~4X) 

C~I~L~=ALOG(C~lh) 

4ELL=SCR1(-ALCG(TCLER,) 
~HCLC=5CRT(CNE/(TWC*TOLER)' 

P~HC=SC~l(RM~~X.~M~~X+CNE) 

CCMPUTATllh OF AUXILIARY QUANTITIES 
CCM~lTATl(N OF AZ**2=Z2P+1 AZ2I 

IF (A~I~X .IT. CNE) GO TO 60 
CVERFLOW CHECK eN Z2P~=-Z2R 

TE~PB=«C"~-R~~~X)*A~IMX)*(CNE+r:;MN~X) 

IF (TE~PE .LT. C~AX/ARIMX) GO Ta 20 
TE .... PC=(MAX 
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2::2 GO TO ::0 
2 ..... 20 TEMFC=lEMPE*A~I~X 
234 30 IF (AZf;-AR I MX) :0.40.50 
23: 40 Z2Rt-=-1E~PC 
2.36 GC Te 70 
2.37 SO Z2F<"=TEM~C 

238 GO TO 70 
239 60 Z2R"=(~ZI+~ZR)*(AZI-AZR) 
240 GC 1e eo 
241 C CVERFLOW CHECK eN AZ2I 
242 70 IF (ARI"'''' .LT. (CMAX/TWO);ARIMX) GC TO eo 
243 AZ2I=C,"AX 
244 GO TO '-';0 
24S 80 AZ2I=(1WO*ARI~N)*ARIMX 
246 C PRELI"'INAJ;Y CCMPUTATICNS FOR EXP ( ,4Z "*2) AND 
247 C EXP (-AZ**2) 
248 C CHECK IF VALID ARGUMENT FOR SI";COS 
24C; IF (AZ2I .GE. IJLSC) GO TO 90 
250 B5 COAZ2I=CCSCAZ2I) 
251 SIAZ2I=SINCAZ2I) 
2~2 C ExTENDING RANGE OF EXP RCUTINE 
2~3 90 TEMF=Z2F:"/THREE 
254 Z2R=-Z2Fi", 
25S C CVERFLOW CHECK 
256 IF (TE"P .LT. C"'AXLN) GO TO 100 
251 EMZ2D3=CMAX 
2SE EZ2R=ZERC 
25C; GC TO 190 
260 C Ut.DERFLOW CHECK 
2fl 100 IF CiEtiP .GT. C~INLNJ GO TO 110 
2f2 EMZ2C3=ZERC 
2f3 C EXP(AZ~""2) OVERFLOWS (10=1) 
2E4 10=1 
2f5 GC TO 160 
2f6 110 EMZ20f=EXP(TEtlF;T.0) 
267 EtlZ203=EMZ2064E"'Z2D6 
26E EZ2C6=CNE/EMZ2C6 
26C; IF (EZ206 .LE. CHE) GO TO leo 
270 J=l 
211 PEXP=ZEFG 
272 TEMF=E22D6 
273 120 IF (TEMP .GE. CMAX/EZ206) GO TO ISO 
214 TEMF=TEMF*EZ2C6 
275 J=J+ 1 
276 IF (J-5) 120.130.140 
277 130 PEXP=TEMP 
27t: GO 10 120 
279 140 EZ2J;=TEMP 
2t:O GO TO 190 
281 150 IF (PEXP) 170.1EO.17Q 
2t:2 It:O PEXP=CJlAX 
28J 170 EZ2R=C",AX 
2f4 GO TO I~O 

2e5 180 PEXP=EZ2Df>**S 
2ft: EZ2R=PElCP*eZ2ct: 
2E7 TEZ2=(PEXP*TwC).EZ2D~ 

2Et: C CCMf=1.1ATION OF RHO 

2e9 c CVEFlFLOW CHECK 
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290 190 IF (ARI~X .LT. C~AX/PRHO) GO TO 200 
2S1 RHC=C",1X 
2~2 GC TC 210 
2S3 200 RHC=ARI~X*P~~C 
2~4 C METhCO SELECTICN 
2S5 210 IF (RHC .LT. ~HCLC) GO TO 220 
2Sf C IM~~CVE ACCURACY FOR LARGE RHO 
2~7 FA=~Z~/,IRI~X 

2~e FB=AZI/,IRIMX 
2S9 FC=RT~I.(RM~~)*RM~~X+ONE) 

300 EZ2CZR=(FA/,IRIMX)/FC 
301 EZ2CZI=-(Fe/A~IMX)/FC 

302 GO TO eoo 
30~ 220 IF (RHC .LT. ~~CLS) GO TO 300 
~04 IF (AZR .GT. C~E' GC TO 500 
3C5 IF (RrC-AELL) 300.700.700 
30E C Pcwe~ SERIES FOR ERF(AZ) 
3C7 C INITIALIZATION 
30e 300 SU~R=ZE~G 
30S SUNI=ZEFG 
310 SGN=CNE 
311 RN=ZEI'C 
312 
313 
314 
315 
316 
317 
:':18 
319 
~20 

C 

c 
C 

c 

c 

:no 

315 

320 

330 
340 

350 

ON=CNE 
PTM~=,12R 

PTMI=A2I 
CC~PUTING SUM 

T~R=PT~R/DN 

T~I=FTI¥I/CN 

SUMR=SUMR+T~R*SGN 

SUW.I=SUMI+T~l*SGN 

SCALING TO AVOIC OVERFLOW OR UNDER-
FLCW IN APPROXI~ATING R.E. 

TMA~=AM,IXl(,1ES(TMR).AeS(TMI).ABS(SUMR,.AeS(SUMI') 

IF (TMAX) ~~O.360.320 
T~M2=(TMh/T~AX)**2+(T~I/TMAX'*.2 

SU~~~=(SUMR/T~AX'**2+(SUMI/T~AX)**2 
IF (T~M2' 3~O,~EO.330 

IF (SU~M2' ~40.350.340 

RE"'2=TMM2ISUl~2 

TOLERANCE CrECK 
IF (REM2 .LT. TCLER2' GC TO 360 

"ColT IONAL TER"4S 
O .... =O"+TWG 
f'r.=f'''+(NE 
SGN=-SGN 
TEMF=(~TMR*Z2R-PTMI*AZ21'/RN 

PT"I=(PTM~*,IZ~I+PTMl*Z2R'/RN 

PTMR=TEMP 
338 GC TC 310 
339 C FUNCTICNS EVALUATED IN FIRST CUADqANT 
340 3~O ERFZR=SU~R.T~(/~TPI 

~41 ERFZI=SUMI.T~(/~TPI 
~42 

343 
344 
345 
34f 
347 C 

E~FC2~=Cr.E-ERFZ~ 

ERFCZI=-ERFZI 
EZ2CZ~=(CCAZ21*ERFCZR-SIAZ2I*ERFCZI'*EZ2R 
EZ2CZt=CSIAZ2I.ERFCZR+CGAZ2I.ERFCZt'*~Z2P 
GC lC 4)40 

CCN1IhUED FRACTION FOR EXP(AZ**2'*E~FC(AZ' 
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3ft: 
3~e 

3~7 

3~~ 

::~<;; 

3'co 
3ft 
3<:2 
3( 3 

3t4 
3t~ 

3'cc 
3f7 
3c8 
3fS 
370 
371 
372 
373 
3;4 
37~ 

3U. 
377 
37E 
37<; 
31::0 
::! e 1 
3'E2 
3S3 
3'E4 
3E~ 

3E€ 
3E7 
3EE 

c 

C 

C 
C 
C 

c 

C 

C 

INITIALIZATION 
5UO W"'=-CN€ 

510 

RI\4P=H\C*Z2~+c."'e 

B"4I=T.C*AZ2I 
AM=CNE 
FM"'2R=(NE 
FlJtJ2I=2Ef;C 
G"4M2R=2EFlO 
G"'~2I=ZE"C 

F"'''''lR=ZEf<O 
FfJ,1I1I=ZEJ:;O 
GM"'lR=CI\E 
GM"'lI=ZEf;O 
REJ:tJ2=Cp.!AX 
FPR=ZEFC 
FPI=ZEFQ 

~ECURRENCE RELATION 
FtJR=EtJR*FtJiI41Fl-BMI*FMMII+AM*FMM2R 
F"'I=E"'I*F~"'1~+BMR*FMMII+AM*FMM2I 

G,..R=ENq*GMMIR-BMI*GMMII+AM*GMM2R 
GtJI=ENI*GM"'1~+EMR*GMM11+AM*GiI4M2I 

CCNVERGENT F=FM/GM 
SCALING TO AVOID OVERFLOW IN 

CCMPUTING CCNVERGENT 
T"'AX=AMAX1(AES(FM~).A8S(FMI),ABS(GMR)tAeS(G"'I}} 

SFMF<=F~R/TMAX 

SFMI=FfoIIJ'TMA)( 
SGMR=GIliRJ'TMAX 
S<:"'I=<:,..II'T"',<\X 
TEMF=SGtJR*SGMF+SGMI*SGMI 
FFl=(SFMf<*SG,..R+SFMI*SGMI)I'TEMP 
FI=(SFMI*SG"'F<-SFMR*SGMI)J'TEMF 

APP~OXIMATING R.E. 
TEMI==FFl*FFl+FI+Fl 
TEMFA=FR-FPR 
TEMFE=FI-FFI 
REM2=(TEMFA*TEMPA+TEMPB*TEMPE)J'TEMP 

TCLERANCE C!-ECK 
IF (RE~2 .LT. TCL21 GO TO 530 
IF (REM2 .GE. REPM21 GO TO 520 

ACOITIONAL CONVEP.GENTS 
3e<; W~=~~+TWC 

3~0 eMR=EMR+FCU~ 

391 A~=-M~*'~~+C~E) 

3S2 F~M2~=FMMt~ 

3<;~ F~"'2I=F~MII 

3~4 GMM2~=G~MIR 

3<;5 GM~2I=G~~lI 

3~~ F~Ml~=FMP 

3~7 F~WII=FWI 

3Se GMMl~=GMR 

3SS G~Wll=GMI 

4CO FP~=F~ 

401 FPI=Fl 
402 REF~~=REM2 
403 C SCAL ING 
404 C SCALING SHCULO NCT EE CELETED AS T!-E VALUES OF F~R.FMI 
405 C (~R.GMI MAY CVE~FLC. FeR SMALL VALUES OF REAL OF Z 
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4fJ'; 

4C7 
40t 
4(<' 

410 

411 
412 
413 

414 
4E-
4 It: 
417 
41'" 
41'-' 

",,0 

c 
( 

~17 Af~=AMAXl(AEC(eMP'.AdS(FMI» 
If (T~AX .LT. (CMAX/FCUH,/(TWC*ABM-AM» GC TO 510 
FPA2';=Ff. tJ2~ IT liAX 
FM"'I,,1=F/ltfA21/TMAX 
GNM2~:G~~2';/T~AX 

(p..II'I=GtltI,I/1NAX 
F"'MIE:;;:F"~lf;/lMAX 

F~MII;;:F""II/lIiAX 

GN~I~=G~~lf;/TMAX 

G/iY.II=G~~II/TliAX 

GC TC tlO 
~ELATIVE t~ROR INCREASED-RQUNDCFFS 

ACCEPT PRIOR CCNVERGENT 
!=20 F,.=FPr; 

FI=FPI 
4~1 ( EVALUATE EXP(AZ**2)*ERFC(AZ' 
4,2 ~30 EZ2CZ~:(AZR.F~-~Zl*Fl)*T~C/RTPI 

42J EZ2CZI=(AZI*Fr:+AZR*fl)*T~C/RTPI 

424 GC TO ECO 
425 C A~Y~~TCTIC EXPANSION FeR EXPfAZ**2).ERFC(AZ) 
4:: t c t'" IT I AL I Z A T ION 
427 700 TZ2~=T~C*Z2~ 
42B 
4 2~ 

430 

4~1 

4:::2 

4'"''' 
434 

4""" 
4.::t 
4~7 

TZZ I=TlilC*Al2I 
TE~F=TZ2H*T~2~+TZ2I~TZ2J 

RTZ2R=lZ2R/TEMI= 
RTZZI=-Tl2I1TEIII= 
TM~lR=(AZP/~HC'/RHC 

TMMl1=-{AZI/h~C)/R~C 

TMP/i2=TMM1~.TtJIIIR+T~Ml[*TMMlI 

SUtlr:=TIV"'IR 
SUI\I,I=T~"'II 

ON::(NE 
4;e SG~=-C~E 

~~q C CCMI=UTING SUM 
440 710 T"'R=CN*(TrMI~*~TZ2R-TMMII*RTZ21) 
441 T",I=CN*{TMMII*RTZ2R+TMM1R*RTZ21) 
442 SU~R=~GN*TM~+SUMR 

c 

( 

c 

c 

c 

720 

SUMI=SGN*TtlI+SUMI 
~PPROXIMATING R.E. 

SU~"'2=SUM~*S~"'R+SUMl*SUMl 

T~"'2=TN~*T"'~+T"'I*TMI 

REM2=T",M2/Sl;liM2 
TCLERANCE Ct-ECK 

IF (REM2 .LT. TCL2) GO TO 730 
IF (T",M2 .LT. TMP~2) GO TO 720 

CIVERGENT PATH 
SUMR=SUMR-SGN*TMR+SGN*T",MIR 
S~MI=SUMI-SG~*TMl.SGN*TMM1I 

(;C T( 7~O 

SG' .... =-SGN 
Of\=Of\.TltIO 
T",Mlf;=TMR 
TIVMIJ=UU 
TMF"',,=T"'''':Z 
GC TC 710 

ADDITIONAL TERMS 

EVALUATE EXP(AZ**2J*ERFCCAZ' 
7~0 EZ2CZR=SUMR/~TPI 
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4t: 4 EZ2CZI=SUMI/RTPI 
4t~ C /oIAINTAINING ACCURACY IN EZ2CZR 
4(;~ C FeR SMALL AZR 
4t:1 TEM~=E22CZR*TCLER 

4~E IF (TE/oIP .GT. E22R) GO TO 800 
4t:S TE/oI~=C"'I~*~HCLC 

410 IF (El~C2~ .GT. TEMP) GO TO 750 
4 7 1 IF ( E Z ~ R • G T. T E M P) GO TO 150 
47? IF (AZ~) 74C.7!::C.740 
47::: C INDICATE RESULTING EPpeRS IN EI<FC 
474 C (AND ERF)(IERR=2) 
41~ 740 IEF<R=2 
47t: 7!::0 EZ~CZR=EZ2CZ~+EZ2~*COAZ2I 
417 C EVAL~ATE ERFC AND ERF FOR AZ IN CCNTINUED 
47E C FPACTIGN AND ASYMPTOTIC EXPANSICN REGIONS 
47<; 800 IF (A22I .L T. ULSC) GO TO 830 
4€0 C INVALID ARGU~ENT FOR SIN/COS 
4"'1 C ERFC(AND ERF) INVALID (IERR=2) 
4E2 IF (AZ~-ARIMX) E20.810.820 
433 C AZP. .GE. AZI 
4E4 
4E~ 

4Et 
4f7 
4EE 
4P.S 
4S0 

C 

810 ERfCZR=ZEF<C 
ERFCZI=ZEFC 
GC TC S10 

820 EPFCZR=C/oiAX 
ERF CZ I = C/olAX 
GC TC <;10 

AZR .LT. AZI 

4<;1 C VALID ARGUMENT FOI< SIN/COS 
4S~ E:!.30 IF (F;t-C .GE. kHCLC) GO TO 840 
4S3 ( RHC .LT. RHOLC 
4<;4 TEMPA=EZ2CZR.CCAZ2I+EZ2CZI*SIAZ2I 

TEM~B=-EZ2CZ~*5IAZ2I+EZ2Cll*COAZ2I 

TEMPC=E"'Z2D.3 
GG TC E~O 

4<;t ( Rt-C .GE. RHOLC 
4C;~ c40 TF"'~A=(FA*CCAZ2I-Fe*SIAZ2I)/FC 
5tO TEMP8=(-FA*SIAl21-FS*COAZ2I)/FC 

TE"'~=E/oIZ2D~/A~I"'X 

TEM~A=TE~PA*TE/oI~ 

TE,.,~e=TE~PE*TE"'~ 

~J4 TfM~C=CN~ 

=C~ f~O IF (E/oIZ2D3 .LE. CNE) GO TO 920 
sal' C EVALUATE ERFC(AZ)(AZI .GT. AlR) 

5i:7 
5CP 
SOc, 

~1() 

~ 11 
~1'::: 

1=1 
TEM~=TE/oI~A 

AtO ,J=1 

e 70 

SG"=C"E 
FC=TE:"'~C 
IF (TE~P .(E. ZERC) GO TO 870 
S(N=- SGN 
TEM~=-TEMP 

IF (TEM~ .LT. (MAX/FO) GO TO 880 
TE~~=C/olAX 

IC=2 
GC TG 8S0 
TE/oIP=TEM~*fO 

J=J+l 
IF (,J .(T. ~) GC TD 890 
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FD=EMZ2C3 
GC TO P.7C 

522 
523 
!:24 
52!: 
!:2e 

890 IF (I .GE. 2) GO TO 900 
ERFC2R=TEI¥F>tSC::to. 
1=1+1 

521 TEMF=TEMPE 
528 GC TC 860 
529 900 ERFCZI=TEMP*SGN 
530 IF (10 .t\E. 2) GO TO 930 
S31 C ERFC(AND ERF) INVALID UERR=2) 
5'::2 C OVERFLCW CF ERFC( AZ, ( 10=2' 

910 lEPR=2 
GC TC c.;JO 

535 C EVALUATE ERFC(AZ)(AZI .LE. AZR) 
S3~ 920 ERFCZR=(TEMPA-EMZ202,*EMZ2D3*TEMPC 
531 ERFCZI=(TEMPE>tEI¥Z2C3 •• EMZ2D3*TEMPC 
5::8 C SPECIAL CASE (AZR=O) 
!:::9 930 IF (AZR .LE. 2E~~) ERFCZR=GNE 
!:4C C EVALUATE ERFC AU 
541 ERFZR=CNE-ERFC2~ 

!:42 ERFZI=-E~FCZI 

543 C S~MMET~~ ~EL~TICNS APPLIED 
!:44 940 IF (ZR-AZR) 950.1~00.950 
545 C REAL CF Z .LT. 0 
54E 950 ERF2R=-ERFZR 
541 EAFCZR=TwO-E~FCZR 

!:48 IF (A221 .GE. ULSC) GO TO 960 
S49 IF (IC .EO. 1) GO TC 960 
550 C ~AI~TAINING ACCURACY IN 2*EXP(Z**2) 
SSI IF (A2~ .LE. 121) GO TO 980 
552 9=5 TEMF=A~AXt(AES(SIAZ2I). AeS(COAZ21» 
SSJ IF (TEMP .LT. «CMAX/TWO)/PEXP)/EZ2D6) GO TC 970 
554 C EXPCZ*.Z)*ERFC(Z. INVALID (IEP.R+l) 
SS5 96e IERR=lERR+l 
sse EZ2CZR=CMAX 
557 EZ2CZI=C,.,AX 
!:5E GO TO 1000 
5S9 970 TEZ2R=«PEXP*CCAZ2I.*eZ2D6,.TWO 
SEO TEZ2I=«PEXP>tSIAZ2I).EZ2Dc)*TWC 
5~1 GC TO <;90 
!:E2 geo TEZ2R=lEZ2*CC~Z21 
Sf3 TEZ21=TEZ2*SIAZ2I 
Sf4 C EVALuATE EXP(Z**2)*ERFCCZ) 
SfS 990 E22CZ~=TEZ2~-EZ2C2R 
5Ec EZ2CZI=EZ2CZI-TEl21 
5E1 1000 IF (ZI-A21) 101ij.l020.1010 
5fS C I~AGI~A~Y OF Z .LT. 0 
te~ 1010 ERFZl=-ERFZI 
57C ERFCZI=-ERFCZI 
~11 EZ2CZI=-EZ2CZI 
!72 1020 RETU~N 
!7; END 

680 



RHO'THETA 0° 
.0 
.0 
.0 
.0 
.0 
.0 
.0 
.0 
.0 
.0 

.00 .100000+01 

.02 .977.35+00 

.04 .954889+00 

.06 .932378+00 

.08 .909922+00 

.10 .887537+00 

.12 .865242+00 

.14 .843053+00 

.16 .8201i188+00 

.18 .7C;C;;064+00 

.20 

.30 

.40 

.50 

.60 

.70 

.80 

.90 
1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1 .90 
2.00 
2.10 
2.20 
2.30 
2.40 
2.50 
2.60 
2.70 
2.80 
2.90 

3.00 
3.50 
4.00 
4.50 
5.00 
5.50 
6.00 
6.50 
7.00 
7.50 
8.00 
8.50 
9.00 

.777297+00 .0 

.671373+00 .0 

.571608+00 .0 

.479500+00 .0 

.396144+00 .0 

.322199+00 .0 

.257899+00 .0 

.203092+00 .0 

.157299+00 .0 

.11 C;795+00 .0 

.896860-01 .0 

.659921-01 .0 

.477149-01 .0 

.338949-01 .0 

.236516-01 .0 

.162095-01 .0 

.109095-01.0 

.720957-02 .0 

.467773-02 .0 

.297947-02 .0 

.186285-02 .0 

.114318-02 .0 

.688514-03 .0 

.406952-03 .0 

.236034-03 .0 

.134333-03 .0 

.750132-04 .0 

.410979-04 .0 

.220905-04 

.743098-06 

.154173-07 
.196616-09 
.153746-11 
.735785-1. 
.215197-16 
.384215-19 
.418383-22 
.277665-25 
.112243-28 
.276232-32 
.413703-36 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

15° 
.100000+01 .000000 
.978204+00 -.583879-02 
.956420+00 -.116648-01 
.934662+00 -.174654-01 
.912942+00 -.232279-01 
.891273+00 -.289397-01 
.869667+00 -.345886-01 
.848138+00 -.401625-01 
.826697+00 -.456493-01 
.805358+00 -.510376-01 

.784132+00 -.563161-01 
.680129+00 -.806921-01 
.580740+00 -.100871+00 
.487320+00 -.115988+00 
.401058+00 -.125565+00 
.322926+00 -.129533+00 
.253631+00 -.128213+00 
.193577+00 -.122258+00 
.142847+00 -.112577+00 
.101201+00 -.100228+00 
.680972-01 -.863111-01 
.427427-01 -.718743-01 
.241557-01 -.578252-01 
.112438-01 -.448760-01 
.288326-02 -.335145-01 

-.200643-02 -.240031-01 
-.440212-02 
-.513475-02 
-.486777-02 
-.409504-02 
-.315468-02 
-.225377-02 
-.149843-02 
-.924217-03 
-.523179-03 
-.265334-03 
-.113783-03 
-.339435-04 

-.164025-01 
-.106123-01 
-.641967-02 
-.354979-02 
-.170957-02 
-.621965-03 
-.481389-04 

.20168:1-03 

.2EE848-03 

.241454-03 

.183127-03 

.122861-03 

.198248-05 .741051-04 

.383634-05 -.331302-06 
-.50E480-07 -.121829-06 
-.172664-08 .241877-08 

.4313.4-10 -.812606-11 
-.401550-12 -.137042-12 

.222076-14 .150084-14 
-.905982-17 -.633184-17 

.276523-19 .109112-19 
-.517996-22 .562585-23 

.396093-25 -.443759-25 

.111560-28 .427748-28 
-.213063-31 -.174915-32 

TABLE 1 

ERFC(Z' 

30° 
.100000+01 .000000 
.980456+00 -.112808-01 
.960912+00 -.225435-01 
.941368+00 -.337702-01 
.921824+00 -.449428-01 
.902280+00 -.560434-01 
.882738+00 -.670542-01 
.863197+00 -.779575-01 
.843657+00 -.887357-01 
.824121+00 -.993713-01 

.804~90+00 -.109847+00 

.707071+00 -.159241+00 

.610081+00 -.202202+00 

.514270+00 -.236937+00 

.420627+00 -.261983+00 

.330478+00 -.276308+00 

.245436+00 -.279418+00 

.167296+00 -.271437+00 
.978e59-01 -.253165+00 
.388720-01 -.226077+00 

-.844458-02 -.192259+00 
-.433244-01 -.154271+00 
-.657413-01 -.114934+00 
-.764609-01 -.770708-01 
-.770202-01 -.432136-01 
-.61i16000-01 -.153368-01 
-.5E7C;76-01 
-.413301-01 
-.2~7133-01 

-.119733-01 
-.144281-02 

.531C;49-02 

.535338-02 

.185261-01 

.247077-01 

.251347-01 

.215037-01 

.156622-01 
.847425-02 .930477-02 
.872881-02 .372996-02 
.709056-02 -.293708-03 
.460569-02 -.253794-02 
.214179-02 -.321372-02 
.2~E793-03 -.279917-02 

-.830403-03 -.184961-02 
.361438-04 .343118-03 

-.10C583-04 -.454411-04 
.342245-05 .358814-05 

-.410390-06 .690194-07 
-.9S8C;39-10 -.274562-07 

.136924-08 -.383336-09 

.477805-10 .324007-10 

.941894-12 .157585-11 

.233092-13 .393021-13 

.731135-15 .506747-15 

.130C;72-16 -.343079-17 

.313042-20 -.160996-18 

37.5" 
.100000+01 .000000 
.982095+00 -.137355-01 
.964183+00 -.274543-01 
.946257+00 -.411398-01 
.928310+00 -.547751-01 
.910337+00 -.683437-01 
.892330+00 -.818288-01 
.874283+00 -.952136-01 
.856190+00 -.108481+00 
.838045+00 -.121615+00 

.819844+00 -.1345C;8+00 

.727824+00 -.196662+00 

.633845+00 -.252418+00 

.537866+00 -.299764+00 

.440342+00 -.336667+00 

.342317+00 -.361274+00 

.245465+00 -.372052+00 

.152078+00 -.367979+00 

.649787-01 -.348749+00 
-.126659-01 -.314972+00 
-.776217-01 -.268341+00 
-.126958+00 -.211694+00 
-.158478+00 -.148963+00 
-.171150+00 -.849352-01 
-.165475+00 -.248347-01 
-.143694+00 .262601-01 
-.109748+00 
-.689521-01 
-.273484-01 

.916428-02 

.358034-01 

.497620-01 

.507367-01 

.641075-01 

.859866-01 

.912368-01 

.815039-01 

.605788-01 

.337876-01 

.700451-02 
.409438-01 -.1452E4-01 
.245557-01 -~272819-01 
.664754-02 -.301636-01 

-.809354-02 -.245881-01 
-.165397-01 -.138997-01 

-.178141-01 -.225516-02 
.663124-02 .774278-03 

-.206887-02 .808579-03 
.149447-03 -.641621-03 
.163226-03 .593711-04 
.529.39-06 .406179-04 

-.550781-05 .636094-05 
-.126107-05 .886874-06 
-.164519-06 .187753-06 

.525818-10 .356932-07 

.420606-08 • 1601i197-08 

.123912-09 -.485650-09 
-.462157-10 .168052-10 

45° 
.100000+01 .000000 
.984040+00 -.159556-01 
.968068+00 -.318984-01 
.952070+00 -.478156-01 
.936033+00 -.636943-01 
.919C;4E+00 -.795217-01 
.903796+00 -.952846-01 
.887571+00 -.110970+00 
.871258+00 -.126564+00 
.854845+00 -.142053+00 

.838321+00 -.157424+00 

.753652+00 -.231995+00 

.664672+00 -.301347+00 

.570447+00 -.363359+00 

.470518+00 -.415645+00 

.365070+00 -.455585+00 

.255106+00 -.480414+00 

.142621+00 -.487404+00 

.307358-01 -.474148+00 
-.762502-01 -.438939+00 
-.1721i138+00 -.381252+00 
-.253111+00 -.302268+00 
-.310259+00 -.205369+00 
-.338390+00 -.965018-01 
-.333094+00 
-.292775+00 
-.219843+00 
-.121580+00 
-.103117-01 

.974865-01 

.157600-01 

.120601+00 

.205946+00 

.260096+00 

.273926+00 

.243355+00 
.183390+00 .171536+00 
.230486+00 .700421-01 
.227631+00 -.417236-01 
.173531+00 -.139462+00 
.792740-01 -.199249+00 

-.321336-01 -.204295+00 
-.130194+00 -.151392+00 
-.1~5124+00 -.545715-01 

-.178018+00 
.146013+00 

-.704373-01 
-.697054-01 

.909031-01 

.945377-01 

.56~713-01 

.498547-01 

.710858-01 

.667858-01 
-.258232-01 
-.475602-01 

.623821-01 

.564096-01 
-.667835-01 

.121816+00 
-.103987+00 
-.666628-01 

.396363-01 

.752047-01 

.710156-0t 

.379415-01 
-.345871-01 
-.656143-01 

.462887-01 
-.612171-02 



RHO'THETA 50° 
.00 .100000+01.000000 
.02 .985491+00 -.172863-01 
.04 .970967+00 -.,345635-01 
.06 .956411+00 -.518226-01 
.08 .941809+00 -.690545-01 
.10 .927144+00 -.862497-01 
.12 .912401.00 -.103399+00 
.14 .697565+00 -.120493+00 
.16 .882621+00 -.137521+00 
.18 .867552+00 -.154473+00 

.20 

.30 

.40 

.50 

.60 

.70 

.80 

.90 
I .00 
1.10 
1.20 
1.30 
1.40 
1.50 
I .60 
1.70 
1.80 
1.90 
2.00 
2.10 
2.20 
2.30 
2.40 
2.50 
2.60 
2.70 
2.80 
2.90 

3.00 
3.50 
4.00 
'.50 
5.00 
5.50 
6.00 
6.50 
7.00 
7.50 
8.00 
8.50 
9.00 

.852345+00 -.171339+00 

.773712+00 -.253982+00 

.669468+00 -.332643+00 

.5~e041+00 -.405420+00 

.498195+00 -.469950+00 

.369205+00 -.523342+00 

.271098+00 -.5~2163+00 

.144933+00 -.582512+00 

.131385-01 -.5e0211+00 
-.120165+00 -.551166+00 
-.248882+00 -.491928+00 
-.364829+00 -.400481+00 
-.457890+00 -.277246+00 
-.516623+00 -.12E215+00 
-.529455+00 
-.486589+00 
-.362619+00 
-.219614+00 
-.101646-01 

.220530+00 
.434783+00 
.566112+00 

.43935.3-01 

.219059+00 

.379466+00 

.50 I C81 +00 

.558267+00 

.52e666+00 

.399806+00 

.176582+00 
.627560+00 -.112358+00 
.524677+00 -.412231+00 
.271303+00 -.647141+00 

-.961516-01 -.7351~7+00 
-.492661+00 -.613686+00 
-.794447+00 -.271241+00 

-.870118+00 .227570+00 
.128375+01 -.438617+00 

-.143233+01 .176970+01 
-.153046+01 -.394580+01 

.818979+01 -.269661+01 

.141149+02 .136673+02 

.892289+01 .460461+02 

.767743+01 .133290+03 

.164446+03 .364872+03 

.126058+04 .375323+03 

.231199+04 -.413300+04 
-.181429+05 -.441024+04 

.404091+05 .697050+05 

60° 
.100000+01 .000000 
.988713+00 -.195441-01 
.977408+00 -.390882-01 
.966067+00 -.586322-01 
.954672+00 -.781761-01 
.943204+00 -.977195-01 
.9JI646+00 -.117262+00 
.919978+00 -.136803+00 
.908183+00 -.156342+00 
.696242+00 -.175878+00 

.884135+00 -.1~5409+00 

.820454+00 -.292919+00 

.749696+00 -.389843+00 

.669242 +00 -.485367 +00 

.576286+00 -.578076+00 

.467898+00 -.665719+00 
.341135+00 -.744933+00 
.193283+00 -.810912+00 
.222736-01 -.857061+00 

-.172655+00 -.874670+00 
- • .389989+00 -.852699+00 
-.624572+00 -.777626+00 
-.865837+00 -.635009+00 
-.109565+01 -.408856+00 
-.128600+01 -.863300-01 
-.139706+01 .338770+00 
-.137659+01 .859011+00 
-.116196+01 .144402+01 
-.687539+00 .202914+01 

.100155+00 .250402+01 

.121649+01 .270506+CI 

.260024+01 .241951+01 

.406480+01 .141207+01 

.524907+01 -.511462+00 

.559076+01 -.339050+01 

.436233+01 -.694257+01 

.627236+00 -.103663+02 
-.542122+01 -.121876+02 

-.139065+02 -.102944+02 
.436770+02 .609546+C2 

-.2e6672+03 -.315634+03 
.303475+04 

-.236016+05 
.899044+03 
.194203+05 

-.192296+06 -.331209+06 
.434927+07 -.444020+07 
.130111+09 .950077+07 
.3C8919+10 .172356+10 
.107926+12 .606846+11 
.557097+13 .462008+12 
.231401+15 -.226725+15 

-.117644+17 -.213660+17 

ERFC( Z, 

70° 
.100000+01 .000000 
.992279+00 -.212081-01 
.984542+00 -.424252-01 
.976774+00 -.636604-01 
.9f8~~9+00 -.84922E-Ol 
.961060+00 -.106221+00 
.9~,3123+00 -.127564+00 
.945070+00 -.148961+00 
.936906+00 -.170421+00 
.928fI2+00 -.191952+00 

.920173+00 -.213564+00 

.875153+00 -.323124+00 

.823EI5+00 -.435932+00 

.762712+00 -.552889+00 

.688962+00 -.6746E5+00 

.596036+00 -.601524+00 

.484501+00 -.933057+00 

.341532+00 -.106775+01 

.160625+00 -.120233+01 
-.686592-01 -.133079+01 
-.356612+00 -.144298+01 
-.724161+00 -.152246+01 
-.118000+01 -.154380+01 
-.174051+01 -.146840+01 
-.241452+01 -.123975+01 
-.319777+01 -.777391+00 
-. 405945+ 0 1 
-.492009+01 
-.561710+01 
-.585370+01 
-.512891+01 
-.265166+01 

.274334+01 

.126293+02 

.288616+02 
.530807+02 

.291660-01 

.132454+01 

.328529+01 

.610278+01 

.993582+01 

.148074+02 

.2040f2+02 

.257376+02 
.285642+02 
.245883+02 

.854E77+02 .644245+01 
.122167+03 -.371981+02 

.150602+03 -.121463+03 
-.185165+04 -.696951+03 

.142504+05 .268505+05 
-.581405+05 -.694696+06 
-.301677+05 .237891+08 
-.279467+09 -.117057+10 

.640472+11 .633707+11 
-.992019+13 .967322+12 

.442269+15 -.156615+16 

.371118+18 .125665+16 
-.765527+19 .136783+21 
-.624692+23 .370071+23 
-.554262+26 -.666648+25 

80° 
.100000+01 .000000 
.996080+00 -.222273-01 
.992150+00 -.444703-01 
.988203+00 -.667446-01 
.984228 +00 -.890659-01 
.980217+00 -.111450+00 
.976160+00 -.IJ3913+00 
.972048+00 -.156471+00 
.967870+00 -.179140+00 
.963617+00 -.201936+00 

.959279+00 -.224877+00 

.935924+00 -.342344+00 

.908660+00 -.466099+00 

.875613+00 -.598673+00 

.834330+00 -.742997+00 

.781501+00 -.902533+00 

.712565+00 -.108143+01 

.621138+00 -.1284E8+01 

.498184+00 -.151831+01 

.330784+00 -.178947+01 

.100318+00 -.210652+01 
-.220245+00 -.247879+01 
-.670390+00 -.291589+01 
-.130809+01 -.342593+01 
-.221880+01 -.401186+01 
-.352885+01 -.466405+01 
-.542509+01 -.534607+01 
-.816351+01 -.596797+01 
-.122098+02 -.633691+01 
-.180944+02 -.606686+01 
-.266833+02 
-.391536+02 
-.570679+02 
-.623162 +02 
-.116747+03 
-.161012+03 
-.211587+03 
-.253771+03 

-.441546+01 
.662691-02 
.976572+01 
.294995+02 
.675244+02 
.138532+03 
.268092+03 
.499853+03 

-.246068+03 .906353+03 
.126726+05 .110011+05 
.414164+06 -.267047+06 

-.104472+08 -.211627+06 
-.159723+10 .902680+09 

.155714+12 .170313+12 

.196750+14 -.4a5327+14 
-.152016+17 .205488+16 

.619376+19 .519553+19 
-.143772+22 -.670033+22 
-.257275+25 .897512+25 

.115166+29 -.168785+29 
-.488030+32 .526592+32 

.1+01 
.1 +01 
.1 +01 
.1+01 
.1+01 
.1 +01 
.1 +0 1 
.1+01 
.1+01 
.1+01 

.1 +01 

.1+01 

.1 +01 
.1 +01 
.1 +01 
.1+01 
.1+01 
.1+01 
.1+01 
.1+01 
.1+01 
.1+01 
.1+01 
.1+01 
.1+01 
.1+01 
.1 +01 
.1+01 
.1+01 
.1 +01 
.1+01 
.1+01 
.1+01 
.1+01 
.1+01 
.1 +01 
.1+01 
.1+01 

.1+01 

.1+01 

.1+01 

.1+01 

.1+01 

.1+01 

.1+01 

.1+01 

.1 +01 

.1+01 

.1+01 

.1 + 01 

.1 +01 

90° 
.000000 

-.225706-01 
-.451593-01 
-.677841-01 
-.904633-01 
-.113215+00 
-.136058+00 
-.159011+00 
-.182093+00 
-.205323+00 

-.228721+00 
-.348949+00 
-.476625+00 
-.614952+00 
-.767853+00 
-.940283+00 
-.113867+01 
-.137154+01 
-.165043+01 
-.199117+01 
-.241591+01 
-.295609+01 
-.365696+01 
-.458473+01 
-.583773+01 
-.756418+01 
-.999112+01 
-.134718+02 
-.185648+02 
-.261677+02 
-.377471+02 
-.557397+02 
-.842631+02 
-.130396+03 
-.206519+03 
-.334671+03 
-.554777+03 
-.940470+03 

-.1('2999+04 
-.352823+05 
-.12Q696+07 
-.801975+08 
-.829827+10 
-.143210+13 
-.411275+15 
-.196225+18 
-.155349+21 
-.203882+24 
-.443245+27 
-.159530+31 
-.950078+34 



RHO\THETA 0° 
.0 
.0 
.0 
.0 
.0 
.0 
.0 
.0 
.0 
.0 

.00 .100000+01 

.02 .977826+00 

.04 .956418+00 

.06 .935741+00 

.08 .915764+00 

.10 .896457+00 

.12 .877791+00 

.14 .859740+00 

.16 .842277+00 

.18 .825378+00 

.20 
.30 
.40 
.50 
.60 
.70 
.80 
.90 

1 .00 
1 .10 
1 .20 
1.30 
1.40 
1 .50 
1.60 
1 .70 
1.80 
1.90 
2.00 
2.10 
2.20 
2.30 
2.40 
2.50 
2.60 
2.70 
2.80 
2.90 

3.00 
3.50 
4.00 
4.50 
5.00 
5.50 
6.00 
6.50 
7.00 
7.50 
8.00 
8.50 
9.00 

.809020+00 .0 
.7345«;9+00 .0 
.670788+00 .0 
.615690+00 .0 
.567805+00 .0 
.525930+00 .0 
.489101+00 .0 
.456532+00 .0 
.427584+00 .0 
.401730+00 .0 
.378537+00 .0 
.357643+00 .0 
.338744+00 .0 
.321585+00 .0 
.305953+00 .0 
.291663+00 .0 
.278560+00 .0 
.266509+00 .0 
.255396+00 .0 
.245119+00 .0 
.235593+00 .0 
.226742+00 .0 
.218499+00 .0 
.210806+00 .0 
.203613+00 .0 
.196874+00 .0 
.190549+00 .0 
.184602+00 .0 

.179001 .. 00 .0 

.155294+00 .0 

.136999+00 .0 

.122485+00 .0 

.110705+00 .0 

.100962+00 .0 

.927766-01 .0 

.858057-01 .0 

.7C:;8001-01 .0 

.745737-01.0 
.6C;«;S52-01 .0 
.659251-01 .0 
.623077-01 .0 

15° 
.100000+01 .000000 
.978544+00 -.564511-02 
.957755+00 -.109148-01 
.937610+00 -.158323-01 
.918086+00 -.204192-01 
.8«;9159+00 -.246960-01 
.880810+00 -.286817-01 
.863016+00 -.323942-01 
.845758+00 -.358502-01 
.829017+00 -.390656-01 

.812775+00 -.420551-01 

.738441+00 -.540691-01 

.674177+00 -.621855-01 

.618355+00 -.674592-01 

.569635+00 -.706620-01 
.526911+00 -.723596-01 
.489272+00 -.729681-01 
.455962+00 -.727939-01 
.426354+00 -.720633-01 
.399923+00 -.709434-01 
.376233+00 -.695576-01 
.3S4S16+00 -.679971-01 
.335662+00 -.663291-01 
.318209+00 -.646029-01 
.302334+00 -.628545-01 
.287848+00 -.611100-01 
.274589+00 -.5S3879-01 
.262415+00 -.577015-01 
.251208+00 -.560596-01 
.240863+00 -.544681-01 
.231289+00 -.529306-01 
.222408+00 -.514490-01 
.214150+00 -.500239-01 
.206456+00 -.486549-01 
.199271+00 -.473413-01 
.1«;2549+00 -.460815-01 
.186248+00 -.448740-01 
.180331+00 -.437168-01 

.174766+00 -.426079-01 
.151281+00 -.377161-01 
.133241+00 -.337346-01 
.118978+00 -.304579-01 
.107435+00 -.277278-01 
.979088-01 -.254257-01 
.899189-01 -.234628-01 
.831244-01 -.217720-01 
.772774-01 -.203020-01 
.721940-01 -.190134-01 
.677345-01 -.178753-01 
.637913-01 -.168633-01 
.602800-01 -.159579-01 

TABLE 2 

EXP(Z*.2)*ERFC(Z) 

30 ° 
.100000+01 .000000 
.980656+00 -.109433-01 
.961711+00 -.212290-01 
.943165+00 -.308907-01 
.925014+00 -.399605-01 
.907257+00 -.484692-01 
.889890+00 -.564458-01 
.872908+00 -.639183-01 
.856308+00 -.709132-01 
.840085+00 -.774557-01 

.824233+00 -.835698-01 
.750340+00 -.108476+00 
.684812+00 -.125660+00 
.626815+00 -.137032+00 
.575515+00 -.144060+00 
.530125+00 -.147863+00 
.489917+00 -.149296+00 
.454239+00 -.149005+00 
.422513+00 -.147478+00 
.394231+00 -.145081+00 
.368«;49+00 -.1420«;0+00 
.346284+00 -.138710+00 
.325«;05+00 -.135093+00 
.307525+00 -.131350+00 
.290896+00 -.127564+00 
.275808+00 -.123794+00 
.262075+00 -.120081+00 
.249540+00 -.116455+00 
.238065+00 -.112935+00 
.227~32+00 -.109534+00 
.217837+00 -.106258+00 
.208891+00 -.103112+00 
.200615+00 -.100095+00 
.192«;41+00 -.972068-01 
.185809+00 -.944437-01 
.179166+00 -.918020-01 
.172«;67+00 -.892774-01 
.167168+00 -.868650-01 

.161735+00 -.845599-01 

.139036+00 -.744669-01 

.121846+00 -.663430-01 

.108404+00 -.597166-01 

.976147-01 -.542350-01 

.887699-01 -.496392-01 

.813899-01 -.457386-01 

.7513S9-01 -.423911-01 

.697797-01 -.394900-01 

.651~22-01 -.369532-01 

.610646-01 -.347176-01 

.574747-01 -.327332-01 

.542832-01 -.309606-01 

37.5° 
.100000+01 .000000 
.982202+00 -.133574-01 
.964623+00 -.259749-01 
.947276+00 -.378843-01 
.930171+00 -.491167-01 
.913315+00 -.597018-01 
.896717+00 -.696688-01 
.880383+00 -.790455-01 
.864318+00 -.878590-01 
.848526+00 -.961353-01 

.833010+00 -.103900+00 

.759640+00 -.135855+00 

.693269+00 -.158259+00 

.633647+00 -.173298+00 

.580342+00 -.182718+00 

.532829+00 -.187900+00 

.490547+00 -.189926+00 

.452940+00 -.189631+00 

.419480+00 -.187662+00 

.389679+00 -.184510+00 

.363094+00 -.180548+00 

.339332+00 -.176056+00 

.318044+00 -.171244+00 

.298923+00 -.166267+00 

.281701+00 -.161236+00 

.266147+00 -.156235+00 

.252058+00 -.151319+00 

.239260+00 -.146528+00 

.227600+00 -.141889+00 

.216948+00 -.137417+00 

.207188+00 -.133122+00 

.198222+00 -.129008+00 
.189963+00 -.125073+00 
.182336+00 -.121315+00 
.175275+00 -.117730+00 
.168723+00 -.114311+00 
.162630+00 -.111051+00 
.156950+00 -.107943+00 

.151645+00 -.104980+00 

.129658+00 -.920841-01 

.113196+00 -.817946-01 

.100432+00 -.734593-01 

.902530-01 -.666012-01 

.819492-01 -.608758-01 

.750469-01 -.560327-01 

.692192-01 -.518878-01 

.642331-01 -.483034-01 

.599186-01 -.451749-01 

.561483-01 -.424219-01 

.528254-01 -.399814-01 

.498745-01 -.37803~-01 

45° 
.100000+01 .000000 
.984046+00 -.155619-01 
.968117+00 -.303494-01 
.952236+00 -.443878-01 
.936422+00 -.577025-01 
.920696+00 -.703184-01 
.905075+00 -.822605-01 
.88957S+00 -.935532-01 
.874212+00 -.104221+00 
.8589«;8+00 -.114286+00 

.843946+00 -.123774+00 

.771453+00 -.163319+00 

.704192+00 -.191604+00 

.642609+00 -.210932+00 

.586778+00 -.223250+00 
.536524+00 -.230166+00 
.491521+00 -.232989+00 
.451358+00 -.232766+00 
.415588+00 -.230320+00 
.3E3760+00 -.2262Q5+00 
.355440+00 -.221186+00 
.330223+00 -.215369+00 
.30773B+00 -.209128+00 
.287653+00 -.202672+00 
.269672+00 -.196156+00 
.253535+00 -.189690+00 
.239013+00 -.183351+00 
.225«;08+00 -.177191+00 
.214048+00 -.171246+00 
.203282+00 -.165535+00 
.193480+00 -.160068+00 
.184530+00 -.154849+00 
.176334+00 -.149876+00 
.168808+00 -.145143+00 
.161878+00 -.140642+00 
.155479+00 -.136364+00 
.149556+00 -.132298+00 
.144061+00 -.128434+00 

.138950+00 -.124761+00 
.117989+00 -.108897+00 
.102526+00 -.963790-01 
.906646-01 -.863253-01 
.812804-01 -.781076-01 
.736702-01 -.712820-01 
.673730-01 -.655313-01 
.620749-01 -.606252-01 
.57S547-01 -.563934-01 
.536520-01 -.527075-01 
.502479-01 -.494694-01 
.472522-01 -.466031-01 
.445«;53-01 -.440484-01 



RHO'THETA 50° 
.00 .100000+01 .000000 
.02 .985430+00 -.168969-01 
.04 .~70750+00 -.330243-01 
.06 .955991+00 -.484013-01 
.08 .941179+00 -.630470-01 
.10 .926338+00 -.76~813-01 
.12 .911.94+00 -.902242-01 
.1. .896667+00 -.102796+00 
.16 .881878+00 -.114717+00 
.18 .867146+00 -.126007+00 

.20 

.30 
•• 0 
.50 
.60 
.70 
.80 
.90 

1.00 
1.10 
1.20 
1.30 
1 .40 
1.50 
1 .60 
1.70 
1.80 
1.90 
2.00 
2.10 
2.20 
2.30 
2.40 
2.50 
2.60 
2.70 
2.80 
2.90 

3.00 
3.50 
4.00 
4.50 
5.00 
5.50 
6.00 
6.50 
7.00 
7.50 
8.00 
8.50 
9.00 

.852490+00 -.136687+00 

.760e58+00 -.181638+00 

.713036+00 -.214294+00 
.649979+00 -.236926+00 
.592156+00 -.251548+00 
.539686+00 -.259892+00 
.492447+00 -.263412+00 
.450161+00 -.26~301+00 
.412460+00 -.260519+00 
.378934+00 -.255830+00 
.349161+00 -.249826+00 
.322730+00 -.242965+00 
.299256+00 -.2355~3+00 
.278384+00 -.221969+00 
.259793+00 -.220280+00 
.243198+00 -.212662+00 
.228349+00 -.205210+00 
.215025+00 -.191986+00 
.20~034+00 -.191033+00 
.192211+00 -.184372+00 
.182411+00 -.118015+00 
.173510+00 -.171964+00 
.165400+00 -.166214+00 
.157988+00 -.160758+00 
.151195+00 -.155584+00 
.144950+00 -.150680+00 
.139193+00 -.146031+00 
.133811+00 -.1.1624+00 

.128940+00 -.131445+00 
.108892+00 -.119509+00 
.942791-01 -.105481+00 
.831655-01 -.942896-01 
.144259-01 -.851815-01 
.673700-01 -.116560-01 
.615511-01 -.713293-01 
.566679-01 -.659441-01 
.525101-01 -.613015-01 
.489261-01 -.572150-01 
.458040-01 -.531368-01 
.430594-01 -.506018-01 
.406273-01 -.418214-01 

60° 
.100000+01 .000000 
.988522+00 -.191978-01 
.916680+00 -.377036-01 
.964508+00 -.555200-01 
.952039+00 -.726501-01 
.939307+00 -.891010-01 
.926342+00 -.104817+00 
.913175+00 -.119987+00 
.899834+00 -.134439+00 
.886348+00 -.148243+00 

.872142+00 -.161410+00 

.803714+00 -.218107+00 

.735131+00 -.260834+00 

.668830+00 -.291462+00 

.606260+00 -.311920+00 

.548281+00 -.324060+00 

.495329+00 -.329575+00 

.447520+00 -.329960+00 

.404141+00 -.326488+00 

.366725+00 -.320215+00 

.333111+00 -.311994+00 

.303494+00 -.302503+00 

.277452+00 -.292262+00 

.254575+00 -.281666+00 

.234476+00 -.271004+00 

.216198+00 -.260483+00 

.201224+00 -.250247+00 

.187470+00 -.240389+00 

.175289+00 -.230965+00 

.164467+00 -.222006+00 

.154819+00 -.213521+00 

.146185+00 -.205507+00 

.138430+00 -.197951+00 

.131439+00 -.190836+00 

.125111+00 -.184138+00 

.119364+00 -.177833+00 

.114124+00 -.111899+00 

.109330+00 -.166309+00 

.104930+00 -.161041+00 

.874505-01 -.138780+00 

.150909-01 -.121741+00 

.658787-01 -.108356+00 

.587346-01 -.915919-01 

.530232-01 -.887581-01 

.483467-01 -.813834-01 

.444434-01 -.751362-01 

.411335-01 -.697175-01 

.382898-01 -.651309-01 

.358190-01 -.610637-01 

.~36516-01 -.574741-01 

.317343-01 -.542828-01 

70
0 

.100000+01 .000000 

.991980+00 -.209465-01 

.983379+00 -.413619-01 

.974228+00 -.612308-01 

.964559+00 -.805399-01 

.954404+00 -.992775-01 

.943794+00 -.117434+00 

.932761+00 -.135001+00 

.921336+00 -.151972+00 

.90ge51+00 -.168342+00 

.897434+00 -.18~108+00 

.832921+00 -.253864+00 

.764351+00 -.308806+00 
.694712+00 -.349876+00 
.626410+00 -.37848~+00 
.561255+00 -.396308+00 
.500496+00 -.405125+00 
.444890+00 -.406682+00 
.39~786+00 -.402602+00 
.350217+00 -.394324+00 
.310985+00 -.383080+00 
.276740+00 -.369883+00 
.247038+00 -.355543+00 
.221396+00 -.340682+00 
.199324+00 -.325767+00 
.180352+00 -.311128+00 
.164045+00 -.296992+00 
.150014+00 -.283502+00 
.137912+00 -.270739+00 
.127~~1+00 -.258737+00 
.1183~5+00 -.247499+00 
.110409+00 -.237007+00 
.103450+00 -.227221+00 
.973162-01 -.218118+00 
.918812-01 -.209636+00 
.870395-01 -.201733+00 
.827037-01 -.194364+00 
.788013-01 -.187~86+00 

.752717-01 -.181058+00 

.611C88-01 -.154443+00 

.525024-01 -.13~607+00 

.~5eO~8-01 -.119295+00 

.406890-01 -.107125+00 

.366399-01 -.972205-01 

.333477-01 -.890010-01 

.306137-01 -.820692-01 

.283042-01 -.761436-01 

.2f3257-01 -.710192-01 

.246107-01 -.665434-01 
.231091-01 -.626001-01 
.217828-01 -.590993-01 

80 
.100000+01 .000000 
.995708+00 -.220828-01 
.990684+00 -.438614-01 
.98~9~7+00 -.653065-01 
.978518+00 -.863902-01 
.971421+00 -.107086+00 
.963679+00 -.127369+00 
.955317+00 -.147215+00 
.946360+00 -.166602+00 
.936834+00 -.185511+00 

.926768+00 -.203921+00 

.869300+00 -.287964+00 

.802581+00 -.357672+00 

.730181+00 -.412479+00 

.655426+00 -.452618+00 

.581214+00 -.479263+00 

.509895+00 -.493727+00 

.443222+00 -.497872+00 

.382368+00 -.493623+00 

.327976+00 -.482883+00 

.280243+00 -.467~15+00 

.239021+00 -.448112+00 

.203909+00 -.428255+00 

.174350+00 -.406909+00 

.149701+00 -.385528+00 

.129300+00 -.364688+00 

.112501+00 -.344773+00 

.987098-01 -.326022+00 

.873971-01 -.308553+00 

.781048-01 -.292400+00 

.70~~59-01 -.277541+00 

.641001-01 -.263913+00 

.588065-01 -.251431+00 

.543547-01 -.2~0002+00 

.505775-01 -.229528+00 

.473424-01 -.219915+00 

.445450-01 -.211015+00 

.421031-01 -.202926+00 

.399530-01 -.195396+00 

.321214-01 -.165001+00 

.270928-01 -.143006+00 

.235275-01 -.126308+00 

.208412-01 -.113110+00 

.187325-01 -.102546+00 

.170271-01 -.937103-01 

.156161-01 -.863935-01 

.144276-01 -.80IC29-01 

.134115-01 -.746733-01 

.125322-01 -.699319-01 

.117632-01 -.651109~01 

.110848-01 -.620752-01 

90° 
.100000+01 .000000 
.999600+00 -.225616-01 
.998401+00 -.450871-01 
.996406+00 -.675405-01 
.993620+00 -.898862-01 
.990050+00 -.112089+00 
.985703+00 -.134113+00 
.980591+00 -.155925+00 
.974725+00 -.177491+00 
.968119+00 -.198777+00 

.960789+00 -.219753+00 

.913931+00 -.318916+00 

.852144+00 -.406153+00 

.778801+00 -.~78925+00 

.697676+00 -.535713+00 

.612626+00 -.576042+00 

.527292+00 -.600412+00 
.444858+00 -.610142+00 
.367879+00 -.607158+00 
.298191+00 -.593761+00 
.236928+00 -.572397+00 
.184520+00 -.545456+00 
.140858+00 -.515113+00 
.105399+00 -.~83227+00 
.773047-01 -.451284+00 
.555762-01 -.420388+00 
.391639-01 -.391291+00 
.270518-01 -.364437+00 
.183156-01 -.340026+00 
.121552-01 -.318073+00 
.790705-02 -.298468+00 
.504176-02 -.281026+00 
.315111-02 -.265522+00 
.193045-02 -.251723+00 
.115~23-02 -.239403+00 
.682328-03 -.228355+00 
.393669-03 -.218399+00 
.222f30-03 -.209377+00 

.123410-03 -.201157+00 

.478512-05 -.168830+00 

.112535-06 -.145954+00 

.160523-08 -.128735+00 

.138879-10 -.115246+00 

.728172-13 -.104367+00 

.231952-15 -.953962-01 

.447773-18 -.878644-01 

.524289-21 -.814475-01 

.372336-24 -.759126-01 

.160381-27 -.7108Ql-01 

.419009-31 -.668445-01 

.663968-35 -.630821-01 



RHO'THETA 0° 
.0 
.0 
.0 
.0 
.0 
.0 
.0 
.0 
.0 
.0 

.00 .100000+01 

.02 .102297+01 

.04 .104678+01 

.06 .107147+01 

.08 .109708+01 

.10 .1123E4+01 

.12 .115122+01 

.14 .117985+01 

.16 

.18 

.20 

.30 

.40 

.50 

.60 

.70 

.80 

.90 
1.00 
1.10 
1 .20 
1.30 
1.40 
1.50 
1.60 
1.70 
1 .80 
1.90 
2.00 
2.10 
2.20 
2.30 
2.40 
2.50 
2.60 
2.70 
2.80 
2.90 

3.00 
3.50 
4.00 
4.50 
5.00 
5.50 
6.00 
6.50 
7.00 
7.50 
8.00 
8.50 
9.00 

.120958+01 

.124048+01 

.127260+01 

.145375+01 

.167623+01 

.195236+01 

.229885+01 

.273870+01 

.330386+01 

.403928+01 

.500898+01 
.630524+01 
.806285+01 
.104813+02 
.138599+02 
.186539+02 
.255657+02 
.35E950+02 
.507889+02 
.736656+02 
.108941+03 
.164294+03 
.2~2703+03 

.396460+03 

.634478+03 

.103581+04 
.172508+04 
.293094+04 
.508022+04 
.898334+04 

.lt2060+05 

.417C;E2+06 

.177722+08 

.124593+1 0 

.144010+12 

.274434+14 

.862246.16 

.44E655+19 

.381469+22 

.537149+25 

.124703+29 

.477316+32 

.301219+36 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 
.0 
.0 
.0 
.0 
.0 
.0 
.0 
.0 
.0 
.0 
.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.100000+01 

.102215+01 

.104502+01 

.106863+01 

.109302+01 

.111821+01 

.114424+01 

.117112+01 

.119891+01 

.122763+01 

.125731 +01 

.142149+01 
.161572+01 
.184573+01 
.211791 +01 
.243899+01 
.281529+01 
.325121+01 
.374645+01 
.429102+01 
.485657+01 
.538160+01 
.574679+01 
.573426+01 
.496175+01 
.277771+01 

-.190182+01 
-.108404+02 
-.268411+02 
-.542404+02 
-.995202 +02 
-.171913+03 
-.283609+03 
-.448599+03 
-.677955+03 
-.9E7019+03 
-.126560+04 
-.141486+04 

.000000 

.604525-02 

.12!:170-01 

.194435-01 

.268548-01 

.347829-01 

.432622-01 

.523294-01 

.620234-01 

.723862-01 

.834622-01 

.151332+00 

.245769+00 

.377084+00 

.559713+00 
.813903+00 
.116807+01 
.166206+01 
.235168+01 
.331474+01 
.465908+01 
.6~3258+01 

.913501+01 

.127298+02 

.176520+02 

.243017+02 
.331040+02 
.443947+02 
.581561+02 
.734660+02 
.874162+02 
.930880+02 
.759226+02 
.748935+01 

-.IE4667+03 
-.532419+03 
-.124780+04 
-.254465+04 

-.102319+04 -.474402+04 
.799689+05 -.12756~+05 

-.303148+06 .206132+07 
-.632047+08 -.532606+08 

.504457+10 -.335304+09 
-.398070+12 .262492+12 

.457872+&4 -.520744+14 
-.100716+17 .118452+17 

.433489+19 -.317887+19 
-.283374+22 .426347+21 

.&96497+25 .129886.25 
-.989764+25 -.298524+28 
-.549838+31 .194934+31 

TABLE 3 

.100000+01 

.101974+01 

.103989+01 

.106043+01 

.108137+01 

.110269+01 

.112441+01 

.114f50+01 

.000000 

.1163E3-01 

.240025-01 

.371373-01 

.510811-01 

.658763-01 

.815669-01 

.981992-01 
.116896+01 .115821+00 
.119178+01 .134483+00 

.121495+01 

.133536+01 

.146100+01 

.158657+01 

.170349+01 
.179848+01 
.185201+01 
.183636+01 
.171~77+01 

.143482+01 

.938062+00 

.151Cii41+00 
-.998eI6+00 

.154237+00 

.271371+00 

.424910+00 

.623876+00 

.878536+00 

.119994+01 

.159889+01 

.208415+01 

.265934+01 

.331817+01 

.403754+01 

.476793+01 

.542135+01 
-.257974+01 .585743+01 
-.462254+01 .587039+01 
-.708673+01 .518191+01 
-.980423+01 .344908+01 
-.124081+02 .301777+00 
-.142543+02 -.4570Cii5+01 
-.143607+02 -.112629+02 
-.114096+02 -.194032+02 
-.389141+01 

.950566+01 

.291411+02 

.532363+ 02 

.763516+02 

.879744+02 

.722456+02 

-.278220+02 
-.341808+02 
-.347103+02 
-.243320+02 

.239913+01 

.489857+02 

.112885+03 

.105895+02 .179798+03 
-.345002+03 -.846681+03 

.165184+04 .572854+04 

.127488+05 -.482630+05 
-.505861+06 .179234+06 

.359254+07 .647923+07 

.127587+09 -.310891.08 

.133025+10 -.267648+10 

.207375+10 -.873217+11 
.630673+&1 -.327704+13 
.683728+14 -.142358+15 
.943B32+16 -.252614+16 
.397576+18 .666613+18 

37.5° 
.100000+01 .000000 
.101801+01 .141302-01 
.103620+01 
.105458+01 
.107311+01 
.109177 +01 
.111056+01 
.11294.3+01 

.290671-01 

.448455-01 

.615C09-01 

.790701-01 

.975904-01 

.117100+00 
.114836+01 .137638+00 
.116733+01 .159244+00 

.118629+01 

.127976+01 

.136645+01 

.143813+01 

.148357+01 

.148800+01 

.143293+01 

.129634+01 

.105379+01 

.680682+00 

.156290+00 
-.530066+00 
-.137052+01 

.181958+00 

.313595+00 

.479143+00 

.683551+00 

.930808+00 

.122283+01 

.155787+01 

.192846+01 

.231879+01 

.270192+01 

.303701 +01 

.326754+ 01 

.3321E4+01 
-.232809+01 .311621+01 
-.332543+01 .256681+01 
-.423536+01 .160541+01 
-.487786+01 .206798+00 
-.502963+01 -.157716+01 
-.445375+01 -.358054+01 
-.295578+01 -.549415+01 
-.468263+00 -.686146+01 

.284504+01 -.712231+01 

.649023+01 -.572745+01 

.959591+01 -.233541+01 

.109818+02 .292473+01 

.941085+01 .919036+01 

.405857+01 .1472e9+02 
-.485116+01 .171054+02 

-.154399+02 .138266+02 
.352504+02 -.318118+02 

-.121850+03 .315751+02 
.286262+03 .246430+C3 
.714413+03 -.107588+04 

-.294447+04 -.407345+04 
-.217456.05 -.476709+04 
-.112172+06 .340422+04 
-.630212+06 -.132005+06 
-.252634+07 -.336114+07 

.165524+08 -.2E5076+08 

.206701+09 .164806+09 
-.243169+10 .751742+09 

.100000+01 

.101595+01 

.103188+01 

.104775+01 

.106354+01 

.107920+01 

.109472+01 
.111004+01 

.000000 

.163619-01 

.335494-01 

.515878-01 

.705024-01 

.903181-01 

.111059+00 

.132751+00 
.112513+01 .155415+00 
.113995+01 .179075+00 

.115445+01 

.122045+01 

.127026+01 

.129522+01 
.128502+01 
.122814+01 
.111267+01 
.927639+00 
.665017+00 
.32227e+00 

-.945930-01 
-.568066+00 
-.106664+01 
-.154400+01 
-.194085+01 
-.219057+01 
-.222934+01 
-.201049+01 
-.152134+01 

.203753+00 

.343076+00 

.510240+00 

.705740+00 

.927798+00 

.117142+01 

.142738+01 

.168134+01 

.191326+01 

.209753+01 

.220410+01 

.220118+01 

.205955+01 

.175882+01 

.129487+01 

.687583+00 
-.131466-01 
-.725740+00 
-.134236+01 

-.798885+00 -.174372+01 
.610500-01 -.182367+01 
.907518+00 -.152069+01 
.155613+01 -.849408+00 
.183009+01 
.161505+01 
.913632+00 

-.121594+00 
-.119C;68+01 

.787847- 01 

.105855+01 

.182663+01 

.213210+01 

.182716+01 

-.196121+01 .948998+00 
.178275+01 -.513342+00 

-.201785+01 -.479428+00 
.248394+00 .205738+01 
.190113+01 -.186596+00 
.714128+00 -.176703+01 

-.323300+00 -.191803+01 
-.383674+00 -.191335+01 

.543630+00 -.185111+01 

.185781+01 -.535787+00 

.733467+00 .188952+01 
-.204721+01 .598650-01 

.150878+01 -.121573+01 



EXPCZ •• 2).ERFC(-Z' 

RHO'THETA 50
0 60° 70" 80" 90° 

.00 .100000tOI .000000 .100000+01 .000000 .100000+0 I .000000 .100000+01 .000000 .100000+01 .000000 

.02 .101443+01 .116841-01 .101108+01 .198904-01 .100741+01 .214606-01 .100354+01 .223563-01 .999600+00 .225616-01 

.04 .1028t9+01 .361148"01 .102172+01 .404727-01 .101417+01 .434163-01 .100631+01 .449542-01 .998401+00 .450871-01 

.06 .104275+01 .554874-01 .103189+01 .617442-01 • 102026+0 I .658462-01 .100830+01 .677607-01 .996406+00 .675405-01 

.08 .105656+01 .756385-01 .104154+01 .837004-01 .102564+01 .887273-01 .100949+01 .907418-01 .993620+00 .898862-01 

.'0 .107009+01 .966430-01 .105064+01 .106335+00 .103029+01 .112035+00 .100986+01 .113862+00 .990050+00 .112089+00 

.12 .108331 +0 I .118515+00 .105916+01 .129639+00 .103418+01 .135743+00 .100942+01 .137086+00 .985703+00 .134ll3+00 

.14 .109617+01 .141267+00 .106704+01 .153603+00 .103728+01 .159822+00 .100814+01 • 160377+00 .980591+00 .155925+00 

.16 .110862+01 .164910+00 .107424+01 .1782'2+00 .103956+0 I .184242+00 .100603+01 .183697+00 .974725+00 .177491+00 

.18 .112062+01 .189453+00 .108074+01 .203453+00 .104100+01 .208971+00 .100307+01 .207C09+00 .968119+00 .198777+00 

.20 .113213+01 .21"'906+00 .108648+01 .229307+00 .104157+01 .233974+00 .999272+00 .230213+00 .960789+00 .219753+00 

.30 .lle040+01 .355926+00 .110242 +01 .366982+00 .103071+01 .361797+00 .967640+00 .344526+00 .913931+00 .318916+00 

.40 .120806+01 .519531+00 .109341+01 .515837+00 .995!!93+00 .490450+00 .915655+00 .451794+00 .852144+00 .406153+00 

.50 .120731+01 .703662 +00 .105496+01 .670616+00 .935432+00 .614113+00 .845306+00 .547520+00 .778801+00 .478925+00 

.60 .116960+01 .903714+00 .983747+00 .824347+00 .851095+00 .726620+00 .759756+00 .627812+00 .697676+00 .535713+00 

.70 .108743+01 .111228+01 .878285+00 .968587+00 .745231+00 .821976+00 .663105+00 .689772+00 .61262f+00 .576042+00 

.80 .953336+00 .IJI817+01 .739549+00 .109394+0 I .622230+00 .894945+00 .560035+00 .731740+00 .527292+00 .600412+00 

.90 .763292+00 .150697+01 .571471+00 .119083+01 .487972+00 .941619+00 .455412+00 .753397+00 .444858+00 .610142+00 
1.00 .517275+00 .166123+0 I .381152+00 .125055+01 .349369"00 .959889+00 .353863+00 .755730+00 .367879+00 .607158+00 
1 .10 .221086+00 .17fI67+01 .178694+00 .126642+01 .213743+00 .949748+00 .259408+00 .740868+00 .298197+00 .593761+00 
1.20 -.112292+00 .178923+01 -.234440-01 .123493+01 .881139-01 .913353+00 .175175+00 .711800+00 .236928+00 .572397+00 
1.30 -.462011 +00 .172780+01 -.211562+00 • I 15668+01 -.2115044-01 .854822+00 .103231+00 .672034+00 .184520+00 .545456+00 

0\ 1.40 -.799794+00 .156770+01 -.372237+00 .103688+01 -.110704+00 .779790+00 .445420-01 .625237+00 .140858+00 .515113+00 
(X) 1.50 - • 109 192 +0 I .130«;26+01 -.494065+00 .885190+00 -.177075+00 .694764+00 -.945684-03 .574901+00 .105399+00 .483227+00 
0\ 1 .60 -.130302+01 .96!!812+00 -.569332+00 .714952+00 -.220337+00 .606395+00 -.341317-01 .524075+00 .773047-01 .451284+00 

1.70 -.140154+01 .565275+00 -.595.323+00 .541594+00 -.242190+00 .520751 +00 -.565267-0 I .475193+00 .555762-01 .420388+00 
1.80 -.136640+0 I .149IliO+00 -.574932+00 .380624+00 -.245914+00 .442725+00 -.699973-01 .429992+00 .391639-01 .391291+00 
1.90 -.119347+01 -.231426+00 -.516381+00 .245402+00 -.235801+ 00 .375650+00 -.765256-01 .389521 +00 .270518-01 .364437+00 
2.00 -.900424+00 -.523642+00 -.432005+00 .145177+00 -.216510+00 .321167+00 -.780102-01 .354223+00 .183156-01 .340026+00 
2.10 -.527958+00 -.682837+00 -.336258+00 .837718-01 -.192467+00 .279344+00 -.761241-01 .324056+00 .121 ~52-0 1 .318073+00 
2.20 -.135761+00 -.683750+00 -.243313+00 .592582-01 -.167392+00 .248S9f+00 -.722347-0 I .298640+00 .790705-02 .298468+00 
2.30 .207215+00 -.529536+00 -.1 ~4751 +00 .647151-01 -.144014+00 .228112+00 -.673774-01 .277393+00 .504176-02 .281026+00 
2.40 .437243+00 -.2S5605+00 -.107845+00 .899283-01 -.123986+00 .214327+00 -.622737-01 .259650+00 .315111-02 .265522+00 
2.50 .512073+00 .744257-01 -.748106-01 .123641+00 -.107S86+00 .205321+00 -.573770-01 .244750+00 .193045-02 .251723+00 
2.60 .424377+00 .381557+00 -.631827-01 .155822+00 -.959278-01 .199114+00 -.529309-01 .232099+00 .115923-02 .239403+00 
2.70 ,207358+00 .591072+00 -.671444-01 .179408+00 -.872383-01 .194224+00 -.490308-01 .221194+00 .682328-03 .228355+00 
2,80 -.711724-01 .654101+00 -.794229-01 0191148+00 -.811203-01 .189696+00 -.456768-01 .211636+00 .393669-03 .218399+00 
2,90 -.326684+00 .563991+00 -.932090-01 .191421+00 -.767654-01 .185036+00 -.428169-01 .203120+00 .222630-03 .209377+00 

3.00 -.483674+00 .360592+00 -.103604+00 .183219+00 -.734<;11-01 .180089+00 -.403769-01 .195423+00 .123410-03 .201157+00 
3.50 .999905-01 .472332-02 -.891007-01 .134728+00 -.617122-01 .154611+00 -.321314-01 .164984+00 .478512-05 .168830+00 
4.00 -.218410+00 .993987-01 -.749050-01 .122386+00 - .525086-0 1 .134600+00 -.270923-01 .143006+00 .112535-06 .145954+00 
4.50 -.558352-01 .147044+00 -.658583-01 .108279+00 -.458045-01 .119295+00 -.235275-01 .126308+00 .160523-08 .128735+00 
5.00 -.517307-01 .724167-01 -.587417-01 .975944-01 -.406890-01 .107125+00 -.208412-01 .113170+00 .138879-10 .115246+00 
5.50 -.679421-01 .672C66-01 -.530230-0, .887586-01 -.3f6:!99-01 .972205-01 -.187325-01 .102546+00 .728772-13 .104367+00 
6.00 -.639612-01 .683196-01 -.483467-01 .813834-01 -.333477-01 .890010-01 -.170271-01 .937703-01 .231<;52-15 .953962-01 
6.50 -.576053-01 .65C3li8-01 -.444434-01 .7513t2-01 -.306137-01 .820692-01 -.156161-01 .863935-01 .447773-18 .878644-01 
7.00 -.52t816-01 .60<;424-01 -.411335-01 .697775-01 -,283042-01 .761436-01 -.144276-01 .801029-01 .524289-21 .814475-01 
7.50 -.488796-01 .51170.3-01 -.382898-01 .651309-01 -.263257-01 .710192-01 -.134115-01 .746733-01 .372336-24 .759126-01 
8.00 -.457747-01 .537426-01 -.358190-01 .610637-01 -.246107-01 .665434-01 -.125322-01 .699379-01 .160381-27 .710881-01 
8.50 -.430626-01 ,506142-01 -.336516-01 .574741-01 -.231091-01 .626001-01 -. 117632-0 I .657709-01 .419009-31 .668445-01 
9.00 -.406279-01 .478200-01 -.317343-01 .542828-01 -.217828- 0 1 .590993-01 -.110848-01 .620752-01 .663968-35 .630821-01 
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