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The critical line of the binary mixture methane-ethane is calculated via the extended corresponding states 
Van der Waals one fluid theory. The Gibbs free energy criticality criteria are solved numerically. The numerical 
deriva tives are compared with the exact analytical results derived previously for the special case of the shape fac
tors of the extended corresponding states set equal to unity. Binary interaction parameters are adjusted to give a 
best fit of the critical line to experimental data. These interaction parameters are then used to evaluate vapor 
liquid equilibrium data away from the critical region. It appears that a fit of the critical line is not sufficient to 
obtain binary interaction parameters of general applicability. Optimization of the critical point predictions for 
the pure components is also discussed. 

Key words: Binary interaction parameters; criticality criteria; extended corresponding states; gas-liquid critical 
line; one fluid theory; Van der Waals theory; VLE prediction. 

1. Introduction 

The prediction of phase equilibria is both a classical 
problem of the theory of liquids and a problem of engineer
ing concern. Today the chemical and fuel industries have to 
increase productivity and conservation and transfer to new 
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feedstocks; phase equilibria is a major factor. But it is well 
known that the prediction, even the correlation, of the prop
erties of the appropriate systems can be exceptionally dif
ficult if the results are required to any reasonable accuracy_ 
Prediction techniques are needed especially because the 
number of possible systems makes measurement an over
whelming task. Prediction requires an understanding of 
theory but, unfortunately, theory cannot yet always handle 
adequately the complex systems encountered: the gap be
tween a systematic practical theory and reality is large. One 
technique, however, has been applied successfully to simple 
systems and does show promise in that the assumptions can 



be identified clearly. This method is extended correspond
ing states. Here we apply it to a system of methane and 
ethane. A specific objective is to calculate the gas/liquid 
critical line and to observe the effect of the binary interac
tion parameters on the calculation. It is then interesting to 
see how these parameters, optimized for the critical line, 
represent vapor liquid equilibrium (VLE) data. 

The critical line in a binary mixture may be calculated by 
solving the equations 

for a temperature (T) and pressure (P) with the mole frac
tion (x) specified. G is the molar configurational Gibbs free 
energy of the mixture. In this work these second and third 
order derivatives were evaluated numerically, but have been 
compared with the analytical results of Wielopolski [1)1 in 
the special. case when the extended corresponding states 
shape factors are unity. The accuracy of the approach has 
thus been evaluated. 

The system methane/ethane was selected for comparison 
with experiment since the VLE data have been evaluated 
for thermodynamic consistency by Hiza, et al. [2], The pro
cedure is quite general, however, and we have applied it to 
several mixtures. Variations have been reported extensively 
by Watson and Rowlinson [3], Gunning and Rowlinson [4], 
Teja and Rowlinson [5], Mollerup and Rowlinson [6], and 
Mollerup [7, 8]. The overall objective is to develop a general 
technique for calculating the critical line of a binary mix
ture and to see if the binary interaction parameters can be 
reliably evaluated by adjusting them to give the best least 
squares fit of the critical line data. 

T" = T/f""", and V" = V/haa", (1) 

where the scaling ratios hand / are defined respectively by 

haa", = V~/ V~ and/aa." = T~/T~ (2) 

For a mixture the most natural definition of hz and}: follows 
from the work of Henderson and Leonard [9] to give the Van 
der Waals one fluid mixing rules: 

(3) 

(4) 

The cross coefficients/atl ... and hatl" are left unspecified until 
further combination rules are defined, e.g., 

/atl... = ~atI ... (faa", /tltI ... )1f2 (5) 

haJj", = ?Jatl." [lh (h aa,,,)'" + Ih (htltl.,,)'" r (6) 

where ~atl'" and ?Jan ... are the binary interaction coefficients 
which, although formally close to unity, can playa major 
role in the calculation of phase equilibria. 

One Fluid Mixture Equations: 

The properties of a mixture can be evaluated in terms of 
the reference substance and the ratios of eq (2). The basic 
equations are: 

Compressibility factor, Z 

2. Corresponding states and equations Z(T, v,x) == ZJ.T, VOx) (7) 

The basic postulate of the theory used here-the Van der = Z,,(T!J:,o, V/hz,o) (8) 
Waals one fluid theory-is that if the components a (a = 
I,n where n is the total number of species) of a mixture Molar configurational Helmholtz free energy, ;; 
separately obey classical corresponding states, then their 
mixture will also obey corresponding states as if it were a A (V, T,x) == Az( V, T,x) + RT ~ Xa in Xa (9) 
single substance. The components can be represented by 
selected parameters, e.g., critical temperature (T~) and crit- where 
ical molar volume (V~), and the hypothetical equivalent 
substance, designed by subscript x, can be characterized by AAV,T,x) = /z,o A,,(V/hz,o, T/fz,o) - RT in hz,o (10) 
some suitable composition dependent averaged parameters 
T~ and V!. The method then assumes that the properties of or the molar configurational Gibbs free energy, G 
a pure substance at p and T, or Vand T, can be evaluated 
with respect to those of a reference fluid, designated by G (P,T,x) == G;r(p,T,x) + RT ~Xa in Xa (11) 
subscript 0, via 

where 

I Numbers in brackets refer to Ihe litera lure references al the end of this paper. 
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The symbol - refers to the molar quantity. Equations 
(7)-(12) which define the properties of an n-component 
mixture, can also be used for pure component properties if 
all subscript x's are replaced with a's. 

VLE Equations: 

For pure component VLE, equating the molar Gibbs free 
energy of each phase results in the following expression: 

[l:"X/RTo - in Zo - 1 + Zo] = 
v"p 

[l:"x/RTo - in Zo - 1 + Zoll9 (13) 

A~" == A(T/faa,o, Vlhoo,D) - Apg(T/fao,o, Vlh",o,D) (14) 

In eq (13) superscript Res refers to the residual value de
fined by eq (14) with lpg the value of the equivalent perfect 
gas. Equation (13) is expressed in terms of the residual 
Helmholtz free energy rather than Gibbs since the reference 
equation of state has T and V (not T and p) as the independ
ent variables. 

For mixture VLE one can calculate the K-value for, say, 
species a at T and p: 

(15) 

where one can derive 

with pRII.I the residual chemical potential. Further manipula
tions give pRII.I in terms of G and, for a binary mixture, 

Ru - -C - RT (a(GxIR1) - RT (} ~ (17) pa - x X{l aXil T.p ~n leT 

where 

(18) 

Critical Criteria: 

The conditions for a critical point at T,p for a mixture are 

(19) 

Substitution of the one fluid equations gives 

(20) 

and 

which can thus be evaluated using eq (18). 
The above equations and others have been discussed in 

full and derived by Rowlinson and Watson [31, by Eaton [101 
and by other authors so it has been sufficient to be very 
brief. The equations form the basics of the evaluation of 
phase equilibria for a pure fluid or mixture, given the 
reference equation of state and the reference Co or Ao. 

Extended Corresponding States: 

In general, since classical corresponding states is not 
obeyed, equations (8) and (10) or (8) and (12) are not 
satisfied with the scaling ratios of eq (2). It is possible, 
however, to define a corresponding states so that eqs (8) and 
(10) are satisfied exactly. To do this we define shape factors 
(J and <p so that (for a pure, for example) 

To = T( ~ )_(Jl ; 
j a aa,o 

(22) 

hence the ratios f and h become 

(23) 

The point about this redefinition, i.e., the basis of extended 
corresponding states theory, is that the corresponding 
states equations can be used formally with the provision 
that the scaling ratios are given by eq (23). It should be 
stressed that the ratios could be solved for either a pure or a 
mixture via eqs (8) and (10) but to do this would require a 
complete description of the fluids in question: essentially an 
impossibility. It is convenient to have some generalized 
analytical relation for (J and <p. Leach and Leland proposed 
the following [11]: 

(JOO,D (T:, Jl!, wJ = 1 + (wo wo) F(T:, Jl!) (24) 

<POO,D (T:, Jl!, wo) = (1 + (wo - wo) G(T:, Jl!») ~i (25) 

where 

and 

Here w is the pitzer acentric factor or some chosen parame
ter and a, b, c, d are constants: 
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a1 = 0.0892, 
b1 = - 0.8493, 
C1 = 0.3063, 
d. = -0.4506, 

az = 0.3903 
bz = -1.0177 
Cz = -0.9462 
dz = -0.7663 

The asterisk denotes the value reduced by the critical value. 
The equations are constrained in that v: is set equal to 2.0 
for a11 v: > 2.0 and to 0.5 for v: < 0.5: r: is set to 2.0 if 
r: > 2.0. 

We [12] have recent1y tested the Leach-Leland equations 
for the hydrocarbons C.-Czo over an extensive range of ex
perimental conditions and revised coefficients are reported 
in the reference. We also verified that the original equa
tions were satisfactory for reduced temperatures greater 
than 0.5. 

3. Calculation and numerical methods 

The objective is to solve the critical criteria eqs (20) and 
(21) for the methane/ethane system and in so doing, observe 
the effects of the interaction parameters ~ and 7J of eqs (5) 
and (6) on the results. Having these values, we then evaluate 
some K-values for selected temperatures using eqs (15)-(IS). 
We chose methane as the reference fluid, the equation of 
state for which is the 32 term BWR of McCarty [13]. Critical 
parameters and Leach-Leland acentric factors for methane 
and ethane are given in table 1. 

TABLE 1. Parameters for Methane and Ethane 

1'" Jr. p. w 
(K) (cm'/mole) (Bar) 

CH. 190.555 97.75 44.793 .005 
C2H. 305.33 147.06 47.448 .105 

Analytical and Numerical Evaluation of the Derivatives: 

The numerical techniques used in this work are standard. 
We use the central difference formulas [14] for which the 
first two tenns in the infinite power series expansions are 
given here. For the derivatives of a functionf evaluated at a 
point %, one has 

dA :::: f.-/-l _ fz-2J.+2/-.-f, (2S) 
thJJt 2h 12h 

f.-2/o+/-. 
h2 

fz -4ft +6/0 -4/-. + /-2 
12h2 

01) :::: fz-2ft +2/-.-f-; _ 
Or It 2h3 Sh3 

fa -4fz +51. - 5f-. +4f, - /-3 
Sh3 

(29) 

(30) 

where 

fa = fix) f,. = fix + nh) (31) 

The difficulty is to choose a value of h which is not too small 
(otherwise significant figures will be lost in evaluating the 
numerators of eqs (28)-(30» but not too large (otherwise the 
truncation error, which can be estimated by the second term 
of eqs (2S)-(30), will be large). One also has to consider the 
word length of the computer and the convenience of using 
single versus double precision. In this work we calculated on 
a CDC 6400 and a CDC 6600 machine with a 60 bit word 
length (13 significant figures). 

We were able to observe definitely the effect of varying h 
for the special case 8 = lP = 1, i.e., for classical correspond
ing states. Equations (19) and (20) have been solved analyt
ically by Wielopolski (1980) and the lengthy expressions are 
reported in an NBS publication [1] and will not be repeated 
here. For example, table 2 lists the number of figures in the 
numerical results which were in agreement with the analyti
cal results for the first, second, and third derivatives of 
G1tIRT for a particular test case. The number of figures in 
agreement for the function value of G1tIRT itself was 10-12. 

TABLE 2. Comparison of Numerical and Analytical Results for Derivative 
Calculations Using Single Precision Arithmetic. Subscripts refer to the 

derivation with respect to x. 

h 

6 
7 
7 

5 
5 
3 

4 
3 
o 

Table 2 indicates that the first order derivative is trunca
tion error controlled, since its value becomes more accurate 
as h is decreased. The second and third derivatives are, on 
the other hand, controlled by the loss of significant figures 
since as h is decreased, they lose accuracy. Since the third 
order derivative is the least accurate, we chose the value of 
h for which it is calculated most accurately. 

We now consider what the sma11est values of the second 
and third order derivatives are which can be calculated with 
h = 10-3

, since our eventual goal is to solve the equations 
for the critical point by driving the values of those 
derivatives to zero. The derivatives go to zero by a cancella
tion of the two terms in eqs (20) and (21), that is, the con
tribution from the hypothetical substance is cancelled by 
the ideal mixture contribution. For this reason, the values of 
the derivatives cannot be made arbitrarily small. The ideal 
mixture contribution (which can be computed with negligi
ble error) can only cancel as many significant figures as ap
pear in the hypothetical substance contribution. Consider 
the case in table 2 with h = 10-3• For the second order 
derivative, the hypothetical substance contribution has five 
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significant figures, and its value is order unity (abbreviated 
0(1». If the ideal mixture contribution were to cancel all five 
of these figures, the result would be a number of 0(10-5) with 
no significant figures remaining. For the third order deriva
tive, the hypothetical substance contribution contains four 
significant figures, and is 0(10). Cancelling all significant 
figures would leave a number of 0(10-3). 

In our first attempt at calculating critical lines based on 
the numerical evaluation of the derivatives in eqs (20) and 
(21) using single precision arithmetic, we were unable to ob
tain convergence of the temperature and pressure to five 
significant figures. The problem appeared to be that there 
were not enough significant figures in the derivative calcu
lations. While the truncation error is inherent to the for
mulas being used, the loss of significant figures can be com
pensated by adding more figures to the function values. 
This was done by the use of double precision arithmetic 
which gives us 26 significant figures on the CDC 6400. In 
table 3 below, the results for the numerical derivatives 
calculated using double precision arithmetic are compared 
with the results arrived at analytically. Again, reported in 
the table are the number of figures of agreement between 
the two results. 

TABLE 3. Comparison of Numerical and Analytical Results for Derivative 
Calculations Using Double Precision Arithmetic. 

h (CzlRnz (CzlRnh (CzlRn3z 
10-3 6 5 4 
10-4 7 9 6 
10-5 7 8 7 
10-6 7 8 7 
10-7 7 8 7 
10-8 7 8 4 
10-9 7 8 1 

For h = 10-3
, the single and double precision results are 

the same, which indicates that truncation error is control
ling. Looking at the double precision results, the third 
deriva tive shows an increase in accuracy as h is decreased to 
10-5

; clearly indicating that the truncation error is decreas
ing to this point. As h is decreased past 10-7, accuracy is lost 
due to loss of significant figures. 

Based on these results, a value of h = 10-6 is chosen to 
compute the derivatives in double precision. Given this val
ue for h, the smallest value of the second derivative which 
may be calculated (containing no significant figures) is 
0(10-8

), and that for the third derivative is 0(10-6). The 
calculations of the binary critical line were subsequently 
made to converge to five significant figures for both temper
ature and pressure. 

4. Results 

It must again be stressed that the general procedure for 

calculating the critical line or VLE is predictive and re
quires only the critical constants and an acentric factor for 
the fluid of interest, or of the components in a mixture. For 
a relatively simple system the results will be reasonable 
without optimiza tion of any parameters. Since, however, we 
are concerned only with VLE and the criticai point we con
sidered two straightforward optimization procedures involv
ing the factor w. The first was to adjust w to give the best 
representation of the pure component vapor pressure curve, 
the second was to force the critical temperature and 
pressure of the pure fluids to correspond exactly with those 
of the reference substance. This second variation is simply 
to set w .. = Wo: hence by eqs (24) and (25) 0 = 1 and cp = 
Z~/Z~-a form of classical corresponding states. One should 
note that the two procedures are not the same because the 
Leach-Leland equations are not constrained at the critical 
point. 

Ethane: Pure Component Results: 

We first considered the ethane vapor pressure curve 
which was obtained using Leach's expression for the shape 
factors. The value of the acentric factor for the Leach equa
tions was determined by optimizing agreement with the 
vapor pressure data by a trial and error procedure in which 
the sum of the average absolute deviations, for the vapor 
pressure, and saturated vapor and liquid densities, were 
minimized; temperature being chosen as the independent 
variable. The temperature range over which the results were 
optimized was 180 K to 300 K; 180 K being the lower limit 
for which Leach's equations were designed; 300 K corre
sponded to the maximum temperature for which the vapor 
pressure program would converge. Calculated and data 
values were compared at 10 K increments. The average 
deviations obtained for several values of acentric factor are 
given in table 4. The value chosen for acentric factor in this 
work (w = 0.094) is seen to give a substantial improvement 
over the Pitzer value (w = 0.105) which was used by Leach. 

TABLE 4. Variation of Ethane Vapor Pressure Curve With Acentric Factor 
(Leach 8, ¢). 

Acentric 
Ave % Ave % Ave % 

Idpl Ide_pi Idell.1 EAve % 
Factor '" -p- -----e:;- ------e,;;-
0.105 2.080 3.148 0.6158 5.844 

.100 1.259 2.215 .3706 3.845 

.096 0.595 1.460 .3791 2.434 

.095 .467 1.270 .3894 2.126 

.094 .444 1.164 .4067 2.015 

.093 .479 1.127 .4245 2.031 

.092 .543 1.137 .4424 2.122 

.090 .736 1.241 .4904 2.467 

.005 60.579 61.633 4.746 126.958 
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The curves for vapor pressure and orthobaric densities 
(e = 11 V), obtained using Leach's shape factors with the 
optimi~ed acentric factor are compared with the correla
tions of Goodwin, et a1. [IS] to obtain the deviations plotted 

in figure I. 
Also in figure I, deviations for the vapor pressure and 

orthobaric density curves predicted using classical corre
sponding states are presented. This figure emphasizes that 
the Leach shape factors make a significant difference. The 
vapor pressure deviations are positive, and become larger 
as the triple point is approached, since classical correspond
ing states predicts a slope of the vapor pressure curve 
(dPldn which is too small. The deviation of pressure goes 
to zero at the critical point because the two parameters are 
choosen to make the critical temperature and pressure cor
respond exactly. 
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FIGURE 1. Percent deviations ((expl<alc) X loo/calc] for the vapor 
pressure, "apor density and liquid density for ethane at saturation. Data 
rrom Goodwin (15~ Calculations (rom the extended corresponding states 
method with the parameter WOo optimized, circles. Also shown as the dashed 
line are the results with 8 = I and ¢J = Z;/Z~, see equations (22)-(27). 

The critical point results for ethane are in table S. Notice 
that the results are better using classical corresponding 
states than with the Leach shape factors. This is because 
classical corresponding states forces either the critical 
temperature and density to correspond (0 = tP = 1), or it 
forces the critical temperature and pressure to correspond 

(0 = I, tP = Z~/Z~. 

TABLE 5. Ethane Critical Point Predictions. 

T«K) 
P< (bar) 
e«moIlL) 

Data 

305.33 
47.488 

6.80 

Leach (J, 

cP{w =0.094) 

307.01 (0.55)-
48.790 (2.83) 

6.98 (2.65) 

a Percent deviation is in parenlheses. 

The Critical Line: 

8=q,=1 

305.33 
47.750 (0.55) 

6.80 

8=1, 
q,=ZUZ~ 

305.33 
47.448 

6.76 (-.59) 

We first calculate the critical line using the Leach shape 
factor equations with acentric factors of O.OOS and 0.094 for 
methane and ethane respectively. The results are plotted 
against the critictll line data found in the review article of 
Hicks and Young [16], and identified in the caption to 
figure 2 (the symbols used in figure 2 are identical with 
those used in figures 3 through 7). 

The results are presented in the form of T-x and Pox plots 
in figures 2-S and show the general trends obtained by 
varying the binary interaction parameters, ~ and 1]. Holding 
~ constant, figures 2 and 3 show that 1] has a small effect on 
the T-x curve, and a large effect on the pox curve. In both 
cases, increasing 1] gives a better representation of the data. 

320,-------.-------~------._------._----~ 

1eOo~----~O.~2------=O.~4------~~----~~----~1.0 

FIGURE 2. The methane-ethane T-x critical plot calculated via extended 
corresponding states showing the variation caused by the interaction 
parameter, .". Dala [16]: V' Bloomer, Gani and Parent; 0 Price and 
Kobayashi; 0 Wichelerle and Kobayashi. The values (or Ihe pures, 6, are 
(rom Goodwin [15] and [19~ 
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Holding 1] constant, figures 4 and 5 show that ~ has a much 
larger effect on the T-x curve than did 1], and an equally 
large effect on the pox curve. The important point to notice 
is that the maximum value in the pox curve is shifted 
towards small mole fraction values (of CH4) by decreasing ~. 
The best representation of the pox curve in figure 3 (i.e., 
~ == 1.00, 1] = 1.08) indicates that the peak of the curve 
needs to be shifted towards the smaller mole fractions to im
prove the agreement, thus, ~ should be decreased. 

FIGURE 3. The p.plot corresponding to figure 2. 

320,-------.-------.--------.------_.-------. 

280 

~ 260 
..: 

240 !=1.00,.,.,= 1.00 

22Or-
!=1.05,.,.,=1.00 

2001 

180
0 0.2 0.4 0.6 0.8 1.0 

FIGURE 4. Variation of the parameter, t, for methane-ethane in the T-x 
plot. 

To achieve the goal of obtaining the interaction parame
ters by fitting the critical line data, a manual search tech
nique was initiated. The "best fit" was defined in the least 
squares sense. The results of this search were that ~ = 0.97, 
and 1] = 1.13 were chosen as the "best" values for the in
teraction parameters. The ffbest fit" T-x and Pox curves are 
presented in figures 6 and 7 respectively. 

... 
ftJ 

80,-------~-------r------_r------_.------_, 

70 

.Sl 60 

c: 

50 

o 0.2 0.4 0.6 0.8 1.0 

X
CH4 

FIGURE 5. The pox plot corresponding to figure 4. 

320,-------.-------.--------.-------.-------. 

180L-------L-------~-------L----__ ~ ______ ~ 
o 0.2 0.4 0.6 0.8 1.0 

FIGURE 6. The T-x critical line of methane-ethane with optimized interac· 
tion parameters. The two curves correspond to extended corresponding 

states [t = 0.97, 1} = 1.13] and the classical corresponding states with "' .. 

= "'. [t = 0.97, 1} = 1.07]. 

70,-------.-------.--------.------_.-------. 

60 !=0.97,.,.,=1.13 

40~--------------~----__ ~ ______ ~ ______ ~ 
o 0.2 0.4 0.6 0.8 1.0 

FIGURE 7. The pox plot corresponding to figure 6. 
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The fit of the T-x curve is good, with only one data point 
which seems astray. The Pox curve, however, does not have 
the right shape to fit the data well. Part of the fitting prob
lem is due to the bad prediction which is made for the criti
cal point of pure ethane. This led us to try the second ap
proach of setting w .. = Wo' Hence, the critical endpoints in 
the T-x, and p·x curves are exact. A new optimization led to 
the parameter values t = 0.97, 11 = 1.07. While the fit of 
the T-x curve was not significantly improved that for the Pox 
curve was. These results are shown in figures 6 and 7. 

Vapor-Liquid Equilibria Results: 

Of the VLE data judged to be thermodynamically consist
ent by Hiza, et al. [2], three representative isotherms were 
chosen to test the predictions made using the binary inter
action parameters determined in the previous section. Two 
of the isotherms are supercritical (250 K and 199.92 K), and 
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FIGURE 8. Methane~thane K·value deviation plots at 250 K. Shown are the 
(dll!!hed) cun-es with the interaction parameters from the critical line fit 
[~ = 0.97,." = 1.07] and, for reference, with ~ = f1 = 1.00 Il!! the solid 
cun-es. 

one is subcritical (144.26 K). The sources of the data are: 
250 K isotherm, Davalos, et al. [17]; 199.92 K and 144.26 K 
isotherms, Wichterle and Kobayashi [18]. 

The VLE calcUlations used the Leach shape factors with 
the acentric factors 0.005 and 0.094 for methane and ethane 
respectively. The results are presented as K-value deviation 
plots for both the methane and the ethane K-value predic
tions. Figures 8, 9, and 10 contain these curves wiih the in
teraction parameters obtained from the critical line fit (i.e., 
t = 0.97,11 = 1.07). These figures also show that setting the 
interaction parameters to unity gives much better VLE pre
dictions than do the parameters obtained from the best fit 
of the critical line data. 
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FIGURE 9. Methane~thane X·values at 199.92 K. 

5. Summary and Conclusions 

The proposed technique of calculating binary critical 
lines by numerically evaluating the second and third order 
derivatives of the Gibbs free energy has been checked with 
an analytical solution for the special case of classical Cor
responding states, and has proven successful. The best least 
squares fit of the critical line data of the system methane
ethane was then shown to be poor (particularly the Pox 
curve) if the Leach shape factors are used with an acentric 
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factor optimized for pure component vapor pressure predic
tions. This is due to a bad prediction of the critical endpoint 
for ethane. To improve this fit, we use classical correspond
ing states to force correspondence of the temperature and 
pressure at the critical line endpoints. However we also 
show that the pure component vapor pressure predictions 
are not satisfactory if this is done. Finally, VLE predictions 
are made using Leach shape factors with the acentric factor 
optimized for vapor pressure predictions, and the binary 
interaction parameters obtained from the best fit of the crit
icalline data (i.e., with 8 = 1, ¢ = Z!/Z~. The results are 
not as good in general as those which are obtained by set
ting t = 1] = 1. Hence we conclude that a fit of the binary 
critical line does not yield binary interaction parameters of 
any general significance. 
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As a first step toward the understanding of Rayleigh-Brillouin scattering from a fluid with a temperature 
gradient, we analyze the initial value problem for certain prototype one-dimensional nonuniform systems. For 
sufficiently short times and localized initial pulses, it is not necessary to impose actual physical boundaries on 
the linearly nonuniform system. By a straightforward, though unconventional, application of Fourier and 
Laplace transform methods, explicit and physically reasonable solutions are constructed for the propagation of 
fluctuation pulses in space and time according to the nonuniform wave and diffusion equations and a special 
case of the nonuniform damped wave equation. The analog of the dynamic structure factor is also constructed 
for the latter two cases. 

Key words: damped wave motion; density fluctuations; diffusion; dynamic structure factor; initial value problem; 
nonuniform systems; one·dimensonal models; Rayleigh·Brillouin scattering. 

I. Introduction 

There has been considerable recent interest in the problem of Rayleigh-Brillouin scattering in a fluid with 
a stationary temperature gradient. [1-10] 1 The problem, in essence, is to generalize Mountain's standard 
derivation of the equilibrium Rayleigh-Brillouin spectrum [II] to the nonequilibrium stationary state. 

Laser light is scattered from a liquid because of random density (and therefore dielectric constant) fluc
tuations. [12, 13] In the hydrodynamic regime, a density fluctuation will propagate in time partly as a diffu
sion or Uheat" mode, causing the Rayleigh line, and partly as a wave or usound" mode, causing the two 
Brillouin lines. With a temperature gradient the spectrum is altered. For example, if more sound modes are 
generated at the hot side of the liquid than at the cold side, there will be a larger flux of sound modes from 
hot-to-cold than from cold-to-hot, thereby causing a size asymmetry in the Brillouin peaks. Some treatments 
of this problem, [1-4] in fact, predict no spectral changes other than an overall asymmetric scale factor in 
the Brillouin peaks. Such an asymmetry has recently been observed experimentally. [14] 

Other authors [5-9] predict changes in the mathematical shape of the Brillouin lines from their 
equilibrium (Lorentz ian) form. Such changes of shape, very difficult to measure experimentally, are inter
preted here as the effect of propagation of modes through regions of changing sound speed, sound attenua
tion, and thermal diffusivity. Among the theories published to date, [1-10] there is significant disagreement 
as to the precise form of the nonequilibrium spectrum. Some discrepancies may arise from different assump
tions about the nature of the nonequilibrium steady state, but it is not clear at this time if all do. 

None of the theories published thus far appear to follow the procedure of ref. 11 explicitly, i.e., to solve 
the hydrodynamic equations for the time evolution of a density fluctuation and, subsequently, to perfJrm a 

Continuous Process Technology Program, National Engineering Laboratory. 

rigures in brackets indicate literature references at the end of this paper. 
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stochastic and ensemble average to determine the dynamic structure factor and hence the spectrum of scat
tered light. Closest in spirit to such a procedure is the hydrodynamic approach of van der Zwan and Mazur, 
[7, 8] but they appear to bypass the calculation of the time development of an individual fluctuation. 

An explicit calculation of the evolution in time and (both physical and Fourier) space of a spontaneous 
density fluctuation, in the presence of a temperature gradient, should shed considerable light on the 
presently confused predictions of Rayleigh-Brillouin scattering. The possibility of changes with tempera
ture, and hence distance, of all physically relevant variables should be considered. Significantly, possible 
changes in the shape of the Rayleigh line have been substantially neglected thus far. [1-10] 

This paper represents an initial step in the execution of the above program. Since the full three
dimensional problem of coupled equations in density and temperature fluctuations is very complex 
mathematically, it is illuminating to deal first with simplified models. Here we solve explicitly the one
dimensional wave, diffusion, and damped wave equations to first order in nonuniformity. Care is taken to 
select nonuniform equations which correspond as closely as possible to the physical nonequilibrium steady
state problem. 

Our technique is a generalization of a method due to Brownell [15] to calculate the Green's function for a 
nonuniform wave equation. We show that the initial value problem for the nonuniform wave, diffusion, and 
damped wave equations can indeed be solved, to linear order in nonuniformity, in a manner which closely 
parallels Mountain's derivation. The methods are systematic, but the mathematics becomes rapidly more 
difficult with greater complexity of the underlying differential equations. Our eventual goal, yet to be 
attained, is the explicit solution of the coupled hydrodynamic equations and determination of the dynamic 
structure factor in one and, if possible, three dimensions. Since wave and diffusion equations are prevalent 
throughout physics, the techniques presented here may prove useful for a variety of other physical problems 
as well. 

We begin in section 2 with a general discussion of some predictable mathematical difficulties. Section 2.1 
examines the applicability of the initial value problem to Rayleigh-Brillouin scattering in a fluid with a 
temperature gradient. Section 2.2 describes the needed transformations of variable and examines the range 
of validity of a first-order nonuniformity calculation. Solutions to the various initial value problems in the 
uniform limit, mostly well-known, are outlined in Section 3. The subsequent three sections present explicit 
solutions, with intuitively oriented interpretations, to the initial value problem for the nonuniform wave, dif
fusion, and damped wave equations respectively. Results are summarized in Section 7. 

2. Initial mathematical considerations 

2.1. The initial value problem 

The basic relationship between the measured spectrum of scattered light and the structure of a liquid 
sample is [12, 13] 

I(w) = C S (k, w) (1) 

where w i~ the ~hift in fre.quency and k th~ shift in wave vector of the scattered light, I is the average 
measured m~ensIty, an~ C IS a consta~t, ~ot Importa?t for our present interests. S(k, w), the dynamic struc
ture factor, IS the FOUrIer transform m time of the mtermediate scattering function F(k, I) 

S(k, w) == em e-iWf F(k, t) dt (2) 

where 

F(k, I) == < Ii (-k, 0) Ii (k, I» • (3) 
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Here the brackets .denote an ensemble average and n (k, t) is the Fourier transform in space of n (r, t), the 
fluctuation of liquid density about equilibrium, i.e., 

n (k, t) = J dr e-at· r n (r, t) . (4) 

The hydrodynamic regime is defined by the inequality 

(5) 

where £ is the interparticle spacing, and 

k = 2 k/ sin ~ , (6) 

where k/ is the wave vector of the incident light and 0 is the angle by which the light is scattered. In a liquid £ 
is small and scattering experiments with visible light are always in the hydrodynamic regime. For dilute 
gases £ is large, but the hydrodynamic regime can be attained [16] with sufficiently small 8. Kirkpatrick, et 
al. [5] consider the nonuniform problem starting from the Boltzmann equation, which is strictly valid only 
for dilute gases. The initial experimental observation of changes in the scattered spectrum due to a 
temperature gradient has been made with liquid water at a very low scattering angle. [14]. 

Mountain's derivation [11] of Rayleigh-Brillouin scattering in equilibrium begins with the observation of 
Landau and Placzek [17] that, in the hydrodynamic regime, density fluctuations, nCr, t), and temperature 
fluctuations l T(r, t), satisfy a set of coupled second-order linear differential equations. After a Fourier 
transformation in space and a Laplace transformation in time, those equations become coupled algebraic 
equations which involve the initial (t = 0) values and time derivatives of the fluctuations. The derivation of 
ref. [11], in effect, makes the further simplifications 

~ (k, 0) == 0 (7) 

T(k, 0) = 0 (8) 

where a dot denotes a time derivative. These simplifications are not literally correct, but are permissible 
because, at the end of the calculation when the autocorrelation function is evaluated, the above quantities 
are not correlated with the initial density fluctuations. In particular, because of time reversal invariance, 

< n (- k, 0) ~ (k, 0» = 0 (9) 

and because of the thermodynamic independence of density and temperature, 

< n (- k, 0) T(k,O» = o. (10) 

The solution of the differential equations leads to a dynamic structure factor, eq. (2), in terms of the static 
structure factor 

S(k) = < n (- k, 0) n (k, 0» (11) 

which must be determined from separate (but well-known) thermodynamic considerations. [12, 18] An alter
nate method to the above initial value problem is to consider the response of the system to a random fluc
tuating force. [19] 

In the presence of a stationary temperature gradient, time-reversal symmetry no longer holds, [1, 4] and 
eq (9) is no longer satisfied. Thus an initial value calculation, by itself, does not suffice to determine the 
altered Rayleigh-Brillouin spectrum. However, an initial value approach may suffice to determine Hshape 
effects," as opposed to "size effects," in the altered spectrum. 
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More precisely, we define E, which is proportional to I VT I, as the appropriate dimensionless expansion 
parameter. The LHS of eq (9) will be O(E) due to differences in the rate of generation of fluctuations at dif
ferent positions in the fluid. These differences will lead to overall asymmetries in the Brillouin lines. A quite 
different effect is the change in the shape of the Rayleigh and Brillouin lines due to propagation of the 
unperturbed fluctuations through a nonuniform medium. 

In the linearization of the problem about uniformity, jt is reasonable to assume that the two effects are 
independent and additive. Further corrections due to the nonuniform propagation of fluctuations which are 
themselves generated by nonuniformity presumably lead to second order, O(El) corrections. 

Thus an initial value problem approach to Rayleigh-Brillouin scattering in a temperature gradient, while 
incomplete, may suffice to determine ihe shape changes of the lines, and hence will complement those 
approaches which appear to emphasize only size changes. [1, 4] 

2.2. Transformations and nonuniformity expansions 

In the presence of a temperature gradient, any relevant physical property A of a fluid may be expanded in 
a Taylor series about some convenient origin of position (r = 0) in the fluid, i.e., 

A(r) = A(O) + (r • VT) ( ~~ ).--0 + .... (12) 

For the linearized problem, only the above two terms are retained. 
The coefficients of the hydrodynamic equations, in equilibrium eqs. (6)-(8) of ref. [11], will then be 

position-dependent according to eq (12). Since the differential operators do not commute with r, it is impor
tant to return to the fundamental derivations of the differential equations governing ~he processes, to deter
mine in what order differential operators and position-dependent coefficients should be' placed. 

In the prototype one-dimensional equations considered here, the coefficients will have the position 
dependence 

(13) 

where at is assumed to be small. 
We will examine for the various differential equations the initial value problem, i.e., the soiution for y(x.t) 

given y(x.O) and zero initial time derivative, 

j (x.O) = O. (14) 

Equation (14) is not necessary for the diffusion equation, which is first order in time. 
It is convenient at the outset to introduce a special notation for the several variable spaces which are re

quired. Physical space or uP-space" denotes the variables {x.t). Fourier space or "F-space" consists of the 
variables (k.I), where 

j(k.t) = r.,., dx e-ib y(x. t) . (15) 

Laplace space or "L-space" is formed by the variables (x,s), where 

Y(x. s) = reD d'e-n y(x. I) • (16) 

Finally, Fourier-Laplace space or "FL-space" consists of the variables (k.s), where 

j(k. s) = reD dx e -Ib y(x. s) = reD dt e-n Y(k. I) • (17) 

Our convention for transformed functions is that a bar denotes F-space, a caret L-space, and a tilde 

FL-space. 
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The differential equations considered here require that certain coefficients be positive, which is, In 

general, in conflict with eq (13). For small but finite a" if 

then a(x) < 0, which could lead to physical nonsense, e.g., negative diffusion or imaginary wave speed. We 
must assume that such large negative values of position are irrelevant to the problem. 

A possible escape from this difficulty is to impose explicit boundaries on the linearly nonuniform region 
of space with, for example, separate uniform regions outside those boundaries. 

a(x) = all) 

= 1- [all) + all)] 
2 

+ 1- [all) - a(l)]..£ 
2 . L 

x :5 - L 

x ~ L 

We elect, however, not to proceed in this manner because a new parameter L is introduced into the prob
lem, and the exact solution for a general L is likely to be mathematically cumbersome. Furthermore, for the 
conditions we seek to impose, there should exist a unique linearized solution 

y(x, t) = ylo) (x, t) + alyll) (x. t) + O(el) , (18) 

where ylo) is the uniform solution, which is independent of L; These conditions are. that the initial value 
packet be localized and that the time be small compared to the time required for the packet to propagate (in 
significant measure) to the region of negative a. We consider initial value packets of finite width wo, i.e., 

y(x.O) = 0 Ix] > wo 
2 

(19) 

and the ffsmallness" of al is made precise in dimensionless form by 

(20) 

Additionally, we require a constraint on the time t of propagation. For example, the solution to the 
uniform wave equation moves with constant velocity c, so we require times short enough that 

(21) 

or, for the diffusion equation, since the mean-square width of an initial delta-function pulse is (in one 
dimension) 

(22) 

the appropriate condition on the time is 

(23) 

Calculation of the dynamic structure factor, in principle, requires an integral from t = 0 to t = (Xl. Never
theless, we expect the linear nonuniformity theory to give a meanirigful structure factor if the fluctuation 
has substantially decayed away in a time such that the inequalities (21) and (23) are valid. The phrase 
ffdecay away" is imprecise; a norm of the fluctuation needs to be defined and must be shown to be negligi
ble after some particular time interval. 
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One possible norm is 

~y I == e., dx y(x, t) , (24) 

but, for the equations considered here, eq (24) happens to be a constant of the motion, and does not decay in 
time at all. 

What do decay in time however, are Fourier components of the fluctuation for finite k. The k = 0 com
ponenet is !y I itself. For diffusion, j(k, t) decays as e-D~r, and for the damped wave equation considered 
here, it decays as e-rA:1r, where r is the attenuation coefficient. In the Rayleigh-Brillouin experiment, a par
ticular value of k is monitored by vittue of the fixed laser light frequency and scattering angle. If we are 
similarly interested in monitoring a particular value k = ko, then' for the times 

(25) 

and 

(26) 

we require that inequaiities (21) and (23) hold. The various inequalities for our particular applications in 
terms of variables defined in later sections are listed in table I. 

TABLE 1. 

Differential 
Conditions for Conditions for 

Equation 
Validity of Validity of 

y(x,t) S(k,w) 

Undamped wave ~«l 
iJ 

Never valid 

J!E!.... < < 1 
a 

Diffusion ~«l 1.« 1 
a ak 

b 
-; (Dot)1I1 < < 1 

Damped wave ~«l 
a 

be 
ark2 < < 1 

(J:!... < < 1) J!E!....« 1 
e a 

The standard method of solution to the initial value problem for a partial differential equation in P-space 
is to transform to FL-space. In the uniform cases, the equation is an algebraic one and is easily solved. The 
solution is completed upon inverse transformation to P-space. In ref. [11] only the inverse transformation to 
F-space is required to obtain the intermediate scattering function, eq (3), and the dynamic structure factor, 
eq (2). 
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Since, under Fourier transformation 

a partial differential equation in P-space with linearly nonuniform coefficients becomes, in FL.space, a 
linear differential equation in k. It is always possible to solve a linear differential equation by the integrat
ing factor technique. [20] However, a unique solution requires a boundary value on k, and the problem 
appears at first not to specify any particular boundary value. We shall see that this apparent new degree of 
freedom is bogus and that the physics imposes a particular boundary value on k. 

A more cumbersome problem is the inverse t~ansformation. As stated previously, in P-space the solution is 
nonzero only within a width w about the origin such that (20) holds. In F-space, according to Heisenberg's 
inequality, [21] the solution y(k, t) has a width W;I. Only the values of x such that 

!!LA«I 
ao 

(27) 

are significant; however, in F-space there is no analogous inequality. For example, 

«I (28) 

does not hold for all significant values of I k I, since such values of I k I can range from zero to W;I. 
We conclude that there is no natural means, in FL.space or F-space, to take advantage of the smallness of 

the nonuniformity parameter. Therefore, after solving the linear differential equation in FL-space, we must 
first inverse transform to L.space (and expand in nonuniformity where convenient), then inverse transform 
to P-space (and further expand in nonuniformity), and lastly transform to F-space. This circuitous but 
required route is shown schematically in figure 1. 

Expand in nonuniformity 

---- ............. ---
P space L space 

y(x,t) 
1\ ..... --- y(x,s) 

I ..... • I ~ I I I , 
I 

F space FL space 

y(k,t) I( y(k,s) 

l! 
II 

F(k,t) ---- ....... S(k,W) 

FIGURE 1. Sequence of transrormations for the unirorm problem (solid ar-
rows) and for the nonuniform problem (dashed arrows). 

In the following sections we carry out the above procedure explicitly for three nonuniform differential 
equations, after first reviewing their respective uniform solutions. 
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3. Uniform differential equations 

In this section, for reference purposes, we briefly outline the soluions to the initial value problem for the 
one-dimensional uniform wave, diffusion, and damped wave equations. These results are well-known. 

3.1. Wave equation 

The wave equation in P-space is 

(29) 

We assume a given initial wave packet y(x, 0) with zero initial time derivative. The equation is FL-space is 

9{k, s) + ~ j(k. 0) = 0 
c 

(30) 

with the solution 

(31) 

The solution in F-space is 

j(k. t) = ~ j(k, 0) [eickt + e -ick,] , (32) 

the solution in L-space is 

(33) 

and the solution in P.space is d' Alembert's solution, 

y(x, t) = ~ fy(x - ct, 0) + y(x + ct. 0)], (34) 

i.e., the pulse divides in half and each half moves, without change of shape, at speed c. For an ensemble of 
packets, the analog of the intermediate scattering function is 

<j( - k, 0) j{k. t» = 2 <j( - k. 0) j(k. 0» [e iCk
, + e-ick,] (35) 

and its Fourier transform in time, the analog of the dynamic structure factor, is 

S(k, w) = 1r <j{ -k, 0) j(k. 0» [o(w - ck) + O(w + ck)], (36) 

i.e., two "Brillouin lines" of infinitely small width, since there is no damping. 

3.2. DiHusion equation 

The diffusion equation in P-space is 

o. (37) 
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An initial wave packet rex, 0) is given. Since the equation is first·order in time, no initial time derivative is 
specified. The equation in FL-space is 

with solution 

The solution in F·space is 

the solution in L-space is 

siCk. s) j(k. 0) + DP i(k. s) = 0 

i(k. s) j(k. 0) 
s + Dkl 

and the solution in P-space is 

rex. t) = 2( 7r Dt )111 

For a o-function initial condition, )'(x, 0) = O(x), the solution takes the familiar form 

The analog of the intermediate scattering function is 

< j( - k. 0) j(k. t) > = < j( - k. 0) j(k. 0) > e-Dk1, 

and the analog of the dynamic structure factor is 

2D k2 
5.k. w) = < j( - k, 0) j(k. 0) > w2 + (D k2t ' 

i.e., a Lorentzian "Rayleigh line" with width Dk2. 

3.3. Damped wave equation 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

There are several possible choices for a wave equation with damping. We choose the case that cor
responds most closely to the Rayleigh-Brillouin problem, i.e., an equation with H k2-damping." In p.space 
this is 

(46) 

We again begin with an initial wave packet )'(x, 0) with zero initial time derivative. The equation in 
F-space is 

k2 j(k, t) + 2rk2 a j(k, t) + + j(k. t) = 0 (47) 

which is the equation for a damped harmonic oscillator. The condition that the oscillation be underdamped, 
which we impose here, is 

I'k < 1. 
c 
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The equation in FL-space is 

2r s k2 2r k2 - k) r:':rk) k2 i{k. s) + -c2- i{k. s) - -c2- y( • 0 + C2 y, • s 

- ; j(k. 0) == 0 (49) 

with the solution 

i(k. s) = j(k. 0) r + 2r sk2 + c2k2 . 
(50) 

The solution in F-space is 

j(k. t) = -} j(k •. 0) {e-nlr [ei(c:l-rl~) 111", + e-i1c:l-rl,,1) Ill",] 

(51) 

and the solution in L-space is 

G> 2r 8: 
j(x. s) = 2(c2 +2rs)l/l L., dv [y(v. 0) - -s- 8v2 y(v.O)] 

(52) 

However, to the best of our knowledge, there is no representation of the solution in P-space in terms of 
elementary functions. But a convenient approximate solution in P-space may be obtained by means of a 
dispersion expansion. First, the concept of a k-dependent wave speed is introduced, i.e., 

(53) 

If rc' < < 1 (extreme underdamping) we may expand in this small "dispersion parameter." Then eq (44), 
to leading order, is 

(54) 

with a corresponding solution in P-space 

(55) 

which corresponds to two wave pulses travelling in opposite directions and spreading with time in a diffu
sionlike manner. In the nonuniform case there will be expansions in both dispersion and nonuniformitYi 
however it is reasonable to assume that the two expansions are independent of each other. 

From the lowest-order solution, eq (54), the analog of the intermediate scattering function is 

<j( - k. 0) j(k. t» = ~ <j( - k. 0) j(k, 0» e-n1r [elc:kr + e-ic:lo:r] (56) 

and the analog of the dynamic structure factor is 

i.e., two Lorentzian ffBrillouin lines" each with width rk2. 
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4. Nonuniform wave equation 

Having reviewed the initial value problem for the three uniform differential equations, we next derive 
solutions to their nonuniform counterparts. The solutions must have the form of the uniform solution plus a 
small correction linear in nonuniformity. In all cases the nonuniformity parameter will be denoted by the 
variable b. The solutions are subject to the constraints on time, distance, and wavenumber described in sec
tion 2.2. 

In the following three sections we first present the exact form of the nonuniform differential equation 
which we take to be (in one dimension) closely analogous to the three-dimensional Rayleigh-Brillouin experi
mental situation described earlier. Thereafter we present a detailed mathematical derivation of the solution. 
Each selection then ends with a physical interpretation of the solution thus derived. 

4.1. The differential equation 

Following Brownell, [15] we write the nonuniform wave equation as 

a2y a2y _ 
e(x) 7fi2 -T ax2 - 0 (58) 

where 
e(x) = a + bx. (59) 

Physically, this corresponds to a stretched string with a variable mass per unit length e(x) at a constant 
tension T. This is analogous to the fluid with a stationary temperature gradient, where the pressure is con
stant throughout but the density varies (to first order linearly) with distance due to the gradient in 
temperature. Again we consider a given initial pulse y(x, 0) with zero initial time derivative. 

4.2. Solution 

The equation in FL-space is 

a [ia Tk2i] ak i(k, s) - b + bs2 i(k, s) = 

+ :k y(k, 0) - :: y(k, 0) . (60) 

The first-order differential equation in k is solved by standard methods [20] as 

i(k, s) = J:' dk' [ :: y(k', 0) - + a~' y(k', 0) ] 

[ 
ia(k'-k) Ti(k'3-k3) ] 

X exp - b - 3bs2 . (61) 

Formally, the integration constant kJ appears to give a new and unwanted degree of freedom to the prob
lem. However, as pointed out by Brownell [15], the existence of an inverse transformation requires certain 
analyticity properties in the complex s-plane. In our formulation, the requirement is that i(k, s) be 
analytic in the right half of the complex s-plane, which in turn requires that (k'3 - P) be the same sign for all 
k. This requires that kl = 00. We also henceforth assume, without loss of generality, that b is positive. 

Changing variables to u = k '-k yields 

i(k, s) = £" du [ :: y(u + k, 0) - + :k y(u + k, 0)] 

[ 
iau Ti ] 

X exp - -- - -- u(u2 + 3ku + 3k2) . 
b 3bs2 (62) 
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As explained in section 2.2, we must now transform to L-space. Let 9-1 denote the inverse Fourier 
transform operator, i.e., 

9- 1 (J{k)} (63) 

Now, 

9-1 
[ :~ f(u + k. 0) ! :k f(u + k. 0)] 

= b
ai 

y(x.O) e- 'IU (1 + b~. 
s a 

(64) 

Next we require the inverse Fourier transform of the second term in eq (62). The relation 

(65) 

holds for complex a and fJ providing Rea. > O. To apply eq (65), we must assign a small negative imaginary 
component to T, i.e., 

T- T if (66) 

with the limit f - 0 taken at the end of the calculation. It then follows that 

9-1 {exp [ iau - 3r~ u(u2 + 3ku + 3k2)]} 

[ i (Tu3 

s(b/7rui1)lIl exp 4" bs2 bs2.r\] 2ux + --r;;-J (67) 

X ·exp [ 

The assignment of a small imaginary part to the coefficient T appears arbitrary. It may be justified 
mathematically by an extension of Brownell's method, [15] which uses the complex Laplace transform with 
real coeffients and appropriate contours off the real axis in the complex s-plane. Here we employ the opera
tionally simpler, and presumably equivalent, method of complex coefficients and a real Laplace transform 
variable. 

From eqs (62), (64), and (67), and the convolution theorem for Fourier transforms, we obtain 

j(x, s) = I ai (1ii1)-lIl I: dw w-Ill exp ( _ iaw _ Ti b
2w ) 3.r 

x rCD dv y(v, 0) exp( -ibvw)(1 + bv 
a 

{ i Tb2w s2(x-v)2]} 
X exp 4" - 2bw (x - v) + Tw 

(68) 

where w = bv. At this point we may discard terms which are explicity O(b2 ) and rearrange, with the result 
that 

5{x, s) = ~ ai (1ii1)-lIl roo dv y(v, 0Xl + bav) 

x rdw w- l12 exp[ -iaw - ~ bu(x + v) + is2 (x - v)2/4Tw]. (69) 
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To evaluate the w-integral, we make the substitution w r. The relation [22] 

roo -a.2-fU.2 d _ 1 (7r)1I2 -2(a.8)t/2 ,ue z--- e 
2 ex (70) 

holds for all 0::, (3 such that Re(a) > 0 and Re({3) > 0. To apply this relation to eq (69), in addition to the 
small negative imaginary term added to T, a small positive imaginary term must be added to a. Then eq (69) 
reduces to 

All (OO bv b 
)'X, s) = T (a/T)· 2 )-00 dv){v, 0)(1 + -;-) [I + 2a (x + V)t 1l2 

X exp { - s I x - v I [(a + ~b [x + vD/T]1I2} . (71) 

At this point it is evident, by inspection, that the uniform limit b - 0 + recovers the uniform solution, eq 
(33), where e (T/a)tl2, 

To find the P-space solution, we use the relation 

(72) 

where..L' is the Laplace transform operator. This holds for real positive 0::, and hence is applicable provided 
that 

(x + v) > 2a 
T' (73) 

Thus we see that the concerns raised in section 2.2 about the absence of explicit boundaries are built into 
the mathematics of the solution; an inverse Laplace transform cannot be performed for large negative x, 
where the differential equation becomes physical nonsense. 

With this proviso, the p.space solution is 

){x, t) = ~ (a/T)tl2 [",,,,, dv y(v, 0) (I + :v) [1 + :a (x + v)r t/2 

1 
O(t - Ix - v I [a + Tb (x + V)]1I21T) 

which, to leading order in nonuniformity, may be reduced to the more suggestive form, 

){x, t) 
1 bet b 

(I - -) y(x - et [I - - (2x - et)],O) 
4a 4a 

1 bet b 
+ T (1 + 4"Cl) y(x + et [I - 4a (2x + et)],O) 

(74) 

(75) 

where e (T/a)tll, i.e., two moving pulses. It is easy to show that, through terms linear in b, the pulses 
separately satisfy the original differential equation, eqs (58) and (59). 

The F-space solution may be derived from eq (75) and, to leading order in nonuniformity, can be 
represented in a similarly suggestive form, 

1 3bet _ bet . bet 
j(k, t) = T(1 - 4"Cl) y(k [I - ~I, 0) exp[ -Ie (I - 4"Cl) kt] 

1 3bet _ bet . bet + (l + 4Q) y(k [I + ~], 0) exp[ Je (1 + 4Q) kt] , (76) 

cf, eq (32). 
Since eq (76) holds only for small times (cf. table I), and there is no damping for the unperturbed solution, 

it is not meaningful to construct a dynamic structure factor for this case. 
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4.3. Interpretation 

It is at this point easily seen that the solution has the proper physical behavior expected on intuitive 
grounds. The first term of eq (75) is the rightward moving pulse. Since b is positive, the wave speed 
decreases to the right, and, as it should, the pulse moves more slowly as time progresses. The factor 

(l - bel) indicates that the pulse size decreases with time. as it should since it moves into a region of 
4a 

greater inertia. In addition, the width of the pulse gets smaller in time by a factor (1 + ~~ rt, because the 

front end of the pulse moves more slowly than the back end. Conversely, the leftward moving pulse, or sec
ond term of eq (75), gets larger and wider and moves faster with time. 

The F-space solution, eq (76), may be interpreted similarly. The rightward pulse, the first term, prop-

agates with a decreasing time-dependent effective speed of c(l bet ). Due to Heisenberg's inequality, 
4a 

[21] the rightward pulse in F-space gets wider in time. To compensate, so that Parseval's theorem is 
satisfied, the factor in front must decrease more rapidly with time than the corresponding P-space factor. 
The converse observations apply to the leftward pulse. 

We reiterate that it is apparendy not possible to go directly from the FL-space solu tion, eq (62), to the 
leading-order F-space solution, eq (76), by means of an inverse Laplace transform. The concept of a 
nonuniformity expansion, as discussed in section 2.1, appears to be meaningful only in P-space and L-space, 
not in F-space or FL-space. Hence we must follow the circuitous route shown in figure 1. 

5. Nonuniform diHusion equation 

5.1. The differential equation 

In the study of the nonuniform diffusion equation, we must at the outset distinguish material diffusion 
from diffusion of a thermal pulse. The equation for material diffusion in one dimension is [23] 

a a a at y(x, I) - a;- [D(x) a;- y(x. t)] o (77) 

and the case of interest to us is 

D(x) = Do + D. x (78) 

where D. is small. 

~iff~sion of a t~ermal puls~ in one dimension. [24] which corresponds more closely to the Rayleigh
Bflllo~m pro~lem, IS charactenzed by a thermal conductivity X{x) and a heat capacity per unit length o{x). 
The d.fferenhal equation is [24] 

a 1 a a at y(x, t) - o{x) a;- [).{x) a;- y(x, t)] = 0 (79) 

and the cases of interest are 

(SO) 

where X. and a. are small. 

To linear order in nonuniformity, we may represent both equations by the . r convement lorm 

ay a1 a 
(a - bx) -- - c -L + "'(b ---L = 0 at ax2 ax (81) 
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where, for material diffusion, 

and for diffusion of a thermal pulse, 

b - = D/Do 
a 

a = (JA 

c = A~ 

"Y = A.. A/b. 

(82) 

(83) 

The equation thus is characterized by two nonuniformity parameters band "Y, and a single small 
parameter b. 

5.2. Properties of the solution 

Before embarking on a derivation of the solution to eq (81), it is of interest to examine certain properties 
of the solution which follow directly from the differential equation itself. We multiply both sides of eq (81) 
by (1 + bx/a), discard terms quadratic in b, and integrate over x from - 00 to 00. The result is 

:t i: y(x, t) dx = 0 (84) 

so that the norm ~YII considered previously, eq (24), is a constant of the motion. For material diffusion, eq 
(77), the norm is constant for any possible D(x), a consequence of the conservation of diffusing material. 
For thermal diffusion, eq (79), the above norm is not constant in general, but is so to first order in nonuni
formity. 

If we consider pulses with unit norm, the central position is given by 

< x > = eo> x y(x, t) dx . (85) 

Multiplying the differential equation by x and integrating yields 

a
a
t 

<x> = 2cb + ~ 
a2 a· 

(86) 

Physically, for positive At and negative (Jt the diffusion coefficient effectively increases with x. Here band 
"Yare positive, so the average position of the pulse drifts to the right. In the converse situation, the pulse 
drifts to the left. 

A similar calculation yields the time derivative of the mean-square displacement, 

_a_ <r> = 2~ + (2"Yb + 6bc) <x> , at a a a2 
(87) 

and the mean-square width, 

_a_ <ilr> = _a_[ <r> _ <X>2] = ~ + 2cb <x> 
at at a a2 

(88) 

so that the increase in width with time is independent of "Y. 

443 



5.3. Solution 

The solution of the nonuniform diffusion equation closely parallels that of the nonuniform wave equation. 
The differential equation in FL-space is 

a Y{k s) + [~+ cJri -~] Y{k, s) = 
, bs bs s 

+ :k y(k,O) + :: j(k, 0). 

(89) 

Again, this linear differential equation in k is solved by the integrating factor technique, with the bound-
ary condition kl co. The result is 

y(k, s) = - J"'du [~r(u + k. 0) + aa
k 

j(u + k. 0) ] 
Q ~ S 

[ 
aiu ci "(] 

X exp -b- + 3bs u(u2 + 3uk + 3Jr) - ~ u(u + 2k) . 

(90) 

Without loss of generality we consider only positive b. The convolution theorem is used to transform the 
solution to L-space. We are required to add a small positive imaginary part to c. The result is 

1 . . .l 1 

y(x. s) = - a(bsic1rtl/l f'" u-1I1 du exp alu + cm _ "(U ] 
2 0 3bs 2s 

x eo> dv y(v. 0)[1 
bv 

exp[ -iuv] 
a 

[ 
cu3i 

X exp --- - (x 
4bs 4cu 

(x - v) 
2 

byui "(b "(u2 
] + -- + ~- (x - v) + -- . 

4cs2 2c 2s 

(91) 

Again we make the substitution u = bw and then discard all O(b2 ) terms. We next explicitly perform the 
w-integral by means of the substitution w = z2 and eq (70). It is necessary to assign a small positive imag
inary element to a. The result of these operations is 

y(x. s) = 21 (ales)l/l eo> dv ){v, 0)[1 - bV1[l - 1- (x + v)] -Ill 
a 2a 

X exp [~(x - v)] exp - {(sale)l/l Ix - v I [l - ~ (x + v)] 1/1 } • 
2c 2a 

(92) 

At this point it is easily seen that the uniform limit, b - 0 +. recovers the uniform solution, eq (41) with D 
= cia. 

To determine the P.space solution, we use the relation 

This equation is applicable for real positive a, which requires that 

2a 
x + v < b' 

(93) 

(94) 

Once again, it is built into the mathematics that a solution does not exist for large displacements where the 
original differential equation becomes unphysical. 
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The P-space solution initially is most conveniently represented in kernel form, 

y(x. t) = ["'00 y(v. 0) K (x. wt) dv 

where, to linear order in b. 

K(x.v;t) = {- (7rDot)-1/2 [1 + ta (x - 3v) + ~~ (x - v)] 

X exp { - (x - v'f [1 - ;a (x + v)]/4Dot} 

and Do = cia is the coefficient of diffusion in the uniform limit. 

(95) 

(96) 

However, there is a severe mathematical difficulty with eqs (95) and (96) in their present form; namely, the 
integral of eq (95) does not exist as written_ There is an essential difference between the solutions of the un
damped wave equation and the diffusion equation. For the undamped wave equation, if the initial pulse is 
strictly localized around the origin, i.e., y(x. 0) = 0 identically for I x I > wo/2, then, for any large distance 
L. y(L. t) remains strictly zero until some finite time of the order Vc. However, as governed by the diffusion 
equation, a similar localized pulse causes a finite displacement at L after any time interval, however small, 
as an infinite tail is instantaneously created of the form exp( - x2) at large x. Then, since the kernel of eq (96) 
goes as exp( + v3

) for large v. the integral of eq (95) is formally infinite after any two successive finite time 
steps. 

Physically, however, it is not possible for a pulse to diffuse over large distances instantaneously; this 
phenomenon should be interpreted as a mathematical artifact. We believe the proper way to interpret eqs 
(95) and (96) physically is to remove this artifact in the following manner. The kernel of the integrand is a 
distorted Gaussian function integrated over an undistorted measure. A transformation is made so that the 
kernel becomes an undistorted Gaussian integrated over a distorted measure. Specifically, we define the 
new measure 

u2 = (x - v'f [1 - :a (x + v)] (97) 

and b u = (v - x) [1 - - (x + v)] + O(b2
) • 

4a 
(98) 

Then, if terms higher than linear order in b are discarded, eq (95) becomes 

y(x. t) = + (7rDot)-ll2 ["'00 du y(x + u[1 + :a (2x + u)],O) 

(99) 

The major formal change between eq (95) and eq (99) is the upper limit of infinity on the u integration, 
whereas, from eq (97), as v - + 00, u becomes, formally, infinite and imaginary. The objective of the 
transformation is to suppress the unphysical behavior for x > alb where the diffusion is mathematically 
negative. Equation (99) is a well-behaved solution to linear order in nonuniformity which connects smoothly 
to the uniform case. 

To check the solution, we first verify that K(x.v;t) satisfies the boundary condition 

K(x. v;O) = O{x - v) (100) 
which is equivalent to 

K(x. v; 0) = 0 [x *- v] (101) 

and 

["'00 K(x.v;O) dv = 1. (102) 
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Equation (101) is verified by inspection, and eq (102) is seen to be valid in the sense of the transformation 
from eq (96) to eq (99). Finally, it is straightforward to show that the kernel should and does satisfy the dif
ferential equation 

02 

C ox! K(x.v;t) 
o 0 

(a - bx) at K(x. v;t) - 'Y~ K(x. v;t) = 0 (103) 

through linear order in b. 
The F-space solution may be derived by expanding y in the integrand of eq (99) through linear order in b. 

rearranging the integrand into sums of terms of the form j(u)g(x-u), and applying the convolution theo
rem. The result is 

j(k, t) = j(k. 0) 

(104) 

This solution satisfies the initial condition by inspection. It is also straightforward to check that it satifies 
the differential equation, eq (81) transformed to F-space, through linear order in b. 

We proceed to calculate the dynamic structure factor, the time Fourier transform of the intermediate scat
tering function F(k.t) (d. eqs (2-3». The solution of the initial value problem in principle yields F(k,t) only 
for positive times. We employ the usual convention for a time correlation function that for negative times 
[25] the function is defined to be 

F(k,t) F*(k. - t) (105) 

where the asterisk denotes a complex conjugate, in which case 

S(k.w) = 2 Re J: e-it.1' F(k.t) dt (106) 

Applying eq (106) to our solution yields the result 

S(k.w) = <j( -k, 0) j(k. 0» { wi !~t:kZ)2 
(107) 

5.4. Interpretation 

The most important physical features of the solution to the nonuniform diffusion equation may be given a 
simple interpretation as a "Doppler shift" similar to that of the uniform damped wave equation. In par
ticular, eq (86) shows that the diffusion pulse, on the average, drifts in the direction of increasing diffusion 
with a velocity Co given by 

2cb 'Yb 
CD = -- +--

til a 
(l08) 

The uniform damped wave pulse undergoes a similar motion with the wave speed c and an rleffective dif
fusion rate" of r. By a naive analogy we would expect that the F.space nonuniform solution is 

(109) 
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which, through first order in CD, yields the first two terms of eq (104). By similar reasoning we would obtain 
the dynamic structure factor 

(110) 

which similarly accounts for the first two terms of eq (107) through 0 (CD)' 
The third term of eq (107) gives a rather complicated change of shllpe Qf the HRayleigh line" not pre

dicted by the above heuristic arguments. The term osciJIates several times and is qualitatively akin to the 
third frequency derivative of the primary Lorentzian function, so it alters, in leading order, neither the 
mean frequency nor the width. 

The ensemble average of the fourth term in eq (107) vanishes for a uniform system because of invariance 
under a parity transformation. This term is somewhat difficult to interpret, but, when averqged over an 
appropriate ensemble, is presumably no more than first order in nonuniformity. Hence the entire term pre
sumably yields a contribution second order in nonuniformity and may be neglected. 

6. Non",niform damped wave equation 

6.1. The diHerential equation 

We first seek the appropriate one-dimensional nonuniform analog to the equation, first derived by Stokes, 
for the propagation of a plane sound wave in an isotropic viscous medium, [26J 

azt azt 4 az at 
e aii"" - x ar - 3 p. ar at = 0 , (111) 

cf. eq (46), where e is the density, r the displacement, x the effective bulk modulus, and p. the viscosity. This 
corresponds to the neglect of coupling between density and temperature fluctuations in the Rayleigh
Brillouin scattering problem. [11] 

The following model, though somewhat contrived, appears to be the one·dimensional analog to the above 
with the appropriate properties. The viscous term corresponds in three dimensions to an off-diagonal term 
in the pressure tensor, which, crudely speaking, represents a torque per unit volume. In one dimension, this 
would be a torque per unit length. 

We consider a stretched string with position.dependent mass per unit length e(x). We imagine that, as the 
string vibrates transversely, it traverses a viscous medium which exerts a torque ~L on a length element~. 
On each element ~ there is a force .F{x), perpendicular to the string, acting a~ one end and an equal and 
opposite force acting on the other end. Thus 

llL = [.F{x) + .F{x + ~)] ~ . (112) 

We further assume that the force is proportional to the spatial derivative of the vel~city of the segment, 
the analog of the three-dimensional velocity gradient 

a ay 
.F{x) = 2J4x~ax at 

where J4x) is analogous to viscosity and may be position·dependent. 

(113) 

Next we generalize the standard derivation [27] of the wave equation for a stretched string under tension 
T by the inclusion of this new force. As usual it is assumed that the angle between a vibrating segment of the 
string and the equilibrium direction is sufficiently small that its sine and tangent are equivalent. Applying 
Newton's second law to the segment of the string from Xl to Xl yields 
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(l14) 

or, since Xl and X 2 are arbitrary, 

(lIS) 

This is the particular nonuniform damped wave equation to be analyzed here. We are interested in the 
special case 

e(X) = a + bx (116) 

p.{x) = p. + (3x (117) 

where band f3 are smal1. 

6.2. Solution 

The solution of the nonuniform damped wave equation closely para]]els those of the undamped wave and 
diffusion equations. The equation in FL-space is 

as2 y + ibs2 ~f + Tk2 Y + 2p.sk'-Y + 2{3iks y + 2{3ik'-s ~f = as f(k, 0) 

+ ibs ;k j(k, 0) + 2p./c2 j(k, 0) + 2f3ik j(k, 0) + 2{3ik2 ;k f(k, 0) • 
(118) 

As before, this linear differential equation may be solved by the integrating factor technique. [20] 
However, at this point we anticipate a mathematical difficulty. In previous examples, where the linear dif
ferential equation had the form 

~f + f(k) y = g(k) (119) 

the variable j(k) had the form of a quadratic polynomial in k. This property made possible the subsequent 
inverse Fourier transformation (from FL-space to L-space) by means of eq (65). Upon examination of eq 
(118), we note thatj(k) is quadratic if and only if {3 = O. We shaH therefore set (3 = 0 in the remainder of this 
section. This corresponds to uniform uviscosity" with nonuniform density, or a particular correlated case of 

nonuniform wave speed and wave damping. 

Again we use the boundary condition kl = 00, and make the substitution k' = u + k [cf. eqs (61)-(62)]. 
The FL-space solution is 

y(k, s) = J: du [ :! f(u + k, 0) + 2iM<;s; k'f f(u + k, 0) 

(120) 
_ 1..1- j(u + k 0)1 exp [- iau - (T+2y.s)i u(u2 + 3ku + 3k2)]. 

s ak ' ~ b 3bs2 
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Without loss of generality, we consider only positive b. The convolution theorem is then used to derive the 
L-space solution. Once again, it is necessary to assign a small negative imaginary component to T. The 
result is 

(T + 2JLs)iu3
] 

3bs2 

r '" [ bv 2JL a2 1 J -'" dv J{v, 0)(1 + -a-) - --;;;- av2 J{v, O)J 

x exp(-"uv) exp {.i... [(T+2p.s)u
3 

_ 2 ( _ ) + bs
2
(x-vr ]} 

4 bs2 u X v (T+2p.s)u . 

(121) 

As in the undamped wave solution, we make the substition u = bw and discard terms explicitly O(b2). We 
then let w = Z2 and apply eq (70), after assigning a small positive imaginary part to a. The result is 

5{x,s) == Iha1h (T +2p.stlh 1:", dv [j(v, 0)[1 + :v] - .~ :~ y(v, 0)] 

[1 + :a (x + v)]-lh exp { -six - vi [l + :a (x + v)rh[a/(T + 2p.s)]lh}. (122) 

In the uniform limit, b - 0 +, we recover eq (52), with r = pia and c = (T/a)lh. 
At this point we encounter the problem of dispersion discussed in section 2.3. Since there is no general 

P-space solution to the uniform damped wave equation in terms of elementary functions, we cannot expect 
to find an explicit P-space solution to the nonuniform equation either (to all orders in dispersion). A formal 
expression may be written, 

exp [ -s Ix - v I [1 + ;a (x + vWh (c2 + 2rstlh]} - 2r :~ y(v, O)...c- I {S-I 

(c2 + 2rst1h exp[ -s Ix. - v I [l + ;a (x + v)rh (c2 + 2rstlh]}] 

(123) 

where...£-' is the inverse Laplace transform operator. However, this form is not particularly illuminating 
physically. 

To display a more transparent solution, we assume that there exists an operator..l- I which simultaneously 
performs an inverse Laplace transformation and projects out the leading term in a dispersion expansion. 
For example, on comparing eqs (52) and (55), we see that such an operator should effect the transformation 

2-1 {(c2 + 2rst1h exp[ -s Ix - v I (c2 + 2rstlh]} 

(124) 

We further assume that 1!-1 obeys the change of scale property of Laplace transforms, namely, if 

'£-1 {J(s)} = F(t) (125) 

then 

Z-I {J(as)} = ~F(~) 
a a' 

(126) 

at least providing a depends only on position and nonuniformity parameters. The above is, in essence, a 
statement of the independence of nonuniformity and dispersion expansions. 
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The second term of eq (116) is of higher order in dispersion than the first term and may be neglected. On 
replacing.1'-1 by I-I in eq (123) and using eqs (124)-(126), we obtain the solution 

y(x, I) == IA(1l'rtt1h f:"oodv y(v, 0)[1 + :v][l +iJ.x +vW1h 

[exp { - [et - (1 + ;a [x + vD1h (x - v)p/4rl} 

+ exp { -[et + (1 + :a [x + vD1h (x - v)]2/4rt}] 

which bears a strong similarity to the nonuniform diffusion solution, eqs (95)-(96), for 'Y = O. 

(127) 

As in the case of diffusion, we encounter problems with divergences in the integrals due to mathematical· 
ly instantaneous propagation of the pulse to points at large distances from the origin, where the original dif· 
ferential equation makes no physical sense. We again surmount the difficulty by transforming to a distorted 
measure in which the Gaussians of the kernel are undistorted. The new measure is 

b 
u == (x - v)[l + ~(x + v)1~. (128) 

Then a calculation, discarding terms higher than linear order in b, analogous to that of diffusion yields 

)(x, t) == IA(1l'rty~ eO. du y[x - u(1 - ! [2% - uD,O] 

(129) 

Since 

(130) 

it is easily checked that, in the limit of zero damping, the nonuniform undamped wave equation solution, eq 
(75), is recovered. 

We recall that in the present problem there are two small expansion parameters, namely, nonuniformity 
and dispersion. Since the latter is defined in terms of F-space variables, there is no natural means of check
ing that the P.space solution satisfies the differential equation. 

The F-space solution may be derived by expanding y in the integrand of eq (129) through linear order in 
b, rearranging the integrand into sums of terms of the form.f{u + et) g(x - u), and repeatedly applying the 
convolution theorem. The end result is rather lengthy and is best expressed as the sum of a rightward and a 
leftward pulse. 

j(k, t) == jr (k,t) + j, (k,t) (131) 

where 
Yr(k,t) == j(k, 0) e-n :!, e-·clcr 

1 b 3b b b b . 
["2 + -; ,Tkt - sa et - 2a ,T2 PCZ + 2a rek2t2 + sa ,c2kt2

] (132) 

+ [_0_ j(k, 0)] e-n :!, e-iclcr [_b_ ,Tk2t _ _ b_ ekt] ok 2a 4a 

and Yt is obtained from Y, by replacing c by -e throughout. Since we only desire the solution through 
linear order in dispersion, the term above containing r 2 may be discarded. 
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The F-space transformation of the original differential equation, eqs (115-117) with (3 = 0, is 

a
2
j +.!!... i _a_ a

2
j + k2c2- + 2rk2 aj = 0 

at2 a ak at2 Y at 
(133) 

At this point it can be checked that the solution, eq (132), satisfies the differential equation, eq (133), if terms 
O(b 2

), second order in nonuniformity, and O(r2 ), second order in dispersion, are neglected. 
The solution satisfies the initial value condition by inspection, but does not satisfy the condition on the 

initial time derivative. The latter, however, is not a failing of the nonuniformity analysis but, rather, a 
feature of the truncation of the dispersion expansion of the uniform damped wave solution. In particular, eq 
(51) is the correct solution to all orders in dispersion, whereas eq (54) satisfies the differential equation and 
initial value condition through first order in dispersion, but not the initial time derivative condition. A fully 
consistent first-order truncation of the dispersion expansion which includes the time derivative condition 
would retain the second term of eq (51) and replace (c2 - r2k2)1/2 by c throughout. 

A similar difficulty appears in the standard treatment of Rayleigh-Brillouin scattering; compare, for 
example, eq (27) of ref. [11] with eq (97) of ref. [28]. Although the extra term required to make the initial time 
derivative vanish is in practice often neglected, for the sake of a fully consistent solution through first order 
in both dispersion and nonuniformity we shall find and include such terms here. 

We note that eq (131) remains a solution through the required order if terms are added which are propor
tional to either r times the solution with r - 0 in the brackets of eq (132), or b times the solution with b -
o in the same brackets. It is straightforward to set up a trial solution with variable coefficients for the re
quired additional terms, and solve for the coefficients subject to the constraints that the initial value vanish 
and the initial time derivative be equal and opposite to that of eqs (131)-(132). To obtain the desired result, 
a term 

[tTk (..!. _ 2..L ct + _b_ ic2kt2)+ 5rb] 
c 2 8a 8a 8ca 

+ [_a_ -(k 0)] -r12t -ielt [~_ tTbk2t] 
ak Y, e e 4ca 4a 

(134) 

must be added to jr(k,t), and a term Aft(k, t), eq (134) with c replaced by -c throughout, must be added to 
ft(k, t)_ We could, in a similar manner, impose a nonzero initial time derivative proportional to b and deter
mined from external considerations, but will not do so here. 

In the construction of the dynamic structure factor we will, for reasons decribed in section 5.4, neglect 

terms involving ( ~ Y(k,O).) The resulting dynamic structure factor may be written as 

S(k,w) = S,J.k,w) + S~k,w) (135) 

where 

S,J.k,w) = <j( -k,O) y(k,O)> X [(1 + ~~: ) (w+ck)r: (rk2)2 

+ ....!:!.... w + ck 
c (w+ck)2 + (rk2)2 

+ ~r2p w + ck 
2a [(w+ck)2 + (rk2)2]2 

3bc 
4a 

(rk2)2 - (w+ck)2 + 3bc (rk2)2 (rk2)2 -3(w+ck)2 
[(w+ck)2 + (rk2)2]2 2a [(w+ck)2 + (rk2)2J3 

+ ~ 3(w+ck) (rk2)2 - (w+ck)3 ] 
2a [(w+ck)2 + (rk2)2]3 

and S~k,w) is given by eq (136) with c replaced by -c throughout_ 
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6.3. Interpretation 

In order to develop a physical understanding of the nonuniform damped wave equation solution, we first 
note that the effects of nonuniform speed and nonuniform damping are not independent and, in the special 
case considered here, tend to cancel each other. According to eqs. (115-117) with b > 0 and (3 = 0, both the 
wave speed and attenuation decrease to the right and increase to the left. Hence we expect the rightward 
pulse to undergo less damping, effectively, than in the uniform case. However, as has been seen explicitly 
with the nonuniform undamped wave solution, the decreasing wave speed attenuates the rightward pulse in 
a different sense by lowering its time-dependent integrated norm [eq (24)]. 

We have been careful to retain all terms linear in the nonuniformity and/or dispersion parameters. 
However, some terms in the end give much smaller contributions to S(k,w) than others. For example, the 
conditions from table I on the validity of S(k,w) together with the smallness of the dispersion parameter 
imply the inequalities 

b rk --«--«1. 
ak c 

(137) 

The rightward pulse (with our sign conventions) corresponds to the Brillouin line (Stokes line) centered at 
w = - ck. The additional factor 5r b/8ca multiplying the primary Brillouin line [first term in eq (136)] is by 
(137) at least three orders of magnitude less than unity, and thus utterly negligible. 

The remaining terms in eq (136) are conveniently classified quantitatively, to leading order, in terms of 
the shift in mean frequency or change in width they cause in the Brillouin line. Since the more commonly 
used definitions of mean position or width of a peak involve integrals which diverge for the Lorentzian func
tion, we employ the following alternate definitions, for mean frequency, 

w = C" ... W [f{W)]2 dw/ C" ... [f{W)]2 dw (138) 

and for width of the line, 

(Aw)2 = C" ... (w - w)2 [f{W)]2 dw/ t ... [f{W)]2 dw . (139) 

For the primary Brillouin line eq (139) gives, as usually defined, Aw = r P. The precise definitions are not 
important but the above ones serve as convenient measures of changes in the spectrum for purposes of 
discussion. 

The second term of eq (136) is antisymmetric about w = - ck and corresponds to the well-known first
order dispersion term in the Rayleigh-Brillouin spectrum [28] in the limit that the specific heat ratio 
approaches unity. To leading order in dispersion this term causes a shift of (2r2P/c) to the right in the mean 
frequency of the line. 

The third term of eq (136) is also antisymmetric about w = - ck. It has the effect of shifting the mean fre
quency to the right by (5brk/a). This represents a very small shift, which by (137) is less than that of the 
previous dispersion term which is itself usually neglected in practical applications. 

Upon comparison with the undamped wave solution, the fourth term of eq (136) is seen to originate from 
the decreasing wave speed or increasing inertia in the rightward direction. This term is symmetric about w 
= -ck and, to leading order, increases the width of the line by 3bd4a. An increase in width corresponds 
physically to a larger effective attenuation coefficient. 

The fifth term of eq (136) is symmetric about w = - ck and, by the definition (139), results in a decrease in 
width of 3bd4a. Thus the fourth and fifth terms effectively, if not identically, cancel each other. One possi
ble physical interpretation of the latter term is as follows. The Fourier component of wavenumber k of the 
rightward pulse has a lifetime of (r Pt1

, and therefore a mean path length c/r P. Equations (115-117) imply 
a distance·dependent attenuation factor 

r(x) = r(l _ b~ 
a 

(140) 
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from which we infer that the effective attenuation coefficient of the kth Fourier component of the rightward 
pulse is 

be 
r.II = r - /J ak2 (141) 

where II is a positive number of order unity, and the resulting width of the Brillouin line is r .IIkl
• The full 

analysis then gives 11 = 3,4. 
Hence the near-cancellation of the previous two terms may be an artifact of setting (3 = 0 in eq (117). For 

a more general solution where, for example, wave speed and damping increase in opposite directions, the 
corresponding new terms might reinforce each other. In any case, measurement of such a width change 
would be difficult as it would require a fractional precision in the width measurement equal to the fractional 
change in attenuation over the path length of the monitored Fourier component. 

Finally, the last term in eq (136) is highly oscillatory and qualitatively similar to the third derivative of the 
Lorentzian. Like its counterpart in the diffusion solution, it would be very difficult to detect and may be 
neglected. 

Similar observations, with appropriate changes of sign in some cases, apply to St(k,w), the anti·Stokes line 
centered at w = ek resulting from the leftward pulse. 

7. Summary 

As an initial step toward the understanding of Rayleigh-Brillouin scattering in a temperature gradient, 
which involves nonuniform, three-dimensional coupled damped wave and diffusion equations, we have 
analyzed in detail the initial value problem for a set of prototype one-dimensional differential equations 
with linearly nonuniform coefficients, to first order in nonuniformity. 

A question which first arose was whether explicit boundaries were necessary for the system, since at 
large distances the differential equations become unphysical. For the models studied, it is possible to derive 
meaningful solutions of the initial value problem without such boundaries for sufficiently narrow initial 
pulses and sufficiently short times. Also, if the equation has a damping mechanism, it is possible to construct 
a meaningful dynamic structure factor for values of k whose Fourier components are damped sufficiently 
rapidly. Conditions for the validity of solutions are listed in table 1. 

Our procedure has been first to Fourier transform in space and Laplace transform in time. The resulting 
equations, algebraic in the uniform case, become first-order differential equations in k for the linear non
uniform case. An expansion through quadratic order in nonuniformity would lead to a second·order differ
ential equation in k, for which there is no general method of solution. 

We have seen that the condition of small nonuniformity cannot be represented by any dimensionless 
parameter in F-space or FL-space. Therefore, to construct the time evolution of the pulse and, ultimately, 
the dynamic structure factor, we must follow the circuitous path indicated in figure 1. The ability to perform 
the initial inverse Fourier transform restricts the range of solvability of the Hnear differential equation in k. 
One of our initial goals, the solution of the nonuniform damped wave equation with arbitrary, independent 
variation of the nonuniformity in both wave speed and damping, for this reason has not been realized. 

We have derived explicit solutions to the initial value problem for the nonuniform undamped wave, diffu
sion, and (for a special case) damped wave equations. These solutions display properties expected on intui· 
tive grounds, and reduce properly to their respective uniform solutions. 

Throughout the derivations, certain mathematical liberties have been taken. We have assigned small 
imaginary parts to intrinsically real coefficients, although these imaginary components go to zero at the end 
of the calculation. For the diffusion and damped wave equations, we have altered the measure of integration 
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in the final solution to suppress singularities at large distance. In the damped wave equation, we have intro
duced and postulated properties of an operator which simultaneously performs an inverse Laplace trans
formation and projects out the leading term in a dispersion expansion. Attempts to justify these liberties 
have been based on pragmatism and physical intuition rather than mathematical rigor, although we conjec
ture that such steps could (probably) be justified mathematically. Of course, an a posteriori justification is 
that our solutions explicitly satisfy the differential equations through linear order in nonuniformity, and 
that our initial conditions specify a unique solution. 

Since the present formalism neglects coupling between wave and diffusion modes, three-dimensional 
effects, finite initial time derivatives and position-dependent rates of generation of fluctuations, one should 
be cautious in drawing conclusions from these results about experimental Rayleigh-Brillouin scattering 
from a fluid in a temperature gradient. However, the results suggest that further studies of possible changes 
in the Rayleigh line could be fruitful. Kirkpatrick, et al. [6] have noted that certain modifications of the 
Brillouin spectrum vanish when an average over a finite volume of the fluid is taken. But according to the 
simple and intuitive arguments of section 5.2, all heat modes within a given volume should experience a 
drift velocity in the direction of increasing thermal diffusivity. Our one-dimensional results suggest that the 
Rayleigh line is thus Doppler shifted. Detection of such a shift, if it persists in the coupled three
dimensional problem, depends on precision calibration of the incoming laser frequency and precision 
measurement of the mean frequency of the Rayleigh line. The shift would be most pronounced for systems 
whose thermal conductivity changes rapidly with temperature and for large values of k. By contrast, the 
asymmetry in the size of the Brillouin peaks predicted by previous authors, [1-10] and not considered here, 
is generally agreed to be inversely proportional to k2, and experiments to detect such an effect [14] have thus 
been performed at very small values of k. 

The author thanks R. D. Mountain for elucidating many aspects of light scattering theory and for guid
ance and encouragement. He thanks H. J. Raveche and the staff of the Thermophysics Division, National 
Bureau of Standards, Washington, DC for their hospitality during the author's visit in 1979, when much of 
this work was completed. He also thanks S. W. Haan, R. J. Rubin and J. R. Dorfman for valuable 
suggestions. 
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A new apparatus for measuring the thermal conductivity of fluids is described. This is an absolute method 
utilizing a transient hot wire. Measurements are made with a 12.7 p,m diameter platinum wire at real times of up 
to 1 second. The data acquisition system includes a minicomputer and a digital voltmeter. The experimental 
core of the system incorporates a compensating hot wire in a Wheatstone bridge circuit. The cell containing the 
core of the apparatus is designed to accommodate pressures from 0 to 70 MPa and temperatures from 70 to 320 
K. Oxygel1 was measured over a wide range of physical states including the dilute gas, the moderately dense gas, 
the near critical region, the compressed liquid states, and the vapor ai temperatures below the critical temper· 
ature. Performance checks of the apparatus were conducted with nitrogen, helium and argon. Measurement of 
rare gases allows a direct comparison to the kinetic theory of gases through the viscosity. A second check looks 
at the variation of the measured thermal conductivity as a function of the applied power. The precision (2 a) of 
the new system is between 0.5 and 0.8 percent for wire temperature transients of 4 to 5 K, while the accuracy is 
estitnated at around 1.5 percent. 

Key words: Helium; hot wire; nitrogen; pressure; temperature; thermal conductivity; transient. 

1. Introduction 2. Method 

Thermal conductivity values are necessary whenever a 
heat transfer problem is to be evaluated. In addition, ther
mal conductivity is a property of fundamental interest in 
developing the theory of fluids. Accurate measurements of 
thermal conductivity are of considerable difficulty. Methods 
and geometries abound each with its adherents and its in
herent drawbacks. The steady state hot wire experiment is 
one of the older, well established methods. The transient 
hot wire method, however, has come into its own only with 
recent advances in digital electronics. The evolution of the 
modern transient hot wire experiment can be traced from 
the early experiments of Pittman [1)1, Haarman [2], and 
Mani [3]. However, the major exposition of both theory and 
application of this method was accomplished by Kestin and 
his coworkers during the last decade [4-9] for the gas phase. 
Similar instruments have been used by Wakeham and his 
coworkers for both gas and liquid measurements [10, 11] 
and by de Castro and his coworkers for liquid meas
urements [12-13]. 

A hot wire system normally involves a vertical, cylindrical 
symmetry where the wire serves both as heating element 
and as thermometer. Almost without exception platinum is 
the wire of choice. The mathematical model that one at
tempts to approximate is that of an infinite line source of 
heat suspended vertically in an infinite medium. The 
method is labeled transient because the power is applied 
abruptly and the measurement is of short duration. The 
working equation is based on a specific solution of Fourier's 
law and can be found in standard texts (see for example 
reference [14], page 261). 

_ _ q (4K) 
1{t) - Tr ., - AT - 471'A En a2C t (1) 

Where 1{t) is the temperature of the wire at time t; 

·This work was carried out at the National Bureau of Standards under the sponsor· 
ship of the National Aeronautics and Space Administration (C-32369-C). 

ffhermophysical Properties Division, National Engineering Laboratory. 
1 Figures in brackets indicate literature references at the end of this paper. 
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Tr., is the reference temperature, the temperature of the 
cell; 

q is the applied power; 
A is the thermal conductivity of the fluid, a function of 

both temperature and density; 
K is the thermal diffusivity of the fluid, i.e., K = 

AI e Cpo K is normally taken at the temperature T", 
and is nearly constant since the fluid properties do 



not change drastically with a small increase in 
temperature; 

a is the radius of the wire; and 
in C= 'Y where 'Y is Euler's constant. 

The relation given by eq (1) implies a straight line for a plot 
of llT versus in(t). In practice systematic deviations occur at 
both short and long times. However, for each experimental 
measurement there exists a range of times over which eq (1) 
is valid, that is the relation between llT and fn(t) is linear. 
This range of validity is determined from 250 measured 
llT-t pairs by selecting a beginning time tl and an ending 
time t1 • The slope of the llT versus fn(t) relation is oblained 
over the valid range, i.e., between times t} and t2 , and using 
the applied power the thermal conductivity is calculated 
from eq (1). The temperature assigned to the measurement 
of A is given by 

The density assigned to the measurement of A is taken from 
an equation of state using an experimentally measured 
pressure and the temperature assigned above. The equa
tions of state used for nitrogen and helium are given in 
subsequent sections. The experimentally determined teni
perature rise of the wire is llTw • A number of corrections ac
count for the departure of the real instrument from the 
ideal model: 

(3) 

These corrections oTt have been fully described elsewhere 
[5]; the most important at lower times is oT}, the effect of 
the finite heat capacity of the wire. 

3. Apparatus 

The various elements of the apparatus, the hot wires, the 

long or primary hot wire is approximately 10 cm in length. 
Its resistance varies from about 20 {} at 76 K to 90 {} at 298 
K. The short or compensating wire is approximately 5 cm in 
length and its resistance varies from 10 to 45 {}. To allow for 
thermal expansion over the range of operating tempera
tures the wires are mounted with a small weight attached at 
the bottom. The wires are mounted in the hard drawn (as 
received) state, because in the annealed state platinum has 
a rather low tensile strength [16]. 

3.2. High Pressure Cell and Wire Supports 

The cell has been designed to withstand pressures of up 
to 70 MPa. In addition; if the cell is to be isothermal, its 
thermal conductivity should be high. Accordingly, the cell is 
made from beryllium copper, a material which meets these 
contradictory requirements best. Cell sizing, cell Closure, 
and wire support are shown in figure 1. The cell is quite 
similar to those used in other experiments in this laboratory 
[17-20]. It is mounted with the closure facing down. Three 
solid steel pins serve as electrical leads. They pass through 
the high pressure closure (stainless steel) and are insulated 

Ring 

Refllx Yoke--+I--I~ 

Capilary 

---1:f- RefkJx Tube 

Platirun Resistance 
Thermometer Wei 

high pressure cell and wire supports, the Wheatstone High Pres~e Cel--\!--t-t-t-t+-:,\,J 

bridge, the cryostat, the measuring and control circuitry, 
the sample handling system, and the minicomputer are de- Cel Radiation Shield 

scribed here and in figures 1-6. 

3.1. The Hot Wires 

Platinum wire is the normal choice because the resist
ance-temperature relation of platinum is well known [15]. In 
the resistance thermometer grade of the wire the smallest 
sizes available commercially are 7 Ilm, 12.7 Ilm, and 25.4 Ilm 
in diameter. The smallest of these was considered to be too 
fragile for the present application, the largest would not 
provide a sufficiently large resistance for the cell size under 
consideration. Therefore, the 12.7 Ilm diameter wire was 
chosen for both primary and compensating hot wire. The 
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FIGURE 1. The high pressure cell and wire support unit. 

Covers 



from it using polymide ferrules [21]. The capillary which ad
mits the sample is soldered into the top of the cell. Much of 
the interior of the cell is filled by the wire support unit 
which is made from copper and includes a centerpiece, two 
covers, a top and a bottom cap. The wire support unit is 
mounted on the high pressure closure. When assembled the 
wire support unit provides two cylindrical wells 9 mm in 
diameter and 11 cm long to accomodate the hot wires. 
Mounted in the top cap with friction fit are two 5 mm sec
tions of a small coaxial cable. The hot wires are soft 
soldered to the center leads of these coaxial sections. To the 
bottom of the long hot wire is soldered a short section of 
teflon covered wire which terminates in a 4-80 brass nut, 
the weight. The teflon covered section provides isulation be
tween bottom cap and the extension of the long hot wire as 
well as centering for it. The long hot wire section is con
nected to one of the steel pins by a small loop of 12.7 p.m 
copper wire. The short hot wire is soft soldered to the other 
coaxial section in the top cap. To its bottom end a short 
length of copper wire centered in a second 4-80 brass nut is 
soldered. The leads on the short hot wire side are completed 
by a loop of 12.7 p.m copper wire which connects to a 5 em 
length of coaxial cable. This section of coax is friction fit 
into the bottom cap and is sufficiently rigid to stand alone. 
A second loop of copper connects this coax to the second 
steel pin. Long and short hot wire sections are connected 
together above the top cap with the center tap soldered in 
the middle of this connection. The center tap is a 11 cm 
long section of the coax which at the bottom end is con
nected to the third steel pin. 

Liquid oxygen safety is one of the additional design con
siderations for the cell since the interior of the cell will be 
exposed to very high pressure 70 MPa (10,000 psi) liquid. 
The materials directly exposed to liquid oxygen have been 
limited to beryllium copper, copper, stainless steel, silver, 
teflon, and a polyimide (kapton) all of which have been 
found to be Uoxygen compatible" [22]. Cleaning procedures 
for cell, wire supports, capillary and sample handling 
system were extensive [23]. 

3.3. The Wheatstone Bridge 

Precision measurements of resistance can be made by us
ing a four lead technique or by using a Wheatstone bridge. 
In the present apparatus we follow the general development 
of the hot wire instrument pioneered by Haarman [2], de 
Groot, et al. [4], Assael, et al. [10] and de Castro, et al. [12] 
and use a Wheatstone bridge to measure resistances. End 
effect compensation is provided by placing the long hot 
wire in one working arm of the bridge and a shorter, com
pensating wire on the other. In contrast to other instru
ments where values of time are measured in the present 
instrument the voltage developed across the bridge is 

measured directly as a function of time with a fast response 
digital voltmeter (DVM). The DVM is controlled by a mini
computer which also handles the switching of the power and 
the logging of the data. The automation of the voltage 
measurement follows the work of Mani [3] who used a 
similar arrangement with a transient hot wire cell to meas
ure resistance by the four lead technique rather than using 
a bridge. 

Figure 2 shows the Wheatstone bridge circuit. Each arm 
of the bridge is designed to be 100 n, two arms Rl and R2 
are standard resistors. The resistance in each of the other 
arms R3 and R. is a composite of the hot wire, the leads into 
the cryostat and an adjustable ballast resistor. The leads are 
roughly 6 n at room temperature and 2 n when the cell is at 
76 K. The ballast resistors allow each working arm to be ad
justed to a value of 100 n. 

The measurement of thermal conductivity for a single 
point is accomplished in two phases. In the first phase the 
bridge is balanced as close to null as is practical. To start 
with, switch 1 is turned from dummy to the bridge while 
switch 2 is open. With a very small applied voltage, 0.1 
Volts normally, and the cell essentially at constant tempera
ture, the voltages are read on channels 0 through 7. The 
lead, hot wire, and ballast resistances are calculated from 
the ratios of the appropriate channel volt gage to the voltage 
across the standard lOOn resistor on channel zero. The 
ballasts are adjusted until each leg is approximately 100 n. 
Finally, with switch 2 closed, the bridge null is checked on 
channel 6. The second phase incorporates the actual ther
mal conductivity measurement. The power supply is set to 
the applied power desired, switch 2 is closed, and switch 1 is 
switched from dummy to bridge. The voltage developed 
across the bridge as a function of time is read on channel 6 
and stored. The basic data is a set of 250 readings taken at 3 
ms intervals. Finally the voltage on channel 0 is read to de
termine the exact applied power, and the power is switched 
back to the dummy resistor. 

3.4. The Cryostat 

The cryostat for the apparatus, shown in figure 3, is 
adapted from a general design first used in a PVT appa
ratus at this laboratory [24]. The cell is connected by the 
reflux tube to the inner refrigerant tank. The reflux tube is 
filled with gas which sometimes corresponds to the liquid 
used as the refrigerant. Varying the gas pressure changes 
the amount of refrigeration applied to the cell. A cooling 
yoke and ring insure that the refrigeration is applied 
primarily at the bottom of the cell. In this way a slight gra
dient can be maintained between cell top and cell bottom. 
To avoid convection inside the cell we normally maintain 
the cell bottom slightly colder than the cell top. The cell and 
its radiation shield is located in a vacuum environment. A 
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FIGURE 2. The Wheatstone bridge circuit. 

tube which serves as the inner vacuum line also admits lead 
wires and the capillary into the inner vacuum space sur
rounding the cell. The leads are tempered on two rings, one 
is attached directly to the inner refrigeration tank, the other 
is the guard ring which is attached to the reflux tube. The 
cell radiation shield in turn is attached to the guard ring. 
The inner refrigerant tank is insulated by the outer vacuum 
system, which in turn is protected by the outer refrigerant, 
usually liquid nitrogen, in a dewar. All of the various access 
tubes, fill and vent lines, and vacuum lines pass through the 
mounting plate which rests on the mounting bracket at
tached to the wall. Cell alinement is achieved by adjustment 
of three set screws. 

3.5. Cryostat Temperature Control 

A diagram of this circuitry is shown in figure 4. The cell 
temperature is monitored with the platinum resistance ther
mometer which is mounted in the cell. The PRT resistance 
is measured by the four lead method as a ratio against a 10 
o standard using a microvolt potentiometer, a stable cur-

rent supply, and a high gain de null detector. The amplified 
output of the detector is used in a feedback loop to provide 
power to the cell heater [25]. The ratio of power applied to 
cell top and cell bottom is monitored with a thermocouple 
and adjusted by hand. The temperature of the guard ring 
and cell radiation shield are maintained close to the cell 
temperature by the use of a second feedback loop. This loop 
includes a differential thermocouple and a low level dc 
voltage detector whose amplified output is routed to a 
power supply which in turn feeds the ring and shield heater. 
A separate, manual heater is mounted on the capillary. This 
heater is operated intermittently as needed. Its function is 
to ensure that the sample does not freeze in the capillary 
should by chance some unusual temperature conditions pre
vail at some spot in the capillary. 

3.6. Sample Handling and Vacuum Systems 

Block diagrams for both systems are shown in figure 5. 
The vacuum system is conventional except for an automatic 
back pressure control with alarm and solenoid valve. These 
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items were installed as a safety precaution should the silver 
plated copper O-ring in the cell closure spring a leak and 
discharge oxygen into the vacuum space. 

The sample handling system was also designed with oxy
gen in mind. It consists of the sample from a gas bottle, a 
molecular sieve to capture moisture, and a small diaphragm 

HOTWIRE T.e. APPARATUS 

Inner Vacuum line 

Reflu. Tube 0 
000 

Refrigerant Refrigerant 
Vent Line 8 Fill Line 

Inner Vacuum Line 
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Inner Refrigerant ______ 
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Inner Vacuum Space 

Inner Vacuum Can (cold wall) 
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Thermometer Well 

Cell Yoke and Ring 

_Cell 

Cen Closure 

--- - -Cell Radiation Shield 

FIGURE 3. The cryostat. 

compressor as pressure intensifier. The compressor uses an 
oxygen compatible oil and has specially hardened check 
valves and seals. A pressure relief valve was provided in the 
cell pump-out line to protect against the possibility of an ac
cidental oxygen overpressure, even though the forepump is 
charged with an oxygen compatible pump oil. With a few 
changes the sample system was able to handle a liquid sam
ple, propane. Ordinarily the compressor requires an input 
pressure of about 5 MPa (700 psi). However, if liquid is pro
vided at the intake and sufficient time between strokes is 
allowed, then the compressor handles a liquid sample quite 
well. For propane, removing the molecular sieve and turn
ing the supply bottle upside down ensured a direct flow of 
liquid. 

3.7. The Minicomputer 

A simplified block diagram of the minicomputer and its 
peripherals is shown in figure 6. The CPU uses 18 bits per 
word with BASIC as the operational language. Program 
storage is on floppy disks, program input on the CRT, pro
gram listings are handled on the printer. Data can be dis
played on the CRT and on the printer, and can be stored on 
floppy disk or magnetic tape. Input voltages, i.e., voltages to 
be read are routed from the 50 input channels by the multi
plexer to the DVM where the analog to digital (AiD) conver
sion is effected. Output voltages, i.e., voltages to be used for 
experimental control are processed by the logic control unit 
where the digital to analog conversion takes place. These 
voltages are available at any of six output channels. 

4. Data Measured 

In the course of making a single thermal conductivity 
measurement a large number of variables are measured and 
recorded. The minicomputer program which controls the 
measurement is shown in appendix I. An example of a data 
file as assembled in the minicomputer and then transferred 
to magnetic tape is shown in appendix II. The first two lines 
of the data file are keyed in through the CRT. These lines 
contain the date, run and point number, the PRT reading 
from the microvolt potentiometer with the last digit 
repeated, the reading of the pressure gage, the barometer 
reading, the wire resistance for both long and short hot 
wire, the sums of lead and ballast resistance for both long 
and short hot wire sections, the time increment at which the 
voltage readings were taken, and lastly the voltage applied 
to the bridge. The remainder of the file contains the set of 
250 voltage readings across the Wheatstone bridge. 

4.1. Cell Temperature 

The PRT is a standard capsule thermometer. It has been 
calibrated by the NBS temperature section. The voltage 
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00 
FIGURE 6. The minicomputer. 

Output 
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read across the 10 {} standard resistor is used to adjust the 
thermometer current so that a current of 1 rna is flowing in 
the PRT circuit. A second voltage reading across the PRT 
proper allows its resistance to be calculated. The second 
voltage reading is the only value that is keyed into the CRT. 
The error in the cell temperature as established from a 
calibration of the microvolt potentiometer used is 0.001 K 
at 80 K increasing to 0.007 K at 292 K. 

4.2. Cell Pressure 

The cell pressure is read with a commercial high preci
sion steel bourdon tube. The unit was selected because it is 
Ucompatible" with high pressure oxygen. The unit is cali
brated by the vendor with the calibration traceable to NBS. 
A digital readout is provided through an optical sensor, 
with the units of the readout in Ucounts." At the maximum 
pressure 96000 counts correspond to approximately 68 
MPa. At the higher pressures the bourdon tube displays 
hysteresis under loading as a function of time. It is this 
hysteresis that gives rise to the stated uncertainty of ± 0.03 
MPa. The pressure gage calibration was represented by a 
low order polynomial for use in the data reduction program. 
The error attributable to this curve fit is well within the 
stated error of the gage. Vapor pressure checks of the gage 
at approximately 1 MPa with both oxygen [26] and propane 
[27] confirm the calibration at the lower end of the pressure 
scale. 

4.3. Resistances 

Direct resistance measurements are made while balanc
ing the Wheatstone bridge. The resistances of the hot wires, 
of the leads, and of the ballast resistors are measured with 
the DVM set at the optimum gain. The resistance measure
ments are made using the four terminal method; the voltage 
across a standard 100 {} resistor defines the current in the 
circuit and the voltage reading across the unknown defines 
the resistance in question. In actual practice each voltage 

reading is the average of 100 individual readings. Each hot 
wire section measurement must be corrected for leads in
side the high pressure cell which are short pieces of copper 
and steel wire. The corrections were calculated from wire 
dimensions and tabulated resistivities [28]. They are esti
mated to be 0.22 {} for the long hot wire section and 0.65 {} 
for the short hot wire section at room temperature. The cor
rections are handled in the data reduction program and are 
further adjusted for changes in bath temperature. 

In order to obtain the temperature increase of the plati
num wires from the corresponding resistance increase, we 
need to know the variation of resistance with temperature 
for both wires. It has been shown in the past [8, 12, 13,29] 
that an in situ calibration of the wires is desirable and also 
that the resistances per unit length of both wires should be 
the same to within about 2 percent. 

The wire resistances measured at essentially zero applied 
power in the balancing of the bridge together with the cell 
temperatures as determined from the platinum resistance 
thermometer are taken as the in situ calibration of the 
wires. During measurements on oxygen [26] some 1800 
values were collected for each wire in the temperature range 
76-320 K with pressures from atmospheric to about 70 
MPa. The resistance relation for each wire is represented by 
an analytical function of the type 

R(t) = A + B T + C 'J'2 + D P (4) 

where T is the temperature in kelvin and P the pressure 
gage reading. The pressure dependence is small but statis
tically significant and reflects the fact that the calibration 
measurements are made with a small applied voltage of 0.1 
volts. Coefficients for eq (4) were determined in two ranges 
of temperature with some overlap in the range of the fits as 
shown in table 1. The standard deviation of the resistance 
measurements as well as the equivalent temperature errors 
are shown in table 1. The long wire has a length of 10.453 
cm at room temperature, the short wire one of 5.143 cm. 
Both wires have a nominal diameter of 0.001270 ± 
0.000001 cm, thus the radius a in eq (1) is 0.000625 cm. If 
we use these values and the measured resistances we can 
calculate a resistivity of 10.07 X 10-6 {}-cm at 273.15 K com
pared to a best value of 9.60 X 10-6 O-cm for an annealed 
high purity specimen [28]. The difference is ascribed to the 
hard drawn condition of our wires. The a of these wires, 
defined as (R(373.l5)-R(273.l5)/(100. R(273.15» is 
0.0037944 which is lower than the value 0.003925 required 
for use in an annealed platinum resistance thermometer 
[26]. Finally, we evaluate 
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Table I. Calibration Constants of Wires. 

Number of Coeff I e I ents St and ard Dev I at I on Equivalent Temperature Range Applicable 

B(O K-1 I 
-2 -1 

of L.S. Fit Points In Fit Temperature Range A({ll C(O K I D(O (MPal I of Fit, One Sigma Error In T 

Long olre 76 - 158 K 707 77 - 150 K -10.231206 0.3670809 ~.9903371 )( 10-4 -7.796325)( 10-4 0.01 0 0.023 K 

142 - 305 K 1684 150 - 315 K - 9.0654n 0.3534445 ~.5923443 )( 10-4 -1.401463 )( 10-3 0.019 0 0.054 K 

Short olre 76 - 158 K 707 77 - 150 K - 5.057558 0.1823527 ~.525n80 x 10-4 -4.144377 )( 10-4 0.01 0 0.059 K 

142 - 305 K 1684 150 - 315 K - 4.346459 0.1740251 ~.2831553 x 10-4 -<;.565822 )( 10-4 0.011 0 0.065 K 

Table 2. Wire Resistances as a Function of Temperature 

Pressure Temperature Wire Resistances Wire Lengths Resistances/Unit Length Percent 

MPa K long,l1 short,lt long,cm 

.1013 75.00 16.7427 8.3231 10.434 

.1013 100.00 25.4865 12.6519 10.436 

.1013 125.00 34.1064 16.9150 10.438 

.1013 150.00 42.6026 21.1124 10.440 

.1013 175.00 50.9731 25.2407 10.442 

.1013 200.00 59.2539 29.3259 10.444 

.1013 225.00 67.4606 33.3756 10.447 

.1013 250.00 75.5934 37.3900 10.449 

.1013 273.15 83.0582 41.0758 10.451 

.1013 275.00 83.6520 41.3690 10.451 

.1013 300.00 91.6j66 45.3126 10.454 

.1013 325.00 99.5472 49.2208 10.456 

and compare (h and (Js in the experimental range. Table 2 
shows the percent difference between (JL and (Js as a func
tion of T. It is apparent that for the lower temperatures the 
correction proposed by Kestin and Wakeham [8] would ap
ply except that in this apparatus independent calibrations 
for both long and short hot wire are used. 

4.4. Time Increment 

The timing of the experiment is based on the internal 
clock of the minicomputer, a temperature stabilized quartz 
crystal oscillator that divides a second into roughly 20,000 
parts. Available to the programmer is a real time clock 
which is incremented in milliseconds. During a run this 
clock is first zeroed, line 620 in appendix I, next 250 voltage 
readings are taken across the bridge, and finally the clock is 
read, line 670 in appendix I. The gain of the DVM is set 
before starting the voltage readings. There are 250 steps in 
the program loop, where each step includes reading the 
DVM, storing the result, and time for the computer to ex
ecute the step. The time required to execute the program 
loop is 755 ms, which means that the DVM is read every 
3.02 milliseconds. Separate timing runs establish the time 
necessary to read the clock as about 1 ms. This means the 
time increment could be as small as 3.012 ms. Actual calcu
lations using the data reduction program show that for this 

short,cm long,ll/m short,J1/m difference 

5.134 160.5 162.1 -1.03 

5.135 244.2 246.4 - .89 

5.136 326.8 329.4 - .79 

5.137 408.1 411.0 - .72 

5.138 488.1 491.3 - .64 

5.139 567.3 570.7 - .59 

5.140 645.8 649.3 - .55 

5.141 723.5 727.3 - .53 

5.142 794.7 798.8 - .51 

5.142 800.4 804.5 - .51 

5.143 876.6 881.0 - .50 

5.144 952.1 956.8 - .49 

variation in time increment the thermal conductivity results 
are affected by less than 1 part in 20,000. 

The time increment between readings of the DVM can be 
varied by inserting a delay of several ms into the program 
loop. Increments of 5, 10, and 15 ms were tried. In general, 
the use of larger time increments simply reduces the num
ber of useful points for the thermal conductivity analysis 
since for nearly all fluid conditions the onset of convection 
occurs at around one second in this apparatus. 

4.5. Power Level 

The ideal analysis stipulates that th~ heat flux q, applied 
to the wire remains constant during a given run. Under ex
perimental conditions q is nearly' ideal at room tempera
ture, i.e., it varies by about two parts in 10000. However, at 
the very lowest temperatures the q will vary from beginning 
to end of a run by values up to several percent. To see why 
this is so, and to find the correction that has to he applied 
consider the following. 

The power supply used provides a constant voltage at its 
terminals to a circuit which consists of a 100 n standard 
resistor in series with the Wheatstone bridge. The effective 
bridge resistance is nominally 100 n but changes as the run 
progresses. The voltage of the power supply i~ preset, it is 
known to an accuracy of ± 200 p. V. The set value is entered 

464 



through the key board, just prior to switching the power to 
the bridge. After the run is completed, but before the power 
is switched back to the dummy resistor; the voltage across 
the standard resistor, channel 0 in figure 2, is read. The dif
ference between this voltage and the preset one is the 
voltage applied to the bridge a short time after completion 
of the run. The difference is one of the items placed on 
magnetic tape, and it is used in the data reduction program 
to calculate the power applied to the bridge. The instan
taneous heat flux is determined from the equation. 

(6) 

where V(t) is the voltage applied to the bridge, and R3 and 
R4 are defined in figure 2. The voltage V(t), both hot wire 
legs of the bridge R3 and R4 , and the hot wire resistances 
themselves change as a function of time. At room tempera
ture the drop in the current is almost exactly offset by the 
rise in the hot wire resistances. At low temperatures the 
fractional change in the hot wire resistances predominates. 
As an extreme example consider a run in liquid propane at 
say 110 K. For a 3 K rise in wire temperature the long hot 
wire rises by 1 n from an initial value of 30 0, or 3.3 per
cent. This rise is only partially offset by the 0.7 percent drop 
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in the hot wire current leaving a net rise in q of 2.6 percent 
from t = 0 to t = 755 ms. The range of valid times for a run 
is generally t} = 150 ms, t2 = 755 ms. Over this range of 
times the variation in q is less than the extreme case 
because a large part, 70 percent or so, of the resistance 
change of the hot wires occurs during the times not valid for 
the experiment. Nevertheless, the remaining variation in q 
is significant and we apply a correction to account for it. 
We select. a time in the middle of the valid time interval 
ta = (t} + t2)/2 and correct the experimental ilT's by the 
ratio of the instantaneous q to the q at the median time 

ilT(t)co •• = ilT(t).aw • q(tj)1 q(ta) .... (7) 

V(t) varies by about one part in 1000 over a run, and some 
calculation verified that V(t) varies as the in(t), and further 
that the value measured was actually achieved at the req
uisite time after the end of the run. 

4.6. Bridge Voltages 

The voltages measured across the bridge, actually a meas
ure of the bridge unbalance, are the basic data in this ex
periment. A typical set of 250 of these voltages for point No. 
9044 is shown in appendix II and is plotted in figure 7. The 
general shape of this curve is logarithmic, as expected. 

O~O-------------------~2~OO~------------------4~OO~--------~~-----------~800 

Time. ms 

FIGURE 7. Typical bridge voltages versus time, point 9044, helium gas. 
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Noise levels in these readings are evident. Considerable ef
fort went into reducing the noise level, and also into tracing 
the source. The DVM, when shorted, exhibits an error band 
of ± 6 p.V. When a 100 0 resistor is placed across the DVM, 
no applied power yet, the band increases to ± 17 p. V. With 
the experimental system connected to the DVM the error 
band becomes ± 28 p. V which is roughly equivalent to 
± .026 K in the llT. Only a small part, some 20 or 30 per
cent, is due to AC pickup. Use of integrating or averaging 
DVM's will reduce the noise level at the expense, however, 
of a smaller number of measurements. 

5. Data Reduction 

A listing of the data reduction program used for helium is 
given in appendix III. Experimental values are read from 
the magnetic tape. Initial calculations and corrections in
chide corrections for the bias of the DVM, corrections for 
the leads inside the high pressure cell, and an estimation of 
the instantaneous voltage applied to the bridge. The AT.., 
values are calculated from the voltages applied to the 
bridge, the offset or measured voltages across the bridge 
and the two hot wire calibrations. The bridge equation is 
solved repeatedly until the increases in the hot wire 
resistances together with the voltage applied to the bridge 

yield an offset voltage equal to the measured one. The 
various corrections to the AT.., are applied to obtain the AT, 
and then the Ar's and In{t)'s are passed to a least squares 
regression routine. Microfilm plots of both llT and the 
deviation of each measured point from the regression line 
versus In{t) are set up. Typical examples again for point No. 
9044 are shown in figures 8a and 8b. In the final steps of the 
data reduction program an equation of state is used to find 
the applicable density, the experimental thermal conductiv
ity is compared to any previous correlation that might exist, 
and the results are printed. 

A certain amount of judgement enters into the data 
reduction process particularly in the selection of tl and t: j 

the range of times over which the least squares straight line 
regression is to be evaluated. The criterion for a valid result 
is that the AT values as plotted in the example, figure 8a, 
shall form a straight line versus the In{t). The deviation plot 
as shown in figure 8b is used to help determine the valid 
range of the least squares fit. For most experimental condi
tions tl = 150 ms and t2 = 755 ms. In both figures, 8a and 
8b, the points plotted begin at index 11 or t = 33 ms. The 
first 30 or so points are seen to fall somewhat below the 
straight line. By inspection the fit for point 9044 could have 
included an index as low as 41 or tl = 124 ms. In figure 8b 
the standard deviation for the regression fit of point 9044 is 
roughly 0.2 percent, or at the 3u level 0.65 percent. 
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FIGURE 8a. Typical temperature rises versus the logarithm of time, point 9044, helium gas. 
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FIGURE Bb. Typical deviations of experimental temperature rises from the calculated straight 
line versus the logarithm of time, point 9044, helium gas. 

By implication, it is equally important to recognize and 
interpret nonstandard results obtained, so that invalid 
results can be identified and rejected. A description of 
several of the more interesting malfunctions follows. In 
figure 9a we see that the ilT values are nearly constant 
toward the end of the run. This state of affairs depending 
on the state of the fluid sample is interpreted as (a) the ap
paratus is operating in the steady state mode, or (b) as the 
onset of convection in the run. 

If a similar run at higher fluid densities is taken to much 
longer experimental times the plot is as shown in figure 9b. 
Here the effect of convection is clearly seen as a rapid cool
ing of the hot wires after the maximum ilT is passed. In 
principle we could get a valid result for the transient hot 
wire by selecting t} = 690 ms and t2 = 1353 ms. However, 
the number of ilT values useful for the straight line regres
sion has now dropped to 50. In practice it turns out that the 
applied power level, as seen in the resulting ilT's of 10 to 12 
K, was simply too large to be useful. The plot of figure 9c 
shows the effect of gas circulation within the cell. The 
precise cause is not known. Convection combined with ther
mal oscillations when the capillary cools are suspected 
reasons. From the plot it is clear that the wires experience a 
non-uniform temperature field and are subject to abrupt 
segments of convection cooling. Measurements with a plot 
of this type are rejected. 

In figure 9d the DVM saturated toward the end of the 
run. By excluding the points for which the voltage readings 
are constant, and provided there are sufficient measure
ments to extract a straight line fit, a measurement of this 
type can be used. At the very lowest pressures (densities) in 
the vapor phase at temperatures much below the critical 
temperature some plots look like the one shown in figure ge. 
The physical interpretation of this run is that we see a 
Knudsen effect at short times and an outer boundary effect 
at the longer times. No valid range for the hot wire instru
ment exists and these results are rejected. In the region 
near the critical point the onset of convection occurs much 
more rapidly. Measurements in this fluid region have to be 
made at lower power levels and at shorter times. For the 
measurements on oxygen experimental times of tl == 33 ms 
and t2 == 500 ms were found to be appropriate. 

A second criterion which is used in accepting or rejecting 
experimental measurements is by considering the change in 
the measured thermal conductivity as the applied power, q, 
is varied. Examples are given in the sections on nitrogen 
and helium. In a general way this criterion suggests that 
measurements in which the final ilT's are larger than about 
5 K are suspect. This includes most of the critical region 
where the results have to be evaluated quite carefully, 
almost on an individual point by point basis. 
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6. Performance Verification 

6.1. Nitrogen Results 

One of the gases selected for apparatus testing was 
nitrogen. Typical measurements on nitrogen are presented 
in table 3. There are two different sets of measurements. 
Run 4 is an abbreviated isotherm to check the functioning 
of the system as the pressure is varied. In contrast, all 
measurements of run 5 are taken at a single density while 
several of the pertinent apparatus parameters are varied. 

Run 4, the pseudo-isotherm, was measured at tempera
tures between 297 and 301 K with pressures up to 68 MPa. 
At each pressure (density) level a minimum of four different 
power settings were used. The results, a total of 50 points at 
varying temperatures are shown in table 3. For easy com
parison with the results of others and using a fixed dAl cIT of 
0.00063 W/m-K2 the results were shifted at the experimen
tal densities to an even temperature of 300.65 K as shown in 
the next to last column of table 3. The results so adjusted 
are represented with a curve fit of the type used by Clifford, 
et al. [31] 

(8) 

The coefficients were determined as A = 0.02550, B = 
0.000112, C = 0.310567 X 10-4

, and D = 0.261641 X 10-5 

with A in W/m-K and e iIi mol/L. The standard deviation 
for the fit is 0.00022 W/m-K which translates to roughly 0.5 
percent in the middle of the density range. The experimen
tal measurements as adjusted to 300.65 K and the curve fit 
are shown in figure 10. Taking the curve fit of eq (8) as the 
base, the present results and those of others [31,32,33] are 
compared in figure 11. When all results are considered 
together they span a range of 3 percent. The differences 
between the present results and those of Clifford, et al. [31] 
who use a transient hot wire system range between 1.3 and 
2.3 percent, the differences to the more recent meas
urements of Assael, et al. [32] range from 1.1 to 1.7 percent. 
Differences between the present results and a published 
wide·range correlation for nitrogen [33] lie between 0.6 and 
4.5 percent. Reference [33] serves as the source of the equa
tion of state for nitrogen. 

Run 5 was measured at the same nominal pressure, about 
16.3 MPa, with experimental temperatures varying from 
297 to 309 K. For easy comparison these results are referred 
to a common temperature, 300.65 K, as indicated above. 
However, they are further adjusted to a common density of 
6.3 mol/L using eq (8). The values so adjusted are shown in 
the last column of table 3, and are plotted in figure 12 ver
sus the power applied, q. The first 15 points, shown as 
circles in figure 12, are repetitive measurements to establish 
the base of comparison. The mean of these 15 points is the 
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straight line in the center of figure 12 while the lines above 
and below represent changes of one percent. 

We indicated previously that the time increment can be 
varied. A series of such measurements was made on 
nitrogen gas with time delays of 5 and 10 ms. The runs are 
shown in table 3 as points 5016-5028. The actual time in
crement between voltage measurements is 9.02 ms for runs 
5016-5020 and 14.02 ms for runs 5021-5028 compared to 
a normal time increment of 3.02 ms. A plot of point 5027 is 
given in figure 9b, where the straight line segment indicates 
the range of times, tt = 154.22 ms and t2 = 757.08 ms, used 
to evaluate the result given in table 3. If proper times tt and 
t2 are selected, then runs of this type can yield valid results. 
However, the associated regression statistics deteriorate 
because a smaller number of points is available to the least 
squares analysis. 

A second test involves larger than normal powers. The 
idea is to compare measurements made at one reference 
temperature with a very large power to measurements made 
at a higher reference temperature with a much smaller ap
plied power, an overlapping of isotherms so to speak. For 
example a run at Tr .. f =295 K and a power level to produce 
~T's of around 15 K or a T .. "p of 310 K could be compared 
to a second run of Tr .. f = 307 K and a power level to pro
duce ~Ts - 4 K with a Tr .. f also of 310 K. The 
measurements taken are shown in table 3 as points 5031-
5035. The test fails because we can see a slight dependence 
on power level for the high powers in figure 12. The reason 
the test fails is because the plot of AT versus fn(t) instead of 
being a straight line is curved at the very large ~Ts in
volved, as shown in figure 9f for point 5035. The test might 
become valid in the future, provided a reanalysis of the cor
rections to the experimental ATw is made which allows for 
sufficiently large AT. 

A final experimental test involves the gradient along the 
high pressure cell. The cell is fitted with a thermocouple 
that measures the temperature difference from the top to 
the bottom of the cell. Nearly all runs were measured with 
the top of the cell slightly warmer than the bottom, about 10 
to 15 mk. Test runs with the cell top hotter by 47 mk are 
shown as points 5036-5040 while similar measurements 
with the cell top colder by about 35 mk are given by points 
5041-5045. The results show that the thermal conductiv
ities measured under these conditions vary by roughly 0.2 
percent, which in view of the other uncertainties is 
negligible. 

6.2. Helium Results 

The rare gas selected initially was helium. Results ob
tained subsequently on argon have already been published 
[30]. For helium a single pseudo isotherm was measured at a 
nominal temperature of 307 K with pressures up to 68 MPa. 



Table 3. Thermal Conductivity of Nitrogen Near 300 K. 

Adjusted Thermal Conductivity 
Thermal with T = 300.65 K 

Run Pt. Pressure Temperature Density Power Conductivity STAT with T = 300.65 K and p = 6.3 mol/L 
MPa K mol/L W/m W/m.K W/m.K W/m.K 

4001 69.123 297 .004 17 .5101 .14023 .06868 .034 .06891 
4002 69.124 297.439 17.4916 .20067 .06880 .021 .06900 
4003 69.124 298.096 17.4635 .27180 .06821 .013 .06837 
4004 69.123 298.759 17.4351 .35381 .06829 .009 .06841 
4005 69.125 299.583 17.4003 .44662 .06845 .007 .06852 
4006 69.125 300.322 17.3691 .55006 .06831 .004 .06833 
4007 61.132 298.146 16.4493 .27174 .06344 .012 .06360 
4008 61.133 298.905 16.4166 .35371 .06379 .009 .06390 
4009 61.128 299.709 16.3813 .44650 .06333 .006 .06339 
4010 61.131 300.741 16.3376 .54992 .06347 .005 .06346 
4011 54.586 298.026 15.5156 .23468 .05971 .014 .05988 
4012 54.588 298.703 15.4863 .31117 .05962 .009 .05974 
4013 54.588 299.475 15.4528 .39862 .05980 .007 .05987 
4014 54.588 300.334 15.4156 .49695 .05977 .006 .05979 
4015 47.903 300.778 14.3096 .49683 .05555 .004 .05554 
4016 47.903 299.771 14.3531 .39857 .05551 .006 .05557 4017 47.905 298.863 14.3927 .31119 .05570 .009 .05581 4018 47.905 298.042 14.4285 .23469 .05555 .014 .05571 4019 40.607 297.907 13.0618 .20044 .05049 .016 .05066 4020 40.608 298.705 13.0277 .27163 .05078 .010 .05090 4021 40.609 299.584 12.9903 .35361 .05092 .007 .05099 4022 40.609 300.704 12.9427 .44624 .05104 .005 .05104 4023 33.596 298.229 11.4980 .20061 .04616 .015 .04631 4024 33.596 299.023 11.4655 .27208 .04600 .010 .04610 4025 33.596 300.028 11.4247 .35423 .04636 .007 .04640 4026 33.596 301.176 11.3782 .44717 .04633 .005 .04630 4027 26.643 297.741 9.7001 .14033 .04128 .023 .04146 4028 26.642 298.530 9.6705 .20078 .04135 .013 .04148 4029 26.643 299.522 9.6340 .27210 .04199 .009 .04206 4030 26.642 300.611 9.5939 .35421 .04154 .006 .04154 4031 19.700 300.643 7.4708 .31180 .03707 .006 .03707 4032 19.700 299.992 7.4902 .27212 .03693 .008 .03697 4033 19.700 298.934 7.5221 .20073 .03695 .012 .03706 4034 19.700 297.950 7.5521 .14029 .03678 .019 .03695 4035 19.700 297.532 7.5651 .11414 .03676 .026 .03696 4036 12.708 297.418 5.0731 .09066 .03223 .035 .03243 4037 12.708 298.319 5.0546 .14029 .03212 .017 .03227 4038 12.708 299.457 5.03i4 .20079 .03216 .011 .03224 4039 12.708 300.749 5.0054 .27209 .03238 .008 .03237 4040 5.681 301.332 2.2732 .23508 .02837 .0lQ .02833 4041 5.681 300.556 2.2798 .20076 .02830 .013 .02831 4042 5.681 299.102 2.2923 .14028 .02816 .021 .02826 4043 5.681 297.843 2.3032 .09064 .02813 .042 .02831 4044 5.681 299.714 2.2870 .16920 .02821 .016 .02827 4045 5.681 298.464 2.2975 .11412 .02807 .030 .02821 4046 1.430 299.675 .5751 .14031 .02605 .024 .02611 4047 1.430 298.299 .5779 .09064 .02582 .041 .02597 4048 1.429 297.129 .5799 .05179 .02618 .097 .02640 4049 1.429 297.703 .5788 .06983 .02581 .064 .02600 4050 1.429 298.984 .5761 .11411 .02608 .030 .02618 
5001 16.327 297.649 6.3985 .09069 .03439 .032 .03458 .03440 5002 16.327 298.523 6.3757 .14036 .03453 .019 .03466 .03452 5003 16.327 299.492 6.3507 .20084 .03484 .011 .03491 .03482 5004 16.327 300.657 6.3209 .27209 .03489 .007 .03489 .03485 5005 16.327 301.440 6.3010 .31171 .03508 .006 .03503 .03503 5006 16.328 301.373 6.3030 .31172 .03485 .006 .03480 .03479 5007 16.328 300.632 6.3218 .27203 .03495 .006 .03495 .03491 5008 16.329 299.496 6.3511 .20069 .03467 .011 .03474 .03465 5009 16.329 298.426 6.3787 .14025 .03471 .018 .03485 .03471 5010 16.329 297.614 6~3999 .09061 .03459 .035 .03478 .03460 5011 16.329 297.512 6.4028 .09071 .03447 .032 .03467 .03448 5012 16.329 298.293 6.3824 .14037 .03453 .018 .03468 .03453 5013 16.329 299.270 6.3571 .20090 .03463 .011 .03472 .03462 5014 16.329 300.472 6.3263 .27222 .03468 .007 .03469 .03464 5015 16.329 301.184 6.3083 .31195 .03482 .006 .03479 .03477 
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Run Pt. Pressure 
MPa 

5016 16.330 
5017 16.330 
5018 16.330 
5019 16.330 
5020 16.330 
502l 16.329 
5022 16.329 
5023 16.329 
5024 16.329 
5025 16.329 
5026 16.329 
5027 16.329 
5028 16.329 
5031 16.328 
5032 16.328 
5033 16.328 
5034 16.328 
5035 16.327 
5036 16.333 
5037 16.333 
5038 16.333 
5039 16.333 
5040 16.333 
5041 16.337 
5042 16.337 
5043 16.337 
5044 16.338 
5045 16.338 

Table 3. (Continued) 

Adjusted Thermal Condu~tivity 
Thermal 

Temperature Density Power Conductivity STAT with T ~ 300.65 K 
K mo1/L W/m W/m.K W/m.K 

297.460 6.4043 .09069 .03505 .060 .03525 
298.264 6.3834 .14035 .03459 .033 .03474 
299.300 6.3566 .20085 .03481 .019 .03490 
300.512 6.3255 .27213 .03476 .0l2 .03477 
301.228 6.3074 ~3ll79 .03470 .009 .03466 
296.862 6.4199 .05183 .03397 .186 .03421 
297.554 6.4017 .09073 .03459 .081 .03479 
298.358 6.3807 .14043 .03436 .041 .03450 
299.454 6.3524 .20091 .03447 .024 .03455 
300.573 6.3235 .27225 .03468 .014 .03468 
302.013 6.2871 .35420 .03497 .011 .03488 
303.570 6.2483 .44706 .03505 .009 .03487 
305.150 6.2095 .55073 .03486 .010 .03458 
301.848 6.2910 .35473 .03465 .008 .03457 
303.341 6.2537 .44782 .03481 .006 .03464 
305.077 6.2109 .55174 .03514 .005 .03486 
306.934 6.1660 .66648 .03509 .004 .03469 
308.967 6.1175 .79195 .03528 .003 .03476 
297.573 6.4025 .09074 .03478 .037 .03497 
298.377 6.3815 .14047 .03471 .019 .03485 
299.450 6.3537 .20096 .03479 .011 .03487 
300.685 6.3222 .27231 .03488 .007 .03488 
301.270 6.3073 .31209 .03483 .006 .03479 
297.448 6.4073 .09066 .03435 .034 .03455 
298.207 6.3874 .14029 .03464 .019 .03479 
299.265 6.3600 .20074 .03469 .Oll .03478 
300.475 6.3293 .27202 .03477 .007 .03478 
301.173 6.3ll5 .3ll71 .03483 .006 .03480 
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with T • 300.65 K 
and p • 6.3 mo1/L 

W/m·K 
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FIGURE 11. Comparison of the present results with those of others for nitrogen at 300.65 K. 
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[33] correlation. 

At each pressure (density) level two different power settings 
were used, while at three selected densities a larger range of 
power was covered. The results, a total of 77 points at vary
ing temperatures are shown in table 4. For easy comparison 
with the results of others and using a fixed dAI dT of 
0.00035 W/m.K2 the results were shifted at the experimen
tal densities to a temperature of 300.65 K as shown in the 
last column of table 4. The results so adjusted are repre
sented with a curve fit of the same type as used on argon 
earlier. 

A = A + Be + C {eo. Up - 1.0} (9) 

The coefficients were determined as A = 0.153099, B = 
0.108257 X 10-1, and C = 0.613662 X 10-3 with A in 
W/m.K and e in mol/L. The standard deviation for the fit is 
0.00049 W/m.K which translates to roughly 0.6 percent at 
the 95 percent confidence level or 0.9 percent at the 99 per
cent confidence level. In other words, of the 77 measure
ments 71 lie within ± 0.5 percent of the fitted curve. The 
experimental measurements as adjusted to 300.65 K and the 
curve fit are shown in figure 13. The densities at which a 
larger variety of power settings was measured are easily 

noted in figure 13 as 5.7, H.5, and 19.6 mollL. Taking the 
curve fit of eq (9) as the base, the present results and those 
of others [7,34,35,36,37] are compared in figure 14. These 
results span a range of ±2 percent. The deviations between 
the present results and those of Le N eindre, et al. [34J, 
Johannin, et a1. [35], and Ho and Leidenfrost [36] are a 
nominal 1 percent or less. The differences between the pres· 
ent results and those of Kestin, et al. [7J, who also use a tran· 
sient hot wire system, range between 1.3 and 1.9 percent, 
while the differences between the present results and a pub· 
lished wide-range correlation for helium [37] also lie be· 
tween 1 and 2 percent. Differences between the present 
results and the most recent ones of Assael, et a}. [10], who 
also use a transient hot wire system, range from 1.0 to 1.7 
percent. The source used as equation of state for obtaining 
the densities of helium is [37]. 

Finally, we apply a test that has not been applied exten· 
sively to other transient hot wire systems. In analogy to a 
flat plate steady state thermal conductivity apparatus [38J 
we insist that the measured thermal conductivity in the 
present apparatus should be independent of the applied 
power. Figure 15 shows the measurements for helium gas at 
19.6, 11.5, and 5.7 mol/L plotted as a function of the applied 
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FIGURE 12. Measured thermal conductivity as a function of the applied power. Apparatus 
tests with nitrogen gas. 
o normal measurements, D. cell top cold, V cell top hot 
o 5 ms delay, time increment 9.02 ms 
¢ 10 ms delay, time increment 14.02 ms 
* larger than normal powers. 

power. Whereas q changes by a factor of nearly five no 
dependence of the measured conductivity on power level is 
discernible. For reference, the values of the curve fit (eq (9» 
plus or minus 0.5 percent are shown as three straight lines 
for each density in figure IS. The error bars for each point 
are those originating from the regression straight line fit for 
each point, see column STAT in table 4. 

6.3. Cell Alinement 

During the construction of the apparatus we sought to 
keep the cell in vertical alinement to insure that convection 
in the cell would be delayed as long as possible. Later we 
sought to verify the alinement by a series of experimental 
measurements, some 162 points with oxygen gas as a sample 
at a pressure near 10 MPa and a temperature of around 240 
K. The position of each cell alinement screw was varied in 
turn by a measured amount. For each setting of the screws a 
series of seven to nine measurements were taken varying the 

applied power, q. If the cell is out of alinement the 
measured thermal conductivity increases. The increase is 
more pronounced at the higher power levels. The proper 
setting for the alinement screws occurs when the measured 
results are most nearly independent of q as illustrated in 
figure IS. The final settings chosen were nearly identical to 
those first achieved during construction of the apparatus. In 
fact, the measurements on helium, Run No.9, were taken 
four months before the series on alinement, Run No. 19. 

6.4. Other Tests 

Tests were run on nitrogen gas at room temperature with 
only a single hot wire in the bridge. The circuit was rewired 
so that either R. or R3 , see figure 2, were replaced by yet 
another 100 {} standard resistor. The data reduction pro
gram had to be modified accordingly. The results were eval
uated only on the minicomputer, and are relative to similar 
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Table 4. Thermal Conductivity of Helium Near 300 K. 

Adjusted Thermal 
Thermal Conductivity 

Run Pt. Pressure Temperature Density Power Conductivity STAT with T ~ 300.65 K 
MPa K mo1/L W/m W/m.K W/m.K 

9001 63.980 306.154 19.6780 .36457 .18386 .022 .18193 
9002 63.978 306.459 19.6629 .46029 .18445 .014 .18242 
9003 63.978 306.788 19.6469 .56726 .18336 .Oll .18121 
9004 63.979 307.287 19.6229 .68489 .18479 .009 .18247 
9005 63.979 307.741 19.6010 .81392 .18424 .006 .18176 
9006 63.979 308.241 19.5769 .95386 .18427 .005 .18161 
9007 61.905 306.849 19.1335 .56688 .18268 .010 .18051 
9008 61.905 308.397 19.0601 .95337 .18285 .005 .18014 
9009 59.692 306.827 18.5826 .56708 .18132 .010 .17916 
9010 59.693 307.794 18.5380 .81386 .18250 .007 .18000 
9011 57.621 306.382 18.0798 .46038 .17957 .014 .17756 
9012 57.622 307.822 18.0144 .81384 .18141 .006 .17890 
9013 55.588 306.292 17.5633 .46046 .178ll .015 .17614 
9014 55.588 307.767 17.4977 .81391 .17947 .006 .17698 
9015 53.338 306.324 16.9781 .46030 .17822 .015 .17623 
9016 53.338 307.769 16.9154 .81397 .17892 .007 .17643 
9017 51.292 306.429 16.4358 .46023 .17730 .015 .17528 
9018 51.293 307.763 16.3793 .81388 .17749 .006 .17500 
9019 49.069 306.377 15.8453 .46028 .17662 .014 .17462 
9020 49.070 307.784 15.7876 .81385 .17682 .006 .1743Z 9021 46.963 306.311 15.2786 .46031 .17652 .015 .17454 9022 46.964 307.749 15.2211 .81389 .17577 .006 .17329 9023 44.676 306.361 14.6495 .46023 .17437 .013 .17237 9024 44.678 307.731 14.5966 .81401 .17554 .006 .17306 9025 42.449 306.396 14.0279 .46025 .17243 .013 .17042 9026 42.449 307.874 13.9726 .81371 .17387 .006 .17134 9027 40.222 306.328 13 .4010 .46013 .17191 .014 .16992 9028 40.222 307.816 13 .3472 .81378 .17336 .006 .17085 9029 38.053 306.321 12.7787 .46027 .17121 .013 .16923 9030 38.053 307.861 12.7251 .81376 .17216 .006 .16964 9031 35.850 306.292 12.1378 .46029 .17026 .014 .16829 9032 35.851 307.886 12.0847 .81381 .17134 .006 .16881 9033 33.592 305.206 11.5040 .20675 .16850 .042 .16691 9034 33.592 305.508 11.4943 .28015 .16954 .029 .16784 9035 33.592 305.853 11.4833 .36455 .16908 .020 .16726 9036 33.592 306.306 11.4688 .46028 .16863 .014 .16665 9037 33.593 306.741 11.4552 .56704 .17039 .010 .16826 9038 33.594 307.256 11.4389 .68485 .16933 .008 .16702 9039 33.594 307.857 11.4198 .81389 .17057 .006 .16805 9040 33.594 305.799 11.4856 .36407 .16952 .020 .16772 9041 33.594 306.338 11.4684 .45965 .16955 .013 .16756 9042 33.595 306.824 11.4531 .56620 .16952 .011 .16736 9043 33.595 307.313 1l.4375 .68391 .16982 .008 .16749 9044 33.595 307.790 11.4223 .81285 .17030 .006 .16780 9045 33.595 308.438 1l.4018 .95255 .17128 .005 .16855 9045 31.497 306.173 10.8425 .46033 .16840 .013 .16647 9046 31.497 307.807 10.7931 .81402 .16980 .006 .16730 9047 28.968 306.381 10.0629 .46036 .168ll .013 .16610 9048 28.968 307.941 10.0184 .81396 .16769 .006 .16514 9049 26.634 306.344 9.3369 .46035 .16695 .014 .16496 9050 26.634 307.965 9.2936 .81397 .16735 .005 .16479 9051 24.532 306.354 8.6709 .46038 .16588 .014 .16388 9052 24.532 307.963 8.6306 .81417 .16621 .006 .16365 9053 22.396 306.379 7.9829 .46046 .16482 .013 .16281 9054 22.395 308.019 7.9445 .81418 .16552 .006 .16294 9055 20.255 306.511 7.2793 .46102 .16399 .013 .16194 9056 20.255 308.186 7.2434 .81536 .16490 .006 .16226 9057 17 .991 306.347 6.5288 .46009 .16298 .014 .16099 9058 17 .913 308.066 6.4692 .81378 .16397 .006 .16137 9059 15.627 305.967 5.7333 .36458 .16262 .018 .16076 9060 15.627 306.425 5.7254 .46017 .16148 .012 .15946 9061 15.626 306.897 5.7170 .56700 .16220 .010 .16001 9062 15.626 307.578 5.7052 .68465 .16218 .008 .15976 9063 15.626 308.170 5.6951 .81363 .16305 .006 .16042 9064 13.436 305.988 4.9748 .36453 .16032 .019 .15841 9065 13.436 307.519 4.9516 .68483 .16199 .007 .15959 
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Run Pt. Pressure 
MPa 

9066 11.253 
9067 11.253 
9068 9.013 
9069 9.013 
9070 6.648 
9071 6.648 
9072 4.466 
9073 4.466 
9074 2.419 
9075 2.418 
9076 .415 

Table 4. (Continued) 

Thermal 
Temperature Density Power Conductivity STAT 

K mol/L W/m W/m.K 

305.990 4.2056 .36453 .16059 .019 
307.633 4.1844 .68454 .16030 .008 
305.969 3.4013 .36451 .15889 .019 
307.727 3.3827 .68445 .15957 .007 
305.860 2.5362 .36460 .15773 .012 
307.452 2.5232 .68476 .15851 .006 
305.982 1.7199 .36440 .15684 .016 
307.438 1.7119 .68485 .15705 .008 
306.028 .9401 .36441 .15672 .023 
307.670 .9349 .68458 .15595 .012 
306.143 .1627 .36423 .15477 .222 
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x 10. 1 
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FIGURE 13. Helium measurements shifted to 300.65 K with curve fit, eq (9). 
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measurements made the same day with the full bridge. The 
apparent conductivities for the single wires increase above 
those of the full bridge as follows 

full bridge 
long hot wire only 
short hot wire only 

1.000 
1.048 
1.083. 

Measurements of this type show the relative effect of the 
end corrections which 'Yould be required for the single wire, 
but which are presumed to be off setting in tpe bridge 
circuit. 

7. Errors 

Precision, reproducibility, internal consistency, and accu
racy are discussed here. 

Precision. The measurement vanatIOn in the voltages 
across the Wheatstone bridge is ±28 p. V which corresponds 
to about 25 mK. The effective errors in the experimental 
AT values are 6 percent for the very small power levels, i.e., 
a final tlT of about 0.5 K, to 0.4 percent for a final tlT of 
about 6 K. An example of the distributio~ of the exper
imental tlrs about the calculated straight line was shown 
in figure 8b. The regression program accounts for the 
spread in measurements by assigning a variance to the 
coefficients of the calculated straight line. The value STAT 
as printed in tables 3 and 4 is the fractional error in the 
slope of the straight line obtained from the variance in the 
slope (2u) divided by by the slope itself. The value STAT is 
the primary measure of the experimental precision because 
other contributions such as an error in q are quite negligi
ble. For final tlT values of 3.5 K or more which includes 
about 70 percent of all measurements made to date the 
nominal precision (2u) is 0.6 percent or slightly less. 

Reproducibility was tested by measuring (a) repeatedly 
the same point at the same fluid conditions on a given day, 
(b) by measuring similar points at different power levels, 
and (c) by repeating different isotherms at different times 
some months apart. Examples of (a) are found in table 3, 
examples of (b) are given in the sections on nitrogen and 
helium. For (c), isotherms at 160 K, 200 K, and 240 K were 
repeated during the measurements on oxygen [26]. 

Internal consistency. When measurements are made over 
a large portion of the thermal conductivity surface, and if 
an analytical function is used to represent the surface, then 
it becomes possible to check the internal consistency of the 
set of measurements by intercomparing the deviations and 
deviation patterns for the various isotherms. Such checks 
are possible for both propane [27] and oxygen [26]. In pro-

pane seven different liquid isotherms can be represented 
with an overall deviation of 1.2 percent (2u). For oxygen, 13 
isotherms from the surface which includes gas, liquid, sub
critical vapor and the near critical region for an average 
deviation of 1.6 percent. 

Accuracy. The accuracy of the measurement can in prin
ciple be estab~ished from the measurements and certain 
theoretical considerations, i.e., for the rare gases the 
Eucken factor [7]. For argon [30] the 0.3 percent obtained in 
the low density extrapolation was considered a fortunate 
coincidence and an overall accuracy of ± 1 percent was 
claimed. For the results on helium in table 4 the low density 
extrapolation yields a result which is 1.8 percent low. Accu
racy can also be estimated by comparison to the results of 
others. For the present apparatus these intercomparisons 
cover a- wide range of fluids, and a wide range of pressures, 
densities and temperatures. Summarized these comparisons 
are: 

Nitrogen: this apparatus is 1.3 to 2.3 percent lower than 
other authors [31,32,33]. 

Helium: this apparatus is 1. to 1.8 percent lower than 
other authors [7,34,35,36,37]. 

Argon: this apparatus is 1. percent lower than other 
authors [30]. 

Oxygen: this apparatus is 1-2 percent lower than other 
authors [26]. 

Propane: this apparatus is higher at some densities, lower 
at other densities when compared to other 
authors [27]. 

Hydrogen: this apparatus is 1.5 percent lower than other 
authors [39]. 

8. Summary 

A new transient hot wire thermal conductivity apparatus 
for fluids has been developed. It differs from some of the 
other transient hot wire systems in that it uses compen
sating wires in a Wheatstone bridge arrangement. It differs 
from th~se transient hot wire systems that use a bridge in 
that the voltages developed across the bridge are measured 
directly. The apparatus is a very rapid measuring device. 
Sixty points, a full pseudo-isotherm, are possible in a day. 
The system is capable of measuring a wide range of fluid 
temperatures, densities, and pressures. Fluid states, such as 
dilute gas, dense gas, the near critical states, vapor at tem
peratures below critical, compressed liquid states, and 
metastable liquid states at densities below saturation, are 
accessible for many liquefied gases. A wide variety of simple 
fluids has been measured in the system so far. It appears 
that the precision of the new system is on the order of 0.6 
percent while its accuracy is close to 1.5 percent. 
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Appendix I. The Minicomputer Program 

10 REM PROGRAM TEST, RESULTS ONTO TAPE, REVISED 20 DEC 79 
20 DIM A[255J,B[255J 
30 LET 12::::2~':;O 

40 REM WHEATSTONE BALANCE 
50 REM HOTWIRE SIDE ONLY 
60 PRINT U DIAL IN VOLTS SHOULD BE 0.1" 
70 PRINT "TOTAL R3"y"TOTAL R4","R3 POT SETft,·R4 POT SET
is CALL. <», ~~, 0 
80 CALL <] 'J :l v 6 
90 F(]l:~ • .1:::: 0 TO 7 
100 LET VEJJ= 0 
105 CALL 5,1,128vJ,J,4 
110 FOR 1=1 TO 250 
120 CALL 6,AEIJ 
150 LET V[JJ=V[JJtA[IJ 
160 NEXT I 
:L 70 LET V[ . .J]::::V[J]/2~jO 
:tao NEXT J 
:L90 CALI... 951t, () 
210 LET C=VE 0]/100 
220 FOR I:::: 1 TO "7 
230 LET R[I]=VCIJ/C 
240 NEXT I 
250 LET R3=R[tJ+R[2J+R[3J 
260 LET R4=R[4J+R[SJtR[7J 
300 PRINT R3,R4,R[2],R[SJ 
310 PRINT "GO AGAIN 1· 
320 :r NPUT 1\:1. 
330 IF Kl= 0 GOlD 80 
340 REM FULL BRIDGE 
:3~~jO LET V[6]:::: 0 
~,6() CALI... 9!1 ~:~ , 6 
3'70 CALL <],:\.,6 
380 CALL 5,1,1024,6,6,4 
390 FOR 1=1 TO 250 
400 CALL 6,A[IJ 
410 LET V[6J=V[6JtAEI] 
420 NEXT I 
4:~() LET V[6J::::V[fJ]/2S0 
44() Ci='-lLL 9,:/. y 0 
4~:;O C(')LL 9 If :.3, 0 
~60 PRINT "WHEATSTONE BALANCE =",V[6],M GO AGAIN 1 • 
470 INPUT K:l 
480 IF Kl= 0 GOIO 350 
490 REM INITIAL CONDITIONS 
~;:;(}() LET T:I.:::: () 
51 () LET T 2 :::: ~? 9/) • () 6 + ( f\ L :3 ::I - 9 () • ~) 8 ) I + :,3 
~)20 LET A[ ()];:::~)[6] 

::i30 PF: I NT 
540 PRINT nTIME-ZU~"TEMP-Z·,"R3-Z·,·R4-Z·,"V OFFS-Z· 
550 PRINT Tl,T2,R[3],R[4],A[ 0] 
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560 PRINT 
570 REM DATA AOUISITION SECTION 
580 PRINT R SET HP POWER-
590 INPUT V1 
600 CALL 9,3,6 
610 CALL 5,1,512,6,6~9 
620 CALL 1, 0, 0 
630 CALL 9,1,6 
640 FOR 1=1 TO 12 
650 CALL 6,A[IJ 
660 NEXT I 
670 CALL 2,A2,A3,A4~A5 
680 FOR 1=1 TO 100 
690 CALL 7, O,B[I] 
700 NEXT I 
710 LET V2= 0 
720 FOR 1=1 TO 100 
730 LET V2=V2tB[I] 
740 NEXT I 
750 LET V2=Vl-V2/100 
760 CALL 9,1, 0 
770 CALL 9,3, 0 
780 LET A4=A4tA5/1000 
790 LET A5=A4/12 
795 GOTO 900 
800 PRINT 
810 PRINT ·TOTAl RUN TIME·,·TIME INeR •• 
820 PRINT A4,A5 
821 PRINT 
823 PRINT -DATE RUN/PT PRT - l PRESS BAR 1-
824 INPUT 01,02,03,04,05,06 
825 LET S4=R3-R[3] 
826 LET S5=R4-R[4] 
827 PRINT 
828 CALL 22 
829 PRINT 01;-,·02;-,-03;.,-04;-,-05;-,-06;-,-
830 PRINT R[3];-,-S4;-,aR[4];-,-S5;a,.A5;-,-V2;a,-
840 FOR 1=1 TO 49 
850 LET N=(I-l)*5 
860 PRINT A[Ntl];-,.A[Nt2];a,-A[Nt3];-,aA[Nt4];a,-A[Nt5];-" 
870 NEXT I 
871 PRINT A[246];-,-A[247];a,aA[248];.,-A[249];-,8A[250] 
872 CALL 11 
874 END 
900 PRINT 
910 PRINT A[246];a,-A[247];"HA[248];.,8A[249];_,8A[250] 
920 PRINT 
9~0 PRINT ·RECORD ON TAPE1-
940 INPUT Kl 
945 PRINT 
950 IF Kl= 0 GOTO 800 
960 GOTO 874 
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Appendix II. Data for Point 9044, Helium Gas 

800116,9044,57515.7, .7,4710.1,626.7, 
93.3094,6.65579,46.7144,53.4657, .00302,6.07389, 

-7.06954E-4, 5.15612E-4, 1.07951E-3, 1.40795E-3, 1.68155E-3, 
1.84488E-3, 2.00463E-3, 2.1614E-3, 2.2985E-3, 2.43559E-3, 
2.47911E-3, 2.55064E-3, 2.65734E-3, 2.74794E-3, 2.79682E-3, 
2.86418E-3, 2.91842E-3, 2.96074E-3, 3.01201E-3, 3.07459E-3, 
3.16818E-3, 3.16639E-3, 3.16878E-3, 3.23256E-3, 3.31303E-3, 
3.32376E-3, 3.35952E-3, 3.38992E-3, 3.44953E-3, 3.45609E-3, 
3.48649E-3, 3.55206E-3, 3.56219E-3, 3.55087E-3, 3.58603E-3, 
3.64683E-3, 3.6671E-3, 3.6975E-3, 3.69869E-3, 3.73088E-3, 
3.75174E-3, 3.77559E-3, 3.84712E-3, 3.82506E-3, 3.82149E-3, 
3.84414E-3, 3.90017E-3, 3.90673E-3, 3.94309E-3, 3.94249E-3, 
3.95084E-3, 3.96335E-3, 3.99375E-3, 4.04263E-3, 4.03667E-3, 
4.01819E-3, 4.02296E-3, 4.09568E-3, 4.10284E-3, 4.12549E-3, 
4.11595E-3, 4.13562E-3, 4.14874E-3, 4.1696E-3, 4.19344E-3, 
4.22086E-3, 4.20119E-3, 4.19881E-3, 4.24292E-3, 4.26914E-3, 
4.29835E-3, 4.27332E-3, 4.27391E-3, 4.29716E-3, 4.32518E-3, 
4.32994E-3, 4.35677E-3, 4.34485E-3, 4.36571E-3, 4.37644E-3, 
4.39194E-3, 4.42115E-3, 4.4128E-3, 4.40505E-3, 4.41161E-3, 
4.44678E-3, 4.45691E-3, 4.48672E-3, 4.46406E-3, 4.47062E-3, 
4.49268E-3, 4.51115E-3, 4.5499£-3, 4.51712E-3, 4.52248E-3, 
4.52904E-3, 4.55586E-3, 4.55884E-3, 4.60414E-3, 4.58268E-3, 
4.56361E-3, 4.5797E-3, 4.61964E-3, 4.64229E-3, 4.62203E-3, 
4.6107E-3, 4.62262E-3, 4.66494E-3, 4.66316E-3, 4.69475E-3, 
4.68461E-3, 4.67269E-3, 4.68163E-3, 4.72336E-3, 4.72813E-3, 
4.72753E-3, 4.70727E-3, 4.71203E-3, 4.74601E-3, 4.75555E-3, 
4.78476E-3, 4.76211E-3, 4.75078E-3, 4.76866E-3, 4.79847E-3, 
4.79727E-3, 4.81277E-3, 4.80383E-3, 4.82589E-3, 4.82469E-3, 
4.83006E-3, 4.8688E-3, 4.84973E-3, 4.82767E-3, 4.83125E-3, 
4.87357E-3, 4.87834E-3, 4.89265E-3, 4.87476E-3, 4.88669E-3, 
4.89622E-3, 4.90934E-3, 4.94451E-3, 4.91828E-3, 4.90993E-3, 
4.90874E-3, 4.93378E-3, 4.94272E-3, 4.97729E-3, 4.9457E-3, 
4.93199E-3, 4.95404E-3, 4.98444E-3, 4.99637E-3, 4.97789E-3, 
4.97371E-3, 4.9761E-3, 5.0071E-3, 5.0071E-3, 5.03988E-3, 
5.02379E-3, 5.00352E-3, 5.01604E-3, 5.05776E-3, 5.05538E-3, 
5.0524E-3, 5.0369E-3, 5.03392E-3, 5.0673E-3, 5.07624E-3, 
5.10724E-3, 5.07743E-3, 5.0673E-3, 5.08339E-3, 5.10903E-3, 
5.09889E-3, 5.11618E-3, 5.10187E-3, 5.12333E-3, 5.1126E-3, 
5.12452E-3, 5.16387E-3, 5.14062E-3, 5.11618E-3, 5.1275E-3, 
5.17281E-3, 5.16565E-3, 5.17817E-3, 5.15016E-3, 5.16983E-3, 
5.17221E-3, 5.17817E-3, 5.22169E-3, 5.19605E-3, .005174, 
5.1734E-3, 5.20678E-3, 5.21632E-3, 5.23599E-3, 5.20976E-3, 
5.19725E-3, 5.21871E-3, 5.23838E-3, 5.25685E-3, 5.23838E-3, 
5.23063E-3, 5.22407E-3, 5.26222E-3, 5.25924E-3, 5.28725E-3, 
5.26639E-3, 5.2503E-3, 5.25745E-3, 5.28368E-3, 5.29798E-3, 
5.29321E-3, 5.26937E-3, 5.27176E-3, 5.31229E-3, 5.31229E-3, 
5.33434E-3, 5.31169E-3, 5.30514E-3, 5.30514E-3, 5.32838E-3, 
5.32242E-3, 5.34686E-3, 5.32361E-3, 5.3409E-3, 5.33673E-3, 
.005357, 5.38263E-3, 5.35461E-3, 5.33375E-3, 5.34984E-3, 
5.38084E-3, 5.37607E-3, 5.39097E-3, 5.37667E-3, 5.38322E-3, 
5.3862E-3, 5.39157E-3, 5.43866E-3, 5.40766E-3, 5.38322E-3, 
5.37965E-3, 5.41243E-3, 5.42137E-3, 5.43926E-3, 5.41005E-3 
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Appendix III. The Helium Data Reduction Program 

PROGRAM HE(INPUT,OUTPUT,TAPE1) 

C HELIUM COND. DATA REDUCTION, FINAL DR/DT, REVISED 9 MAR 81 
C FOR LS ALONG THE DATA: CALL LS 
C FOR PLOT: CALL PLOT(G(1),G(2» 

DIMENSION DTR(250),DTC(250),TLOG(250),VOF(250) 
DIMENSION F(40),G(10) 
DIMENSION BFY(5),GNU(S),DT1(250),DT2(250),DT3(250),DT4(250), 

1 DT5(250),VOLT(250),QI(250) 
DIMENSION ITITLE(13),NAME(8) 
COMMON/DDC/LU,LUC,IFL 
COMMON/8/ IN,IK, P,T,DEN, E,R,S, CV,CP,CSAT, W,WK 
COMMON/LSS/DTR,DTC,TLOG,Q,PRTT 
COMMON /FITT/ F,Y,NFUN 
COMMON/DATATC/R1,R2,R3Z,R4Z,R3B,R4B,PRESS,TEMP,VOF,TINC 
DATA BFY/0.509927,-0.338935,O.271009,-0.232425,0.206431/ 
DATA GNU/2.4048,5.5201,8.6537,ll.7315,14.9309/ 
DATA NAME/10HHANS RODER,10H X 3528 ,lOR 

110H ,10H ,lOR ,10H 
210H / 

CPT, HELIUM, 0.0005 INCH WIRE 

C INITIALIZE 

IFL=156 
CALL GRPH(0,0,8,NAME,0,0) 
R1=100.1299 
R2=100.1428 
RHOPT=21.37 
A=0.000635 
B=0.45 
PI=3.14159 
DENT=20. 
PRINT 1 

1 FORMAT(lR1/* RUNPT PRT-T WIRE-T R3Z R4Z TINC 
1VOLTS PRESS DEN T-EXP TC-EXP STAT TC-TN PCT 
2 POWER*/) 

C READ DATATC 

DO 200 K=1,78 
TTRIAL=1.0 
READ(l,*) IDATE,IRUNPT,PRT,PRT1,COUNTS BAR 
IF(EOF(l» 9999,100 ' 

100 CONTINUE 
READ(l,*) R3Z,R3B,R4Z,R4B,TINC,VNOVA 
DO 11 1=1,50 
L=(I-1)*5 
READ(l,*) VOF(L+1),VOF(L+2),VOF(L+3) VOF(L+4) VOF(L+5) 
IF(EOF(1»9999,11 " 



11 CONTINUE 
C 
C INITIAL CALC. AND CORRECTIONS 
C 

DO 12 1=1,250 
12 VOF(I)=VOF(1)-0.000012 
30 R=PRT/2000. 

PRTT=TEMPP(R) 
TEMP=PRTT 
CPPT=0.129+0.004/80.*(TEMP-220.) 
TCPT=0.74-0.03/100.*(TEMP-300.) 
DIFPT=TCPT/RHOPT/CPPT 
PS1A=0.8728+1.0351740*COUNTS-0.183212E-6*COUNTS**2 
R3C=-O.319308E-l+0.637332E-3*TEMP+O.151192E-5*TEMP**2 

1 -O.262966E-8*TEMP**3 
R4C=-O.806515E-l+0.151734E-2*TEMP+0.582652E-5*TEMP**2 

1 -O.899257E-8*TEMP**3 
R3Z=R3Z-R3C 
R3B=R3B+R3C 
R4Z=R4Z-R4C 
R4B=R4B+R4C+O.0024 
PRESS=PS1A/14.696 
VOLT2=2.0*VNOVA 
VEST=O.5 
DO 4 1=1,50 
HPVOLT=VEST+O.1 
VM1N=HPVOLT*O.99 
VMAX=HPVOLT*1.01 
1F(VOLT2.GT.VM1N.AND.VOLT2.LT.VMAX) GO TO 5 

4 VEST=VEST+O.5 
5 CONTINUE 

R3=R3Z+R3B 
R4=R4Z+R4B 
RBR1DGE=1.0/(1.0/(R3+R4)+1.0/(R1+R2» 
RC1R=100.3288+RBRIDGE 
VOLTS=HPVOLT/RC1R*RBR1DGE 

C CALCULATE DELTA-T AND T-CORRECTIONS 

1ST=51 
1F(IRUNPT.GE.9070) 1ST=15 
ISTOP=250 
IF(1RUNPT.EQ.9070) ISTOP=220 
IF(1RUNPT.EQ.9071) ISTOP=180 
1F(1RUNPT.EQ.9072) ISTOP=155 
1F(IRUNPT.EQ.9073) ISTOP=126 
1F(IRUNPT.EQ.9074) ISTOP=110 
1F(IRUNPT.EQ.9075) 1STOP= 82 
IF(1RUNPT.EQ.9076) ISTOP= 25 
IF(1RUNPT.EQ.9077) ISTOP= 25 
V250=VNOVA/1.00319 
V50=V250/1.00033 
CV2=(V250-V50)/(ALOG(T1NC*250)-ALOG(TINC*50» 
CV1=V50-CV2*ALOG(TINC*50) 
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DO 8 1=1,250 
8 VOLT(1)=CV1+CV2*ALOG(T1NC*I) 

DTW=(F1NDDT(VOLT(1ST),VOF(IST),TTRIAL)+FINDDT(VOLT(1STOP), 
1 VOF(1STOP),TTR1AL»/2. 

TEM=DTW+TEMP 
RESW3=F1ND1(TEM) 
RESW4=F1ND2(TEM) 
RTOTAL=R3B+R4B+RESW3+RESW4 
1Q=(1ST+1STOP)/2+1 
Q=(VOLT(1Q)/RTOTAL)**2*(RESW3+RESW4)*100./15.596 
DEN=FNDDHE(PRESS,TEMP) 
RHOGAS=DEN*4.0026/1000. 
TC=THERHE(DEN,TEMP)/10. 
CPGAS=CPHE(DEN,TEMP)/4.0026 
CVGAS=CVHE(DEN,TEMP) 
D1FGAS=TC/100./RHOGAS/CPGAS 
QQ=Q/(4.*P1*TC) 
QQQ=Q*8.3143*10./(DEN*CPGAS*39.948*CVGAS*P1*B**2) 
QQQQ=8.*P1*A/100.*5.6697E-8*TEMP**3/Q 
T1ME=O. 
DO 3 1=1,250 
TlME=T1ME+T1NC 
TLOG(1)=ALOG(T1ME*1000.) 
DELT=QQ*ALOG(4.0*D1FGAS*T1ME/A**2/1.781) 
DTR(1)=F1NDDT(VOLT(1),VOF(1),TTR1AL) 
TTRIAL=DTR(I) 
DT1(1)=A**2*(RHOPT*CPPT-RHOGAS*CPGAS)/(2.*TC/I00.*T1ME)*DELT 

1 -QQ*A**2/(4.*D1FGAS*T1ME)*(2.-D1FGAS/D1FPT) 
DT2(1)=0. 
BKT=B**2/(D1FGAS*T1ME) 
1F(BKT.GT.5.78) GO TO 10 
BRAK=O. 
DO 9 J=I,5 

9 BRAK=BRAK+EXP(-GNU(J)**2*D1FGAS*T1ME/B**2)*(P1*BFY(J»**2 
DT2(1)=QQ*(ALOG(4.0*D1FGAS*T1ME/B**2/1.781)+BRAK) 

10 CONTINUE 
DT3(1)=-QQQ*T1ME 
DT4(1)=0. 
DT5(1)=QQQQ*DELT**2 
DTC(I)=DTR(1)+DTl(1)+DT2(I)+DT3(1)+DT4(1)+DT5(1) 
TTT=TEMP+DTR(1) 
R3=F1ND1(TTT)+R3B 
R4=FIND2(TTT)+R4B 
RBRIDGE=I.0/(1.0/(R3+R4)+1.0/(R1+R2» 
VOLT(1)=HPVOLT*RBR1DGE/(RBRIDGE+I00.3288) 
RTOTAL=R3+R4 
RESW3=R3-R3B 
RESW4=R4-R4B 
QI(I)=(VOLT(I)/RTOTAL)**2*(RESW3+RESW4)*100./15.596 

3 CONTINUE 
DO 54 1=1,250 

54 DTC(I)=DTC(I)*QI(1Q)/Q1(I) 

C LEAST SQUARE DELTA-T VS. LOG(T1MES) 
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C CALL LS 
DO 7 1=1,2 

7 G(I)=O.O 
NFUN=2 
NF=2 
NO PTS=ISTOP-IST+1 
DO 17 L=IST,ISTOP 
F(1)=1.0 
F(2)=TLOG(L) 

16 Y=DTC(L) 
17 CALL FIT 

CALL COEFF 
DO 20 I=l,NF 

20 G(I)=F(I) 
DO 13 1=1,250 
DTR(I)=(DTC(I)-(G(1)+G(2)*TLOG(I»)/DTC(I)*100. 

13 CONTINUE 
CALL PLOT1(IRUNPT) 
CALL STAT 
TCSTAT=F(2)/G(2) 

C CALCULATE THERMAL CONDUCTIVITY 

DEN=FNDDHE(PRESS,TEM) 
DENT=DEN 
TC=THERHE(DEN,TEM)/10. 
TCEXP=Q/(4.*3.14159*G(2» 
PCT=(TCEXP-TC)/TCEXP*lOO. 
PRINT SO,IRUNPT,PRTT,TEMP,R3Z,R4Z,TINC,VOLTS,PRESS,DEN, 

1 TEM,TCEXP,TCSTAT,TC,PCT,Q 
50 FORMAT(I6,2F9.3,2F9.4,F9.5,F7.2,F9.3,F8.4,F9.3,F9.S,F8.3, 

1 F9.5,F8.2,F9.S) 

C PLOT RESULTS 

CALL PLOT(G(1),G(2),IRUNPT) 
200 CONTINUE 

9999 CONTINUE 
CALL ENDGRPH(O,O,O,O,O,O) 
CALL DDDF 
END 
FUNCTION OFFSV(EB,RR1,RR2) 

C CALCULATES OFFSET VOLTAGE WHEN RESISTANCES ARE KNOWN 
COMMON/DATATC/Rl,R2,R3Z,R4Z,R3B,R4B,PRESS,TEMP,VOF,TINC 
DATA(RG=1.0E+07) 
R3=RR1+R3B 
R4=RR2+R4B 
DIV=R1*R2*R3+R2*R3*R4+R3*R4*Rl+R4*Rl*R2+RG*(Rl+R2)*(R3+R4) 
GALVI=EB*(R2*R3-R1*R4)/DIV 
OFFSV=GALVI*RG 
RETURN 
END 
FUNCTION FIND1(TtN) 

C WIRE RESISTANCE AS A FUNCTION OF TEMPERATURE 
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COMMON/DATATC/Rl,R2,R3Z,R4Z,R3B,R4B,PRESS,TEMP,VOF,TINC 
P=PRESS*14.696 
IF(TIN.GT.150.) GO TO 2 
FINDl=-10.231206+O.3670809*TIN-0.9903371E-4*TIN**2-0.5375358E-5*P 
RETURN 

2 FINDl=-9.0654718+0.35344447*TIN-0.59234427E-4*TIN**2-0.966271E-5*P 
RETURN 
END 
FUNCTION FIND2{TIN) 

C WIRE RESISTANCE AS A FUNCTION OF TEMPERATURE 
COMMON/DATATC/Rl,R2,R3Z,R4Z,R3B,R4B,PRESS,TEMP,VOF,T1NC 
P=PRESS*14.696 
IF(TIN.GT.150.) GO TO 2 
FIND2=-5.057558+O.1823527*TIN-0.525728E-4*TIN**2-0.285743E-5*P 
RETURN 

2 FIND2=-4.346459+0.17402506*TIN-0.2831553E-4*T1N**2-0.452695E-5*P 
RETURN 
E~ 

FUNCTION FINDDT{Vl,V2,Tl) 
C AN APPROXIMATION, TO REPLACE WIRE-R 

COMMON/DATATC/Rl,R2,R3Z,R4Z,R3B,R4B,PRESS,TEMP,VOF,T1NC 
V=V2 
TT=Tl+TEMP 
DO 10 1=1,10 
REl=FINDl(TT) 
RE2=FIND2(TT) 
VOFFI =OFFSV(Vl,REl,RE2) 
IF(ABS(V-VOFFl)-1.0E-6 ) 20,20,1 

1 T=TT+O.Ol 
REl=FINDl{T ) 
RE2=FIND2{T ) 
VOFF2 =OFFSV(Vl,REl,RE2) 
DVDT=(VOFF2-VOFFl)/0.01 
CORR=(V-VOFFl)/DVDT 

10 TT=TT+CORR 
20 FINDDT=TT-TEMP 

RETURN 
END 
FUNCTION TEMPP(R) 

C ABBR. FOR 1776265 FROM 70 TO 310 K, CORR.12/19/80 
DIMENSION RR(241) 
DATA(RR(I),I=I,131)/3.99645, 4.10575, 4.21531, 4.32508, 4.43505, 

1 4.54520, 4.65550, 4.76594, 4.87649, 4.98714, 5.09788, 5.20868, 
2 5.31954, 5.43045, 5.54139, 5.65235, 5.76332, 5.87430, 5.98527, 
3 6.09622, 6.20716,6.31807,6.42895,6.53979,6.65058, 
4 6.76134,6.87204,6.98268,7.09327,7.20379, 
5 7.31426,7.42465,7.53498,7.64523,7.75541, 
A 7.86552,7.97555,8.08550,8.19538, 8.30517,8.41489,8.52453, 
B 8.63408, 8.74356, 8.85295, 8.96226, 9.07149, 9.18065, 9.28971, 
C 9.39870, 9.50761, 9.61644, 9.72519, 9.83386, 9.94245,10.05096, 
D 10.15939,10.26775,10.37603,10.48424,10.5923/,10.70043,10.80841, 
E 10.91632,11.02416,11.13192,11.23962,11.34725,11.45480,11.56229, 
F 11.66971,11.77707,11.88435,11.99158,12.09873,12.20583,12.31286, 
G 12.41982,12.52673,12.63357,12.74036,12.84708,12.95375,13.06036, 
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H 13.16690,13.27340,13.37983,13.48621,13.59254,13.69881,13.80502, 
I 13.91118,14.01729,14.12335,14.22935,14.33530,14.44121,14.54706, 
J 14.65286,14.75861,14.86431,14.96997,15.07557,15.18113,15.28664, 
K 15.39210,15.49752,15.60289,15.70822,15.81350,15.91873,16.02392, 
L 16.12907,16.23417,16.33923,16.44424,16.54922,16.65414,16.75903, 
M 16.86387,16.96868,17.07344,17.17816,17.28284,17.38747,17.49207, 
N 17.59663,17.70114,17.80562,17.91006,18.01445/ 
DATA(RR(I),I=132,241)/ 18.11881,18.22313,18.32741,18.43165, 

A 18.53586,18.64002,18.74415,18.84824,18.95229,19.05630,19.16028, 
B 19.26422,19.36812,19.47199,19.57582,19.67961,19.78337,19.88709, 
C 19.99078,20.09442,20.19804,20.30162,20.40516,20.50867,20.61214, 
D 20.71558,20.81898,20.92235,21.02568,21.12898,21.23225,21.33548, 
E 21.43867,21.54184,21.64497,21.74806,21.85112,21.95415,22.05715, 
F 22.16011,22.26304,22.36594,22.46880,22.57163,22.67443,22.77720, 
G 22.87993,22.98263,23.08530,23.18793,23.29054,23.39311,23.49565, 
H 23.59816,23.70063,23.80308,23.90549,24.00787,24.11022,24.21254, 
I 24.31483,24.41708,24.51931,24.62150,24.72366,24.82579,24.92789, 
J 25.02996,25.13199,25.23400,25.33597,25.43791,25.53982,25.64170, 
K 25.74355,25.84537,25.94715,26.04891,26.15063,26.25232,26.35398, 
L 26.45561,26.55721,26.65877,26.76031,26.86181,26.96329,27.06473, 
M 27.16614 ,27.26752,27.36887,27.47019,27.57147,27.67273, 
1 27.77395,27.87514,27.97631,28.07744,28.17854,28.27961,28.38065, 
2 28.48165,28.58263,28.68357,28.78449,28.88537,28.98622,29.08704, 
3 29.18783,29.28859/ 

DO 3 1=1,241 
IF(R.LT.RR(I» GO TO 4 

3 CONTINUE 
4 TEMPP=I 

TEMPP=TEMPP+68.+(R-RR(I-1»/(RR(I)-RR(I-1» 
RETURN 

SUBROUTINE LS 

C LEAST SQUARE ALONG THE DATA 

DIMENSION DTR(250),DTC(250),TLOG(250),VOF(250) 
DIMENSION F(40),G(10) 
DIMENSION RES(20),ERR(20),IM(20),TM(20) 
COMMON/LSS/DTR,DTC,TLOG,Q,PRTT 
COMMON /FITT/ F,Y,NFUN 

IST=11 
DO 13 J=1,16 
ISTOP=IST+89 
IM(J)=(IST+ISTOP)/2 
TM(J)=PRTT+DTC(IM(J» 
NFUN=2 
NF=2 
NO PTS=ISTOP-IST+1 
DO 17 L=IST,ISTOP 
F(1)=1.0 
F(2)=TLOG(L) 

16 Y=DTC(L) 
17 CALL FIT 
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CALL COEFF 
RES(J)=Q/(4.*3.l4l59*F(2» 
CALL STAT 
ERR(J)=RES(J)/(Q/(4.*3.14159*F(2») 

13 IST=IST+lO 
PRINT l5,«IM(J),TM(J»,J=1,lO) 
PRINT l4,«RES(J),ERR(J»,J=1,lO) 
PRINT l5,«IM(J),TM(J»,J=11,16) 
PRINT l4,«RES(J),ERR(J»,J=11,16) 

14 FORMAT(5X,20F6.4) 
15 FORMAT(5X,lO(I4,F8.3» 

RETURN 
END 
SUBROUTINE PLOT(Gl,G2,IDNO) 

C PLOTS RESULTS 
DIMENSION ITITLE(13),NAME(8),ICOMM(2) 
DIMENSION DTR(250),DTC(250),TLOG(250),VOF(250) 
COMMON/LSS/DTR,DTC,TLOG,Q,PRTT 
DATA ITITLE/lOH ,10H HELIUM T,lOHHERMAL CON, 

110HDUCTIVITY ,10H ,10H ,10HLN(T) TIN, 
2l0H MILLISEC ,10H ,10H ,10HDELTA T, 
3l0HT IN K ,10H / 

DATA ICOMM(l)/lOH RUNPT / 
ENCODE(lO,1,ICOMM(2»IDNO 

1 FORMAT(IlO) 
NO PTS=240 
DO 51 1=11,250 
L=I-lO 
TLOG(L)=TLOG(I) 

51 DTC(L)=DTC(I) 
CALL PGRPH(TLOG,DTC,NO PTS,ITITLE,0,6) 
DTC(1)=Gl+G2*TLOG(1) 
DTC(2)=Gl+G2*TLOG(NO PTS) 
TLOG(2)=TLOG(NO PTS) 
CALL CLGRPH(TLOG,DTC,2,0,0,0) 
ABFRACT=0.05 
ORDFR=0.9 
CALL COMGRPH(ABFRACT,ORDFR,2,ICOMM) 
RETURN 
END 
SUBROUTINE PLOTl(IDNO) 

C PLOTS DEV. FROM LS LINES 
DIMENSION ITITLE(13),NAME(8),TT(250),ICOMM(2) 
DIMENSION DTR(250),DTC(250),TLOG(250),VOF(250) 
COMMON/LSS/DTR,DTC,TLOG,Q,PRTT 
DATA ITITLE/lOH ,10H HELIUM T,lOHHERMAL CON, 

110HDUCTIVITY ,10H ,10H ,10HLN(T), T I, 
2l0HN MILLISEC,lOH ,10H ,10HDEV. FROM, 
3l0HLS FIT ,10H / 

DATA ICOMM(l)/lOH RUNPT / 
ENCODE(lO,1,ICOMM(2»IDNO 

1 FORMAT(IlO) 
NO PTS=240 
DO 51 1=11,250 
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L=I-10 
TT(L)=TLOG(I) 

51 DTR(L)=DTR(I) 
CALL PGRPH(TT,DTR,NO PTS,ITITLE,0,6) 
ABFRACT=O.OS 
ORDFR=0.9 
CALL COMGRPH(ABFRACT,ORDFR,2,ICOMM) 
RETURN 
END 
SUBROUTINE FITTER 

C CHANGED 13 SEPT., 1973 OLDER VERSION OF FITTER 
C COMMON STATEMENT ADDED TO MATCH CALLING SEQUENCE OF NEWER VERSION 
C SPECIAL, TO GET RESS IN F(10) 

DIMENSION F(40),A(40,41) 
COMMON IFITTI F,Y,NFUN 
DOUBLE PRECISION A,SY,SYY,RES,DET 
EQUIVALENCE(NC,FNC) 
DATA (NTR=-l) $ DATA(NDIM=40) 
ENTRY FIT 
IF(NTR) 1,3,3 

1 NP=O 
NF=NFUN 
IF(NF.GT.NDIM) GO TO 44 
NC=O 
SY=O. 
SYY=O. 
NY=NF+l 
DO 2 I=l,NY 
DO 2 J=l,NF 

2 A(J,I)=O. 
IF(NTR.EQ.O) GO TO 11 
NTR=O 

3 SY=SY+Y 
SYY=SYY+Y*Y 
DO 4 J=l,NF 
A(J,NY)=A(J,NY)+Y*F(J) 
DO 4 I=l,NF 

4 A(I,J)=A(I,J)+F(I)*F(J) 
NP=NP+1 
RETURN 
ENTRY CONSTR 
IF(NTR) 10,11,11 

10 NTR=O 
GO TO 1 

11 N=NY-1 
IF(NY+NC+2.GT.NDIM) GO TO 44 
DO 12 I=l,N 
A(I,NY+1)=A(I,NY) 

12 A(I,NY)=A(NY,I)=A(NDIM-NC,I)=F(I) 
NC=NC+1 
DO 13 I=NF,N 

13 A(I+l,NY)=A(NY,I+l)=O. 
NY=NY+1 
A(NY-l,NY)=Y 
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RET~N 

ENTRY COEFF 
N=NY-1 
DO 20 I=1,NF 

20 F(I)=A(I,NY) 
IF(N.EQ.1)GO TO 23 
DO 22 I=2,N 
DO 21 J=I,NY 

21 A(I-1,J)=A(I-1,J)/A(I-1,I-1) 
DO 22 J=I,N 
DO 22 K=I,NY 

22 A(J,K)=A(J,K)-A(J,I-1)*A(I-1,K) 
23 A(N,NY)=A(N,NY)/A(N,N) 

IF(N.EQ.1)GO TO 26 
DO 24 I=2,N 
L=N-I+2 
DO 24 J=L,N 

24 A(L-1,NY)=A(L-1,NY)-A(L-1,J)*A(J,NY) 
26 NTR=-1 

RES=SYY 
DO 25 I=1,NF 
RES=RES-F(I)*A(I,NY) 

25 F(I)=A(I,NY) 
NFUN=NP 
DF=NP-NF+NC 
Y=FNC 
FNP=NP 
RETUllN 
ENTRY STAT 
IF(NC.LE.O)GO TO 28 
DO 27 I=1,NC 
DO 27 J=1,NF 

27 RES=RES-A(NDIM-I+1,J)*A(J,NY)*A(NF+I,NY) 
28 TOT=SYY-SY*SY/FNP 

REG=TOT-RES 
SYY=RES/DF 
ST=1.96+2.72/DF+8.04/DF**3 
DET=1.0D+0 
DO 30 I=1,NF 
DET=DET*A(I,I) 

30 A(I,I)=1.0D+0/A(I,I) 
IF(NF.EQ.1)GO TO 322 
DO 32 I=2,NF 
DO 32 J=2,I 
SY=O. 
DO 31 K=J,I 

31 SY=SY-A(I,K-1)*A(K-1,J-1) 
32 A(I,J-1)=SY*A(I,I) 

322 CONTINUE 
DO 36 I=1,NF 
L=NF-I 
DO 33 J=1,L 
K=NF-J 
DO 33 M=1,J 
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N=NF-M+l 
33 A(K,I)=A(K,I)-A(K,N)*A(N,I) 

IF(I.EQ.l)GO TO 344 
DO 34 J=2,I 

34 A(J-l,I)=A(I,J-l)*SYY 
344 CONTINUE 

DO 35 J=1,I 
35 A(I,J)=A(I,J)*SYY 

IF(A(I,I).LE.O.O)A(I,I)=-A(I,I) 
36 F(I)=ST*DSQRT(A(I,I» 

C PRINT 37,(A(I,NY),F(I),I=1,NF) 
37 FORMAT(*1THE COEFFICIENTS AND THEIR ESTIMATED ERRORS ARE:*/ 

1(* *E18.10,* +OR-*E9.2» 
SYY=DSQRT(SYY) 

C PRINT 38,RES,REG,TOT,SYY,DET 
F(10)=RES 

38 FORMAT( * ESTIMATED RESIDUAL SUM OF SQUARES =*E17.9/ 
I * ESTIMATED REGRESSION SUM OF SQUARES =*E17.9/ 
2 * ESTIMATED TOTAL SUM OF SQUARES =*EI7.9/ 
3* STANDARD DEVIATION =*E17.9/* DETERMINANT OF THE MATRIX =*EI7.9/ 
4 * DISPERSION MATRIX* ) 

DO 39 J=1,NF 
C 39 PRINT 40,(A(I,J),I=1,NF) 

39 CONTINUE 
40 FORMAT(7E19.9) 

C PRINT 46 
46 FORMAT(IH ) 

RESSS=RES 
Y=SQRT(RESSS/DF) 
NFUN=DF 

43 RETURN 
44 PRINT 45 
45 FORMAT(*ITHE ~~YS IN THE FITTING PROGRAM ARE TOO SMALL TO HOLD T 

IRE NUMBER OF CONSTRAINTS AND FUNCTIONS ASKED FOR IN THE CALLING PR 
20GRAM*) 

STOP 
END 

493 



JOURNAL OF RESEARCH of the National Bureau of Standards 
Vol. 86, No.5, September-October 1981 

The Graphite Calorimeter as a Standard of Absorbed Dose 
for Cobalt-60 Gamma Radiation 

John S. Pruitt,* Steve R. Domen,* and Robert Loevinger* 

National Bureau of Standards, Washington, DC 20234 

May 6,1981 

Absorbed dose to water in a cobalt-60 gamma-ray beam has been determined using a thick-walled graphite 
ionization chamber. The chamber was calibrated in a graphite phantom against a graphite calorimeter, and the 
graphite calibration factor was converted to a water calibration factor using published energy absorption coeffi
cient ratios and a measured replacement factor. Comparisons between the graphite and water measurements 
were made at pairs of points that were scaled in position according to the ratio of electron densities, so that the 
photon spectra were the same for the two points in a given pair. Measurements performed in graphite over a 
wide range of phantom depths, field sizes, and source distances, showed that the calibration factor varies slowly 
with the phantom depth and field size, and probably has a negligible dependence on source distance. By com
parison with the thick-walled chamber in a cobalt-60 gamma-ray beam, a secondary ionization chamber can be 
calibrated in terms of absorbed dose to water with an estimated uncertainty of about ± 1 percent. 

Key words: absorbed dose standard; cobalt-60 gamma rays; electron density; ionization chamber; graphite calori
meter; scaling theorem; water phantom. 

1. Introduction 

It has long been recognized that calorimetry offers, in 
principle, the most direct method of determining absorbed 
dose. Practical calorimeter materials (e_g., graphite) were 
not, however, the media of interest (e.g., water). In 1969, it 
was proposed [IP that a thin-walled ionization chamber be 
calibrated in the calorimeter medium and this calibration 
be transferred to a water phantom with ionization-chamber 
measurements in water, using stopping-power ratios and 
perturbation factors. The basic limitations of this method 
are (1) the need for a chamber wall strong enough for prac
tical use and thin enough to have a negligible influence on 
the chamber current, (2) the relatively large uncertainties in 
the stopping-power ratios (±2 percent), and (3) the diffi
culty in evaluating the perturbation factors. 

Recent work has proceeded along three lines. One ap
proach uses a small thimble-shaped graphite calorimeter for 
direct measurements of absorbed dose in a water phantom 
[2]. This technique avoids the need for a transfer ionization 
chamber between two different media, and consequently 
avoids the use of stopping-power ratios, but the perturba
tion factors remain. 

'Center for Radiation Research, National Measurement Laboratory. 

Another approach is exemplified by a proposal from the 
National Physical Laboratory [3] that the transfer instru
ment used between the calorimeter medium and water be a 
thick-walled ionization chamber. This technique avoids the 
need to know stopping-power ratios if it is known that 
photon fluence spectral distributions are similar in the two 
media. This proposal suggests the use of a tungsten ion 
chamber that would be thick-walled for photon energies up 
to about 10 MeV. 

The third approach uses a calorimeter of water, which 
avoids all three of the limitations mentioned above. A water 
calorimeter for determination of absorbed dose haG been 
constructed and tested at the National Bureau of Standards 
[4], but, at the time of this writing, results are still 
preliminary. 

The present work was performed to establish an NBS 
standard for absorbed dose to water in a cobalt-60 gamma
ray beam, traceable to a graphite calorimeter. The work was 
done with a graphite ion chamber [5], shown in cross section 
in figure 1, which is thick-walled for photons with energies 
up to about 1 MeV. Since the work was performed with 
colbalt-60 radiation, the transfer technique used is similar 
to that proposed by NPL, with no need for stopping-power 
ratios and only a small error (less than 0.15 percent) for con
tributions to the chamber current from electrons originat
ing outside the chamber. 

1 Figures in brackets indicate literature references at the end of this paper. 
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FIGURE 1. Schematic cross section of type PLl graphite ionization cham

ber. Dimensions are in millimeters. From [5]. 

The absorbed-dose calibration factor for an ionization 
chamber in an absorbing medium is the quotient of the 
absorbed-dose rate at the position of the reference point of 
the chamber in the undisturbed medium (i.e., with the 
chamber replaced by the medium), and the current from the 
chamber when it is irradiated in the medium. In the work 
reported here, an absorbed-dose calibration factor in 
graphite was obtained using a graphite calorimeter; from 
the graphite factor, an absorbed-dose calibration factor in 
water was calculated; and from that calibration factor, 
absorbed-dose rate to water was obtained by multiplication 
by the chamber current. Use was made of a photon-fluence 
scaling theorem [6] which assures that the spectra of primary 
and scattered photons have the same energy and angle dis
tributions in the graphite and the water phantoms. The per
turbation factor is evaluated by an extrapolated replace
ment technique in which the effect of replacing graphite by 
water is measured experimentally. 

2. The Calibrations in Graphite 

Calibration measurements were made in two graphite 
phantoms, one containing a graphite calorimeter and the 
other the graphite ionization chamber. These phantoms 
were irradiated separately by a beam of cobalt-60 gamma 
rays in the geometry shown schematically in figure 2. For a 
given set of calibrations, the source-detector distance z was 
held constant while the field sizeJ(the field was square) and 
the phantom depth x were varied. Both phantoms consisted 
of cylindrical blocks, 30 em in diameter and about 17 em 
thick. In each case the center of the detector was about 1 em 
below the front surface of the block and the phantom depth 

COLLIMATOR 

z 

FIGURE 2. Schematic diagram showing experimental parameters used in 

the text. 

was varied by the addition of extra graphite plates, with 
densities between 1.65 and 1.72 g/cm3

• 

Most of the calibration measurements were made with a 
lO-kCi cobalt-60 source in our laboratory. In this case, the 
two phantoms were moved alternately into the beam and the 
same extra plates added in the same order to each in turn. 
The earliest calibrations were made with a O.5-kCi source in 
our laboratory, and an intermediate set of calibrations was 
made with a 5-kCi source at the National Institutes of 
Health. All these earlier calorimeter measurements pre
ceded the ion-chamber measurements by weeks or months, 
and were corrected for decay using a half-life of 5.271 years 
[7]. 

Field sizes and source-detector distances were varied only 
with the 10-kCi source, where field sizes were reproduced 
accurately by setting the collimator jaws with metal jigs. 
The relation between collimator size and field size for the 
lO-kCi source was determined from ionization-chamber pro
file measurements in air, using only one collimator size and 
one source distance, and assuming direct proportionality 
between field size J and the product of collimator size sand 
source distance z. 
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Dose rates were measured with the NBS portable 
graphite calorimeter [8], and ion-chamber currents were 
measured with a commercial high-gain electrometer and a 
digital voltmeter. The mode of calorimeter operation dif· 
fered slightly from that of the ionization chamber because 
of the need to determihe beam-off drift rates before and 
after each calorimeter run. Calorimeter irradiation times 
were determined by the beam shutter system. These times 
required a small correction to agree with ionization
chamber integration times, which were determined elec
tronically without turning off the beam. The correction was 
never larger than 0.1 percent for the NBS sources and 0.5 
percent for the NIH source. 

numbers. They represent what the collimator size would 
have been for the lO-kCi source to produce the field sizes 
measured for these two sources. 

TABLE 1. Field sizes in graphite f (mm). 

Source Nominal source activity (kCi) 

Distance 10 10 10 5 10 0.5 10 

z Collimator size s (mm) 
(m) 24.0 28.0 33.4 34.1 40.5 43.0 -50.8 

0.654 52 62 75 95 
0.800 76 
0.900 86 
1.000 80 95 97 115 123 145 
LlOO 105 
1.200 114 
1.250 86 100 119 144 181 

Table 1 is a list of field sizes for all the combinations of 
source distance and collimator size for which calibrations 
were made. The chamber calibration factors are liE ted in 
table 2. In both tables, the collimator sizes listed for the 
0.5-kCi source and for the 5-kCi source are synthetic 

For the lO·kCi source, field sizes were calculated from f = 2.85 s z. 
For the other sources, field sizes were measured. 

TABLE 2. Calibration factor of chamber PLl-ll (mGy/nC at 22°C and 1 standard atmosphere). 

Source Graphite Nominal source activity (kCi) 
Distance Depth 10 10 10 5 10 0.5 10 

z ex Collimator size s (mm) 
(m) (g/cm2

) 24.0 28.0 33.4 34.1 40.5 43.0 50.8 

0.654 1.65 101.4 101.5 101.6 101.7 
3.18 101.0 101.2 101.3 101.5 
5.84 100.4 100.7 
5.87 101.0 101.2 
8.37 100.4 100.6 100.7 100.9 

11.42 100.1 
11.59 100.5 100.5 100.7 

0.800 5.08 lOLl 
0.900 101.2 

1.000 0.86 101.7 
1.65 101.6 101.8 101.7 101.8 102.0 
3.18 101.3 101.4 101.4 101.8 101.6 
4.06 101.7 102.4 
5.08 101.2 101.4 101.7 
5.84 lOLl 
5.87 101.0 101.2 101.1 101.4 101.4 
6.08 101.9 
8.16 101.0 
8.37 100.7 101.0 101.4 101.4 

9.05 101.5 
11.59 100.6 101.1 100.7 101.2 101.3 

1.100 5.08 101.3 
1.200 101.4 

1.250 1.65 101.6 102.1 101.8 101.8 101.8 

3.18 101.5 101.5 101.4 101.7 101.6 

5.84 101.0 101.0 lOLl 101.2 101.4 

6.38 101.3 
8.37 101.0 100.9 101.0 101.4 101.5 

11.42 100.7 100.8 101.0 lOLl 101.4 
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The calibration factors of table 2 at each source distance 
z have been fitted to an equation of the type: 

(1) 

where e is the mass density of the phantom, Ng,aph is the 
calibration factor in absorbed dose per unit charge at depth 
x and field size f, and N;'laph is the calibration factor at refer
ence depth x, and reference field size f,. Exponential repre
sentation was chosen arbitrarily on the assumption that the 
calibration factor approaches a limiting value for either 
large fields or large depths. 

The values of the parameters and the coefficients ob
tained from the curve-fitting procedure are listed in table 3, 

along with the coefficient of variation V of each fit. As can 
be seen from the latter, eq (1) is a satisfactory description of 
the dependence of N,raplt on phantom depth and field size 
for the NBS lO-kCi and the NIH sources. The larger coeffi
cient of variation for the 0.5-kCi NBS source is caused by 
larger scatter in the relatively small calorimeter signals, 
rather than failure of eq (1). The three values at z = 1 m 
have been combined to form a weighted mean of N;~~ph (1 m) 
= 101.27 mGy/nC at 22°C and one standard atmosphere, 
with a coefficient of variation of 0.08 percent. 

Figure 3 shows the dependence of the calibration factor 
on distance, depth, and field size, as predicted by eq (1), 
varying one parameter while holding the others at their 
reference values (z, = 1 m, x, = 5 g/cm2,J, = 100 mm). The 
ordinate is the change from the reference calibration factor 
N;1..p h. The three points in figure 3 are the predictions of eq 
(1) at 0.654, 1.000, and 1.250 m, showing that variation with 

TABLE 3. Curve-fitting parameters and coefficients, and coefficients of variation for eq (1), at 22° C and one standard atmosphere. "I" = 0.25 cm2/g ahd 

"II = 0.025 mm-' . 

Distance 

Source location and z N;7.p lt ex, 
nominal activity (m) (mGy/nC) (g/cm2

) 

NBS, 10 kCi 0.654 100.8 5.56 

1.000 101.3 5.00 

NBS, 0.5 kCi 101.6 5.00 

NIH, 5 kCi 101.2 5.00 

NBS, 10 kCi 1.250 101.2 5.00 
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FIGURE 3. Variation of PLI·ll graphiie calibration factor with phantom 
depth, field size, and source distance, as predicted by eq (1). 
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distance alone is small, and is within the uncertainty of 
measurement. Plots similar to figure 3 at 0.654 and 1.250 m 
look quite similar. 

Finally, the calibration factors at ex = 5.08 g/cm2 and s 
= 33.4 mm are compared with the prediction of eq (1) at 
0.654, 1.000, and 1.250 m in figure 4. The agreement is 
within 0.1 percent. 

3. Calibration Transfer Theory 

Consider an ionization chamber in a absorbing and scat
tering medium irradiated by a cobalt-60 gamma-ray beam. 
The chamber is assumed to be thick-walled, i.e., all elec
trons reaching the cavity arise in the chamber walls, and is 
further assumed to be made of a single, but unspecified, 
wall material. An expression for the absorbed dose to the 
undisturbed medium at the position of the reference point 
of the chamber, i.e., in the absence of the chamber, can be 
obtained from eqs (23) and (24) of reference [9]. Omitting 
terms that relate only to the properties of the wall and the 
cavity gas, we obtain 

In eq (2) ]ga.. is the charge per unit mass of cavity gas corre
sponding to Dmed • {3 is the quotient of absorbed dose and 
the collision part of kerma, and (/3),::1, is the ratio /3med/ /3wall' 

(p.-:,,/ e ),::1, is the ratio of the mean mass energy-absorption 
coefficient of the medium to that of the wall material. 'IT is 
the photon energy fluence at the chamber center, and 
chamb('IT),::1, is a factor that corrects for the replacement of 
the medium by wall material in the volume of the entire 
chamber, wall plus cavity. 

The calibration factor for the chamber in the medium is 
proportional to DmedlJgas. Assume that the chamber has 
been calibrated in a cobalt-60 gamma-ray beam in graphite, 
and is user in water at a point where the photon spectral 
energy fluence is the same as in the graphite. Then expres
sions for Ngraph and Nwater can be obtained from eq (2), and 
the ratio of these expressions gives 

Equation (3) provides the required relationship between the 
calibration factor Ngraph determined in graphite using the 
graphite calorimeter, and the desired calibration factor 
Nwam that applies in undisturbed water. The energy
absorbtion coefficients are averaged over the spectral 
energy fluence in the undisturbed medium, at the point of 
measurement. The replacement factor corrects for the 
replacement of water by graphite in the volume of the entire 
chamber. More explicitly, the replacement factor is 

(4) 

where 'IT water is the photon energy fluence at the position of 
the chamber center in undisturbed water, i.e., in water in 
the absence of the chamber; and 'IT graph is the photon energy 
fluence in water at the same position inside a piece of 
graphite that has the same outer dimensions as the ioniza
tion chamber. 

The derivation of eq (3) required that the spectral energy 
fluence be the same in water and in graphite, at the 
measurement points. It has been shown [6] that this can be 
achieved by scaling all dimensions in the inverse ratio of the 
electron densities in order to define corresponding points in 
the two media, and then comparing measurements only at 
pairs of corresponding points. 

Equation (3) is independent of the wall material of the 
ionization chamber. This is the basis of the proposal [3] to 
use a high-density material for the ionization chamber, so as 
either to reduce the size of the chamber (which in turn 
causes the replacement factor to be closer to unity), or to in
crease the energy range within which the chamber can be 
considered thick-walled, or both. The designation If graph" 
in eqs (3) and (4) refers to the graphite of the phantom, not 
to the graphite of which the chamber was constructed. 

4. Experimental Realization of Calibration 
Transfer 

Values of /3 for cobalt-60 gamma radiation calculated for 
polystyrene, carbon, and air, assuming secondary electron 
equilibrium, do not differ by more than 0.1 percent [9, app. 
B]. Therefore it is assumed that the ratio ({3);.:;; in eq (3) 
can be taken as unity, with an uncertainty of about 0.1 
percent. 

The mean mass energy-absorption coefficient at a point 
in a scattering medium is a function of the photon spectral 
energy fluence at that point. The spectral energy distribu
tion varies with both field size and depth in the medium, as 
then does the mean mass energy-absorption coefficient. The 
ratio of coefficients at corresponding scaled points in two 
media varies with field size and depth much more slowly 
than do the coefficients themselves. This ratio was evalu
ated as a function of depth using the cobalt-60 spectra in 
graphite of Seltzer, Hubbell, and Berger (an example of 
which is shown in figure 26 of reference [10]), and the 
graphite and the water mass energy-absorption coefficients 
of Hubbell [11]. The variation with field size was deduced 
using the cobaIt-60 spectra in water of Bruce and Johns [12], 
normalized to graphite for one field size. Figure 5 shows the 
result: variation of the ratio is almost negligible over the 
range of depths and field sizes of interest here. 
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FIGURE 5. Ratio of the mean mass energy·absorption coefficients of water 
and of graphite, as a function of field size and depth in a water phantom. 

The replacement factor in eq (3) was evaluated experi
mentally, using the graphite ionization chamber in a water 
phantom. The outer diameter of the chamber was increased 
by addition of cylindrical graphite sleeves, replacing water 
by graphite outside the chamber. It was found that the 
chamber current decreased at the rate of 0.068 percent per 
millimeter increase in diameter.2 Assuming that the same 
rate of change of current can be extrapolated to the cham
ber center, the replacement factor is then calculated from 
the 12.5-mm chamber diameter as 1.0085. From figure 5, 
the energy·absorption coefficient ratio for a square field 
100 mm on a side, at a depth of 50 mm in water, is 1.1123. 
Then eq (3) can be written in the form 

Nwa,.,(z,xJ) = 1.122 F(xJ) Ngrap,,(z',x',f') (5) 

for the NBS graphite chamber designated PL1. In eq (5), 
F(xJ) is the energy-absorption coefficient ratio at a depth x 
and a field sizeJin water, divided by the ratio at a depth of 
50 mm and a field size of 100 mm. F(xJ) is shown on the 
right-hand scale of ordinates in figure 5, and is assumed to 
be independent of source distance z. Ngrap,,(Z ',x ',f') is to be 
evaluated from eq (1) for the values z ',x ',£' that correspond 
to z,xJ, according to the scaling rule used here. 

The scaling rule [6] requires that all distances be scaled 
inversely as the number of electrons per unit volume. The 
mass densities of water and the graphite used in the phan
tom were taken to be 1.00 g/cm3 and 1.70 g/cm3

, respective
ly. The number of electrons per unit volume are then 0.555 
NA and 0.849 NA, where NA is Avogadro's number, and the 
scaling factor is 1.530. Then z' = z/1.530, and similarly for 
x' andf'. 

I This number contains corrections for the difference between the average graphite 
phantom density. 1.70 g!cm'. and the graphite sleeve density 1.77 glcm'. 

The reference conditions at NBS for an absorbed-dose 
calibration in water are source distance z = 1 m, depth in 
water x = 50 mm, and field size f = 100 mm. The corre
sponding scaled distances in graphite are in the first line of 
table 3. An expression for the calibration factor as a func
tion of depth in water and field size is then obtained from 
eqs (1) and (5) in the form 

(6) 

where N::{er = Nwa,er (1,50,100) = 113.1 mGy/nC at 22°C 
and I standard atmosphere. The coefficients in eq (6) are kx 
= -0.00443, kj = 0.00569, ~x = 0.028 mm-t, and ~j = 
0.016 mm- t • 

5. Calibration Accuracy 

The absorbed-dose calibration of chamber PLI-ll can be 
transferred to another (secondary) ionization chamber by 
substitution in a water phantom in the cobalt-60 gamma-ray 
beam. The component uncertainties that enter into the 
absorbed-dose rate to water and into the calibration of the 
secondary chamber are given in table 4. The ffstatistical" 
uncertainties Si are values of the coefficient of variation 
(the standard deviation in percent), estimated from 
repeated measurements. These include the uncertainties 
that are conventionally identified as random. The ffother" 
uncertainties Wi are estimated values of the upper bound 
(expressed in percent) of all possible errors that have been 
identified but cannot be assigned a coefficient of variation. 
These include the uncertainties that are conventionally 
identified as systematic, but may include some that are con
ventionally identified as random. 

The dominant systematic uncertainty in table 4 is that for 
the energy.absorption coefficient ratios. The uncertainty 
quoted is based on Hubbell's estimate [II] of an uncertainty 
of ±0.3 percent for monoenergetic photons in the cobalt-60 
energy range, increased to ±0.5 percent because of the 
presence of low-energy photons, for which the ratio of the 
coefficients is much less accurately known. 

For some purposes, it is convenient to combine the statis
tical and the other uncertainties into an estimated overall 
uncertainty. In the absence of a rigorous theory to guide 
formation of an overall uncertainty, several approaches are 
presented here, and the results compared. According to con
ventional statistical theory, the combined variance of a 
distribution is obtained by adding the variances of the com
ponent distributions. Then the component coefficients of 
variation are combined in quadrature to obtain an overall 
coefficient of variation: 

S = .J'ESf (7) 
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TABLE 4. Uncertainty analysis. 

Component uncertainty 

1. Calorimeter [13] 
Impurities during calibration 
Impurities during irradiation 
Measurement of calibration power 

2. PLl-ll chamber in graphite 
Calibration factor 
Position uncertainty, chamber vs 

calorimeter 
Lack of full wall buildup [6] 

3. Dose·rate conversion, graphite to water 
Absorption coefficient ratio [11] 
{3 ratio 
Replacement factor 

4. Calibration of secondary chamber in water 
Measurement of current 
Chamber shape, possible airgaps, etc. 
Position uncertainty, secondary vs 

PLl chamber 

Absorbed-dose rate to water (1 to 3) 
Linear combination, eq (8) 
Quadratic combination, eq (10) 

Calibration of secondary chamber (1 
to 4) 

Linear combination, eq (8) 
Quadratic combination, eq (10) 

Estimated 
uncertainly (%) 

statistical other 
Sl WI 

0.1 
0.02 

0.04 0.03 

0.15 0.1 
0.1 

0.15 

0.5 
0.1 
0.2 

0.1 0.1 

1.8 

0.1 
0.03 

0.8 (1.1) 

2.1 
0.8 (1.2) 

Suppose now that a factor kl is chosen so that the con
fidence level of the individual products k1s i is approxi
mately the same as that believed to be associated with the 
individual estimated Wi' Then the component uncertainties 
can be combined linearly to give an overall uncertainty in 
the form 

(8) 

An expression for the overall uncertainty is sometimes ob
tained by combination of the component uncertainties in 
quadrature, based on a direct analogy with eq (8), in the 
form 

Equation (9) is essentially a combination in quadrature of 
confidence limits, which has no theoretical justification. 

It has recently been suggested [14] that each Wi be ad
justed by a suitable factor kl so that it becomes plausible to 

treat the terms (k1Wi)1 as if they were variances. Then the 
overall uncertainty takes the form 

(lO) 

The value of kl depends on the form assumed for the 
population underlying the Wi, which is usually not known. If 
it is assumed that the distribution of possible errors is nor
mal, kl = k1-

1 and eq (l0) becomes identical to eq (9). 

The (fother" uncertainties Wt have been estimated here 
as realistic upper bounds of the possible errors, so it is 
reasonable to assume that the WI correspond very roughly to 
99 percent confidence limits. Therefore we choose kl = Va 
and kt = 3. Then from eqs (8), and (9) or (lO), we obtain the 
overall uncertainties shown in table 4. It is sometimes 
argued that a single large uncertainty should be combined 
linearly with the remaining uncertainties combined in 
quadrature. When this is done with the uncertainty in the 
absorption-coefficient ratio, we obtain the values shown in 
parentheses in table 4. 

Combination of uncertainties in quadrature is chosen 
over linear combination, since it is considered to be very 
unlikely that all errors would occur in the same sense. Since 
the component uncertainties are at best rough estimates 
and may have been underestimated, and noting the con
siderable variations in values of the overall uncertainty ob
tained using different methods of calculation, secondary 
chamber calibrations based on this work will be stated to 
have an overall uncertainty of about ± 1 percent. It does not 
appear to be justified to specify the overall uncertainty to 
two significant figures. 

We are grateful to the physics staff of the Radiation On
cology Department of the National Cancer Institute of the 
National Institutes of Health for making their cobalt-60 
source available for these studies. We are also grateful to 
Ronald Colle for many helpful discussions on statements of 
uncertainty. 
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The number of bound-state solutions of the Schrodinger equation for the screened Coulomb potential 
(Yukawa potential), -(Clr) exp( -ar), occurs frequently in theoretical discussions concerning, for example, gas 
discharges, nuclear physics, and semiconductor physics. The number of bound states is a function of (Cia). 
Three upper limits for the number of bound states associated with the Yukawa potential are evaluated and com
pared. These three limits are those given by Bargmann, Schwinger, and Lieb. In addition, the Sobolev inequality 
states that whenever (Cia) < 1.65 no bound state occurs. This agrees to within a few percent of the numerical 
calcuiations of Bonch-Bruevich and Glasko. The Bargmann and Lieb limits and the Sobolev inequality are 
substantially easier to evaluate than the Schwinger limit. Among the three limits, the Schwinger limit gives the 
most restrictive limit for the existence of only one bound state and, therefore, is the best one to use for the ap
proach to no binding, i.e., 1.65 < (Cia) !;; 1.98. The Lieb limit is the best among the three when (Cia) > 1.98. 
The Bargmann limit is the least restrictive. 

Key words: Bargmann limits; bound-state estimates; Lieb limits; number of bound states; Schwinger limits; 
screened Coulomb potential; Sobolev's inequality; Yukawa potential. 

1. Introduction 

Many theoretical topics in such areas as plasma, nuclear, solid state, and semiconductor physics [1-6)1 re
quire knowledge about the number of bound-state solutions of the Schrodinger equation for two particles 
that interact according to the Yukawa or screened Coulomb potential. For example, as semiconductor 
devices become smaller, required dopant ion densities and their spatial gradients increase. The density of 
states for such highly doped materials is needed to predict device performance and degradation mecha
nisms. The density of states involves summation over bound states and integration over continuum states. 
The disappearance of bound-impurity levels in semiconductors due to free-carrier screening of the Coulomb 
field of impurity ions is thereby fundamental in understanding the behavior of electronic devices. [7] 

During the course of research on the effect of donor impurities on the continuum electronic states in semi
conductors, the author has used the Bargmann limit [8], the Schwinger limit [9], and the Lieb limit [10] to 
evaluate upper limits for the number of bound states associated with the screened Coulomb potential. The 
analytic methods used here to calculate these limits are more general and may be applied to other fields 
such as those mentioned above. 

We shall show that 1) when the Yukawa potential permits only one bound state to exist, Schwinger's 
extension of Bargmann's limit gives a more restrictive limit for the number of bound states than do the 
Bargmann and Lieb limits; 2) when many bound states exist, the Schwinger and Bargmann limits agree to 
within a few percent and are not as restrictive as the Lieb limit; and 3) the Sobolev inequality [10,11) 
predicts no binding when (CIa) < 1.65. The limit 1.65 from the Sobolev inequality agrees to within a few 
percent of the limit 1.68 from the numerical work of Bonch-Bruevich and Glasko. [5] 

·Center for Electronics and Electrical Engineering, National Engineering 

Laboratory. 

J Figures in brackets indicate literature references at the end of this paper. 
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2. Yukawa Potential and Schrudinger Equation 

The Schrodinger equation for two particles that interact according to the Yukawa potential is 

. 2m 
[V2 + -V {E - V{r)}] t/; (r) = 0, (1) 

where E is the energy of the two-particle system, m is the reduced or effective mass, r is the relative coordi
nate vector between the two particles, and r = 1 r 1 is its magnitude. The spherically symmetric potential 
energy V(r) is assumed to have the Yukawa form: 

V{r) = - Cr- 1 exp ( - ar) . (2) 

For many applications, the Yukawa potential is an idealized one which gives a reasonable description of the 
physical phenomena under study. Expressions for the parameters C and a in terms of physical quantities 
then depend upon the application. For donors such as phosphorus or arsenic in silicon, the quantities C and 
a become, respectively, C = (e21 €) and a = 11 r •. The charge of the electron is e, the dielectric constant is €, 
and the screening length is r •. The last depends in part upon the temperature and the dopant density. It 
gives the extent to which free carriers screen the Coulomb field of the donor ion. 

The radial wave equation obtained from the Schrodinger equation, eq. (1), for the spherically symmetric 
potential V{r) is 

fP ,I. () [2m {E V{)} i{£; 1) ] ,l.lr) = 0, dr2 ~t r + ~ - r - ~f,. (3) 

where 

The quantities, EI'm' are constants. The normalization and orthogonality conditions for the spherical har
monics Y I'm (S,cp) are 

.(4) 

In the folIowing sections, we shall calculate upper limits for the total number of bound-state solutions N of 
the Schrodinger equation, equation (1), and the number of bound-state solutions ntof the radial wave equa
tion, eq. (3), for a given f. Counting multiplicity, we perform the following summation to obtain the total 
number of bound states for a given spherically symmetric potential V. 

t",tu 

N[V] = E (2£ + I) nt[V], 
1'=0 

(5) 

where £",tu is the largest value of £ for which n( '* O. 

3. Bargmann Limits 

When the integral, 

IB[V] = I; rl V(r) 1 dr, (6) 

is finite, the Bargmann formulation [8] gives the inequality that 

(2£+ I)n,< IB[V]. (7) 
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Thus, for the Yukawa potential, eq. (2), we have 

(8) 

From the inequality (7), we note that the maximum £ = £m ..... for which nt =1= 0 in the sum of eq. (5) has the 
upper limit 112 (/s I). Thus, we have the following inequality [9] for spherically symmetric potentials; 
namely, 

(9) 

4. Schwinger Limits 

Schwinger [9] extends the Bargmann derivation to treat angular and spin-independent potentials and to 
give the number of states that lie at or below some chosen energy. His result for the upper bound Is to the 
total number of bound states N associated with a general spin-independent three-dimensional potential 
V(L) is 

N < Is, (I 0) 

where 

I - I !! dl dl ' I V(r) II V(r') I 
s - (471'")2 "1 r - r 12 • (II) 

We shall now proceed to evaluate the double integral in eq (1 I) for the case of the Yukawa potential given 
by eq. (2). Because the Yukawa potential is spherically symmetric, we expand the denominator in terms of 
the spherical harmonics; namely, 

--:-_1~~ _ 471'" f t I r~ y. «(J' ,1,.') y. «(J,I,.) Ir-r'l - l=O m::-f (2£+1) r>f+1 fm ,'jJ 
tm 

,'jJ , 
(2) 

where r< and r> are, respectively, the lesser and the greater values of Irl and Ir'l and where 

y. «(J,I,.) = {(2£ + 1) (f - m )! } 112 pm(cos (J) eimt/> • 

lm ,'jJ 411'(£+ m)! ( 

The Legendre polynomials Pfm satisfy the relation 

p-m(x) = (-l)m (f-m)! pm(x). (14) 
t (£+m)! t 

Substituting relation (12) into eq. (I 1) and using for the volume element in spherical coordinates dl , = ,2 

sin (Jd(Jd4>dr, we perform the integrations over (J, 4>, (J', and 4>'by frequent reference to eqs. (4), (13), and (14) 
and obtain the result that for spherically symmetric potentials V.(r) 

Is[ V.] = !:,2 dr !: r'2 dr' 1 Vs(r) II Vs(r') I 

00 I r~ X E --___ ..0.--

(15) 

f=o (2£+1) r;f+2 

Equation (15) becomes for the Yukawa potential (2) 

ls(y) = (C/a)2 ~o (2£~ I) U:z exp( -z) dz 

(16) 

X (!~ 71 2(+1 exp( - Z71) d71 + !~ 7]-2(-1 exp( - z7]) d7] J] , 
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where we made the substitutions z = ar, y =ar', and then 11 = (y/z) to obtain equation (16) from equation 

(15). 

Let us consider the first term in the curly brackets in eq. (16). Interchanging the order of integration, we 
obtain 

We now examine the second term in the curly brackets of equation (16), namely, 

(18) 

Interchanging the order of integration in equation (18), we write the second term 

(19) 

By making the substitution 11 = (lIx), it follows that d2(f) = d1(f). 

From the above, we obtain the Schwinger upper limit for the total number of bound states associated with 
the Yukawa potential 

(20) 

Interchanging the order of integration and summation in eq. (20), 

and observing that when 11 < I, 

I + ~ 2nlf+l 
In (~) = i.J -=..:l-

1-71 1'=0 (2£+ I) , 

we write eq. (20) in the form 

Is[V] = (Cla)2 ( Inl(1 +7])/(1-7])} d 
o (l +71)2 71 . (21) 

We show in Appendix A that the integral in eq. (21) equals 112. Hence, our final result is 

(22) 

5. Lieb Limits and Sobolev Inequality 

In three dimensions, Simon [10] gives a bound for large (Cia) due to Lieb of the form 

(23) 

where a3 ~ 0.116. For the potential (2), the Lieb limit IL[V] becomes 

IdV] = 0.116 X 6.062 (/B[v]PI2 . (24) 

When (Cia) is small enough, bound states do not occur. The Sobolev inequality [10,11] predicts that 
bound states do not occur whenever Isr[ V] < 1, or equivalently, whenever 
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1 > 0.078 x 6.062 [JB[ V]}3/1 == Isl[ V] . 

That is, according to the Sobolev inequality, N = 0 whenever (Cia) < l.65 

6. Conclusions 

We have shown in sections 3, 4, and 5 that the upper limit for the total number N of bound states 
associated with the Yukawa potential is for the Bargmann limit, eq. (9), 

N < ~ IB[V] [JB[V] + 1) = NB , 

for the Schwinger limit, 

and for the Lieb limit 

N < 0.7032 {IB[V]Jl/l = NL . 

Because 0 < Ns[ V] < NB[ V] for all IB[ V] > 0, we conclude that the Schwinger upper limit, Ns[ V], is a 
more restrictive limit than NB[ VJ. However, for large enough values of IB[ V], the fractional difference [(NB 
- Ns)/NB], between the Schwinger and Bargmann upper bounds approaches zero as (lIIB[V]) approaches 
zero. 

When (Cia) > l.98, NL < Ns and the Lieb limit is best for large (Cia) and for many bound states. When 
(Cia) < l.98, Ns < NL and the Schwinger limit is best for the existence of only one bound state and for the 
approach to no binding, i.e., l.98 > (Cia) > l.65, and finally, the Sobolev inequality gives N = 0 whenever 
(Cia) < l.65. This value of l.65 agrees to within 2 percent of the value (Cia) < l.68 which Bonch-Bruevich 
and Glasko [5] determined numerically to give no bound state. 

And finally, we observe from table 1 that even the Lieb limit is more than a factor of 3 greater than the 
numerically determined number of bound states given in reference 5 for values of (Cia) > 8.92.2 

TABLE 1. Comparison of the Number of Bound States N Determined 
Numerically by Bonch-Bruevich and Glasko· and the Three Upper 

Limits of Bargmann [Eq. (9)], Schwinger [Eq. (22)]. and Lieb 
[Eq. (24)) The Sobolev inequality is given by Eq. (25). All 

quantities are dimensionless. 

(CIa) N 

1.65 
1.68 
1.90 
1.98 
2.00 
6.00 1 
6.45 2 
7.00 2 
8.50 2 
8.92 5 

• Reference 5. 

Bargmann 
Limit 

2.19 
2.25 
2.76 
2.95 
3.00 

21.00 
24.03 
28.00 
40.38 
44.24 

Schwinger Lieb Sobolev 

Limit Limit Inequality 

1.36 1.49 1.00 

1.41 1.53 

1.81 1.84 

1.96 1.96 

2.00 1.99 

18.00 10.33 

20.80 11.52 

24.50 13.02 

36.13 17.43 

39.78 18.73 

I The relative strengths of the Lieb, Schwinger, and Bargmann limits are depend· 
ent upon the potential VCr). For example, the table analogous to table 1 for the attrac
tive three-dimensional square well shows that the Bargmann limit is best in the range 
2.47 < Voa' < 10.74 and the Lieb limit is best when Voa' > 10.74, where Vo is the 

depth of the well and a is the width of the well. The Sobolev limit states that bound 
states do not occur when Voa' < 2.11 whereas the exact numerical result state. that 
bound states do not occur when Voa' < 2.47. 
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8. Appendix 

In this appendix, we outline the evaluation of the integral that appears in eq. (21); namely, 

We let 1 + 11 = wand write 

2 

I2l = II w-2 (In(w) - In (2 - w)} dw. 

Referring to integral tables, we find that 

1 = 1- + Lim (2 - w) 1 (2 _ ) _ 1 
21 2 w-2 4 n w - 2 . 
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This paper establishes what might be called a "uniformity principle" for building evacuation problems. 
The principle may be stated as follows: given a building for which each occupant has reasonable access to every 
evacuation route, if the building is evacuated in minimum time, then the allocation of evacuees to routes is such 
that the route evacuation times are all the same. That is, there is a uniformity of route evacuation times. Also, 
analytical expressions for the minimum time to evacuate a building, and for the corresponding allocation of 
evacuees to routes, are obtained. 
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1. Introduction 

The main purpose of this paper is to establish analytically what might be called a "uniformity principle" 
for building evacuation problems. The principle may be stated as follows: given a building for which the 
occupants have reasonable access to all the evacuation routes, if the building is evacuated in minimum time 
then the allocation of the people in the building to the various building evacuation routes is such that there 
is a uniformity of route evacuation times, that is, all route evacuation times are the same. This principle is 
easy to motivate. If the evacuation time for some route j is greater than for all the other routes, then some 
people using route j could be evacuated by other routes instead, thus reducing the time to evacuate route j 
while not increasing the evacuation times for the other routes above the time to evacuate route j. 

The uniformity principle appears to fall into the "folklore" category. People involved with building 
evacuation appear aware of the principle, and assume it is true, but only implicit references to the principle, 
such as the ones by Pauls and Jones [6),1 appear in the literature. As a consequence of the means by which 
we establish the principle, we obtain analytical expressions for the minimum time to evacuate a building, 
and for the number of people to be allocated to each evacuation route so as to achieve the minimum 
building evacuation time. We remark that even if the minimum building evacuation time is not achieved in 
an actual evacuation, it may still be of interest in the sense that it provides a benchmark, or standard of com
parison, which gives some measure of how ugood" an actual building evacuation time might be. 

As concerns other related literature, for a graphical approach to the problems we shall consider, see Fran
cis [3]. For various generalizations of the approach we shall consider, see Chalmet, Francis and Saunders [2], 
and Francis and Saunders [4]. For a general discussion of the evacuation literature, see Stahl and Archea [7]. 

The organization of the paper is as follows. We first give an analytical problem statement. We then give a 
solution procedure, followed by examples. Finally we consider and solve the more general problem where 
each route can have a capacity, i.e., can have an upper bound on the total number of people who can use the 
route. We motivate the correctness of the solution procedures we give, but omit proofs of correctness, as 
such proofs are relatively direct. 

"This research was supported in part by the Center for Fire Research, National Bureau of Standards, Grant No. N8i9NADOO2I, and by the Operation~ 

Research Division, Center for Applied Mathematics, National Bureau of Standards. 

I Figures in brackets indicate literature references at the end of this paper. 
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2. Analytical formulation 

So as to state the evacuation problem of interest analytically, suppose a building has k people to be 
evacuated, and there are n different evacuation routes. For j = 1, ... , n we assume we know that the time to 
evacuate x) people via route j, denoted by tJ{x), is well structured, in the sense that it is a strictly increasing 
and continuous function with tJ{O) == O. We call the function tJ{ ) the route j evacuation time function. 

Since the building is not evacuated until all the routes are evacuated, the building evacuation time, say z, 
is the maximum, i.e., the longest, of the route evacuation times, that is, 

(1) 

Since we want to evacuate k people, we require that 

Xl + ... + X" = k, (2) 

that is, the total number of people evacuated via all the routes is equal to k. Since we cannot allow the 
number of people using any route to be negative, we also require 

(3) 

The evacuation problem can now be stated analytically: minimize (1) while satisfying (2) and (3). That is, 
find the (nonnegative) number of people to be evacuated via each route so as to minimize the time to 
evacuate the building. 

Note it is assumed that routes do not ffinteract." For example, if routes 1 and 2 Hcross" at some point, 
the time to evacuate route 1 would depend not only on Xl' the number of people using route 1, but on X 2' the 
number of people using route 2, as well; the model cannot handle such a situation. However, particularly for 
buildings for which the routes are essentially staircases, this assumption of no interaction appears 
reasonable. Further, in modeling a specific problem there may be more than one means of defining specific 
routes, in which case an appropriate definition might guarantee that in fact the routes do not interact. 

It is also assumed that each of the k persons can use anyone of the n routes; this assumption is implicit in 
the condition (2). 

We emphasize the fact that the problem statement does not require X) to be an integer. Thus an implicit 
assumption is that solutions to the problem can be rounded to adjacent integers with an acceptable loss of 
accuracy. Particularly when the total number of people in the building is large in comparison to the number 
ofroutes, as is often the case, this assumption does not appear too restrictive. Further, if the integrality con
dition is imposed, then the uniformity principle may fail, although probably by only a little. For example, if 
a building contains 501 people, has two evacuation routes, and the two routes have the same route evacua
tion time functions, an optimum solution to the problem is to evacuate 250.5 people by each route, giving 
uniform evacuation times. In reality, the closest one would come to uniform evacuation times would be to 
evacuate 250 people via one route, and 251 via the other route, giving (slightly) different route evacuation 
times. 

It is worth emphasizing that the route evacuation time functions need not actually be known in order for 
the uniformity principle to be true. It is only necessary to know that they are well structured. In particular, 
the route evacuation time functions need not be linear; nonlinearity makes the theory no more difficult. On 
the other hand, nonlinearity would certainly make the theory more difficult to implement computationally. 

3. Solution procedure 

We denote by pAz) the number of people who can clear route j in a time of z. Since tAx) is the time to 
evacuate X) people via route J: 

(4) 
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is the time to evacuate pAz) people via route j, and so we obtain pAz) by solving the equation (4) for pAz). 
(Note we are just finding the inverse function of tA) when we solve (4) for pAz).) The expression (4) holds for 
z satisfying 0 =::; z =::; tAk). If z > tAk) then the time z is greater than that needed to evacuate all k people 
via route j, and so in this case the number of people who can clear route j in a time of z is just k, Le., 

pAz) = k for tAk) < z. (5) 

Thus we determine pAz) either from (4) or from (5), depending upon whether 0 S z S tAk) or tAk) < z. 
Note we can interpret pAz) as the most people who can clear route j in a time of z, for if Xj people clear 

route j, and Xi > pAz), then, using (4) and the fact that tA) is a strictly increasing function, we have tAxj) > 
tApAz» = z, i.e., the time to clear more than pAz) people exceeds z. Hence it follows, if we let 

P(z) = Pl(Z) + ... + P,.(z) for 0 S z, (6) 

that P(z) is the most people who can exit the building in a time of z. Since there are k people in the building, 
let us find the time z· for which 

k = P(z·), (7) 

in which case k is the most people who can exit the building in a time of z·. We can now conclude that in any 
time say z', with z' < z·, not all k people can exit the building, and thus z· is the minimum time to evacuate 
all k people. 

Once we know z·, we can allocate 

xl = pAz·) people for each route j (8) 

and be assured that 

xi + ... + x! = Pl(Z·) + ... + p,.(z·) = P(z·) = k. 

Thus the allocation (8) evacuates all k people. Further, the time to evacuate xl people via route j is given by 

tj(xj) = tj(PAz*» = z* for each route j. (9) 

Thus every route clears at the same time, z·. Therefore we obtain a uniformity principle, in the sense that 
the route evacuation times are uniform when the building is evacuated in minimum time. 

At this point we summarize our procedure for allocating people to routes so as to evacuate the building in 
minimum time. First use (4) and (5) to determine each function pA ). Then use (6) to find the function P( ). 
Given k, next solve (7) to find the minimum building evacuation time z·. Then use (8) to determine an op
timum allocation of people to routes, and conclude from (9) that all routes clear at the same time. We 
remark, if we suppose we draw every function pA ), as well as the function P( ), on a single graph, then we 
can envision all the steps of the procedure of this paragraph as being carried out using only this one graph. 

We comment that the foregoing procedure is somewhat related to procedures given by Brown [1], but the 
applications he considers are quite different. Also, Brown does not consider the case where routes have 
capacities, which we treat in section 5. 

4. Examples 

Let us consider some examples. As a simple initial example, suppose we can compute the time for x} 

people to clear route j by dividing x} by a known (positive) flow rate rit so that tAx}) = x/r} for every route j. 
Solving z = pAz)!r} for pAz) gives pAz) = r}z, so that P(z) = r1z + ... + r,.z = Rz, where R = r1 + ... + ',.. 
Thus solving k = P(z·) for z· gives z· = k/R, which can be interpreted as the time to evacuate all k people 
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via a single-hypothetical-route of flow rate R. Similarly, x/ ::: pAz*) ::: rjz* ::: (r/R)k for every route j, and 

so the number of people allocated to each route j is directly proportional to the flow rate of the route. 

As a second example, consider a situation where a positive constant c is known, as well as a positive con
stant ah a ffroute parameter," for each route j, and a strictly increasing and continuous function t( ) with 
t(O) :::: 0, so that tAxj) is computed as follows: 

By taking t(y) :::: y, C :::: 1, and aj :::: 'j we get the previous example. By taking c :::: 1 and aj :::: 1 for every 
route j we get the situation where the time functions are the same for all routes. By taking t(y) :::: y-73, C :::: 

(.206)11.73 and aj :::: Wj we get an empirically determined route time function of Pauls [5], where each route j 
represents a stairwell and Wj is the Heffective width" in meters of stairwell j, obtained by subtracting 0.3 
meters from the actual stairwell width. Thus this example represents a number of situations of interest. Let 
p( ) denote the function for which z :::: t(p(z» and y :::: p(t(y». By solving z :::: tj(PAz» = t(PAz)/(caj» for 
pAz) we get p(z) = pAz)/(caj)' so that pAz) :::: cajp(z). Letting A :::: a1 + ... + all for convenience, we have 
P(z) :::: Pl(Z) + ... + p,,(z) = cA p(z). Thus solving k = P(z*) :::: cA p(z·) for z* gives z* = t(k;{cA», which 
can be interpreted as the time for all k people to clear a single-hypothetical-route having a route parameter 
A. The number of people allocated to each route j is given by Xj· = pAz*) = cajp(z*) :::: caj p(t(klcA» = 
caAklcA) :::: (a/A) k. Thus the number of people allocated to each route j is directly proportional to its route 
parameter aj. For the case where t(y) = y, C :::: 1, aj :::: 'h and A = R we get the same solution as in the 
previous example. By taking c = 1 and every aj = 1, we have A = n, giving x/ = kin for every route j, so 
that when the time functions are the same for all n routes the k people are allocated evenly among the 
routes. For the case representing Pauls' time equation, letting aj = Wj and A = W we get x/ :::: (w/W)k for 
each route j, so that the number of people allocated to each route j is directly proportional to the effective 
width of the route. 

5. Including route capacities 

We now consider briefly a capacitated problem, a generalization of the earlier (uncapacitated) problem 
defined by (1), (2), and (3). For each route j we assume we know a capacity function Cj( ), where cAz) is an 
upper bound on the total number of people who can be evacuated via route j in a time of z. For each j we 
assume cA ) is a continuous and nondecreasing function, with cAO) ~ o. We obtain the capacitated problem 
by imposing the following capacity constraints upon the uncapacitated problem: 

(10) 

Note that if we take each cAz) :::: kin (10) that (10) becomes redundant, so that the capacitated problem 
includes the uncapacitated problem as a special case. 

There are a number of reasons for considering capacity constraints. For example, a solution to the 
uncapacitated problem might al10cate unrealistically large numbers of peoples to certain routes, which 
could be remedied by giving capacities to the routes in question. Alternatively, letting cAz) be some constant 
CJ might represent a situation where route j becomes blocked after Cj people exit the route. Further, the 
capacity functions permit the representation of situations where no extra people use the route in certain 
time intervals, e.g., if ci30) = 60 = cA90) then the capacity of route j is 60 at every point in time between 
z = 30 and z :::: 90, and if 60 people have cleared the route by the time z = 30 then no extra people can 
clear the route until z > 90: such a situation might represent a temporary route blockage. 

It turns out that the uniformity principle may fail for the capacitated problem, but the solution procedure 
remains much the same. For each route j, let qAz) now denote the most people who can clear (capacitated) 
route j in a time of z. Continuing to let pA) denote the function defined by (4) and (5), we have qAz) :::: pAz) 
provided pAz) ::5 cAz), while qiz) :::: cAz) if ciz) < pAz), as the route capacity cannot be exceeded. Hence 
for each route j we conclude 

qAz) = minimum of pAz) and cAz) , 0 ::5 z. (11) 
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With the definition (II) we can state the following procedure to solve the capacitated problem. First use 
(4) and (5) to determine each function pA), and then use (II) to determine each function qj(). Next construct 
the function Q() defined by Q(z) = ql(Z) + ... + qn(z) for 0 ~ z. If k > Q(z) for all nonnegative z then the 
capacity functions make it impossible to solve the problem as formulated, as all k people can never be 
evacuated. Otherwise, given k, solve the equation 

k = Q(z} (l2) 

and take the minimum building evacuation time z* to be the smallest z satisfying (12). (In case (12) has a 
unique solution take z* to be the unique solution.) Then determine an optimum allocation of people to 
routes by letting x/ = qAz*) for each route j. As with the procedure for the uncapacitated problem, if we 
suppose we draw every function qA ), as well as the function Q(), on a single graph, then we can envision the 
steps of the procedure of this paragraph as being carried out using only this graph. 

While the uniformity principle may fail, it can be shown that the principle still holds for routes that are 
not saturated. That is, every route j for which x; < cAz*) is cleared in a time of z*. 

Acknowledgement: The author would like to thank Dr. Alan J. Goldman for his many constructive 
suggestions. 
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