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An Intercomparison of Pressvre Standards
Between LNE and NBS

R. G. Driver*, J. c. Houck*, and B. E. Welch*

National Bureau of Standards, Washington, DC 20234

January 7, 1981

An intercomparison between a transfer piston gage used by the Laboratoire National d'Essais (LNE) and a
primary standard piston gage of the National Bureau of Standards was performed over the range of pressure of
0.4 to 3.9 MPa. The agreement between the computation of the effective area of the LNE gage by the two
laboratories was within 6.4 ppm and the agreement between the average of the pressures generated by these two
gages was within 3.3 ppm, well below the estimated uncertainty of either gage (NBS 30 ppm and LNE 24 ppm).

Key words: Effective area; intercomparison; piston gage; pressure; primary standard; transfer standard.

An intercomparison of pressures generated by a transfer
piston gage placed at the Laboratoire National d'Essais
(LNE)'s disposal by the Bureau National de Metrologie
(BNM) and by a primary standard piston gage of the Na­
tional Bureau of Standards was performed at NBS over the
pressure range 0.4 to 3.9 MPa.

The two gages differ somewhat in principle. The LNE
gage is a simple piston and cylinder calibrated against a
standard whose effective area is the average of the meas­
ured area of a piston and of a cylinder with theoretically
calculated corrections of the pressure deformation of the
piston and dilation of the cylinder. The NBS gage is a pri­
mary standard controlled clearance piston gage with the
effective area derived from the measurement of the piston
only, with an empirically determined correction based on
the extrapolation of jacket pressure required to close the
cylinder on the piston, and a theoretical pressure correction
applied to deformation of the piston only. At the pressures
at which this intercomparison was made, the pressure cor­
rection is small. At maximum pressure the fractional change
in area for the LNE gage is 3.2 x 10-6 and for the NBS gage
is - 2.0 X 10-6.

The NBS controlled clearance piston gage is gas operated
with a piston of tungsten carbide with a diameter of 25.4
mm and a mating cylinder of tool steel. The effective area of
the gage at 23°C is 5.067819 x 1O-4m2

• The thermal coeffi­
cient of expansion of the carbide is 4.3 x lO-6/oC and of the

·Center for Absolute Physical Quantities, National Measurement Laboratory.

steel is 1.2 x lO-s/oC so that the temperature coefficient of
the effective area is 1.6 X lO-s/ oC. The change in effective
area due to pressure is -5.07 x 1O-7/MPa.

The LNE piston gage is oil operated with a piston diame­
ter of approximately 8.0 mm, and both piston and cylinder
are tungsten carbide with a thermal coefficient of expansion
of 4.1 x 10-6/oC. The temperature coefficient of the effective
area is 8.2 x lO-6/oC and the pressure coefficient is 8.0 x
1O-7/MPa. The effective area at atmospheric pressure is
5.02724 x 1O-sm2 at 20°C.

The two gages and their connection through a coaxial
capacitor gas/oil separator are shown schematically in fig­
ure 1. The interface between the oil used in the LNE gage
and the dry nitrogen used in the NBS gage was monitored
by a capacitance detector. This device [IP utilized the dif­
ference in dielectric constants between the oil and the gas to
measure the height of the interface. This permitted ade­
quate sensitivity to not only account for the hydrostatic
head in the fluid but also to detect the small changes in
level that are necessary for a rapid determination of the
proper balance of the two gages.

The calculations for pressure measurements by both con­
trolled clearance piston gages and simple piston and
cylinder piston gages, as well as considerations of direct
comparison, are given by Heydemann and Welch [2]. The
two gages were set up with the oil/gas interface at the same
level as the bottom of the LNE piston at its operating level.

I Figures in brackets indicate literature references at the end of this paper.
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FIGURE 1. A schematic drawing of the two gages with the gas/oil
separator.

Pressure by
Difference Difference in Pressure
in Pressure Pressure

NBS LNE LNE-NBS LNE-NBS
(Pa) (pa) (Pa) NBS

389874.6 389858.1 -16.5 -42.3 x 10-6
1169566.0 1169562.2 -3.8 -3.3 x 10-6
1949227.0 1949266.5 39.5 20.3 x 10-6
1949232.0 1949266.3 34.3 17.6 x 10-6
2728940.0 2728969.1 29.1 10.7 x 10-6

3508676.0 3508670.9 -5.1 -1.5 x 10-6
3898543.0 3898521.7 -21.3 -5.5 x 10-6
3898569.0 3898538.9 -30.1 -7.7 x 10-6
3118814.0 3118829.3 15.3 4.9 x 10-6
2339075.0 2339119.9 44.9 19.2 x 10-6
1559369.0 1559412.9 43.9 28.1 x 10-6
779713.8 779708.7 -5.1 -6.5 x 10-6
389872.8 389858.4 -14.4 -37.0 x 10-6
389868.0 389859.5 -8.5 -21.9 x 10-6

1559379.0 1559415.0 36.0 23.1 x 10-6
1949227.0 1949270.5 43.5 22.3 x 10-6
2339080.0 2339120.1 40.1 17.2 x 10-6
3898543.0 3898528.1 -14.9 -3.8 x 10-6
3898557.0 3898531.6 -25.4 -6.5 x 10-6
2339081.0 2339120.9 39.9 17.1 x 10-6

1949225.0 1949269.0 44.0 22.6 x 10-6
1559372.0 1559413.3 41.3 26.5 x 10-6
389865.0 389858.3 -6.7 -17.1 x 10-6

Average 13.0 3.3 x 10-6
S.D. of the mean 5.8 4.2 x 10-6
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TABLE 1. Comparison of Pressures Generated by NBS and LNE

in Chronological Order.

FIGURE 2. Plot of differences in pressure computed by LNE and NBS ver·
sus pressure.

jacket pressure for zero clearance on the NBS gage. Using
smoothed values for the zero clearance pressure removes
the indicated shift and changes the calculated area by one
ppm, much less than the estimated uncertainty of the gage.

OIL VOLUME CONTROLLERJACKET PRESSURE

A head correction (for nitrogen) was applied for the dif­
ference in level between the bottom of the NBS piston at its
operating level and the level of the oil in the separator. The
gages were operated at temperatures near 23 °e and the ap­
propriate corrections were applied.

A total of 23 comparisons at 10 different pressures were
made over a period of three days. One method of evaluating
the data was the use of an NBS computer program for cal­
culating the effective area of a piston gage to various orders
of fits from the direct comparison of the test gage against a
standard piston gage. The results of the lowest order FIT
routine (F = PA) used for this gage give an effective area of
the LNE gage of 5.027396 x 10-5m2 at 23 °e. This FIT
routine gave three sigma of the calculation of the area to be
7.2 ppm of the area. The area of the LNE gage given by
LNE is 5.027364 x 10-5m2 at 23 °e. This difference in area
of the LNE gage determined by the NBS standard in this
comparison with that given by LNE is 6.4 ppm in area.

Another method of evaluating the intercomparison was
the calculation of the pressure generated by each piston
gage according to the method used by the respective labora­
tories. The results of the 23 direct comparisons (the same
points as used in the first method) are shown in table 1. The
pressures were calculated for the pressure at the nitrogen
oil interface. The average of the pressure calculated by LNE
minus the pressure calculated by NBS is 13.0 Pa with a stan­
dard deviation of the mean of 5.8 Pa. The average of the
pressure calculated by LNE minus the pressure calculated
by NBS divided by the NBS pressure is 3.3 ppm with a stan­
dard deviation of the mean of 4.2 ppm. A plot of the dif­
ferences in pressure calculated from the two gages versus
the pressure is shown in figure 2. No quantitative explana­
tion is given for the indicated systematic shift. It is due to
using empirically determined non-smoothed values for the

NBS CONTROLLED CLEARANCE LNE SIMPLE
GAS PISTON GAGE OIL PISTON GAGE

COAXIAL CAPACITOR
GAS lOlL SEPARATOR
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Both methods of expressing the results of the intercom­
parison show significantly better agreement between the
two gages than the estimated systematic uncertainty of
either gage (NBS 30 ppm and LNE 24 ppm). The differ­
ences observed, 6.4 ppm by area comparison and 3.3 ppm
by pressure comparison, indicate that the two different
methods of calculating effective areas are well verified at
this pressure range.

We thank R. Touzin and J. C. Legras of LNE for their
participation in the intercomparison.
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The theory of measurement has attracted the attention of a number of philosphers whose works remain largely
unknown to metrologists. Recent work in the development of Measurement Assurance Programs has demon­
strated the power of this theory as a tool for guiding the development of measurement systems. The elements of
the theory, especially that of Carnap and its applications to metrology, are developed as an aid to program plan­
ning and evaluation.

Key words: Epistemology; measurement; measurement assurance; metrology.

1. Introduction

Metrology is defined as the science of measurement, and
if broadly construed would encompass the bulk of experi­
mental physics. The term is usually used in a more re­
stricted sense to mean that portion of measurement science
used to provide, maintain, and disseminate a consistent set
of units or to provide support for the enforcement of equity
in trade by weights and measurement laws, or to provide
data for quality control in manufacturing.

In this restricted sense metrology has taken on the nature
of an art or craft rather than a science, and has attracted lit­
tle academic interest. As a consequence its literature,
although extensive, tends to be of an ad hoc character, is
widely scattered, and appears mainly in the form of reports
or internal documents. There exists no extensive systematic
treatment of the subject comparable to the great texts of
other disciplines. However, the subject does have an inter­
nal logical structure, one version of which has been articu­
lated at NBS over the past two decades as the concept of
Measurement Assurance Programs has been developed and
applied to measurement services.

While presenting in some detail this version, our treat­
ment does not aspire to be a definitive text but rather to
provide an overview of the subject to give those responsible
for managing organizations active in metrology a concep­
tual grasp of the subject sufficient for intelligent program
planning and evaluation. Because of the background of the
author the few examples given will generally be taken from
the field of mechanical metrology; but the principles illus­
trated are task independent

·Center for Mechanical Engineering and Process Technology, National Bureau of
Standards.

2. Context of Measurements

A measurement is a series of manipulations of physical
objects or systems according to a defined protocol which
results in a number. The number is proported to uniquely
represent the magnitude (or intensity) of some quantityl
embodied in the test object. This number is acquired to
form the basis of a decision effecting some human goal or
satisfying some human need the satisfaction of which
depends on the properties of test object.

These needs or goals can be usefully viewed as requiring
three general classes of measurements.

1. Technical: This class includes those measurements
made to assure dimensional compatibility, conformation to
design specifications necessary for proper function or, in
general, all measurements made to insure fitness for in­
tended use of some object.

2. Legal: This class includes those measurements made
to insure compliance with a law or a regulation. This class is
the concern of Weights and Measures bodies, regulators
and those who must comply with those regulations. The
measurements are identical in kind with those of technical
metrology but are usually embedded in a much more formal
structure. Legal metrology is much more prevalent in
Europe than in the United States, although this is changing.

3. Scientific: This class includes those measurements
made to validate theories of the nature of the universe or to
suggest new theories. These measurements, which can be

I For our purposes we adopt the B. Ellis [1] 1 definition of a quantity. A quantity is a
kind of property that admits of degrees, and which therefore is to be contrasted with
those properties that have an all or nothing character (for example, being pregnant).

J Figures in brackets indicate the literature references at the end of this paper.
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called scientific metrology, properly the domain of experi­
mental physics, present special problems and will be dealt
with only briefly at the end of this paper.

The path of reasoning between an identified goal or need
and the measurement to attain that goal is a thorny one.
Many valid measurements do not result in useful informa­
tion. The property measured often does not adequately pre­
dict the fitness for use. Often quantities for measurements
are chosen for their convenience rather than their impor­
tance. The metrologist is seldom in a position to do much
about this unfortunate state of affairs. This problem is the
concern of the design engineer, the regulator, the Quality
Control Manager, or in brief, the decision maker. Supplying
the decision makers with the most reliable numbers charac­
terizing the properties they have designated, in the most
economical manner, is all metrologists can do in their pro­
fessional capacity.

This task, although limited, is a worthy one requiring all
of the ingenuity, knowledge, and professionalism one can
muster. It is a two-fold task: one must generate a measure­
ment system, which in the NBS view is a production system
whose product is numbers, and a quality control system to
confirm the validity of those numbers [2].

The first of these tasks is an engineering hardware prob­
lem while the second is largely a software management
problem. The software consists of record keeping, report­
ing, qualification, and similar activities often depending
heavily on statistical mathematics. We will deal with each in
turn.

3. Elements of a Measurement System

There are many ways of enumerating the elements of a
measurement system since it consists of these eight ele­
ments, combined in more or less complex groupings:

Physical Concepts
Physical Laws
Instruments
Standards
Human Operators
Procedures
Environments
Computations

It has proved useful over the years to group these ele­
ments under two general headings: Properties of the Inves­
tigated Objecf and Properties of the Measurement
Algorithm where the Investigated Object is the subject to be

'The investigated object may in fact be a complex system with internal structure
but for purposes of this discussion the word object has the advantage of compactne55
ofexpre55ion and no generality islosL

measured and the Measurement Algorithm includes all
means and procedures used to produce the desired number.
This grouping is useful for identifying sources of error and
for remedial action when such are discovered. The proce­
dures for successfully accomplishing such action differ
markedly depending on the grouping in which the faulty
element lies. This important fact seems to have first been
recognized by Volodreskii [3].

3.1. The Role of the Investigated Object

The investigated object (henceforth shortened to object)
plays two essential roles in a measurement system: it must
embody the quantity of interest and it must generate a sig­
nal to which the measurement algorithm can respond. This
signal must be unambiguously related to the magnitude or
intensity of that specified quantity. Knowledge of the rela­
tionship between the quantity and the signal requires a
model of the object This model is based on the laws of phy­
sics or our understanding of the universe. I t is usually a soft­
ware mode~ and equation or the like which quantitatively
predicts the signal as a function of the quantity to be
measured. Unfortunately, objects have complex natures and
hence seldom are perfect embodiments of single quantities.
For example, the Kilogram of Paris embodies a specific vol­
ume as well as the unit of mass: a standard cell is not a
u pure" voltage source but rather such a source in series
with a non-linear complex impedance. Moreover the magni­
tude of the quantity of interest in the object may itself be a
function of environmental parameters not of immediate in­
terest The length of a material body, say a gage block, is in­
trinsically a function of the temperature of that block. The
model must include all relevant properties of the object4

The model must also predict the signal that is to be used
to drive the measurement algorithm. This signal is almost
invariably a quantity which differs in nature from the quan­
tity to be measured. For example, the beam of the common
balance used in mass determinations responds to a force
signal generated by gravity operating on the mass of the ob­
ject in the pan. Many objects generate more than one signal
that could be used for measurement A gage block as an
embodiment of length, can, if the measurement algorithm is
a caliper, generate a force signal as the jaws close on the
block, an optical signal, if measured by an interferometer,
or an electrical signa~ if used in a capacitance arrangement
Any of these signals can be and are used, the choice being
made on considerations of convenience or current state-of-

4 What constitutes a relevant parameter is a problem that has attracted philo­
sophical attention, Rudolph Carnap [41 for example. In practice, except at the
highest leyels of scientific metrology, enough is known about the object that identi­
fication of the relevant parameters is easy; in any event, if one parameter is over­
looked the resultingly high observed uncertainty of the measurements will soon caD
this fact to one's attention.
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the-art in measurement algorithm development While this
signal redundancy makes life simpler, the fact that most
signals are generated by several quantities embodied in the
object makes life at times difficult. For example, the force
signal generated by the mass of an object on a balance pan
is contaminated with a signal identical in kind generated by
the buoyant force of the air displaced by the object's vol­
ume. This particular problem has recently given the mass
community problems [5, 6]. In length metrology the fact
that the distance between the apparent reflection planes
(the optical length) of a gage block depends both on the
length of the block and the complex dielectric constant of
the material remains an unsolved problem limiting among
other things work on absolute density.

The signa~ besides being impure, may also be a function
of environmental parameters even if the quantity itself is
not A case in point is the dependence of gravity force gen­
erated by a mass on the value of the local acceleration of
gravity; here, then, the signal is a function of location while
the mass is not

More generally the nature of the object can be expressed
as a matrix where the rows are all the physical quantities
embodied in the object while the columns are the all of the
signals generated by that object. An ideal object would be
one in which the matrix was diagona~ in the sense that for
every quantity there would be one and only one signal. No
such object exists. The proper treatment of the off-diagonal
terms is one of the central problems of metrology. We shall
return to this problem in section 4.

In any event the first step in constructing a measurement
system is to reduce the object to an idealized model which
represents those properties or attributes believed to be ger­
mane to the intended measurement, i.e., those which satis­
factorily predict the signal as a function of the magnitude or
intensity of the desired quantity. For example, a gage block
may be modeled for a force-based algorithm as an impene­
trable rectangular parallelpiped characterized by a single
length between its gaging surfaces. However, in this case
the model is too simplified for most purposes, and current
models include the fact that length is a function of tempera­
ture, that the block is elastic, deforming on contact, and
that the faces may be non-parallel. Thus, the model may be
simple or complex, where complexity and desired accuracy
go hand in hand, but the model only weakly reflects the
measuring system by being required to predict the signal to
which the chosen measurement system responds. The con·
verse is not true; the measurement system reflects the model
strongly since it must provide all of the parameters
necessary to permit the model to predict the quantity from
the observed signal or signals. Hence, generally a more
complex model will call for a more complex measurement
system measuring a greater number of properties of the ob­
ject or of the environment

The model is never complete or perfect and the differ­
ence between the model and the real properties, including
the signal expected, is called model ambiguity. The model
ambiguity sets a lower limit on the uncertainty of the
measurement since below this level the object is not in fact
fully defined. In more complex objects this model ambiguity
is most often the dominant uncertainty term; an example
that comes to mind arises in screw thread metrology where a
measured quantity, flank angle, implies a model in which
the thread flanks are planes. In practice, when dealing with
carefully gound thread gages, this model is useful. However,
in fasteners made by use of a die or a roll, the flanks most
definitely are not planes, and flank angle loses its meaning.

Model ambiguity is a particular type of systematic error
which exists if the measurement algorithm is flawless. Fail­
ure to recognize this fact can lead to major wastes of
resources since no improvement in the measurement algo­
rithm can reduce this error. No amount of research on pre­
cision balances will reduce the inconsistencies of the mass
scale caused by air buoyancy correction problems. Model
ambiguities are the source of the vast majorities of measure­
ment inconsistencies which can only be reduced by im­
provement of the model.

Given that a certain condition is satisfied there exists a
strategy which can reduce model ambiguity identically to
zero. This strategy uses objects called variously U proto­
types," uartifact," or rfgold plated" standards and, in
effect, takes a particular object and defines it to be its own
model This amounts to saying that this particular object is
the perfect and complete realization of the class of objects
to which it belongs and hence the model ambiguity is, by
definition, identically zero. The condition to be satisfied is
that all objects to which the standard refers must be essen­
tially identical to the standard both in kind and in degree.
For example in mass, the only SI unit still using this stra­
tegy where the Paris Kilogram is the kilogram of mass, the
only objects where mass can be unequivocally defined are
one kilogram weights made of platinum. All other objects
differing in size or material have masses that can only be
approximated (admittedly to a high degree) by comparison
with the kilogram. The strategy has the further disadvan­
tage that if the prototype is lost, destroyed, or changed in
value, all objects of its class must be recalibrated. In princi­
ple, if someone drops the Paris Kilogram, every scale in the
world would be out of calibration the instant it hit the floor.

However, lower down the measurement hierarchy the
strategy works well; for example, the American Petroleum
Institute pipe threads, where sets of U gold plated" gages
kept at NBS and other National Laboratories can be com­
pared to almost identical working gages by algorithms
much simpler than those required to compare a gage to a
drawing. The problem of extensibility, i.e., using a two-inch
gage to calibrate a three-inch gage never arises and the
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gages are so close to identical that functionally no harm is
done by replacing a worn or broken gage by the last good
gage and carrying on. For highly derived or complex ob­
jects, gears are another example that comes to mind. The
possibility of using this ploy should always be explored
since it is extremely efficient in those cases where it can be
used, even though it requires a separate standard for each
and every size of a class of objects.

In the search for model ambiguities it is often possible to
use a measurement algorithm known from another context
to be error free (at some level of accuracy) to measure the
object. In this case the total uncertainty can be ascribed to
the model ambiguity. The use of high precision optical in­
terferometry to read caliper jaw movement when checking for
the correction due to the elastic deformation of the object
under the force of the caliper jaws is an example. Optical in­
terferometry can, for this purpose, be considered error free.

4. The Measurement Algorithm

In our classification, the measurement algorithm includes
everything involved in the measurement except the object
and the final number. It includes the instruments used, the
protocols followed, the characteristics of the human opera­
tor, the calculations made and the environment in which
they operate. In brief it is the ftfactory" whose raw mate­
rials are objects and whose product is numbers. Just as in
the case of the object we must have a model of this ftfac­
tory" which predicts how it treats the signal from the ob­
ject, processes it, and generates the number. To be fully
satisfactory the model must account for the effects of envi­
ronment on this process and, most importantly, predict how
it ftloads" the object signal source and hence affects the
relationship between the quantity and the signal of the ob­
ject Neglect of this factor, typified by using a low imped­
ance voltmeter on a high impedance source or using a high
force caliper to measure the diameter of an egg, leads to
gross errors.

The process, if it is to be usefu~ must generate numbers
which have certain properties. These properties arise out of
our expectations concerning them. We would like to use
them as surrogates of measurement, i.e., once they are ob­
tained for a stable object we would like to use them to avoid
measuring the object at a future time or a different place.
Prepackaged food is a clear example where the scale in the
manufacturing plant virtually eliminates weighing in every
store. However, to accomplish this goal we must be assured
that, within some predetermined uncertainty, every compe­
tent metrologist with suitable equipment at any different
point in the spaceltime continuum would assign to the same
object the same numbers representing the same quantity
that we did. When we have accomplished this often difficult

feat we say we have a proper measurement algorithm and
our numbers are proper measurements.

The concept of properness is a generalizati0!1 of the con­
cept of precision or reproducibility often used by writers on
measurement We prefer the more general term since it is
often not clear whether the authors refer to the spread be­
tween successive repeated measurements, between runs, be­
tween measuring stations, or between laboratories. With
properness you are assured you are working with worse-case
figures.

Before we discuss the details of the measurement algo­
rithm and how we accomplish a proper measurement, we
must examine some general principles which allows us to
define in broad generalities what constitutes a ftcompetent
metrologist with suitable equipment" Our guidance in this
case comes not from the theory of physics but from philoso­
phy. Rudolph Carnap and similar thinkers [1,4] have articu­
lated the requirements of any measurement algorithm
which is to yield proper measurements. They also simultane­
ously determine the minimum a priori information that a
metrologist must have in order to be competent to duplicate
another's measurement

Although based on Carnap, what follows is a modification
iiI detail of his exposition and somewhat an extension. It
may be called the NBS school The differences will not be
explained in detail, only noted in passing. The position
starts from an operational point of view and considers that
every measurement algorithm defines the quantity
measured.5

Our position is that, for example, interferometry defines
the optical length of a gage block and a caliper defines its
mechanical length. These lengths are separate and distinct
properties of the block and logically unrelated. One arbi­
trarily chooses which length to measure on grounds of in­
tended use or convenience. In this view, optical length and
mechanical length are not imperfect measures of ft true"
length but independent quantities of full stature each in its
own right The question of ft true" length is considered
moot since it cannot be decided upon by a ft true" mea­
surement algorithm. Obviously such a posture gives rise to
problems in the relationship of measurement to experimen­
tal physics, some of which will be touched on later;6 how­
ever, in technical or legal metrology, since all the different
lengths are in fact within less than a micrometer of being the
same, it is perfectly practical to adopt this non-judgmental
point of view.

For any such length or other quantity, a competent
metrologist with suitable equipment is one who has a reali­
zation of four axioms.

5 This position is closer to P. W. Bridgeman [7] than to Carnap who takes a more
expansive view, including an operational definition as only one element For a con­
tradictory position, see H. C. Byerly and V. A. Lazara [8~

6 For treatments of these difficulties, see Byerly and Lazara, op. cit or Ellis, op. cit
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1. Within the domain of objects accessible one object
must be the unit

2. Within the domain of objects accessible one object
must be zero.7

3. There must be a realizable operation to order the ob­
jects as to magnitude or intensity of the measured quantity.

4. There must be an algorithm to generate a scale be­
tween zero and the unit8

To make the above clear, consider the following system:

The quantity of interest, temperature;
the object, a human body;
the unit, the boiling point of water 100°;
the zero, the triple point of water 0°;
the ordering operator, the height of a mercury column
in a uniform bore tubing connected to a reservoir
capable of being placed in a body cavity;
the scale, shall be a linear subdivision between the
heights of the column when in equilibrium with boil­
ing water and water at the triple point

This is a well-known system the properness of which is the
basis of medical diagnosis.9

Once a measurement has been made the test for compe­
tency stiffens and all other metrologists to be considered
competent must have the identical realizations of the ax­
ioms.

The essence of designing a measurement algorithm cap­
able of making proper measurements is choosing realiza­
tions of these axiometric operators which are capable of
independent replication by the universe of metrologists
interested in the measurements.

For certain parts of the task one has a great deal of help.
The Treaty of the Meter sets up an international structure
of various organizations, including the International
Bureau of Weights and Measures, charged with defining
units for additive quantities and both units and zeros for
nonadditive quantities. The International Bureau also
disseminates such units by tfprototype standards" (Kilo­
grams Numbers 4 and 20 for the U.S.) or prescriptions such
as those for the realization of the Kr'6 standard of length or
the Cs second. Many other standards groups do the same
for highly derived standards such as pipe gages from the
American Petroleum Institute.

7 The criteria outlined here are suitable for all physical quantities and are the most

general ones. For those quantities for which an addition operation can be defined a
simpler set of three axioms is possible. However, measurement systems built on ad­

ditivity are awkward in practice and even in mll88 where a particularly simple addi­
tion operator is available the least significant digits are obtained by use of a four ax­

iom system. Gage blocks were an attempt to utilize an addition operation system but
modern practice calibrates them by four axiom methods although the addition
operator is important in their practical use.

I These operaton must satisfy certain formal requirements as to symmetry, transi­
tiveness, etc. For details see Carnap, op. cit, Chap. 6.

, There are some problems relating it to fundamental concepts, see Ellis, op. cit,

Chap. VI.

The zero units for extensive quantities are usually com­
monly agreed upon as null objects such as no mass on the
balance or a short circuit (beware of thermal voltages) on a
voltmeter.

The scale generation usually does not become a matter of
controversy in the practical world although many have sug­
gested it plays a central role in scientific metrology.lO
Whether to adopt 212 or 100 degrees between fixed temper­
ature points or to divide an inch into thousandths or 25.4
mm can usually be worked out between metrologists.

The crux of most cases of improper, or allegedly im­
proper, measurements, lies in the ordering operator. There
are very few operators which have the authority of an inter­
national or national standards body. ISO has defined the
ordering operator for gage blocks but not, for example, for
ring gages. A cylinder, if it is used as a gear or thread wire,
has a defined ordering operator but has none if it is a plug
gage or the piston of a deadweight pressure generator. Dec­
ades of controversy surround the ordering operator, actual­
ly the much simpler equality operator (a special case of an
ordering operator), for threaded fasteners.

The philosophers of science give little guidance on the
process by which the metrologist makes the choice between
all possible measurement algorithms which can be devel­
oped to satisfy the measurement axioms. Carnap sums up
the total guidance as follows: ll

ftWe thus have a genuine choice to make here. It is
not a choice between a right and wrong measuring
procedure, but a choice based on simplicity. We
find that if we choose the pendulum as our basis of
time the resulting system of physical laws will be
enormously simpler than if we choose my pulse
beat. -This simplicity would disappear if we
based our system of time measurement on a pro­
cess which did not belong to a very large class of
mutually equivalent processes."

Leaving aside the question of what is a simple law and
how one establishes mutual equivalency without a precon­
ceived measurement process, this advice is not particularly
helpful to the practicing metrologist. What, if any, effect on
physical laws a particular definition of, say, flank angle on a
screw thread or specific rotation of a sugar solution for
customs regulation, can be expected to have is at best
obscure. There is even less help available as to how the
model of the algorithm chosen is reduced to practice, i.e.,
hardware and protocols. To usefully attack this problem it is
necessary to introduce the concept of limited properness.

to See E\lis, Byerly, previously cited works.
tI R. Carnap, op. cit, chapter 8
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All measurements taking place in the real world exhibit
an intrinsic limited properness in that equality between
reproduction will always have an uncertainty whose lower
bound is either Johnson (kT) noise or that set by the
Heisenberg uncertainty principle. Few measurements in
technical or legal metrology approach either limit. The
more important limits of properness are under the control
of the metrologist and are those introduced by adopting a
model for the object or the algorithm which is known to be
imperfect. The governing principle is to pick the measure­
ment system where the total measurement uncertainty can
be demonstrated to be less than, but not wastefully less
than, the uncertainty needed by the decision maker. It
makes little sense to measure the dimensions of ceiling tile
by laser interferometry when the decision to be made is
whether or not the joints will appear straight to the naked
eye.

There are several distinct manners in which the econo­
mies inherent in limited properness can be realized. The
most frequently used manner is to restrict the class of ob­
jects tr suitable" for measurement. An excellent example is
the detailed design specifications applied to weights used in
trade. By restricting the materia~ and hence the density, it
is possible for legal metrology purposes to simplify the
measurement algorithm and, for instance, eliminate an ex­
plicit air buoyancy correction. Such a procedure appears a
direct violation of the Carnap formal requirement that all
operators satisfy a connectedness property, that in the do­
main of the quantity M any object a or b which has M is
either equal in M or one has less M than the other. What
has been done in introducing the concept of "suitable" is
to redefine what we mean by any object. Little damage to
the logical structure results from such a choice.

A second choice is to limit the environmental conditions
under which the measurement can be implemented. The
length metrologists' insistence on 20° C working environ­
ment is an example of this way of simplifying an algorithm,
or perhaps more succinctly, of restricting the universe.

The third strategy which can be used is to limit the range
of magnitude to be covered.12 This is popular in the
temperature field where more than two fixed points have
been defined and different interpolation algorithms are de­
fined between pairs of them. All such strategies should be
explored before a choice of measurement systems is final­
ized.

After a preliminary choice is made, it is useful to analyze
the system for sources of uncertainty. This analysis is useful
only if the object's model ambiguity has first been deter­
mined. Uncertainties or errors can enter at any of the reali­
zations of the axioms.

There may be a unit error, a scale error, or a comparison

U Support lor this atralegy is implied by Carnap, op. cit, chapter 10

error. Each of these errors can arise either because the

realization is imperfect or, more frequently, because the

realization has not been described in sufficient detail that
the concerned ff competent metrologists" have been able to
effectively replicate it. The first of these causes can be at­
tacked by high quality engineering, making use of all that is
known of instrument design [9), properties of materials and
precision workmanship and by a generalized form of exper­
imental design.

There are three basic strategies to accomplish error con­
trol by design of the measurement which have developed
over the years and which can often provide a useful concep­
tual framework within which to attack a given problem. The
strategies deal directly with the basic problem that both the
models of the object and of the candidate algorithm have to
contend with mixed (non-single quantity) signals and re­
sponses, or in our matrix formalism, off-diagonal terms. For
concreteness, let us consider the measurement of the x, y
coordinates of n points in a plane by use of a two-axis
measuring machine. The ideal situation would give a set of
idealized observational equations as follows:

Xi = kx;
(1)

where x; and y; are the true coordinates, i.e. in a coordinate
frame attached to the workpiece, x and yare the X and y
axis scale readings of the machine and" and- k' are the in­
variant scale constants of the machine which implicitly con­
tain the unit.

Unfortunately, machines are not geometrically perfect
and if the x and y axes are not orthogonal the observational
equations will develop off-diagona~ or coupling, terms, i.e.

(2)

If the axes are curved or Abbe angle errors exist, the
equations become still more complex

X; = k x; + ay; + [Jy/ + .... + y? + ....
(3)

y; = k'1; + a'x; + [J'xl + .... + y'r + ....

where the y-like terms reflect scale nonuniformities. In a
measuring machine with a screw for reference, they might
well be written in sine form to characterize periodic errors.

In genera~ all of the coefficients are functions of tem­
perature and hence, if the temperature changes, become
functions of time with various time delays. The problem of
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algorithm design is to find optimum ways of dealing with
the n equation array of eq (3).

Three general strategies have developed. The first, called
by J. Bryan, Ubrute force," is to develop auxiliary or test
algorithms which measure the off-diagonal terms and then
to reduce them by ureworking" the machine (algorithm) un­
til they become insignificant The machine is then treated
as uperfect," and equations of type 1 are used for the
measurement Since the implementation of the auxiliary al­
gorithms is, of necessity, spread out over a long time com­
pared to the time for a single measurement, temporal stabil­
ity is of critical importance and, hence, leads a legitimate
emphasis on temperature control

A second strategy, which might be called ucorrection," is
to measure in auxiliary or test algorithms the off-diagonal
terms and then either by analog devices on the machine,
i.e., compensator bars, or by computation, render them
harmless. Note that, for example, eqs (2) become linear and
much easier to deal with if a is a constant and not a variable
unknown. If the off-diagonal terms are allowed to remain
large, the stress put on the temporal stability is even more
severe than in the ubrute force" technique where the coef­
ficients are forced to be negligible in size. Failure to pro­
vide this temporal stability by adequate temperature con­
trol probably accounts for the historical failure of this
technique. Another difficulty with this approach is that it is
difficult to derive auxiliary algorithms which measure the
desired coefficients directly and these coefficients tend to
be complex combinations of the auxiliary scale readings.
The strategy moves the problem to the auxiliary system
where it mayor may not be easier to solve. For example, on
the three-axis measuring machine, a is a combination of
axes nonorthogonality, y roll and the y axis arm length. In
three dimensions a becomes, moreover, a function of z.
Multi-parameter factors are difficult to deal with in the
analysis. A major advantage of the ubrute force" technique
is that any combination of negligible quantities is negligible
and, hence, the detailed dependence of the coefficients on
the auxiliary quantities need not be worked out

The third strategy and the one currently being explored
at NBS is a conceptually straightforward attempt to solve
eqs (3) in all their complexity. It has been called a Redun­
dant Algorithm because the coefficients (le, a, etc.) as well as
the variables (XiY;) are treated as unknowns. There must be
many more observational equations, and hence, measure­
ments, than the un" variables the algorithm sets out to
measure. Looked at another way, all of the measurements
which are auxiliary in the other schemes are lumped togeth­
er with the desired measurement into a single procedure.
The measurement need not be redundant in the statistical
sense.

The greatest advantage of this attack is that the Ucalibra­
tion" of the machine occurs simultaneously with the meas-

urement instead of days, weeks, or months apart, and the
question of loss of calibration by misadventure cannot oc­
cur. For instance, the ufour points in a plane" algorithm we
have tested takes about one hour to perform. It consists of
measuring the x, y position of four points on a plane
repeated with the plane rotated approximately 90°. It ac­
complishes the auxiliary measurements, an Uabsolu te"
calibration of a rotary table at goo increments, and a
measurement of the orthogonality of the machine axes.
There are, in fact, sufficient measurements taken to deter­
mine in principle 24 coefficients. This telescoping in time
greatly reduces the demands on the temporal stability of the
machine, especially since that portion of the drift in each
coefficient which is linear with time can be eliminated rela­
tively simply by the introduction of more explicitly time­
dependent coefficients. This particular ploy has been used
successfully in our gage block laboratory for a numb~r of
years.

The comparison of methods cannot be complete, how­
ever, without a discussion of the different manner in which
the second part of the reported number, the error estimate,
is obtained. The error estimates reflect a considerable
difference in philosophy, although both the ubrute force"
and Ucorrection" strategies divide the error into two parts,
a urandom" and a Usystematic." The random component
is obtained by repeating the measurements, both prime and
auxiliary, a number of times, and inferring the variance
around the mean by the rules of elementary statistics. The
systematic component is in the ubrute force" method
bounded by a uworse case" calculation based on the resid­
ual values of the off-diagonal terms after the machine has
been refined to its current state. This results in a conser­
vative estimate of the error in most cases. It is essentially
this calculation which defines the term Uinsignificant" as a
goal for machine correction. An insignificant fault is one
whose maximum possible effect on the measurement is less
than some limit set by end·use of the measured object

There remains a danger, which may be remote, but to
which most metrologists have fallen victim. This danger in­
volves what one may call hidden coefficients; these are vari­
ables which affect the measurement but which are not
modeled by the observational equations. For example, sup­
pose one neglects temperature change in a gage block meas­
urement The protection against such an oversight is re­
dundancy by repeating the measurement, averaging, and
observing the deviation from the mean which will reflect
this temperature drift if it is significant alert the metrolo­
gist As has been so often pointed out, the urandom"
variations of metrology are seldom random in the statistical
sense, but reflect a wider spectrum of ills, the change of an
unmodeled parameter being foremost among them. This
protection achieved by averaging is far from absolute since
in the limited period of the measurement the critical
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variable may not change, as it might at some future time,
but the protection is nonetheless helpful. To obtain this
limited help, the redundance must "span" the measure­
ment in question. Where there are gaps, as in the time be­
tween the "calibration" and "use" of an instrument, this
assurance is missing. Any super-redundancy, i.e., statistical
redundancy beyond that needed to characterize all param­
eters of the model, introduced into a redundant algorithm
spans the complete process and avoids this trap. Note also
that in this scheme, there is no separation of "random"
from "systematic" and the indices of fit derived from the
massive least squares solution of the now overdetermined
equations are the "metrologically random" errors of the
complete measurement process. They reflect not "worse
case" but the case that existed over the range of parameters
used in that particular measurement

The use of a single massive least squares adjustment has
another advantage which arises from the peculiar nature of
the coefficient k. This coefficient of the principal diagonal
term introduces the unit into the measurement and, hence,
has a special importance. The unit while vital to the meas­
urement cannot be checked by the usual forms of redun­
dancy since the laws of the universe operate independently
of the units in which they are expressed. The reverence in
which Hstandards" are held reflects their critical nature. In
a super-redundant algorithm the unit may be introduced at
several points in an independent, i.e., truly redundant, man­
ner. For example, in our gage block algorithm it is entered
in the comparator constant k and in the difference X I -X2 of
two masters. This provides a check of Xh X2' and k which is
difficult to obtain in any other way and provides further
protection against mistakes.

The "correction" strategy is similar in principle to the
"brute force" in its treatment of errors except, in this case,
it is possible in theory to calculate the Hactual" rather than
the Hworst case" systematics.

At this point we can begin to see the relative advantages
of the different strategies and types of measurement pro­
grams to which they are most adapted.

The "brute force" technique requires a large initial
Hcapital" investment in characterizing the machine over its
entire working volume on a "does not exceed" basis. Also
required is the establishment of an environment, both
physical and procedural, that assures the maintenance of
this level of performance over a "longish" time span. De­
pending on the requirements on accuracy, an investment in
machine upgrading may also be required. However, once
these conditions are met, production runs are rapid, simple
to perform, and any workpiece within the machine's capac­
ity can be characterized on a valid "maximum deviation
from nominal" (tolerance) basis. It is obviously ad­
vantageous where the piece part tolerance is significantly
larger than machine tolerance or where the part has a

model ambiguity which is large, i.e., the piece is complex or

only moderately well characterized. I would expect that the

products of high precision industry lie in this class of
objects.

The super-redundant strategy on the other hand requires
little or no investment in machine characterization. It does,
however, require a considerable investment in computer
programming which is applicable to only one narrow class
of objects. Moreover, the "production" runs will inevitably
be more time consuming since calibration time is not spread
over more than a single measurement. It does, however,
offer the promise of higher ultimate accuracy since the
machine needs only short-term repeatability. It also offers
rigorous characterization of precision and accuracy of the
values obtained.

It is advantageous in those instances where comparatively
few types of workpieces are measured but where the meas­
urements are required to be the absolute Hbest" in terms
of accuracy and confidence in that accuracy. This require­
ment, of course, implies that the workpieces are simple
enough in form and high enough in workmanship that the
model ambiguity warrants such measurements. This work­
load is characteristic of the master gages with which NBS
deals.

The Hcorrection" strategy requires an inordinate capital
investment in complete functional machine characterization
and extensive computation on outlay which would only be
justified if the brute force method was insufficiently ac­
curate while simultaneously the workload was too heavy or
diverse to make the super-redundant approach feasible. I
know of no such circumstances other than when the scale of
the workpieces becomes so large that measuring machine
accuracy is extremely difficult to achieve, as in the aircraft
industry, shipbuilding, or heavy ordnance.

Regardless of the strategy adopted there remains the
problem of transferring the measurement algorithm to all
interested metrologists. This communication problem is at­
tacked largely through the voluntary standards community
where measurement algorithms can be institutionalized and
disseminated widely as test methods or recommended prac­
tices. The process of adoption of standards can be painfully
slow.

5. Measurement Quality Control

Measurement quality control starts as soon as the first
measurement is made. The principal tool for the metrologist
is redundancy. One repeats the measurement on a stable ob­
ject and compares each successive measurement with the
set of all measurements. It is typical of all real systems that
there will be a spread in values. Statistics tell how to derive
indices of precision (reproducibility) for each system. The
goal is to produce a series of values which demonstrate a
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stableD mean and a random distribution around that mean.
When this situation is achieved within a single run, within­
group statistical control is said to be achieved. But this
within-group control is not enough; the same statistical
control must be achieved between runs, between measure­
ment stations within the initiating laboratory, and finally
between all competent metrologists. Only after this task is
accomplished can one have assurance of a proper measure­
ment system turning out proper measurements.

Over the years a number of institutionalized aids have
developed for the process of obtaining properness of meas­
urements and the maintaining of this quality over time.
The first of these institutions to develop addressed the de­
tection and elimination of the unit error, one which seems
to have dominated in earlier times. The institution is still
dominant in weights and measures, and in legal metrology
in general.

This institution is a calibration network where stable ar­
tifacts, often realizations of units, are sent to a different
location where a ffhigher" artifact or unit is maintained.
Working standards are Hcalibrated," i.e., compared with a
similar object, often a secondary standard which in turn had
been compared with a national primary standard and so on
up the line. Since the artifacts are almost identical, model
ambiguities are low and when returned to its original site
the artifact provides both a source of the unit and often a
one-point check of the total system. For simple, stable ob­
jects, the system has some virtue, especially if two or more
calibrated objects can be used to provide an independent,
even although only one point, system check.

This calibration scheme gave rise to the concept of meas­
urement traceability [10] which wrote into contracts the re­
quirement that such a chain be established. The system has
some shortcomings:

1. it requires a stable non-ephemeral artifact;
2. it requires a measurement robust against environ­

ment;
3. it is expensive if artifact is large, fragile or complex;
4. it provides at best only a one-point check of the

system; and,
5. it focuses on the quality of means of measurement

rather than the measurements themselves.

To deal with cases where no stable artifact exists or where
it is ephemeral in the sense that the accepted measurement
algorithm is destructive, the concept of a Standard Refer­
ence Material was developed. Because chemical analysis
tends to be destructive, the first SRM's were pure chemi-

U Stahle is used in the expanded sense that the mean is constant during a "within

group" interval; slow, well-behaved, constant changes as in the case of the slow phase

change of the steel in a gage block or the slow decay of intensity of a incandescent
lamp present no problems in that the mean is predictable, if not absolutely constant

cals, solutions, or mixtures which were carefully prepared,
characterized by a standards institution and made available
to users to check their measurement algorithm. The system
was later refined to reduce the model ambiguity by making
the relevant properties of the SRM as close to those of the
object of interest as possible, giving rise to such SRM as
urban dust.

A newer version of the strategy is the Standard Reference
Artifact; this was initially used at NBS for neutral photo­
graphic density. These artifacts are only marginally non­
ephemera~ and it was introduced to alleviate the problem.
In another case, linewidth standards, it is an attempt to
realize some economies of scale and provide quicker re­
sponse than calibration. The problem of model ambiguities
must be considered carefully since the SRA's can sometimes
be of higher quality than the working standards for which
they substitute. This factor is one which has always limited
the effectiveness of ffround robins" which depend on ar­
tifacts similar in nature to SRA's.

The most highly developed OC mechanisms for meas­
urements are Measurement Assurance Programs. These
programs, based on the pioneering collaborative work of P.
Pontius and J. M. Cameron [11] at NBS in the 1960's, have
become central to the Bureau's measurement services. It is
difficult to explain in a few words what constitutes a MAP. A
MAP is basically a measurement system which explicitly,
self consciously, deliberately builds in and documents at
every step tests for the properness of the measurements.
MAP's are characterized by carefully thought-out redun­
dancy and often use ffself calibrating" measurement
algorithms; they tend to make use of modern statistical
methods and focus on the measurement results rather than
on ffstandards" or calibrations. Hence they are software
rather than hardware oriented. Since they were first applied
to systems where either the quality requirements are very
stringent or where the degree of assurance needed is very
high, as in the accounting for Special Nuclear Materials,
they are often thought of as complex and expensive to im­
plement This is a misconception; for a given quality or
degree of assurance, they have proven to be the most effi­
cient institution yet designed. If they have a disadvantage it
is that they increase the burden on the standards organiza­
tion responsible for them. This fact arises because prop­
erness must be assured on a continuing basis, and there
must be a constant interchange of data and penodic ex­
change of artifacts between the standards lab and the oper­
ating partners. Depending on the stability of the test objects
exchanged, the frequency of such exchanges may approach
or equal calibration intervals. In some cases this burden can
be reduced by using test objects which are more stable or
rugged than the accepted standard. Voltage is such a case,
where banks of fragile standard cells are compared by meas­
urements on zener diodes.
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The problem of standard laboratory workload can be
completely circumvented by making the standards labora­
tory a participant rather than an organizer. This pattern is
already working for electrical quantities among the aero­
space industry of the West Coast, and the Bureau has plans
to formally institutionalize these regional MAP's in the
future.

6. Scientific Metrology

When the measurements with which one is concerned are
undertaken with a view towards understanding the physical
universe, a series of issues is raised which do not exist in
either technical or legal metrology.

The most important of these new issues is that the free­
dom to choose a measurement system on the grounds of
convenience or economy is no longer legitimate. Of all the
possible measurable quantities called mass or length which,
in the Carnap view, are defined by the measurement system
and which are logically independent and wholly arbitrary,
only one can reflect the concept of mass which satisfies both
the laws of Newton and of Einstein. The laws of physics ap­
pear to require what the wise metrologist avoids: a H true,"
"absolute," or proper quantity. A proper quantity cannot
be defined by an international body, and indeed the BIPM
committee on units has been careful to avoid this pitfall. A
proper quantity is somehow defined by the underlying logic
of the physical universe as reflected and (imperfectly) trans­
lated by the laws of physics.

The problem is to determine which quantity defined by a
measurement system is the proper one. This problem has
been addressed by a number of authors since it is implicit in
the fundamentals of the philosophy of physics. 14 The prob­
lem could be attacked experimentally by use of a redundant
set of fundamental constants.

There would have to be generated several sets of fun­
damental constants derived from experiments differing only
in manner by which one quantity, say mass, was opera­
tionally defined by a set of measurement axioms. The self
consistency of each set would then be a measure of the
properness of the corresponding quantity called mass. This
procedure would have to be repeated for each of the 51 base
quantities. It would be a monumental task, and so far has
not been attempted.

There are other differences between the viewpoints of
scientific and technical metrology. Experimental physics is
concerned with differences between the model and object,
i.e., the "name of the game" is find the model ambiguity.
Except in so-called "absolute" measurements which are few

,. AD preTiously quoted authors have addressed this problem; the best summary is

Byerly and Lazar.. op. cil

and far between, any unit errors are ignored. Since the laws

of physics are invariant under such errors this is under­

standable and explains, incidentally, why absolute deter­
minations are so much more difficult. The physicist's at­
titude toward algorithm error is complicated. In an ideal
experiment the experimental design would be such that the
algorithm error is reduced to insignificance by including it
in the model being tested. In practice, this ideal is ap­
proached in 4n radiation counting and in such experiments
as Faller's [12] falling reflector"g" experiment where two
SI definitions are combined in a conceptually simple meas­
urement algorithm. Far more frequently, with more or less
intellectual arrogance, it is assumed that the algorithm, or a
vital part of it, is so complete that the response of the instru­
ment can be calculated beyond the desired precision with
negligible risk. This is the assumption that is not shared by
the technical metrologist. Why can physicists usually get
away with it? I believe there are three major reasons.

First and foremost, the assumption is often just~fied; as a
rule, a great deal more study and design effort goes into a
physics experiment than into the design of the usual metro­
logical instrument and the physicist is unencumbered by
questions of cost, manufacturing ease, reliability, and dif­
ficulty of operation. Under these conditions almost perfect
algorithms can be conjured up. For example, an electron
spectrograph is a horribly complex algorithm for measuring
the kinetic energy of an electron, yet in an electrostatic
machine the energy loss scale depends rigorously on the
fact that electron energy depends on a potential function,
and hence is set by its end points independent of the path
connecting them. Second, generally speaking, the models
(of atomic and molecular systems, for example) are very
crude and the model ambiguities large, tending to
ftswamp" reasonable algorithm errors by their magnitude.
It is notable that in the study of atomic properties ff ab­
solute" measurements and the use of internal calibration
standards are much more popular than in solid state ex­
periments where the models are even more crude. Third, for
most experiments only a very few measurement algorithms
exist, and only a few (usually one or two) stations exist,
usually very similar. For example, the situation in electron
scattering is typical where inelastic cross sections are the
almost exclusive preserve of two or three university teams.
Hence, almost by definition we remove the algorithm error
by making the algorithm the standard in the metrological
sense. Furthermore, in physics the algorithm errors tend to
be of the unit variety and hence not vital to the questions of
concern.

If there are realizations of the unit and the scale by an ob­
ject whose model is so good that it is almost a prototype,
and these realizations are easy to reproduce, it is sometimes
possible to relieve the conditions on the algorithm so that
temporal stability need not be proved (stability need not
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even exist). A widespread example of this occurs in spectros­
copy where the wavelength scale is provided by an iron arc
spectrum obtained simultaneously with that of the object
material. Note the very high practical virtue of such a sys­
tem: one need only a satisfactory model (theory) of the ob­
ject which serves as unit and scale. An object is usually the
simpler of the object-instrument pair. With such an object
in hand, any measurement algorithm (subject only to the
restriction of being in statistical control) is valid. Any num­
ber of ordering operators can be employed and none of
them need be studied in great detail nor completely
understood.

Cases arise where the instrument algorithm is simpler or
more convenient than the model. In this case, the unit is
often attached to the algorithm and the roles of the instru­
ment and object are inverted. Ionizing radiation measured
in Roentgens is one well-known example where interna­
tional comparisons involve the exchange of free air ioniza­
tion chambers, i.e., detectors, not sources. Photometry is
moving in this direction.

An interesting case study on the interface of scientific
and technical metrology is in the measurement of luminous
intensity.

The unit in this case was fixed by the International Orga­
nization as the candela, defined as the luminous intensity of
1 sq cm of a perfect radiator at the freezing point of plati­
nutn. Because of the rather peculiar nature of the unit, no
choice exists (at this time) but to take as the model a perfect
hohlraum at the freezing point of platinum and attempt to
produce a test object as near to this as possible. This was
done at NBS by adopting the 1932 platinum ublack body"
and then making a second stage model in the form of a com­
puter code (based on earlier Canadian work). This second
stage model contains all the parameters in the ublack
body" which are known to effect its deviation from a perfect
hohlraum. The hohlraum theory can properly be considered
sufficiently complete for the purpose at hand, but neither
the computer model nor the knowledge of the material
properties of the Ublack body" can so be considered. The
output of the computer then contains the deviation from
hohlraum and an idea of the ambiguities introduced by
uncertainties in the material properties. No information is
available as to the ambiguity introduced by approximation
in the computer model, round off errors, etc.

The total ambiguity hence must be measured. Since the
object in this case is the unit standard, it is impossible to
determine the ambiguity since no hierarchically higher
standard exists. Thus the model was used to calculate the
temperature differential along the walls for which a tested
algorithm exists and the deviation of this measured tem­
perature deferential from that calculated is used as a meas­
ure of the model ambiguity. There remains the problem of
quantifying the process, i.e., deriving the ambiguity in the

value of luminous flux from the measurement of the am­
biguity in wall temperatures.

Once the degree of model ambiguity is determined, atten­
tion must turn to assuring that the algorithm error was less
than the uncertainty engendered by the model ambiguity.
In this particular case the algorithm error was not known
and a program was initiated to determine it. When it is
determined to be less than the model ambiguity, the
measurement will be made.

Note that, in this case, where the unit is frozen into the
politics of the SI system, at some point one must either
accept the total uncertainty implied by the irreducible
model ambiguity or attack the political problem of disen­
gaging the unit from this model and attaching it to a model
of lower inherent ambiguity. In fact such a political solution
has been achieved.

7. Summary

There exists a reasonably complete and coheren t body of
theory concerning the fundamentals of metrology. It is con­
siderably more complex than has been expounded here, but
a thoughtful application of the principles dealt with will
avoid many of the problems which arise in on-going meas­
urement systems in the field of technical or legal metrology.

This document had its ongm in lecture notes for the
course given by George Washington University Department
of Continuing Education on Calibration Laboratory Man­
agement which I have taught for several years, and a series
of seminars given over the past decade at the National
Bureau of Standards. Many of the principles expounded
have been developed or articulated in collaboration with
Paul Pontius, Joe Cameron, Churchill Eisenhart, Chester
Page, and others at NBS whose contributions to my educa­
tion I can never sufficiently acknowledge.
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The thermal conductivity of argon at room temperature and for pressures up to 68 MPa has been measured
with a transient hot-wire technique in order to assess the accuracy of an instrument of this type. The data are
presented for a nominal temperature of 300.65 K and comparison with other authors shows that our data is accu­
rate to within ± I percent, and it is the most accurate set of data for pressures above 35 MPa. Experimental
evidence of a thermal conductivity enhancement near the critical density for a temperature about twice the
critical temperature is herein reported. The experimental data were compared with the values predicted by the
hard sphere model and it has been found that the theory gives values that are about 4 percent lower than the
experimental ones in the density range 0-400 kg/m3 and about 1 to 2 percent lower in the high density region
400-825 kg/m 3

•
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1. Introduction
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'Figures in brackets indicate literature references at the end of this paper.

Thermal conductivity of fluids has proved to be one of
the most difficult transport properties to measure with a
high accuracy, and only during the last decade has the
development of the transient hot wire technique both for
the gaseous phase [1-3]1 and liquid phase [4-6] made possi­
ble an accuracy of ± 0.3 percent for gases and ± 0.6 per­
cent for liquids.

A new apparatus of the transient hot wire technique has
been developed [7] to measure the thermal conductivity of
fluids in the temperature range 70-320 K with pressure to
70 MPa. We report here the measurements obtained for
argon at 300.65 K.

The purpose of this work is twofold: to assess the accu­
racy of the present instrument and to extend the pressure
range of the high accuracy data obtained by Kestin, et. al.
[2] at the same temperature. The extrapolation of our data
to zero density coupled with the zero density viscosity ob­
tained from the work of Kestin, et. al. [8] yields a value of
the Eucken factor.

(2)

we obtained an S-shaped deviation plot which was clearly
non-random. A detailed examination of the experimental
data in the density range 5 to 15 mollL (200 kg/m 3 to 700
kg/m3

) shows an anomalous increase in the thermal conduc­
tivity of up to 0.6 mW/m-K, which we attribute to a critical
point enhancement even though the temperature is about
twice the critical temperature.

To explore this unexpected behavior further we have ap­
plied the hard sphere model to the interpretation of the
thermal conductivity of argon [9-11]. The difference be­
tween the experimental values and the calculated ones sup­
ports the existence of a critical point enhancement, as the
hard sphere model agrees with the experimental values to
within 0.7 mW/m-K or about 3.5 percent at densities below
5 mol/L and about 1.5 percent at densities above 15 mol/L.
However, for densities between 5 and 15 mollL where we
find a critical enhancement the deviations run up to 1.35
mW/m-K, or about 5 percent. However, the magnitude of

This in principle could support an uncertainty of not more
than 0.3 percent. However, the precision of the experimen­
tal points is ± 0.6 percent when averaged over all densities
and that suggests an overall accuracy of the data no better
than ± 1.0 percent.

When we attempted to correlate the data with a low order
polynominal

(1)Eu = 4A.,M h = 1.0029
15R71o h..
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3. Description of the Instrument

2. The Principle of Operation

et a!. [16]. However, instead of measuring values of time cor­

responding to a bridge null with a fixed set of predeter­
mined resistors, in the present instrument the voltage devel­
oped across the bridge is measured directly as a function of
time with a fast response digital voltmeter (DVM). The
DVM is controlled by a minicomputer which also handles
the switching of the power and the logging of the data. The
automation of the voltage measurement follows the work of
Mani [17] who used a similar arrangement with a transient
hot wire cell to measure resistance by the four lead tech­
nique rather than using a bridge.

Each arm of the bridge is designed to be 100 0, two arms
R 1 and R2 are standard resistors. The resistance in each of
the other arms is a composite of the hot wire, leads into the
cryostat and a ballast resistor. The ballast resistors allow
each working arm to be adjusted to a value of 100 n.

The measurement of thermal conductivity for a single
point is accomplished in two phases. In the first phase the
bridge is balanced as close to null as is practical. With a
very small applied voltage, 0.1 v normally, i.e., essentially at
bath or cell temperature, the lead resistances are read on
channels 1 and 7, the hot wire resistances on channels 3 and
4, and the ballast resistors on channels 2 and 5. For these
measurements switch 1 is turned from dummy to the bridge
while switch 2 is open. The ballasts are adjusted until each
leg is approximately 100 n. Finally, with switch 2 closed, the
bridge balance is checked on channel 6. The second phase
incorporates the actual thermal conductivity measurement.
The power supply is set to the applied power desired, switch
2 is closed, and switch 1 switched from dummy to bridge.
The voltage developed across the bridge as a function of
time is read on channel 6 and stored. The basic data is a set
of 250 readings taken at 3 ms interval. Finally the voltage
on channel 0 is read to determine the exact applied power.
The cell temperature is found using a standard [18] arrange­
ment of platinum resistance thermometer and six dial
microvolt potentiometer. The pressure in the cell is read
from a calibrated spiral steel bourdon tube using an asso­
ciated optical read out. All of the pertinent data is written
by the minicomputer onto a magnetic tape for subsequent
evaluation. The cryostat, filling system, temperature con­
trollers are described elsewhere [7].

An experimental run is a collection of individual points,
usually an isotherm. For each run the data on the magnetic
tape is processed point by point on a large computer. In
addition to the reduction of the raw data, i.e., the conver­
sion of bridge offset voltages to resistance changes and then
to temperature changes of the wire, the set of 250 tem­
perature changes is plotted as ~T vs. in(t) for every point.
The computer also evaluates the best straight line for the
t1T-in(t) data and determines the thermal conductivity }..(Tr ,

er) from the slope of this straight line. A second plot for
every thermal conductivity point shows the "scattering

(3)

(4)

(5)

AT _ q 0 (4Ko )
'-1 - 4 \'T ) In ~C t1r", r, er a

and

where

A detailed description of the hot-wire instrument will be
given in a separate paper [7]; however, some of the more im­
portant details are given here.

For the transient hot-wire technique, a thin platinum wire
immersed in the fluid and initially in thermal equilibrium
with it, is subjected at time t = 0 to a step voltage applied
to it. The wire will behave as a line source of heat with con­
stant magnitude q.

The physical arrangement closely models an ideal line
source, and the transient heat conduction equation, the
temperature increase in the wire, t1T is given by

the enhancement when established from a curve fit to the
data is about 2.5 percent. Dymond [10], in an extension of
the hard sphere model to dilute gases, found that for tem­
peratures up to 1.7 Tc the thermal conductivities of argon
determined by Michels, et al. [12] and Le Neindre, et al. [13]
showed a similar critical enhancement, larger than the one
reported here because of the lower temperatures involved.
Dymond concluded that the hard sphere model is unable to
account for the anomalous behavior of the thermal conduc­
tivity data.

Ko = X(To, eo)!eo Cpo is the thermal diffusivity of the fluid
at the bath temperature when t = 0; a is the radius of the
wire; and in C = 'Y, where 'Y is Euler's constant. The times
t} and t2 are the initial and final times of measurement, and
t1T. is the experimentally determined temperature rise in
the wire. The corrections oT; have been fully described else­
where [1] and they account for the departure of the real
instrument from the ideal model. Of these corrections the
most important at lower times is oT1 , the effect of the finite
heat capacity of the wire.

Figure 1 shows the circuitry employed. Use of a
Wheatstone bridge provides end effect compensation and
follows the general development of the hot wire instrument
pioneered by Haarman [14], de Groot, et al. [15], and Castro,
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FIGURE 1. Circuit diagram of the hot wire apparatus.

diagram," Le., the deviations of the set of 250 temperature
changes from the calculated straight line.

temperature range 150·320 K with pressures from atmos·
pheric to about 70 MPa. The resistance relation for each
wire is represented by an analytical function of the type

4. Wire Calibration (6)

In order to obtain the temperature increase of the plati­
num wires from the corresponding resistance increase, we
need to know the variation of resistance with temperature
for both wires. It has been shown in the past [4, 16, 19,201
that an in situ calibration of the wires is desirable and also
that the resistances per unit length of both wires must not
differ by more than 2 percent. In addition, if they differ by
more than 0.3 percent a correction to the temperature in­
crease of the wire and to the heat generated in the long
wire, functions of the resistances per unit length in both
wires, must be applied [20].

The wire resistances measured at essentially zero applied
power in the balancing of the bridge together with the cell
temperatures as determined from the platinum resistance
thermometer are taken as the in situ calibration of the
wires. Some 1500 values were collected for each wire in the

where T is the temperature in kelvin and P the gage
reading. The pressure dependence is small but statistically
significant and reflects the fact that the calibration meas­
urements are made with a small applied power of 0.1 v. The
constants obtained are presented in table 1. The long wire
has a length of 10.453 em at room temperature, the short
wire one of 5.143 em. Both wires have a nominal diameter of
0.00127 cm, thus the radius a in eq (3) is 0.000625 cm.
Knowing that the length of both wires is a function of
temperature, we can evaluate

(7)

and compare (lL and Us in the experimental temperature
range. Figure 2 shows the percent difference between (h

and Us as a function of T and it can easily be seen that this
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TABLE 1. Calibration Constants of Wires

Ala BIOK-l CIOK'" DIO(MPat1 a~/Om-l

Long wire -9.065472 0.3534445 -0.5923443 X 10-4 -1.40146 X 10-3 794.7
Short wire -4.346459 0.1740251 -0.2831553 X 10-4 -6.56582 X 10-4 798.8

o~ is the resistance per unit length of each wire at 0.1 MPa and 273.15 K.

To =273.15
RL = 83.0582 n £L = 10.451 em 0L = 794.73 n/m
Rs: =41.0758 n £s: = 5.142 em os: =798.81 n/m
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FIGURE 2. Wire calibration, resistance per unit length vs. temperature.

departure is no greater than 0.5 percent. The departure in
figure 2 is as might be expected because the wires in the
instrument were purposely left in the unannealed state. We
are, therefore, justified in ignoring the correction proposed
by Kestin and Wakeham [20].

5. Experimental Procedure

The wires and their supports are enclosed in a pressure
"essel [7] which is operated at a nominal temperature of
296.1 K and controlled to within ± 0.002 K. The cell is
filled with argon, maximum imprity 347 ppm, mostly oxy­
gen. The gas was then compressed to about 70 MPa and
allowed to cool to cell temperature before any meas­
urements were taken. A series of measurements at different
applied powers was made at a given level of pressure and
then a small nearly isochoric expansion was made. The gas
was allowed to warm up and reach equilibrium, then a new
set of measurements at the new pressure level was taken.
The applied power was varied in such a way that the total

temperature increase in the wires ranged between 1 and 5
K. The time interval of measurement in the instrument can
be varied, however we held the interval of measurement to 3
ms and the duration of the measurement to 0.75 s in order
to avoid the onset of natural convection. The density of
argon was taken from the equation of state developed at
NBS [21, 22].

The total number of points taken was 112, with an aver·
age of four different power levels at each level of density or
pressure. Overlap of density range in different working days
was done to assess the longer term reproducibility of the
instrument.

6. Performance of the Instrument

The analysis of the theory of the transient hot wire indi­
cates that the corrected temperature rises of the wire f1T
must be a linear function of fn(t) over the range of exper­
imental measurements, provided that the instrument con'
forms to the ideal mathematical model.
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Figure 3 shows the corrected temperature rises of the
wires as a function of fn(t), including the straight line fitted
for a typical experimental point, 29062, in argon at the
equilibrium temperature To = 300.168 K, and pressure, P
== 18.879 MPa. Although the data set starts at 0.003 s, the
plot begins at 0.033 s. In addition, it was found that the cor­
rection oTt was only of the order of 1 percent of AT for
times around 0.15 s. At present no reliable correction oTt
valid for oTt> 1 percent of AT is available. Therefore, the
least squares straight line fitting considered only that part
of the data set between times of 0.154 sand 0.755 s. Of the
totai of 250 individual measurements 200 are used in the fit­
ting, the first 50 measurements are neglected. The onset of
convection is determined as a deviation from the straight
line at long times. Several trial runs established that for
nearly all densities this process occurs around 1 s. However,
at the very lowest densities measured the onset of convec­
tion occurs at experimental times less than 0.755 s, and for
these points a second variable portion of the data set at long
times had to be omitted from the least squares analysis.

Figure 4 shows the companion plot for point 29062, the
deviations of the corrected temperature rises of the wires
from the straight line fitting for that part of the data set be­
tween times of 0.033 sand 0.755 s. It is evident that for
times valid in the least squares fitting, namely 0.154 s to
0.755 s, that data set departs by less than 0.8 percent from
the regression line and that there is no evidence of a sys­
tematic curvature. A statistical evaluation of the error band
for the slope of the least squares straight line is included in
the output from the data reduction program.

To obtain the thermal conductivity from the slope we
must use the value of q, the heat dissipation per unit length,
which was found to be constant to within ± 0.1 percent dur­
ing the measuring time.

The reproducibility of the instrument is obtained through
an intercomparison of experimental points at the same
nominal temperature and the same nominal density taken
for different heat inputs. Table 2 shows one such set of ex­
perimental points obtained on two different days with dif­
ferent fillings at a density near 2.9 mol/L (116 kg/m3). The

4.6r------+------+-------+--------------,

RUNPT ,'9062

4.2

2.6l-__---+-- +__- -+- -'
3.2 4.0 4.8 5.6 6.4

LNlTl T IN MILLISECONDS
A~GON THERMAL CONDUCTIVITY

FIGURE 3. Typical rises in wire temperature vs. logarithm of time.
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experimental thermal conductivities are adjusted a nominal
temperature of T"om = 300.65 K for the small temperature
difference T - T"om, following the argument that the excess
thermal conductivity Me, n - AJ..O, n is a function of den­

sity alone [2]. Hence

with

(~) = (aAo) = 0.0501 mW/m-K2
aT (I'T"om aT T"om

(8)

(9)

).6r-------+--------+------+-----~-----__,

RUNPT 29062
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FIGURE 4. Typical deviations of the rise in wire temperature from the best straight line vs.
logarithm of time.

TABLE 2. Test of Reproducibility

T_ =300.65 K (1_ = 2.9 mol/L (116 kg/mS)

Run Pt Pressure T, Density Thermal Conductivity W/tn-K

MPa K mollL }.(f"e) }.(f""""e) A(T"""',e"0"')
29077 6.923 300.385 2.8572 .02044 .02045 .02049
29107 6.981 301.371 2.8706 .02054 .02050 .02052
29076 6.926 298.775 2.8772 .02034 .02043 .02045
29106 6.981 300.462 2.8812 .02041 .02042 .02043
29075 6.927 297.597 2.8914 .01997 .02012 .02013
29105 6.983 298.784 2.9015 .02024 .02033 .02033
29104 6.983 298.148 2.9090 .02024 .02037 .02036
29103 6.984 297.609 2.9161 .02026 .02041 .02040

0.02039 ± 0.00012
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The points are then further adjusted to an even density of
2.9 mol/L using a value of (-*)Tnom , enom = 0.001 W-LI
m-K-mol as shown in the last column of table 2. The aver­
age value for the eight points at Tnom = 300.65 K and enom
= 2.9 mol/L is 0.02039 ± 0.00012 W/m-K, the variance of
this sample being ± 0.6 percent. The variance was found to
be roughly the same for all densities, thus the precision of
the instrument is on the order of ± 0.6 percent.

The accuracy of the instrument could be obtained from
the value of the Eucken factor, equation (1), and the value
obtained, 1.0029, through the extrapolated value of }'(O,
Tnom) in a low density fitting of Me). However, considering
the reproducibility to be ± 0.6 percent, and considering
that the deviation of a set of AT data from its regression
straight line is quite often closer to 0.8 percent, we shall
regard the 0.3 percent obtained in the low density extrapo­
lation as a fortunate coincidence, and claim an overall accu­
racy of ± 1 percent for the values of thermal conductivity.

7. Results and Analysis of the Data

Table 3 presents the 112 points obtained for argon in the
density range 0.6 to 20 mol/L (24 to 820 kg/m3

). The last col-

umn in table 3 shows the value of thermal conductivity ad­
justed to a nominal temperature of 300.65 K. Figure 5
shows the experimental values for the thermal conductivity
of argon in the full density range and compares it with
values by Kestin, et al. [2] (0-530 kg/m3

), values by Michels,
et al. [12] and values by Le Neindre, et al. [13]. The four sets
of data agree within their mutual uncertainties of ± 1.0
percent, ± 0.3 percent, ± 2 percent and ± 3 percent re­
spectively. Following the well known density dependence of
thermal conductivity for moderately dense gases we tried to
fit a curve of the type

(10)

which is often used in place of the more rigorous expres­
sion, to oilr data. Initially we used the entire set of data, i.e.,
all densities up to 20 mol/L. Figure 6 shows the departure
plot for this fit. Considering our precision to be ± 0.6 per­
cent the S.shaped deviation shown in figure 6 is clearly non­
random. This in turn implies that the functional form of the
fitting function equation (10) is not appropriate. What is
clear from this departure plot is that in order to get a valid
extrapolation to zero density with a low order polynominal
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FIGURE 5. Thermal conductivity of argon at 300.65 K vs. density. 6. this paper, Q Kestin, et aI.
[2], Q LeNeindre, et aI. [131 '9 Michels, et aI. [12].
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TABLE 3. Experimental thermal conductivity values for argon.

i I i I

Press Temp Dens Power ThermC TC300.65

Run Pt MPa K mollL W/m W/m-K Stat· W/m-K

29123 1.461 304.195 .5811 .20246 .01835 .013 .01817

29122 1.462 301.738 .5863 .14149 .01830 .021 .01825

29121 1.462 299.669 .5905 .09143 .01804 .035 .01809

29120 1.462 298.025 .5939 .05225 .01832 .082 .01845

29084 2.412 300.384 .9759 .11518 .01869 .013 .01870

29083 2.413 299.468 .9794 .09146 .01868 .019 .01874

29082 2.413 298.709 .9824 .07048 .01874 .028 .01884

29081 2.414 297.883 .9856 .05227 .01839 .042 .01853

29119 2.996 309.226 1.1776 .35692 .01928 .004 .01885
291i8 2.996 306.236 1.1904 .27420 .01906 .004 .01878
29117 2.996 303.507 1.2020 .20237 .01892 .007 .01878
29116 2.996 301.104 1.2125 .14150 .01879 .008 .01877
29115 2.996 299.370 1.2201 .09139 .01872 .027 .01878
29114 2.996 297.808 1.2271 .05224 .01841 .059 .01855
29080 4.758 299.859 1.9497 .11515 .01948 .014 .01952
29113 4.892 307.669 1.9476 .35706 .01964 .006 .01929
29079 4.759 299.059 1.9560 .09145 .01905 .019 .01913
29112 4.892 305.395 1.9642 .27417 .01989 .005 .01965
29078 4.760 297.714 1.9664 .05225 .01911 .043 .01926
29111 4.892 302.903 1.9827 .20239 .01968 .006 .01957
29110 4.892 300.779 1.9988 .14145 .01957 .010 .01956
29109 4.893 299.028 2.0126 .09141 .01936 .019 .01944
29108 4.893 297.710 2.0229 .05224 .01925 .043 .01940
29077 6.923 300.385 2.8572 .14146 .02044 .010 .02045
29107 6.981 301.371 2.8706 .17056 .02054 .008 .02050
29076 6.926 298.775 2.8772 .09145 .02034 .021 .02043
29106 6.981 300.462 2.8812 .14143 .02041 .009 .02042
29075 6.927 297.597 2.8914 .05225 .01997 .042 .02012
29105 6.983 298.784 2.9015 .09140 .02024 .020 .02033
29104 6.983 298.148 2.9090 .07040 .02024 .029 .02037
29103 6.984 297.609 2.9161 .05218 .02026 .045 .02041
29074 9.190 299.991 3.8313 .14153 .02137 .010 .02140
29073 9.194 298.556 3.8567 .09146 .02117 .021 .02127
29072 9.199 297.371 3.8787 .05223 .02114 .049 .02130
29102 9.686 300.836 4.0303 .17037 .02182 .008 .02181
29101 9.687 300.007 4.0450 .14130 .02177 .011 .02180
29100 9.688 298.560 4.0710 .09129 .02174 .022 .02184
29099 9.689 298.015 4.0810 .07035 .02155 .029 .02168
29071 11.609 301.155 4.8495 .20247 .02260 .009 .02257
29098 11.700 301.303 4.8851 .20215 .02298 .007 .02295
29070 11.612 299.541 4.8856 .14147 .02278 .014 .02284
29069 11.612 298.361 4.9116 .09132 .02276 .023 .02287
29097 11.701 299.745 4.9197 .14125 .02288 .012 .02293
29096 11.702 298.396 4.9499 .09129 .02270 .021 .02281
29095 13.812 301.069 5.7953 .20216 .02420 .011 .02418
29094 13.813 299.516 5.8370 .14128 .02381 .013 .02387
29068 14.183 300.847 5.9597 .20200 .02434 .008 .02433
29067 14.183 299.297 6.0025 .14120 .02418 .013 .02425
29066 14.184 298.105 6.0365 .09124 .02422 .024 .02435
29092 15.730 300.736 6.6210 .20216 .02525 .008 .02525
29089 15.732 299.969 6.6457 .17044 .02523 .009 .02526
29086 15.737 299.309 6.6687 .14132 .02531 .013 .02538
29085 15.772 299.555 6.6756 .14124 .02533 .013 .02538
29091 15.730 298.605 6.6875 .11497 .02512 .018 .02522
29087 15.734 298.0ll 6.7082 .09137 .02497 .025 .02510
29065 16.451 300.459 6.9344 .20198 .02572 .008 .02573
29064 16.454 299.103 6.9801 .14116 .02569 .013 .02577
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TABLE 3. Experimental thermal conductivity values for argon. (continued)

Press Temp Dens Power ThermC TC300.65
RunPt MPa K mollL W/m W/m·K Stat- W/m·K

29063 16.454 297.951 7.0184 .09124 .02544 .025 .02558
29062 18.879 300.168 7.9569 .20201 .02723 .008 .02725
29061 18.882 297.781 8.0498 .09124 .02694 .027 .02708
29060 21.041 301.382 8.7832 .27374 .02870 .006 .02866
29059 21.043 299.856 8.8475 .20206 .02851 .008 .02855
29058 21.044 298.723 8.8960 .14119 .02849 .015 .02859
29018 23.481 302.213 9.6941 .35561 .02983 .005 .02975
29057 23.679 300.997 9.8244 .27376 .03054 .006 .03052
29056 23.681 299.696 9.8854 .20201 .03018 .008 .03023
29055 23.682 298.414 9.9462 .14116 .03022 .016 .03033
22054 26.202 300.783 10.7689 .27371 .03205 .007 .03204
29053 26.205 299.445 10.8368 .20205 .03196 .010 .03202
29052 26.208 298.337 10.8942 .14121 .03155 .017 .03167
29014 26.498 300.188 10.9051 .27320 .03235 .006 .03237
29051 29.172 300.418 11.8240 .27533 .03427 .007 .03428
29050 29.174 299.255 11.8868 .20201 .03350 .011 .03357
29012 29.462 300.076 11.9397 .27324 .03409 .013 .03412
29049 29.177 298.195 11.9450 .14116 .03358 .018 .03370
29011 29.464 297.705 12.0688 .14100 .03390 .018 .03405
29048 32.339 300.161 12.8650 .27378 .03576 .006 .03578
29047 32.342 298.995 12.9312 .20207 .03562 .011 .03570
29046 32.342 298.097 12.9820 .14118 .03577 .018 .03590
29045 35.633 301.174 13.7911 .35636 .03803 .005 .03800
29044 35.634 299.942 13.8620 .27378 .03780 .007 .03784
29008 35.944 300.660 13.9090 .35592 .03844 .006 .03844
29004 35.943 300.636 13.9100 .35603 .03833 .005 .03833
29043 35.636 298.805 13.9281 .20213 .03780 .012 .03789
29007 35.944 299.506 13.9755 .27344 .03759 .009 .03765
29042 35.639 297.878 13.9832 .14124 .03764 .019 .03778
29003 36.014 299.434 13.9995 .27348 .03783 .008 .03789
29002 35.943 297.991 14.0633 .20171 .03830 .012 .03843
29001 35.941 297.734 14.0779 .14120 .03750 .019 .03765
29005 35.943 297.481 14.0932 .14107 .03832 .020 .03848
29041 39.399 300.710 14.8433 .35650 .04009 .006 .04009
29040 39.401 299.670 14.9047 .27378 .04012 .008 .04017
29039 39.401 298.695 14.9622 .20205 .04014 .012 .04024
29038 39.403 297.775 15.0174 .14124 .03978 .021 .03992
29036 42.981 300.625 15.7366 .35638 .04202 .006 .04202
29037 42.978 299.395 15.8087 .27389 .04225 .009 .04231

29035 42.983 298.473 15.8648 .20211 .04220 .013 .04231

29033 46.726 300.320 16.6035 .35637 .04445 .007 .04447

29034 46.723 299.253 16.6659 .27382 .04455 .009 .04462
29032 46.729 298.283 16.7252 .20204 .04430 .011 .04442

29031 52.190 300.095 17.7302 .35635 .04735 .006 .04738

29030 52.190 298.226 17.8407 .20206 .04748 .013 .04760

29029 58.578 300.830 18.8360 .44999 .05099 .004 .05098

29028 58.578 299.852 18.8926 .35636 .05117 .007 .05121

29027 58.580 298.024 19.0000 .20199 .05113 .016 .05126

29026 63.535 299.687 19.7015 .35602 .05357 .007 .05362

29025 63.538 298.024 19.7983 .20189 .05343 .016 .05356

29024 68.709 300.446 20.4228 .45004 .05638 .005 .05639

29023 68.710 299.553 20.4738 .35661 .05604 .008 .05609

29022 68.710 298.724 20.5213 .27399 .05621 .010 .05631

29021 68.709 298.014 20.5620 .20224 .05637 .017 .05650

29020 68.709 297.413 20.5966 .14140 .05642 .030 .05658

-The data reduction program determines both a value for the slope and its uncertainty, i.e., slope = S ± 2.1 a. Printed here is STAT = 2.1 aiS.
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FIGURE 6. Deviations of the curve fit of equation 10 for the entire range of densities vs. density.
8 this paper, Q Kestin, et a1. [2], • Hanley, et al. [22].

we should fit to densities no higher than about 7 mol/L, i.e.,
the first 56 points only of table 3. The departure plot for a
fit over this reduced range in density is shown in figure 7. In
this plot the departures are indeed random as the one sigma
and two sigma error bands show. Table 4 shows the coeffi­
cients obtained for both density ranges including the statis­
tical errors of the coefficients. Included for comparison in
figures 6 and 7 are the experimental thermal conductivities
of Kestin, et al. (2] and the values predicted by the corre­
lation of Hanley, et al. (22]. The latter is based on the data
reported by Michels, et al. (12] and Le Neindre, et al. [13].

We propose that there is an anomalous increase in the
thermal conductivity which we attribute to a critical
enhancement even though the temperature here T"o," =
300.65 K is about twice the critical temperature. To prove
the existence of an enhancement we did a special curve fit
to which the following considerations applied: (1) we will
constrain the isotherm through the proper zero density
value; (2) we will use a functional form that is appropriate,
yet is also highly constrained; (3) looking at figure 6 we will
fit only data between 0 and 7 mol/L as well as data above 14
molJL in density and look at the deviation plot for densities

between 7 and 14 mol/L. The equation selected has been
used with some success to separate the background thermal
conductivity from the critical component (see for example
ref. 22).

In the fit to be described A is constrained to be 0.01783
W/m-K, D is a fixed value of 0.060 while Band Care
treated as parameters to be determined. The cutoff points
in density actually used are 5 and 15 mol/L and the devia·
tion plot of this fit is shown in figure 8. The plot shows that
the deviations for densities between 0 and 5 mol/L and be­
tween 15 to 20 mol/L are random, and it clearly illustrates
the nature and size of the enhancement. In particular,
figure 8 shows that the enhancement is several times larger,
about 2.5 percent, than the precision inherent- in our meas­
urements, ± 0.6 percent.

8. The Rigid Hard Sphere Calculations

In order to look at the proposed enhancement from a dif­
ferent point of view we note that Dymond [9] in applying the
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FIGURE 7. Deviations of the curve fit of equation 10 for the low density range only vs. density. 8.
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TABLE 4. Coefficients ofLeast Squares Fittings

Density Range
Equation of Fit ao a1 a2 Average Deviation

mol/L W/moK W·Vm·K.mol WoL2/m oKomol2 From Fit, Percent

10 0-20 0.18089 X 10-1 ±0.16x 10-3 0.63372 X 10-3 ±0.41 X 10-4 0.58497 X 10-4 ± 0.20 X 10-5 for 112 points 0.92
10 0-7 0.17836 X 10-1 ±0.12 X 10-3 0.69942 X 10-3 ±0.82 X 10-4 0.62858 X 10-4 ± 0.11 X 10-' for 56 points 0.51

Fixed
Variable, B Variable, C (Number of Points

W.Vm·K·mol W/m·K Fitted is 63)

II 0-5 and 15-20 A =0.01783 W/moK -0.31015 X 10-3 ±0.38 X 10-4 0.18511 X 10-1 ±0.35 X 10-3 for 63 points 0.54
D = 0.060 Vmol for 112 points 0.88

hard sphere theory to dense and dilute gases, found evi·
dence that the thermal conductivity data. of argon and kryp­
ton shows an enhancement for temperatures up to 1.7 Tc

which could not be represented by theory. We thus decided
to apply the Van der Waals model to our data to see if a
similar discrepancy could be noted at even higher tem­
peratures. Use of the hard sphere model satisfies one of the
considerations above, it supplies a functional form that is
appropriate, yet highly constrained.

The Van der Waals model for transport properties of
fluids is equivalent to a hard sphere model with a slightly

temperature dependent hard core diameter, UHS(n. It is a
model that corrects Enskog's [23] expressions for the den­
sity dependence of the transport properties of a hard sphere
fluid for both velocity correlations in the dense gas and for
the attractive forces important in dilute gas collisions
[9-11].

Enskog [23] based his equations on the assumption of
molecular chaos and arrived at a value for the dense gas
thermal conductivity given by:

~ = g(lu) + 1.2 (t) + 0.755 g(r) ( ty (12)
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where A.. is the thermal conductivity of the low density gas
of hard spheres, given by

related motions and using molecular dynamics formulation
he obtained

A.. = 75 (KJT)tll _1_
64 trm o1ts (13) (;E )MD = 1.02 + 0.1 [; - 0.3] ; ; > 0.3 (16)

AHS = ( A_'MD - [0.355 - 2.0 (Vv~) +
AE AE!

(IS) 2.7 (;)2] Ci)tl2

For the dilute and dense gas the expression has to be
modified because the attractive forces do play an important
role in heat conduction. Dymond [10] arrived at an expres­
sion, a function of the ratio TclT that it is supposed to ac­
count for the effect, the full expression being(14)

with

g(<7) is the radial distribution function at contact. For a
system which can be approximated as given by Alder, et a1.
[11] the g(a) becomes

g(a) = (1 - y;2)
(1 - y)3

We have applied equations (12) to (17) to calculate the ther·
mal conductivity of argon at T = 300.65 K as a function of

the other s)'mbols have the usual meaning.

Dymond [9] found that for high densities, where ; >
0.3, Yo being the closed packed volume (Yo = Nu:,sI2), the
Enskog values should be corrected for the molecular cor-

V
for V < 0.3 (17)
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density, using a value of Va = 3.299 X 10-4 m3/kg inter­
polated from Dymond's data of Va as a function of
temperature [10].

Figure 9 shows the comparison between our smoothed
experimental thermal conductivity values and the values
predicted by the hard sphere theory, AHs as a function of the
ratio Vj V. It can be seen that theory predicts the thermal
conductivity of argon to within 0.7 mW/m-K (about 3.5 per­
cent at low densities and 1.5 percent at high densities).

Figure 10 shows the difference between Aexp and AHS as a
function of density and it can be seen that the critical
enhancement in the experimental data occurs near the
critical density.

This comparison seems to support the existence of a crit­
ical enhancement in thermal conductivity even at tem­
peratures around twice the critical temperature, a result
that can only be detected if the accuracy of the thermal con·
ductivity measuring method is sufficiently high.

9. Conclusions

This paper presents experimental data of th.e thermal
conductivity of argon at 300.65 K from low density to 68
MPa obtained with a transient hot wire instrument.

The precision of the measurements is ± 0.6 percent while
the accuracy of the data is estimated to be ± 1.0 percent.
However, an Eucken factor of 1.0029 was obtained.

A small critical enhancement of about 2.5 percent was
found in the experimental data between 0.34 (]c and 1.13 (]c,

that has not been reported before. Comparison with values
calculated from the hard sphere model shows that this
model cannot predict the enhancement.

Our results agree with those of Kestin, et al. [2], Michels,
et al. [12] and Le Neindre, et al. [13] within the mutual
uncertainty.

The results confirm that the instrument is capable of
measuring thermal conductivity of dense fluids with an
accuracy of ± 1.0 percent. We expect to report results on
helium, oxygen and propane in the near future.

One of us (CANC) is grateful for and wishes to acknowl­
edge financial support from NATO Grant 1874 and would
also like to thank the Luso-American Cult~ral Commission
for a Fulbright-Hays travel grant. Our work was partially
supported by NASA under Purchase Request C·32369-C.
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Exposure of kraft wood pulps to an acidic medium results in a destabilization of wood pulp. The degree of
destabilization appears to depend on the concentration of acid the pulp is exposed to. The addition of calcium
carbonate to acid destabilized pulp does not restore the pulp to its original stability. The absorption of alkali
metals is pH dependent which could explain the destabilization of wood pulps when exposed to an acid medium.
A number of questions arise about the merit of stabilizing degraded paper documents by deacidification with al·
kaline earth salts and the usefulness of an alkaline reserve in paper.
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1. Introduction

Concern over the instability of paper has continued for
more than 100 years. In a book published in 1824, the
author lamented over the condition of paper in books that
were less than 10 years old. [IP If that were noted today, it
would most likely be assumed that the manufacture of paper
from wood pulp was to blame. In 1824, it was the formidable
rag paper that proved to be unstable. Nevertheless, paper
can be made to last for centuries or millenia. In evidence is
the fact that many books, centuries old, are still in excellent
condition.

The stabilization of paper is a matter of enormous world­
wide economic and cultural impact, and efforts have been
made for at least fifty years on the one hand to determine
causes of paper instability and on the other to evaluate the
longevity of paper by means of accelerated aging. The
earliest experiments in accelerated aging involved placing
paper in an oven at 100 to 105°C for times ranging from 20
to 125 h [2,3]. The classification of paper permanence was
based on the retention of the original properties of unaged
paper. If a paper subjected to accelerated aging manifested
a high retention of physical properties, it was considered
permanent, while papers that manifested considerable
decline in properties were considered to be impermanent

·Current addresr. 201-3A, Bureau of Engraving and Printing, 14th '" CSt. SW. Washington. DC
20228

··Center for Materials Science, National Meuurement Laboratory

I Figures in brackets indicate literature references at the end of this paper.

No attempts were made to predict the "natural" lifetime of
paper, and until recently, data were not available for mean­
ingful comparisons of accelerated and long-term aging,
necessary to evaluate the former.

The accelerated aging studies did indicate that exposure
of pulp to excessive acidity resulted in an unstable manufac­
tured product [4]. The origin of most of the acid was alumi­
num sulfate, which was used to size paper with rosin.
Aluminum sulfate hydrolyzes in water to produce sulfuric
acid. A later study showed that the aluminum ion was selec­
tively retained by pulp fibers [5]. More recently, Parks [6] in­
ferred, on the basis of thermoanalytic data, that the alumi­
num ion, interacting with carboxyl groups in cellulose,
might be a contributing cause for the instability of paper.
Parks et al [7, 8, 9] showed that large amounts of organic
acid were generated during the humid accelerated aging of
unstable, weakly acidic paper, and that the amounts of acid
generated were correlated with changes in physical proper­
ties and color reversion. Their data did not indicate cataly­
sis of aging by the generated acid.

Prior accelerated aging tests had demonstrated that
paper filled with calcium carbonate possessed considerable
stability [10]. An investigation of naturally aged paper pro­
duced further evidence for the stabilizing effect of calcium
carbonate [11], supporting the rationalization that initially
acid papers were unstable because of acid hydrolysis and
that alkaline papers, conversely, are stable. It was further
reasoned that treatment of degraded, acidic paper docu­
ments with calcium alkali would neutralize acidity and ar­
rest further acid-catalyzed degradation [12].
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With one exception [11], all of the information on the
relationship of paper stability and alkalinity was derived
from an accelerated aging test that consisted of placing
paper specimens in an oven at 100°C for 72 hours [13]. The
validity of accelerated aging at a single temperature itself is
questionable because of demonstrated differences in the
temperature dependence of the degradation rate constants
for different papers [14]. Furthermore, Graminski et al [15]
recently have shown that the deterioration rate of properties
closely related to the tensile strength of paper is directly
proportional, in an accelerated aging test at a given tem­
perature, to the moisture content of the paper. When one
considers the low relative humidity of the atmosphere in an
oven at 100°C, even when the relative humidity of the sur­
rounding environment is high, it is easy to infer that little
fiber degradation occurs under these circumstances, and
that oven aging must be fundamentally incomparable with
natural aging.

As an added source of confusion, however, many workers
have observed appreciable declines in folding endurance
and internal tearing resistance during oven aging. Func­
tional groups, introduced during pulp manufacturing and
especially during bleaching, react to form cross-links. As the
number of cross-links increases, wet strength increases and
fiber flexibility decreases. The decreased fiber flexibility
results in decreases in folding endurance [8].

Unless paper contains an adequate amount of water, it
must be assumed that the three main degradative reac­
tions-cross-linking, hydrolysis, and oxidation [7,8, 9]-can
occur in different ratios than in natural degradation. Thus,
the assessment of Ureal" permanence would lack a valid
theoretical correlation with dry aging at a high temper­
ature.

Wilson and Parks [16] recently compared the changes in
18 papers after three days of oven aging at 100°C with
changes observed after 36 years of natural aging in an office
in which the relative humidity varied over the years. Con­
sidering all 18 papers as a group, the correlation between
accelerated aging under these conditions and uncontrolled
tf natural" aging was not high. Comparisons between vari­
ous subsets generated higher correlations, but the decline
of physical properties in some papers was lower after 36
years of natural aging than after three days of oven aging,
while the reverse was true for other papers.

However, their data indicate an interesting correlation
between head box pH and retention of folding endurance
after natural aging: the higher the head box pH, the greater
the retention of folding endurance. The coefficient of cor­
relation between the head box pH and retention of fold­
ing endurance for two sets of acid wood pulp papers was
0.92 and 0.99. The coefficient of correlation for one set of
rag papers was somewhat lower at 0.86. In addition, their
data show an excellent correlation between head box pH

and the wet strength of the paper, observed after 36 years of
natural aging and expressed as a percent of dry strength.
The coefficient of correlation for each of the two sets of acid
wood pulp papers was 0.99 and for the rag papers it was
0.97. These data suggest the previously unevaluated
hypothesis that the pH fthistory" of a pulp affects the per·
manence of paper made from it

In the present investigation, aging was conducted to
determine whether the addition of calcium carbonate would
impart resistance to humid aging, to paper previously sub­
jected to acid extraction. Pulps were treated with dilute
mineral acid and aluminum sulfate to impart instability.
Subsequent treatment with calcium carbonate produced
alkaline handsheets. The handsheets were subjected to
accelerated aging at 90 °C and 50 percent R. H., in order to
indicate whether the addition of the alkaline salt, calcium
carbonate, to a destabilized pulp result in a paper fully
stabilized against aging under humid conditions.

2. Experimental Procedure

2.1. Samples

Handsheets were prepared from a northeastern bleached
kraft pulp containing approximately 85 percent alpha
cellulose and 15 percent hemicellulose. Handsheets which
were prepared from the pulp as received (untreated) were
made in tap water. All other handsheets were prepared in
distilled water (table 1). The handsheets were stored in a
chamber controlled at 35°C and 90 percent relative humid­
ity for at least 18 h to relieve any stresses which may have
formed during the preparative stages.

The tf deashed" handsheets were made from deminer·
alized pulp. Pulp was torn into pieces approximately two
square inches and soaked in 0.1 N hydrochloric acid at a
five percent consistency. After one hour, the acid was
drained and fresh acid was added to the pulp. After the
fourth acid treatment, the pulp was washed with distilled
water on a large Buchner funnel until the pH of the filtrate
was identical to the pH of the distilled water and remained
at that pH for an additional three to four rinses.

Aluminum treated handsheets were prepared from the
deashed pulp after treatment with 0.1 M calcium acetate.
Following four one-half hour treatments with 0.01 M
aluminum sulfate, the treated pulp was washed extensively.

Beating of pulps was done in a laboratory mill at 10 per­
cent consistency with no clearance between bedplate and
roll for 4,000 revolutions at 3.33 N (.34 kg force) and a
relative velocity of roll to bedplate of 6 m/sec. With the ex­
ception of the untreated pulp, beating was done in distilled
water using sufficient wet pulp to provide 40 g of the dry
pulp for each charge. If several charges were used, they
were placed in a large stainless steel container, diluted to
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approximately one percent consistency and blended for ap­
proximately one hour prior to preparing handsheets.

Aliquots, containing sufficient pulp to make a 30.5 x 30.5
cm handsheet having aweight of 70 g/m2 ±5 percent, were
placed in a British Disintegrator (see TAPPI Standard
T2050s-71), diluted with distilled water to a consistency of
approximately 0.5 percent and disintegrated for 3,000
revolutions. The disintegrated pulp was placed in a 30.5 x
30.5 cm deckle box containing approximately 28 L of
distilled water. The contents were agitated by moving a per­
forated plate up and down five times, followed by a pause of
approximately 10 seconds, then drained through a 100
mesh monel wire screen. The wire containing the formed
sheet was placed on a blotter, covered with wool felt and
consolidated by pressing with a 33 cm long roller weighing
22.5 kg. The sheet was carefully removed from the wire,
placed between wool felts and passed through a roll press at
a pressure of approximately 7 kg/linear cm. The pressed
sheet was then dried on a drum dryer at 95°C for approx­
imately four minutes. The tension on the endless felt of the
drum dryer was adjusted to restrict shrinkage to a mini­
mum. The sheets were stress relieved by suspending them in
a humidity chamber at 35°C and 90 percent relative
humidity for approximately 16 hours.

If the handsheets were to be filled with calcium car­
bonate, 0.65 g CaCOJ was added to the distilled water in the
deckle box and dispersed. Disintegrated pulp was then
added, stirred and allowed to equilibrate for one minute
before the water was drained. The remainder of the hand­
sheet preparation procedure was as described above.

A number of handsheets also were prepared from alumi­
num sulfate treated pulp which was in contact with the
CaCOJ for one hour before forming into a handsheet The
purpose of this procedure was to determine whether the
contact time with the CaCOJ affected the stabilization of
paper.

2.2 Accelerated Aging

Constant temperature oil baths were constructed of stain­
less steel. An immersion heater controlled by a relay box
and thermoregulator provided the principal source of heat
with a desired temperature control to ± 0.1 °C. A heating
coi~ immersed in the bath, was an auxiliary source of heat,
with current input controlled by a variable transformer. The
oil was continuously pumped in the bath with an immersion
type pump to ensure uniform temperature distribution.

Two baths in series, maintained at 75°C and 90 °C, were
equipped with prehumidifiers and aging vessels, respective­
ly. To provide a vented atmosphere of 50 percent relative
humidity in the aging vessels, about 50 cm of gas per min­
ute was metered through water and saturated in the pre­
humidifier at 73 °e , passed through glass tubing sur-

rounded by a heating jacket at a temperature somewhat
higher than 73°C to avoid condensation, then through
coiled glass tubing immersed in the second bath at 90 °e,
and finally through the aging vessel containing suspended
paper specimens. The baths were covered with black cloth
to exclude light

Humid air at 50 percent relative humidity and 90°C con·
tains about 14 percent oxygen gas, 30 percent moisture and
56 percent nitrogen gas. In order to obtain a humid atmos­
phere containing about 20 percent oxygen gas, a mixture of
30 percent oxygen gas and 70 percent nitrogen was substi­
tuted for air and was saturated at 73°C. According to calcu·
lations based on published tables, this gas contained about
20 percent oxygen.

Aging periods of 1, 3, 6, 12, and 24 days were selected to
provide information at various degress of degradation. In
some cases the one day period or the three day period was
omitted.

2.3 Properties Investigated

The following properties were investigated, using the
listed TAPPI test methods: Folding Endurance T511 Sn·69,
Brightness T452 05·58, Alkaline Solubility T212 05·54,
Copper number T430 M-52, Tensile Strength T494 05-70
using 1.5 cm wide specimens at a span of 10 cm and a rate
of elongation of 1 cm/min., and pH by method T509 SU·68
with the exception that the pH measurement was made on
the decantate.

Internal tear was performed on an Elmendorf tear tester
having a 200 g capacity. A single ply was used unless the
tear strength deteriorated considerably, necessitating three
or four plies in order to obtain a reading in the range sug·
gested for the instrumen l

Zero span tensile strength was determined with the aid of
specially designed commercial zero span clamps which were
attached to a commercial constant rate of elongation tensile
tester. The rate of elongation was 0.3 mm/ minute.

Wet tensile strength was determined on a constant rate of
elongation tensile tester using specimens 1.5 cm wide and
10 em long. The samples were soaked for two hours in dis­
tilled water prior to testing.

Moisture regain specimens were first conditioned in a
desiccator for 24 hours and then exposed to an atmosphere
maintained at 23 ± I °C and 50.0 ± 2.0 percent relative
humidity for at least 24 hours. Specimens of approximately
two grams were placed in weighing bottles and the total
weight was determined to the nearest 0.1 mg. The sample
was then dried in a vacuum oven at 105°C for one hour,
covered immediately upon opening the oven, cooled in a
desiccator for two hours, and reweighed. This procedure
was repeated until changes in weight were no longer ob­
served. The specimen was then removed from the weighing
bottle, and the empty bottle was dried in the vacuum oven
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at 105°C for one hour, cooled in a desiccator for two hours
and weighed. The difference between the weight of the bot­
tle containing the dried specimen, and the empty weighing
bottle was the weight of the anhydrous. specimen. The
weight of water divided by anhydrous specimen multiplied
by 100 was the percent moisture regain.

Aluminum was determined in ash by the p-hydroxyquino­
line complexation method (17). Calcium in ash was titrated
in reacted solution with EDTA, using cal-red indicator (18).

The results for folding endurance and zero span tensile
strength are given in tables 2 and 3 and represent the aver­
ages for 8 to 12 specimens. The results of these two prop­
erties are representative of all the other properties inves­
tigated. The results for the remaining properties are not
given.

3. Discussion

Two factors, critical in accelerated aging studies of
paper, are not considered in the present investigation: (1)
the temperature dependence of degradation rate constants,
and (2) effects of moisture on degradation rates. Since the
accelerated aging conditions were identical, and closely
controlled, and since each set of handsheets was prepared
from a single batch of pulp, the effect of treatments on the
pulp stability under these controlled conditions can be
readily assessed.

The untreated pulp (table 1) was comparatively stable

during humid accelerated aging tests over the time spans
indicated. Minimal decline in the zero span tensile strength
indicates that fibers did not experience serious degradation
(table 2). Relatively slow increases in wet strength (table 3)
and decreases in folding endurance (table 4) further differ­
entiate this paper from the less stable modifications.

Demineralization with dilute acid resulted in a remark­
able decrease in stability. The wet strength of deashed
paper increased rapidly during the early stages of humid
aging (table 3 and figure 1), reached a maximum and then
rapidly declined over the remaining aging interval. Treat­
ment of the deashed pulp with aluminum sulfate resulted in
little or no additional effect on the degradation rate (tables
2-4 and figure 2). These data do not support Parks' in­
ference (6) that aluminum destabilized paper, as the alumi­
num treated paper is not less stable than the deashed paper
from which it was prepared.

The addition of calcium carbonate to either the deashed
or aluminum-treated paper appears to retard the deteriora­
tion process. The increase in wet strength is much slower at
the onset of aging. In fact, the changes in wet strength with
time initially are only slightly different from those of the un­
treated paper. CaCOJ-filled paper reaches a maximum and
then, unlike untreated paper, declines over the remaining
interval of aging. The rate of decline of zero span tensile
strength and that of folding endurance decreased also when
calcium carbonate was added to either deashed or alumi­
num-treated pulp, but the rate of deterioration still was

TABLE 1. Description of Samples

Pulp Treatment Mass Per Thickness pH Ash Aluminum Calcium
Unit Area (mm) Cold Hot Content Content Content

(g/m') (%) (meqlloog) (meqlloog)

None 78 .134 6.18 6.17 0.112 - 2.5
Deashed 75 .138 4.93 5.04 0.006 - -
Deashed + Caco, 78 .145 7.98 8.70 - - 62
Aluminum Treated 68 .145 5.22 4.68 0.141 3.12 -
Aluminum Treated + CaCD, (l minute) 70 .ISO 7.80 8.80 - 3.35 67
Aluminum Treated + CaCD, (I hour) 73 .142 7.88 8.52 - 1.5 33

TABLE 2. Efft!Ct ofAging at 90°C and 50 Percent Relatit'e Humidity on Folding Endurance (Double Folds Under 1 kg of Tension)

Aging Time, Days

Pulp Treatment 0 1 3 6 12 24

Double Folds

None 1890 1800 - 1610 1510 500
Deashed 1390 970 830 21 0 0
Deashed + CaCO, 1460 1080 870 430 11 0
Aluminum Treated 960 - 52 2 0 0
Aluminum Treated + CaCD, 970 - 623 410 61 0

(l minute)
Aluminum Treated + CaeO, 1330 - 728 326 5 0

(1 hour)
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much greater than observed in paper made from untreated
pulp (tables 2 and 4). Increasing the contact time of the
calcium carbonate with the aluminum-treated pulp did not
appear to influence the degradation rate, even though one­
half of the aluminum was displaced (table 1).

The results of this investigation suggest that destabiliza­
tion occurs when pulps come into contact with an acid me­
dium. Since treatment of deashed pulp with calcium car­
bonate does not restore the pulp to its original stability, it is
evident that neither the presence of calcium nor the alkalin­
ity of calcium carbonate is sufficient to ensure stabilization
of the acid-modified pulp.

Since alkaline papers are frequently stable, however, we
suggest that the pH history of a pulp, particularly whether
or not the pulp is exposed to acid media at critical points in
the paper making process, is more important to permanence
than the final pH of the paper. This hypothesis would be
consistent with either modification of the unaged pulp by
acid treatment, or extraction of a substance under acid con­
ditions-e.g., trace metals-that is capable of effecting sta­
bilization. Restoration of stability then would occur only if
the effect of acid extraction could be reversed, e.g., by return­
ing the same trace metals to the fibers.

In view of the limited improvement conferred by calcium
carbonate to pulp destabilized by contact with acid, possi-

ble side reactions that may result from deacidification of
deteriorated documents assume greater importance. The
purpose in treating degraded, acid paper is to neutralize
the acid and arrest further degradation due to acid hydroly­
sis. However, alkaline hydrolysis under these conditions is a
disturbing possiblity.

During natural degradation, paper undergoes oxidation
to some extent Cellulose oxidized with formation of one or
mOre alkoxy groups at the 1-, 3-, or 6-position of the anhy­
droglucose ring. In alkaline media, the possibility arizes of
rapid elimination of an alkoxyl group, resulting in chain
scission with the formation of one reducing and one nonre­
ducing end group [19]. The reducing group would further
oxidize to carboxylic acid. Therefore an old documen t, after
extensive oxidation, could actually suffer alkali-catalyzed
degradation during the deacidification process, this risk in­
creasing with the strength of the alkalinity of the medium.

4. Conclusion

Extraction of pulp with mineral acid (deashing) severely
reduces the resistance of paper manufactured from such
pulp to accelerated aging under humid conditions. Addition
of aluminum ion does not further diminish the stability of
deashed pulp. Addition of calcium carbonate to acid-

TABLE 3. Effect ofAging at 90°C and 50 Percent Relative Humidity on Zero Span Tensile Strength. Expressed as Km of Paper

Aging Time, Days

Pulp Treatment 0 1 3 6 12 24

Breaking Length, Km

None 14.7 14.9 - 14.8 14.2 12.1
Deashed 14.2 12.9 10.4 7.7 3.8 0.9
Deashed + CaC03 13.3 13.0 13.0 12.2 9.0 3.4
Aluminum Treated 12.9 - 10.0 6.3 3.8 l.l
Aluminum Treated + CaC03 13.0 - 12.7 12.3 10.4 5.9

(l minute)
Aluminum Tr~ated + CaC03 13.0 - 12.5 11.3 8.1 2.0

(l hour)

TABLE 4. The Degradation Rates for Zero Span Tensile Strength and
Folding Endurance of Various Papers at 90°C and 50 Percent

Relative Humidity

Pulp Treatment A Oo~ Z.S.T.] X 10' A [log Fold] X 10'
AT (days) AT, days

None 4 23
Deashed 51 298
Deashed + CaC03 25 174
Aluminum Sulfate Treated 44 447
Aluminum Sulfate Treated + 15 123

CaC03 (1 minute)
Aluminum Treated + CaCO, 23 206

(1 hour)
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FIGURE I. Generation of wet strength in untreated-, deashed-, and CaCOJ

filled deashed paper as afunction oftime at 90 °C and 50 percent relative
humidity.

FIGURE 2. Generation of wet strength in untreated-, Al-treated, and
CaCOJjilled Al-treated paper as afunction oftime at 90 °C and 50 percent
relative humidity.

TABLE 5. Effect ofAging at 90°C and 50 Percent Relative Humidity on Wet Tensile Strength, Grams

Aging Time, Days

Pulp Treatment 0 1 3 6 12 24

Wet Tensile Strength, Grams

None 82 95 - 191 258 350
Deashed 104 277 415 427 323 206
Deashed + CaC03 67 83 154 249 301 205
Aluminum Treated 81 - 362 340 241 97
Aluminum Treated + CaC03 43 - 30 203 277 242

deashed pulp causes the paper to be alkaline and only par­
tially restores the resistance to aging that is lost on acid ex­
traction.

Consideration of data found in the literature, in conjunc­
tion with the current data, suggest the hypothesis that
paper is rendered unstable by acid extraction of undeter­
mined stabilizers, and that stability is not fully restored
merely by adding an alkaline salt to the pulp. Hence the pH
history of the pulp, particularly whether it is exposed to acid
during manufacture acquires great importance.

The practice of deacidifying old documents with alkaline
salts needs to be considered in the light of possible damage

to such documents by hydrolytic cleavage of fJ-alkoxyl
groups, catalyzed by alkaline media.
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A number of labeling procedures for determining shortest paths in a network employ a sequence list in
order to carry out the required steps systematically. This paper studies certain formal properties of such
sequence lists. It is shown that the desirable property of branching out from nodes whose labels represent actual
in-tree distances is assured for certain ways of managing the sequence list, but not for others. The relationship of
this property to the computational complexity of various labeling procedures is also investigated.
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1. Introduction

A number of methods for finding shortest paths in networks have been proposed during the past 30 years.
Stimulated to a great extent by the wealth of application areas in which shortest path calculations arise
(notably in transportation planning models), considerable effort has been directed toward the efficient
implementation of such methods for large-scale problems. Recent evidence [2, 1l)1 indicates that a method
proposed by Pape [11] is remarkably successful in practice. However, compelling reasons for the observed
efficiency of Pape's method are lacking. One motivation for the present work is to find some formal justifica­
tion for the success of Pape's method.

To begin, some necessary terminology and notation will be introduced. Consider a directed network (N, A)
with node set N and arc set A, and let

I(a) £ N ,J(a) £ N

denote the origin and destination of arc a £ A. Given a length l(a) for each arc a £ A, the length 1(1') of any
path P is defined to be the sum of its constituent arc lengths. A frequently encountered problem is that of
finding, among all paths (if any) extending from i £ N to j £ N, a shortest path: Le., a path from i to j having
minimum length. It is assumed that the network contains no closed paths with negative length, in order to
guarantee that such shortest paths always exist

If r is a given node of N, then shortest paths from r to all nodes j accessible (by a path) from r can be
selected to form a shortest path tree with root r. That is, the unique path in this tree from node r to node j is
in fact a shortest path between the nodes.

A tree T, rooted at node r, can be uniquely specified by a predecessor map q that assigns to each node j =F
r in T its predecessor arc q(j) in the tree. Similarly, each node j =F r in the tree has a unique predecessor node
p(j) = I(qV) in the tree. The nodes p(j), p(p{j) , ... , r constitute the ancestors of node j in the tree. The
branch at node i of tree T, or B(i, 1), is the largest subtree of T rooted at i. Thus, B(i, 1) contains node i and
all nodes j which have i as an ancestor.

*AMS Subject Classification: 05C35. 05COS
tCenterfor Applied Mathematics, National Engineering Laboratory

I Numbers in brackets indicate literature references at the end of this paper.
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A number of methods for determining a shortest path tree with root r are based on providing a labeling
(T,d), where T is a tree rooted at r in the network and d: N - R U {oo} assigns a label dij) to each node j
such that

~)= 00 for nodes j not in T.
d(i) + J(a) ~ d(j) for all arcs a = (i,j) in T.

(1)

(2)

If i is an ancestor ofj in T, then P(i,)) denotes the unique simple path in T from node i to node j. If (T,d) is a
labeling, then repeated application of property (2) produces

for all nodes i,j in T with i an ancestor ofj. In particular, if node j is in T then r is an ancestor ofj, whence

d(r) + l(p(r,j) ~ dV).

(3)

(4)

Accordingly, d(]) - d(r) is an upper bound on the length of the tree path from r to j. As a consequence, dV) ­
d(r) is also an upper bound on the length of a shortest path in the network from r to j.

A labeling (T,d) is said to be optimal if

d(r)= 0,
d(/(a» + l(a) ~ d(](a» for all a E: A.

(5)
(6)

A suitable interpretation of (6) is assumed in the case of infinite labels. If a labeling (T,d) is optimal, then T
is a shortest path tree rooted at node r[5,14]. On the other hand, if T is a shortest path tree rooted at r, then
the distances d(]) from the root to nodej define an optimallabeling(T,d).

1f(T,d) is any labeling, and (6) is violated for some arc aE:A, then redefining

d(](a» = d(/(a» + l(a)

while leaving all other labels unchanged,

d(]) = d(j) for j E: N - {J(a)}

and modifying the tree T in an obvious fashion to contain the arc a, will produce a new labeling (tJ>. This
observation forms the basis of the so-called labeling methods for finding shortest path trees. These methods
employ successive label corrections of the above kind to construct an optimal labeling. The various labeling
methods differ in their strategies for selecting arcs which are to be examined for possible label corrections.

A large class of labeling methods branch out from nodes, that is, they examine successively and in fixed
order all arcs in the forward star

F(k) = {a E: A: /(a) = K}

of the node k from which to branch out. Candidate nodes for branching out are kept and prioritized on a
sequence list. Employing a predecessor map q for characterizing trees, these methods follow the pattern:

Step 1: Put d(r) = 0 and d(j) = 00 forjE: N - {r}.
Step 2: Enter node r into the top position of the sequence list.
Step 3: Remove the top node k from the sequence list.
Step 4: For each arc a in the forward star F(k): if a violates (6), then put

d(J(a» = d(/(a» + l(a), q(](a» = a,
and enter node ](a) into the sequence list.

Step 5: If the sequence list is empty, then STOP; else return to Step 3.
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Such sequence-list driven labeling methods are the subject of this paper. These methods differ from one
another essentially in the way the nodes ](a), whose labels have been corrected, are entered into the
sequence list. Commonly used sequence disciplines that prescribe how nodes are introduced on the list
include FIFO (nodes enter at the bottom), and LIFO (nodes enter at the top). There are various disciplines
that are 2-WAY (nodes enter at either the bottom or top) such as the sequence discipline proposed by Pape
[11]. Finally, there is the well-known discipline of DUKSTRA (keep the sequence list sorted by labels
increasing toward the bottom). Weare interested in certain formal properties of such sequence disciplines.

For instance, the label d(j) of some node j is called sharp, with respect to (T,d), if equality holds in (4).
Since d(r) = 0 always holds for a labeling algorithm, a sharp label d(j) represents the actual path length from
r to j in T, and not just an upper bound. It is undesirable to branch out from a node j whose label is not
sharp, since this condition guarantees that all labels directly and indirectly corrected from node j will have
to be corrected again. It will be shown that LIFO and certain 2-WAY sequence disciplines branch out only
from nodes having sharp labels, whereas this does not necessarily hold for a FIFO discipline. This property
turns out to be closely connected to the question of how the order of nodes on the sequence list relates to the
natural order of nodes in the associated tree.

2. Active Nodes

We call nodes appearing on the sequence list active. Since labeling methods based on sequence lists ter­
minate when there are no active nodes remaining, the following fact is necessary for the proper functioning
of such methods.

LEMMA 1: For any sequence-list driven labeling method, the active nodes include the origins of all arcs
which violate the optimality condition (6).

PROOF: The lemma holds initially, when only the root r is active. Assume it holds at some intermediate stage.
Branching out from some active node k will assure that all arcs in the forward star F(k) satisfy the optimality
condition. Therefore, removing node k from the sequence list will not cause the lemma to be violated. Also,
the only arcs that previously satisfied (6) but do no longer must originate at those nodes whose label has
been reduced by branching out from the node k. However, these nodes have just been entered in the sequence
list.

LEMMA 2: Any node j in T having a non-sharp label dO) with respect to (T,d) must have an active ancestor
in T.

PROOF: Consider the path p(r,j) in T from r to j. If all arcs in p(r,j) satisfied the optimality condition (6), then

d(r) + l(p(r,j) ~ d(j).

However, using property (4) of the labeling(T,d) yields

d(r) + l(p(r,j) = d(}),

whence label d(j) would in fact be sharp. Thus, at least one arc of p(r,j) must violate (6), and its origin must
be active by Lemma 1.

We can now derive a general condition on sequence disciplines which assures that only nodes having
sharp labels are branched out from. To this end, observe that a natural order relation exists among the
nodes of the tree T associated with the labeling (T,d). We write

i <j(1)

if i is an ancestor of j in T. A sequence discipline is called order-compatible if the sequence list never con­
tains ancestors of the top node k in the list. In other words, the top node k does not have an active ancestor.
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Examples of such sequence disciplines will be examined later in the paper. The following general condition

on sequence disciplines is a direct restatement of Lemma 2.

THEOREM 1: Under an order-compatible sequence discipline, a labeling method only branches out from
nodes having sharp labels.

3. Sequence Disciplines

As demonstrated in [2,7], the particular choice of sequence discipline employed in labeling procedures
can profoundly affect the efficiency of the resulting shortest path algorithms. In this section, then, we will
discuss several commonly-used sequence disciplines for determining shortest paths.

Recall that in sequence-list driven labeling methods a node is removed from the top of the sequence list (if
the list is nonempty) and its forward star is then scanned. Any node i whose label is changed is entered, in
some fashion, on the sequence list. For example, entering node i may always be placed at the top of the list,
at the bottom of the list, or at either the top or the bottom of the list, depending on certain other information
associated with node i.

In a LIFO (Last-In-First·Out) sequence discipline, any node i not appearing already on the sequence list is
inserted at the top of the list. In case node i already appears on the list, either (1) the node is moved from its
present list position to the top of the list, or (2) the node remains in its current position. We refer to these
two variants as (1) LIFO/MOVE and (2) LIFO/NO MOVE, respectively. Shortest path algorithms based on
LIFO/NO MOVE [7] make use of a Uflag" to signify whether or not a node is currently on the sequence list.
A reasonable implementation of the LIFO/MOVE version appears to require in addition the use of a
doubly-linked list.

In a FIFO (First-In-First-Out) sequence discipline, any node i not appearing already on the list is inserted
at the bottom of the list. In case node i already appears on the list, either (1) the node is moved to the bottom
of the list, or (2) the node remains in its current position. Thus, in the latter case, nodes are branched out
from in the order in which they are placed on the sequence list. These variants are referred to as FIFO/
MOVE and FIFO/NO MOVE, respectively. The computational behavior of the second of these two variants
has been studied in [2,7,8].

In the 2·WAY sequence discipline described by Pape [11], nodes i that have their label d(i) corrected for
the first time are placed at the bottom of the list. Nodes i that have previously been on the list (but are not
currently) are placed at the top of the list when d(t) is corrected. If node i already appears on the list, either
(1) the node is moved from its present list position to the top of the list, or (2) the node remains in its current
position. Again, these variants are referred to as PAPE/MOVE and PAPE/NO MOVE, respectively. Pape's
description of this algorithm [11] leaves open which variant he has in mind. Dia~ Glover, Karney, and
Klingman [2] have implemented the second variant

(In the sequence disciplines described above, the sequence list is considered to be linearly ordered, with
the top node being the Ufirst" node with respect to this linear order. If no new nodes are added to the top of
the list, then the usecond" node in the order thus becomes the new top node. It is easy to think of disci­
plines in which the associated list does not maintain a linear order structure; in these cases, the succession
problem is regulated in some other manner.)

It should be noted that both the LIFO and PAPE sequence disciplines are special cases of another concep­
tually useful sequence discipline. Indeed, suppose f is a tree function defined with respect to the tree T of
labeling(7:d). Namely,f: N-RU{oo} is such that

i <j(1) implies that j{i) ~fiJ). (7)

If strict inequality holds above then f is called a strict tree function. Examples of tree functions abound. For
example, ifj{i) denotes the number of nodes in the path ~r,t) from r to i in 7: thenfis a (strict) tree function.
Or, if g(t) denotes the number of nodes in B(i, 1), then -g is a (strict) tree function. If the network arc lengths
are all nonnegative and (T,el) is a labeling, then the labels d(t) define a tree function, in view of property (3).
Tree functions find application in the efficient tracing of cycles in networks [1,12,13].
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Consider now the tree-derived sequence discipline, based on a tree functionf, that adds node i to the top
of the list if

j(t) ~ max {f{u): u is active} (8)

and to the bottom of the list otherwise. Here the tree functionfis defined with respect to the Hold" tree T
prior to update by the branching out that has just corrected the label on node i. Also, we suppose that the
active nodes u in (8) are those which are active in the Hold" sequence list. Of course, this tree-derived
sequence discipline also has two variants (MOVE/NO MOVE) depending on whether a node i already on the
list is moved in the prescribed manner or remains in its current position.

Using the tree functioli

f(i) = 0 for all i E. N

clearly produces the LIFO discipline. Using the tree function

I0 ifiE. T
f(i) =

ex> if i (; T

produces the PAPE discipline. Itwill become clear later that FIFO cannot be derived from a tree function.
The more general notion of a tree-derived sequence discipline has been introduced because it will be shown
in the next section that every such discipline possesses the desirable property of being order-compatible.

Strict tree functions can be used to define sequence disciplines in which the top element is an active node
for which the strict tree function assumes its minimum value. Such sequence disciplines are trivially order­
compatible, since any active ancestor j of the current top node k would havefVl <f(k); this contradicts the
fact that k was chosen to have minimum value off(i) over active nodes i. Thus, the corresponding labeling
methods will automatically branch out from sharp labels, by Theorem 1.

By using the labels d(i) as a tree function and selecting the top node as an active node of minimum label,
one obtains the well-knowli Hlabel-setting" method of Dijkstra [3], for networks with positive arc lengths.
The requirement of positive arc lengths ensures that d is a strict tree function (yielding order-compatibility)
and that once a node is removed from the sequence list, it will never reappear on the list (whence the label
cali be permanently set). Dijkstra's method also works, perhaps with minor modification, in the presence of
negative arc lengths [4,10], even though the above two properties are not assured. Somewhat surprisingly,
the DUKSTRA sequence discipline is order-compatible even in the presence of negative arc lengths, as will
be shown in the next section.

4. Branching Out From Sharp Labels

In this section, we present some major results that indicate which of the sequence disciplines discussed in
section 3 do in fact guarantee that only nodes with sharp labels are used for branching out. This desirable
property will be assured for order-compatible sequence disciplines, by Theorem 1. The first major result of
this section shows that tree-derived sequence disciplines always possess this property.

THEOREM 2: Every tree-derived sequence discipline is order-compatible.

PROOF: Suppose the sequence discipline is not order-compatible. Then there is a first time that order­
compatibility is violated. Let k be the corresponding top node of the list 1\ at that time and letj be an active
node (j E. I\) such that j < k (1) in the associated tree T. Since j is currently active, but has not always been
active, there exists a progression of lists 1\ .. 1\2' ••• ,A. (with associated trees Tb Tz, ••• , t) such that 1\. = I\,
j E.I\., andj E.l\m for 1< m ~ s. Also, T: = T.
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Since node j has not been branched out from while on lists 1\1' ... ,1\., it follows that

(9)

Indeed, the only way the branch BU, Tm) can gain new arcs in BU, Tm+I ), 1 ~ m < s, is if some node i £ BU, Tm)
has been branched out from. The existence of such a node i E Am withj < i (Tm ) and m < s contradicts the
fact that (7:, A.) was the first instance when order-compatibility was violated.

In view of(9), the assumed relationj <k (1) implies

Moreover, it is claimed that

j< k(Tm ), for 1 ~ m ~ s.

d(k) remains the same in all trees T b ••• , 7:.

(10)

(11)

Suppose, to the contrary, th:H d(k) was corrected in branching out from node i £ Av • If i £ BU, Tv), then (10)
would not hold in Tv+ l • Thus, i E: B(j, Tv) with v < s, but this contradicts the fact that the first violation of
order-compatibility occurred for(T.. A.).
Consider now the manner in which nodejwas added to the sequence listAI.

CASE I: Node j was added to the top of AI' Thus, the only way node k can precede j on list A. is for d(k) to
have been corrected in some Tm , 1 ~ m ~ s, contradicting(l1).

CASE II: Node j was added to the bottom of AI' Since k is in A. =A, it must be in all Am (1 ~ m ~ s). Other­
wise, in changing from inactive to active status at some list Am, its label must have been corrected; but this is
prohibited by (11). In particular, k E: AI' Recall that a tree-derived sequence discipline adds node j to the bot­
tom of list AI only if (8) fails to hold. Since k E. All this means that.f(j) >f(k) in TI' However, by (10) we have j
<k(T.), and using property (7) of a tree-function produces.f(j) ~Jtk), a contradiction.

Since either case yields a contradiction; the sequence discipline is in fact order-compatible.
Because LIFO and PAPE sequence disciplines are special cases of tree-derived sequence disciplines,

Theorems 1 and 2 produce the following results.

RESULT 1. Under LIFO/MOVE or LIFO/NO MOVE sequence disciplines, a labeling method always
branches out from nodes having sharp labels.

RESULT 2. Under PAPE/MOVE or PAPE/NO MOVE sequence disciplines, a labeling method always
branches out from nodes having sharp labels.

While the definition of a tree-derived sequence discipline in section 3 used a tree function!T on the Hold"
tree T (before branching out has occurred), it is also possible to employ instead a tree function!; based on
the" new" tree T(which possibly incorporates new arcs emanating from the node just used for branching
out). The proof of Theorem 2 shows that this second type of tree-derived Sequence discipline is order­
compatible as well. Specifically, in case II we would have k E. A2, and.f(j) >f(k) would hold in T2 = f; again,
a contradiction is reached to the fact that j <k (T2).

In summary, it does not really matter whether the old tree function values!r<i) or the newly-updated tree
function values f;(i) are used in defining the 2-WAY sequence discipline based on (8). In either case, the
sequence discipline is order-compatible, and so only nodes k with sharp labeis will be used for branching
out This property still holds whether we view all nodes updated by branching out as entering the sequence
list simultaneously or sequentially.

However, under a FIFO sequence discipline, a node with a non-sharp label can be branched out from. For
example, consider the network of figure 1, together with the associated sequence lists and trees produced an
appropriate FIFO discipline. At the fourth step, node c is the top node of the list but it has an ancestor cur­
rently on the list. Thus, the label of node c is not sharp, and c will be used for branching out at the next step.
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FIGURE 1.

RESULT 3. Under FIFO/MOVE or FIFO/NO MOVE sequence disciplines, a labeling method will not nec­
essarily branch out from nodes having sharp labels.

A few additional observations are warranted. In the proof of Theorem 2, the fact that k was the top node
of A. was not used in any essential way. As a result, any tree-derived sequence discipline (including LIFO and
PAPE) possesses the strong-compatibility property:
(SCP) If the sequence list A. is linearly ordered and if i,j E: A. then

i<j(T) iprecedesjinA..

Clearly, by Theorem 1, any discipline having the SCP will always branch out from nodes with sharp labels.
Also, the LIFO/MOVE sequence discipline creates a progression of trees having a very special property.

Namely, any tree generated by such a discipline must have a form like that shown in figure 2, where the
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associated (linearly-ordered) sequence list A has entries a, b, c, ... , y,z with a the top entry and z the bottom
entry. Active nodes are indicated by squares in this figure, and inactive nodes are indicated by circles. There
can be any number of active nodes (possibly none) adjacent froin one of the ff central" inactive nodes. The
circled HI" configuration signifies an arbitrary collection of subtrees, possibly empty, of inactive nodes.
This special property of LIFO/MOVE can be established in a straightforward manner by induction. Note
that from the structure of the tree in figure 2, it is clear that nodes a, b, c, ... ; y,z on the sequence list are
always incomparable in the associated tree T: i.e., neither i < j (T) nor j < i (T) holds. This property is not
guaranteed io hold, however, for other sequence disciplines.

FIGURE 2.

The second major result of this section establishes that the Dijkstra sequence discipline is also order­
compatible, everi though arcs of negaiive lehgth may be present This result is somewhat surprising in that
the labels d1..1) no longer form a tree furiction in the presence of negative arc lengths. However, it will be
shown that the labels do define a tree function when restricted to active nodes (Theorem 3).

Notice ihat under the Dijkstra sequence discipline branching out from node k along a negative length arc
creates an active label which is smaller than all labels of active nodes already on the list Thus, the newly­
labeled node becomes the top node of the list, giving the procedute somewhat the flavor of a LIFO-based
procedure. To formalize this statement we define, for each node i in tree T,

L(i) = min {d1..u): uis active, u f B(i, T)}.

By convention, 1.(i) = 00 if there are no active nodes outside B(i,T). Branch B(i,T) is said to be saturated if

d(j) ~ d1..i)

holds for all active nodes j in B(i, T). Our key observation is

L(i) ~ d1..i) for nonsaturated B(i, T).

Note thai (12) implies
Each nonsaturated branch contains all active nodes of minimum label.

(12)

(13)

We now proceed to prove (12). The statemeht is trivially satisfied for the initial labeling on the tree con­
sisting of the root r alone. Assume it is true for subsequent labelings, including the present one (T,d,S); here
S denotes the set of active nodes. After branching out from node k, which according to the modified Dijkstra
procedure satisfies
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d(k) = min {d(j): j £ S} ,

a new labeling(T: J, S> results. The nodes with actual label changes are

h., ... , hm £ F(k)

so that

d(h,)<d(h,),t= 1, ... ,m,

Note that m = 0 is possible. In this case, the only change is a reduction in the number of active nodes: a
previously nonsaturated branch may now be saturated; L(l) may increase. Statement (12) remains true
regardless. We assume henceforth that m >O.

CASE I: Suppose node i is not an ancestor of node k in T; then it is not an ancestor of node k in T. By (13),
since B(i, T) does not contain the minimum node k, B(i, T) is saturated in (T,d,S). Note that

B(i,n ~B(i,T).

Moreover, any active node j :f: i in B(i,T> is different from h., ... , hm. Thus,

Ju) = d(j) ~ d(i) ~ ci(i)

for all active nodes j :f: i in B(i, n. Thus, B(i,nis saturated for all nodes i :f: k which are not ancestors of k in
t. This implies (12) holds in t for these nodes.

CASE II: Suppose i = k. Then we have

i(k) ~ L(k) ~ d(k) = d(k)

since B(k, T) hB(k, n, since there are no la~el changes outside B(k, n, and since d(k) is a minimum label in
(T,d,S). This implies statement (12) holds in T for node k.

CASE III: Suppose node i is an ancestor of kin t and therefore in T. Note again that

B(i,n= B(i, T) U B(k,nd B(i, T) ,

and that there are no label changes outside B(i, n. Thus,

i(i) ~ L(i).

In addition,

ci(i) = d(i) ~ L(i) ~ i(i)

unless B(i, T) is saturated. In the latter case, since d(k) is a minimum label of(T,d,S),

d<i) = d(i) ~ d(k) ~ L(i) ~ i(i) .

Thus, (l2) holds in t for all nodes.
The required result will now be shown to follow from statement (13).
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THEOREM 3: Under the D/JKSTRA sequence discipline, the labels d(i) form a strict tree function when
restricted to the active nodes.

REMARK. If this theorem is proved, then the DIJKSTRA discipline is order-compatible, since an active
ancestor j of node k in T would by Theorem 3 satisfy dij) < d{k), contradicting the fact that node k is an
active node of minimum label. We proceed therefore to a proof of the theorem.

PROOF: The theorem clearly holds for the initial labeling on the tree consisting of node r alone. Suppose the
theorem holds for(7:d) and that node k is used for branching out. By induction, no~e"k does not have an
active ancestor. The only possible violation of the theorem for the next labeling (7:d) occurs because a
newly-active node h, has a label that is too large. However, B(h"n does not contain node k and so it does not
contain all active nodes with minimum label. By (l3), branch B(h"n is saturated, whence

d{h,) ~ dij)

A

holds for all active nodes j in B(h" n. Since any active node j in B(h" n is active in B(h" n, and since

d(h,) <d{h,) ~ dij) = Jv),

all active nodes in B(h"n satisfy the requirements of the theorem.

RESULT 4. Under the DIJKSTRA sequence discipline, a labeling method always branches out from nodes
having sharp labels.

5. Computational Complexity of Labeling Methods

In this section the (worst-case) computational complexity of labeling procedures based on various
sequence disciplines will be established. We consider the effort of calculating a shortest path tree by a label­
ing procedure to be the number of arcs examined (i.e., used in branching out). This definition is optimistic
in that it does not include the work inherent in data-structure manipulations or in finding suitable arcs to
examine. For NO MOVE variants, however, the latter constitute only an insignificant portion of the total
work involved. (An alternative measure of effort is the total number of nodes entered onto the sequence list.
Since each such node, apart from the root, gets placed on the sequence list as a result of examining some
are, this alternative measure is a lower bound for the first.)

We first study the effort required, in the worst case, to solve the shortest path problem using a LIFO
sequence discipline. Consider the networks V", n = 0,1,2, ... defined by

By convention, VO consists simply of the single node O. Generally, V" consists of 2n+ 1 nodes and 3n arcs,
where n designates the number of segments. For n = 3, we would have

\1.3:
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We assume further that the networks Vn are represented by forward stars and that the arcs in these forward
stars are scanned in order of increasing length.

The following propositions concerning the application of LIFO to Vn follow readily by "induction.

If E(n) denotes the effort of solving Vn then E(O) = 0 and E(n+ 1) = 3 + 2E(n) for n = 0, 1,. . . (14)

Every examination of an arc results in a node being added to the sequence list. (15)

Proposition (14) shows that E(n) = 3(2n-l) and thus the effort is exponential. Proposition (15) shows that
LIFO/NO MOVE and LIFO/MOVE perform identically when applied to networks Vn. These facts are sum­
marized in Result 5 below.

RESULT 5. Under LIFO/MOVE or LIFO/NO MOVE sequence disciplines, a labeling method has exponen­
tial computational complexity.

The idea behind the construction of the networks V" is to build sequences of segments identical in topol·
ogy, but with arc lengths for any segment being larger by a factor F than the corresponding arc lengths of
the segment immediately to the right For example, consider the networks Gn defined by

Gn:

Suppose that arcs in forward stars are again scanned in order of increasing length.

LEMMA 3: IfF ~ 2, c >a + b, and c >a then LIFO is exponential on the networks Gn.

To show this, we first demonstrate a crucial fact about the 2npaths from node 0 to node 2n: Pn(1), Pn(2), . .. ,
Pn(2n

) which are generated by the LIFO discipline.

If paths Pn{l), Pn(2), . .. , Pn(2n) are the paths generated in order by the LIFO discipline, then (16)

PROOF: When n = 1, the paths are P1{l) = [0,2], P,(2) = [0,1,2] and l(P,{l» = c> a + b = l(P,(2», by

assumption.

Suppose the assertion is true for n = k - 1. Then the set of paths produced in Gk by LIFO have lengths

l(Pk(l» = Fk-t c + l(Pk-,{l»
l(Pk(2» = Fk-t c + l(Pk-t(2»

l(Pk(2k-t»= Fk-t c + l(Pk_,(2k-'»
l(Pk(2k-t+ 1» = Fk-t a + Fk-tb + l(Pk-,{l»
l(Pk(2k-t +2» = Fk-t a + Fk-tb + l(Pk-,(2»
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By induction

and so

It suffices then to show that

Now,

= Fk-t(c-a-b) _(Fk-2(c-a-b) +... + F(c-a-b) + (c-a-b».

Since c-a-b >0 , D >0 if and only if

Fk-t _(Fk-2 + ... + F + 1»0

or, since F >1,

Fk > 21"'-1 - 1 .

Now since F ~ 2 , Fk ~ 2Fk-t > 2Fk-t - 1 and so (16) is established. (In fact, D > 0 for all k if and only if
~2.)

From (16) it follows that every arc incident to node 2n causes an update of d(2n), and similarly for nodes 2j
(1 ~ j < n) and nodes 2j-l (1 ~ j < n). This means all potential label corrections are made, and the expo­
nential behavior follows with

E(n) = 3(2"-1), n = 0,1, ...

A similar fact holds when forward stars are ordered by decreasing length.

LEMMA 4: ifF ~ 2, c> a + b, and a> c then LIFO is exponential on the networks G".

Notice that V" is the special case of G" with a = 1 , b = 0, c = 2, and F + 2. Lemma 3 thus guarantees
exponential behavior on P", assuming that arcs in F(k) are ordered by increasing length. The foll~wingnet­
works WIt (corresponding to a =0, b =-2, c = -1 ,F = 2) require exponential effort by LIFO when arcs
in F(k) are ordered by decreasing length (see Lemma 4).

328



We now show that

RESULT 6. Under PAPE/MOVE or PAPE/NO MOVE sequence disciplines, a labeling method has exponen·
tial computational complexity.

This result is not surprising inasmuch as Pape's method becomes a LIFO method once all nodes have
been entered on the sequence list. To exhibit an actual example, we modify networks V" by adding arcs from
the root node 0 to all nodes not already connected to it These arcs are given a very large arc length M
(>2"+1). The forward star of the root is arranged by nonincreasing arc length, whereas all other forward stars
are arranged as before by increasing arc length. Pape's method, when applied to these modified networks
Vn, will enter all non-root nodes into the sequence list with nodes 2 and 1 being next-to-last and last, respec­
tively. The nodes j having label d(j) = M will be branched out from first. This will not produce any label
changes, so that finally all active nodes will have disappeared except nodes 2 and 1, in this order. From this
point on, Pape's method will reproduce LIFO as applied to the original networks V". Again, there is no
difference between PAPE/MOVE and PAPE/NO MOVE.

RESULT 7. Under the DUKSTRA sequence discipline, a labeling method has exponential computational
complexity if arcs of negative lengths are admitted.

This result has been previously obtained by Johnson [9]. We show that it follows rather easily from our
preseilt results. If all arc lengths are nonpositive, and if the forward stars of the network are arranged in
order of decreasing arc length, then the LIFO/MOVE discipline will be equivalent to the DUKSTRA dis­
cipline, since branching out from a node of smallest label will place another node of smallest label in the top
position of the sequence list. The networks W" described earlier then provide the necessary evidence.

RESULT 8. Under FIFO/MOVE or FIFO/NO MOVE sequence disciplines, a labeling method has computa­
tional complexity O(n3

), where n = IN!.

To demonstrate this result, let us define sets S" t = 1,2, ... , as containing those nodes added in a FIFO
manner to the sequence list during branching out of nodes in St-1. We set So = {r}. In the case of
FIFO/MOVE, a node j whose label is updated by branching out from k £ St-1 is always moved to St, even if
node j is currently on the bottom of the sequence list.

A label ~) is said to have cardinality c(j) if the path P corresponding to the path length d(j) has precisely
c(j) arcs. It can be readily shown by induction that for a FIFO discipline (MOVE or NO MOVE)

c(j) ~ t for all nodes j £ St. (17)

As a matter of fact, c(j) = t for the case of FIFO/MOVE. It follows from (17) that S" = ~ inasmuch as no
shortest path length ~) on the sequence list need have c(j) > n - 1. Thus, all FIFO methods require at most
n sets St before terminating. Since each set St can contain at most n - 1 nodes (node r cannot re-enter the
sequence list) and since branching out from a node entails at most n - 1 arc examinations, the effort re­
quired is no more than O(n3

). It is easy to give examples where this bound is achieved and thus a FIFO·based
method has worst-case complexity O(n3

), as stated in Result 8.

6. Conclusions

This paper has investigated two properties of sequence disciplines for labeling procedures: branching out
from sharp labels, and worst-case computational complexity. Of the disciplines studied, only FIFO fails to
branch out from sharp labels, yet only FIFO has polynomial complexity. Clearly, either of these properties
alone is not sufficient to guarantee good performance in practice. For example, the LIFO discipline has
been observed [2,7] to be inefficient in practice, even though it branches out from sharp labels. Also, the
PAPE discipline has proven to be surprisinglY"successful [2] in sparse networks, even though it can require
exponential effort for certain sparse networks (V" of sect 5).
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In the highly structured sparse networks used for assessing the relative efficacy of Pape's method [2], this
method does indeed act similar to a FIFO method while maintaining the sharp labeling property. We con­
jecture that Pape's method, as well as other 2-WAY methods, can achieve success by combining in a certain
sense these two desirable, but apparently conflicting, properties. At the present writing it is not known
whether there exists a polynomial labeling method that branches out from sharp labels. Even if such a
method cannot be found, the 2-WAY tree-derived disciplines appear to be a promising area offurther inves­
tigation. For example, it is not difficult to show that a 2-WAY method, based on using the new labels d as a
tree function, performs polynomially for the networks V" on which Pape's method is exponential.
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