Thermodynamies of the Densification Process for Polymer Glasses

John E. McKinney
Institute for Materiak Researd, National Burepv of Standerds, Washington, D. C. 20234

and

Robert Simha
Depantment of Macromolecular Science, Cose Weatern Resorve Univerity, Clovaland, Ohio 44106

(4my 3. 1977)
A quantitative description is given for the densification procest of glasees resulting fron deag formation at
 tion rate K ' with respect to forcostion pressurel from various the emmodyamic quantities and glase tranaition
 Somcynsky, Using these relations $\boldsymbol{\kappa}^{\prime}$ is estinated, and the tesulds from the difierent methods are compared for data from 23 different orgmnic polymers with glass transition temperatures ranging from 150 to 455 K . The amount of denailitation appeari ta be limited by the apparent eqnvergrecre of the ghaxs cemperalure and effective decomponilion tedrperalure with increasing pressure- some entimale of limiting raluen are presented. Finally, changes of refractive index reaulting frum demsification are estimated fiven the observed, or predicled, densificalion ralen.

Key words: Contpressibility; denailecalion; glasw; glaws Iransition; liguid; polyurer, pressure; PVT; pyrolynis; refractive index; thermal expanion; themodynamic.

1. Introduction

The densily of a glass, as well as cenain other properties, depend upeo the thermadynamic history by which the glass is formed. For example, as shown sehematically in figure la. an amorphous polymer subjected to an elevated pressure in the melt, followed by isobaric cooling at constant mate to a temperature well below the glass temperature, T_{p}, and then depressurized, will have a lager density than that obtained by isobaric cooling at the same rate al atmospheric pressure to the same teruperature in the glass. From the former procedure the pressure induced densification rate is defined as

$$
\begin{equation*}
\kappa^{\prime}=-(1 / V)\left(\partial V / \partial P^{\prime}\right)_{T, P_{, ~}} \tag{1}
\end{equation*}
$$

where V is the volume at temperature T and pressure P, and P^{\prime} is the formation pressure maintained during conslant rate of cooling k. Note that this definition parallels the usual one for the isothemnal compressibility,

$$
\begin{equation*}
\kappa=-(1 / \eta)(\partial V / \partial P)_{\tau, p r, k} \tag{2}
\end{equation*}
$$

the difference being that P and P^{\prime} are interchanged.
It is expected that the final depressurized volume in the glas5 will lie between the atmospheric and the pressurized value, as shown in figure la. lt is then clear that the inequality,

$$
\kappa_{g}>\kappa^{\prime}>0
$$

where κ_{g} is the compressibility of the glass, is obeyed.

Figure I. Schensasic itluatration of two mechods wed wo worcin densified gtases.
 dowificming is obained to commemalely decresing the cooline pie ol olmopheric presurar,

Although we may intuitively expect this relation to hold, as apparent from experiment, we do not know of any proof,

A well known altemative method of densifying glasses is simply 10 decrease the cooling rate as illustrated in figure lb. In principle one can obtain the same volume in the glass by this procedure as by elevating the pressure, excepl that the times required for the former are much longè. For example. it is estimated [1] ${ }^{1}$ that a poly (vinyl acelate) gless obtained by isobaric cooling at $800 \mathrm{bar}^{2}$ in 8 hours would require 500 years to reach the same volume at the same terminal tempersture by cooling sluwly at atmospheric pressure. It should be recogrized, however, that the slates of glasses at the same volume, temperature, and pressure, but obsained through different histories, are not necessarily the same. As pointed out by Bree and cownikers [2], volume changes during iso-baric-isolhermal volume relaxation [3] have a large effect on relaxation times for creep compliance, whereas almost nu effect is abserved from volume changes obtained by isobaric cooling at elevated pressures. Accordingly, it appeers that the state of a glass is not determined by its volume, temperature, and pressure alone. Moreover, pressure induced densifieation does have an influence on physical properties. According to the data of Dale and Rogers [4] over a 5 kbar range, the compressive trodulus of polystyrene appears to increase slighly with formation (or molding) pressure, leveling of at higher pressures, with the yield stress going through a maximum between 1 and 1.5 kbar . Wetton and Muneypenny [5] have studied the dynamic mechanical and dielectric properties of steveral polymeric glasses formed at pressures up to slightly beyond 5 kbay. Both the real part of Young's modulus and its loss tangent, ss well as the real part of the dielectric constant, increase with farmation pressure. For polylvinyl acetate) McKinney and Goldslein [1] have observed a 3 percent increase in the bulk modulus al $0^{\circ} \mathrm{C}$, corresponding to a formation pressure of 800 bar. This difference increases with decreasing temperature.

Thermal properties also seem to depend on the amount of pressure induced densification. Although the heat caprecity C_{p} is found to the independent [6] of formation pressure, the enthalpy H seems to vary significanily al formation pressures above a certain value. According to Price [7], very little change in the enthalpy of poly(methyl methactylate) is utserved up to about 800 bar, foilowed by a neerly constant rate of increase of about $0.015 \mathrm{~cm}^{3} / \mathrm{g} \mathrm{up}$ to 3 kbar , their maxirnurn value. For polystyrene [8], the data have been evaluated as $\Delta H=H$ (densified) $-H$ (normal) lirst deereasing slightly and then going back to zero at about 800 bar, followed by an increase with nearly constant slope up to the maximum pressure. Weitz and Wunderlich [9] have also observed this behavior and interpreted it in terms of two opposing mechanisms arising from holes and rotalional isomers. It is not clear, however, that the apparent negative values of ΔH oblained by experiment are significant.

The purpose of this paper is to describe the thermodynamics of the pressure indured densification process by applying both phenomenological and molecular theory. Simple phenomenological relationships are derived between the densificalion rate κ^{\prime} and other themodynamic properties for which values are more readily available in the literature. Moreover, it is shown how the hole theory of Simha and Someynsky [10] may be used to facilitate the estimation of the

[^0]densification rates for polymers using a minimum amount of experimental information. In both cases the derived relationships are tested using appropriate experimental data. An example of the utility of these resuits is demonstrated by estimating the change in the index of refraction conresponding to changes in molding pressure, assuming that the index of refraction is related to the volume by the Lorentz-Lorentz equation. The resulis have potential application to the adjustment of the refractive indices of lenses by varying the molding pressigre.

2. Phenomenological Relationships

Two types of thermodynamic hislories, shown sehematically in figure 2, are pertinent to the development of the phenomenological relationahips for pressure induced densification. In the first (Fig. 2a) the PVT surface of the gless is obtained from repeated isobaric cooling runs al the same constant rate, but at difference pressures, with all pressure changes occurring in the melt prior to earch run. This procedure is called the variable formation history because the structure of the glass is different for each experimental pressure (which is ihe formation pressure, since $P=P^{\prime}$). The glass transition al each pressure is assumed to occur at a constant mean relaxalion time. Hebce, the intersection of the liquid and glass $P V T$ surfaces gives the proper $T_{\Delta}(P)$, from which $d T_{g} d d^{P}$ is expected to approximate that obtained from the dynamic mechanical and dielectric frequency-lempera-ture-pressure superpasition. On the other hand, as a consequence of the varied structure, the glass $P V T$ surface is not proper in the thermodynamic sense.

Fiture 2. Sthematic illutration of two shernodynamic histories used to form gases.

With the other history (fig. 2b) the glass is formed also by isobaric cooling at constant rate at an abbitrary pressure, $P^{\prime \prime}$ (which is usually atmospheric, but elevated in figure 2b to illustrale the thore general casc). At temperalures well below To where viscoelastic relaxalion times are large in comparison to effective experimental times, a thermodynamically reversible PVT surface for the glass is obtained by observing the valumetrie response to "fast" changes in lemperature and pressure. Since all of the data in the glass pertain to the same P', the PVT surface gives the proper values of the derivable thermodynamic quantities (for example, thermal expansion, isothermal compressibility, and intemal pressure). The intersection of the liquid and glass surfaces defines the fietive lemperature $T_{\mathbf{q}}{ }^{\boldsymbol{f}}\left(\boldsymbol{P}, P^{\prime}\right)$.

The principal distinction in procedure beiween the two histories is that with variable formation all pressure changes are made in the melt, whereas with conslant formation they are made in the glass. Nole that the number of independent variables is different for $T_{\sim}(P)$ and $T d\left(P, P^{\prime}\right)$. The redundancy of using two arguments in the former arises from the fact that the formation and experimental pressure are always identical. Accordingly, T_{g} may be regarded as a special case of $T{ }_{d}^{\dagger}$ when $P=P^{\prime}$. The implicit argument k is deleted here because only one value appplies to these discussions for each case. For further details and interpretation of these histories, see Ref. [1]

In all of the schematic diagrams in this paper the glass transition is shown as a diserele intersection. With isobarie cooling al constant rate through T_{p} a gradual transition process is observed. The discrete intersections shown correspond to those obtained by extrapolation of the equilibrium isobars and the isochronal (nonrelaxing) ones for the glase.

We now proceed to evaluate the thermodynamic diagram in Sigure 3, in arder to delermine relationships for $\boldsymbol{\kappa}^{\boldsymbol{t}}$ in terms of other measured quantities. Volume A is obtained by isobsaic cooling at constant rate and atmospheric pressure $\left(^{\prime}=P^{\prime}=\right.$ 0). Volume B is reached by pressurizing to $P=P^{\prime}=\Delta P$ in the melt, followed by isobaric cooling the same constant rate as for A, with subsequent depressurizing in the glass at the same terminal temperature as for A. Note that T_{o} (in lien

Ficure 3. Schematic illustration of the pracedure used to derise the densiffication equation (See egs (3) and (4)), and the distinction benveen $T_{\alpha}(P)$ and $P_{j}^{t_{j}(P, P)}$
of T_{f}^{\dagger}) applies here, since the transition is observed at the formation pressure ($P=P^{\prime}$) in both cases. The isobaric extension of V_{B} with increasing T (see dashed line) to its infersection with the liguid line yields the fictive lemperature $T_{i}^{\top}\left(P, P^{\prime}\right)=T\left(O, \Delta \rho^{\prime}\right)$.
In summing the thermudynamic contributions for small changes in T and P near $T(P)$ in the range where linear approximations are valid, we find

$$
\begin{align*}
V_{A} & =V_{0}\left(1-\alpha_{s} \Delta T_{1}-\alpha_{0} \Delta T_{2}\right) \\
V_{B} & =V_{0}\left[1-\kappa_{\Delta} \Delta P-\alpha_{1}\left[\Delta T_{1}-\left(d T_{\rho} / d P\right) \Delta P\right]\right. \tag{3}\\
& \left.=\alpha_{0}\left[\Delta T_{2}+\left(d T_{0} / d P\right) \Delta P\right]+\kappa_{s} \Delta P\right\}
\end{align*}
$$

where α is the usual isobaric themmal expansivity, the $\Delta^{+} s$ indicate differences as shown on figure 3 , and the subscripis ! and g pertain to tiquid and glass. For small changes eq (1) may be written in the form

$$
\begin{equation*}
\boldsymbol{\kappa}^{\prime}=\left(V_{A}-V_{B}\right) /\left(V_{\Delta} \Delta P\right) \tag{4}
\end{equation*}
$$

Substitution of eqs (3) for V_{A} and V_{s} yields

$$
\begin{equation*}
\kappa^{x}=\Delta \kappa-\Delta \alpha d T_{\Delta} / d P \tag{59}
\end{equation*}
$$

where the $\Delta^{+} s$ here indicate the usual differences in the respeciive quantities between liquid and glass. Since

$$
\begin{equation*}
d T_{0}^{\dagger} / d P=\Delta x / \Delta \boldsymbol{x} \tag{6a}
\end{equation*}
$$

along $T_{o}^{\dagger},[11], \kappa^{\prime}$ may be expressed in terms of the difference between the two transition rates, i.e.,

$$
\begin{equation*}
\kappa^{\prime}=\Delta \alpha\left(d T_{j}^{\dagger} / d P-d T_{\mathrm{a}} / d P\right) \tag{5h}
\end{equation*}
$$

Equation (5a) may also be writien as an Ehrenfest-type relation, viz.,

$$
\begin{equation*}
d T_{g} / d P=\Delta_{\kappa} / \Delta \alpha-\kappa^{\prime} / \Delta \alpha \tag{5c}
\end{equation*}
$$

which is consistent with the experimentally observed inequality

$$
d T_{\sigma} / d P \leq \Delta_{\kappa} / \Delta_{\alpha}
$$

provided the densification rate is non-negative. Expressions fully equivalent to eqs (5) have been derived by Goldstein [11] and given previously in Ref. [12]. From eqs (5) it is evident (as ulso pointed out by Goldstein \{11]) that the necessary and sufficient condition (assuming $\Delta x \neq 0$) for the $P V T$ surface to be independent of formation pressure is the validity of the first Ehrenfest equation

$$
\begin{equation*}
d T_{s} / d P=\Delta N / \Delta \alpha \tag{6b}
\end{equation*}
$$

The amalogous argument applies to the eniropy surfaces. Since the second Ehrenfest equalion,

$$
\begin{equation*}
d T_{p} / d P=T_{p} V \Delta \alpha / \Delta C_{P} \tag{7}
\end{equation*}
$$

where C_{P} is the usual heat capacity at constant pressure, appears to be a good approximation [11, 13], there should be
a single entropy surface with respect to formation pressure in contrast to the manifold/surface observer for volume. This view is confirmed by the DSC ${ }^{3}$ measurements of Yourtee and Cooper [6] on nomal and densified polystyrene, which reveal no significant eftect on the thermal properties of glasses by vilrification al elevated presoures. The authors did find somer differences in the thermal behavior between these praperties and those from vitrificsion by iscthennal compression; however, these were attributed io irhomogencous freezing processes during compression. Accordingly, if eq (7) is a geod approximation, it leads to a convenient experimental delermination of the initial ($P=0$) value of $d T_{5} / d P$ through volume-temperalute and beat capacity measurements required al almuspheric pressure only. Equation (7) will be lesled by meane of experimental data later in this paper.

As atated above κ^{\prime} may be determined (near T_{g}) from the values of $\Delta \alpha, d T_{a} d P$, and Δx using eq (5a). The relative difficulty in obtaining these quanlities expetimentally increases in the onder given above, as does the difficulty of obtaining their values from the literature. For these reasons it is desirable to be able to estimate Δ_{K} (or $\Delta_{N} / \Delta \alpha$) independently of existing PVT data. It will be shown how the trole theory of Simhe-Someynsky [10] may be used to arrive al values of $d T^{T} / d P=\Delta \kappa / \Delta d$.

As indicated previously, eqs (5) are based on several linesrizations. It is assumed that the coefficients $\alpha_{b_{4}} \alpha_{\rho t} \kappa_{1}$ and κ_{g} are independent of pressure and temperature and that T_{p} is a linear function of pressure. Thus strictly, the reference temperaluer in the glass as well as the initial temperature in the mell should be appropriately close to T_{σ} Moreover, the pressure P^{\prime} should be appropriately small. In the Appendix the general relationships are developed, based on the equetions of state of the liquid and both glasses.

As an example, integral relations are evaluated over the twe paths shown on figure la for PVAc, for which extensive data are available [1], and the Tait parameters are known [14] for the liquid and both glasses. The results are tabulaled and compared with the corresponding linear approximations.

3. Application of Molecular Theory

The hule theory, which is used here to extimate the values of $d T^{4} / d P$, is a corresponding states theory based on a lattice model. The partition function is defined in terms of a single ordering parameter, the hole [raction h, which gives the ralio of the number of vacant to tolal sites, each of which may be oceupied by a polymer segment. The correkponding fiates are given in lems of the reduced (universal) variables

$$
\begin{equation*}
\dot{T}=T / T^{*}, \dot{\boldsymbol{P}}=P / P^{*}, \dot{V}=V / V^{*} \tag{8}
\end{equation*}
$$

where T^{*}, P^{*}, and V^{*} are the scaling factors appliceble to each polymer. Although these are defined explicitly by the theory, they are usually derived from a superposition of equilibrium $P V / T$ data along the master curves evaluated from the theory. For an illustralion of this procedure, see Ref. [14].

The purtition function Z is expressed uniquely in tenms of the thee independent variables \bar{T}, \bar{V}, and A. From the thermodynamic definition

$$
P=-k T[\partial \ell n Z(T, V, h) / \partial V]_{r}
$$

[^1]and the equilibrium constraint $(a Z / \partial h)_{T}, V=0$, the following equilibrium equations [10] are obtained, respectively:
\[

$$
\begin{align*}
& \bar{P} \bar{V} / \bar{T}=\left[1-2^{-1 / 6} y\left(y \bar{V}^{-1 / 9}\right]^{-1}\right. \\
& +(2 y / \bar{T})(\bar{y})^{-x}\left[1.011\left(y \hat{V}^{-2}-1.2045\right]\right. \tag{9}\\
& (s / 3 c)\left[(s-1) / s+y^{-t} \ell_{n}(1-y)\right] \\
& =\left[2^{-1 / 3} y\left(y^{\bar{f}}\right)^{-1 / 3}-1 / 3\right]\left[1-2^{-1 / 6} y(y)^{-1 / 3}\right]^{-1} \tag{10}\\
& +[y /(6 T)](y \dot{V})^{-2}\left[2.409-3.003(y \bar{V})^{-2}\right]
\end{align*}
$$
\]

where $y=I-h$ is the fraction of occupied sites, and s and 3 are the number of segrents per molecule and the cxlemal degrees of freedam per molecole, respectively. As in previous work, we take $s / 3 c=1$. Note that the term $(s-1) / s$ in eq (10) approaches unity for large moleculcs.

A hasie ascumption sufficient for the application of the hole theory to our densification model is

$$
\begin{equation*}
d T_{\dot{\sigma}}^{\dagger} / d P=(\partial T / a P)_{\lambda} \tag{11}
\end{equation*}
$$

Gee [15] has shown that such an equation is valid for a single ordering parameter which is frozen in the glass. However, since h has been found to vary slightly with temperature and pressure in the glass [16, 17, 18], eq (11) must he revaluated to assefs its validity for the more general case.

Consider the single-valued function $V=V(T, P, h)$ for which, by the usual definitions,

$$
\begin{aligned}
-\kappa & =\left(\partial \ell_{n} V / \partial P\right)_{r} \\
& =\left(\partial \ell_{n} V / \partial P\right)_{T, K}+\left(\partial \ell_{n} V / \partial h\right)_{T, p}(\partial h / \partial P)_{T} \\
\alpha & =(\partial \ell n V / \partial T)_{P} \\
& =(\partial \ell n V / \partial T)_{P, A}+\left(\partial \ell_{n} V / \partial h\right)_{T, P}(\partial h / \partial T)_{P}
\end{aligned}
$$

Since there are three independent variables (in the general case, the derivatives with two fixed arguments [suscripis) are the same for liquid and glass. (Fior the glass it is understomd that these derivatives pertain to constant P^{\prime} and k.) The differences become

$$
\begin{aligned}
-\Delta \kappa & =(\partial \ell h V / \partial h)_{r, F}\left[(\partial h / \partial P)_{T,}-(\partial h / \partial P)_{\tau_{i, h}}\right] \\
\Delta \alpha & =(\partial \ell n V / \partial h)_{r,}\left[(\partial h / \partial T)_{P, h}-(\partial h / \partial T)_{P, \beta}\right]
\end{aligned}
$$

where the subscripls ℓ and g again pertain to liguid and glass. Recalling that $d T / d P=\Delta \kappa / \Delta \alpha$, the ratio of the above equations is

$$
\begin{equation*}
d T_{0}^{1} / d P=(\partial T / \partial P)_{R_{1},} F_{P} / F_{F} \tag{12}
\end{equation*}
$$

where the "freczing fractions" F_{P} and F_{T} are

$$
\begin{align*}
& F_{P}=1-(\partial h / \partial P)_{T_{S}} /(\partial h / \partial P)_{T_{r},} \\
& F_{T}=1-(\partial h / \partial T)_{P S} /(\partial h / \partial T)_{P_{r}} \tag{13}
\end{align*}
$$

as defined in ref. [14]. Note that when $F_{T}=F_{p_{1}}$ eqs (11) and (12) coincide.

Since the variables T, P, and h are continuous at T_{0}^{\prime}, it follows thal

$$
(\partial T / \partial P)_{h, l}=(\partial T / \partial P)_{h, g}=(\partial T / \partial P)_{A}
$$

along this transition line. From particl differential equations, i.e.

$$
\begin{aligned}
(\partial T / \partial P)_{A} & =-(\partial h / \partial P)_{T \Omega} /(\partial h / \partial T)_{P, f} \\
& =-(\partial h / \partial P)_{r, \sigma}(\partial / h / \partial T)_{r, Q} .
\end{aligned}
$$

it follows that

$$
(\partial h / \partial P)_{T, Q} /(\partial h / \partial P)_{T_{, t}}=(\partial h / \partial T)_{P_{0,0}} /(\partial h / \partial T)_{P_{S, h}}
$$

which, as seen from eq (13), is tantamount to $F_{T}=F_{p}$ Accordingly, since eqs (12) and (13) coincide, the validity of eq (12) is extended to a single ondering parameter which need not be "frozen" in the glass.
To our knowledge both of the above freezing fractions have been evaluated for only two systeme, namely poly(vinyl acelute) [16] and selenium [19]. According to the best analysis given in rel. [16], $F_{p}=0.88$ and $F_{\tau}=0.82$ for which the ratio $F_{P} / F_{T}=1.07$, which corresponds to a 7 percent discrepancy in eq (11) for poly(vinyl acetale). A similar conclusion follows for Se . Since the above analysis shows that $F_{T}=F_{P}$, these differences are laken to be artilacis resulting from numerical inaccuracies.

The next step is the evaluation of ($\partial \vec{T} / \partial{ }^{P}$) n st equilibrium. From simultaneous numerical solutions of eqs (9) and (10), values of $h=1-y$ are obtained at a given set of reduced temperalures and pressureg. For cumpulational purposes it is eonvenient to replace $(\sigma T / \partial \bar{P})_{\Lambda}$ by the ratio $-(\partial h / \partial \bar{P})_{\bar{T}} /$ ($\partial h / \partial \bar{T})$ p. Wilh constant increments $\Delta x(x=T$ or $P)$, it is easily shown for a quadratic dependence of y on x that

$$
(d y / d x)_{i}=\left(y_{+1}-y_{t-1}\right) /(2 \Delta x) .
$$

This proceture is used to generale a set of $(\partial h / \partial \tilde{P})_{F}$ and ($\partial h / \partial T)_{p}$ values over the desired range from the sets of quadratic arcs defined by three adjacent points. Using a least squates fil, the approximation

$$
\begin{equation*}
(\partial \bar{T} / \partial \bar{P})_{4}=0.00502+0.198 \bar{T}+31.476 \bar{T}^{2} \tag{14}
\end{equation*}
$$

is found to be accurate within a residual standard deviation of 0.2 percent at atmospheric pressure over the range $0.01 \leq \bar{T}$ 50.04. From eqs (8) and (1I)

$$
\begin{equation*}
d T_{\rho}^{\dagger} / d P=T^{*}(\partial \dot{T} / \partial \dot{P})_{h} / P^{*} . \tag{15}
\end{equation*}
$$

Substituion of eq (15) into eq (5b) gives the desired relation for the densification rate,

$$
\begin{equation*}
\kappa^{\prime}=\Delta \alpha\left[T^{*}(\hat{\partial} \tilde{T} / \hat{P})_{h} / P^{*}-d T_{\rho} / d P\right] . \tag{16}
\end{equation*}
$$

where all quantities are evaluated at $T=T_{\rho}$.
Equation (16) may be rewriten (see for example eq (14) in Ref. [14]) as

$$
\kappa^{\prime}=-\Delta \alpha\left[(\partial T / \partial h)_{P} \times d h / d P\right]
$$

where the total derivative on the right hand side is to be taken along the $T_{r}(P)$ line. Provided the pressure cuefficient of $T_{\text {, }}$ has been determined with sufficient accuracy, there apparenily is no numerical advantage in using eq (16^{\prime}).

It is mentioned in the last section that eq (7) appears to be a good approximation for most polymers. Assuming this relation, we may estimate κ^{λ} from volume-tempereture and heat capacity data using the relation

$$
\begin{equation*}
\kappa^{\prime}=\Delta \alpha\left[T^{*}(\partial \bar{T} / \partial \bar{P})_{h} / P^{*}-T_{s} v \Delta_{\alpha j} \Delta C_{P}\right] . \tag{17}
\end{equation*}
$$

Olabisi and Simha [17] have shown for most polymers studied by them that the scaling factor P^{*} may be determined from the other two by means of the empirical relation

$$
\begin{equation*}
P^{*}=\left(T^{*} / /^{*}\right) \exp \left(1.319-1.493 \times 10^{-4} T^{*}\right) \tag{18}
\end{equation*}
$$

where the dimensions are K, bar, and $\mathrm{cm}^{3} / \mathrm{g}$. Thus it appears feasible to estimste $\boldsymbol{\kappa}^{\prime}$ from appropriate dala at atmospheric pressure only. This possibility is tested later in this paper.

According to Wunderlich [20] it is possible to estimate ΔC_{p} al T_{θ} to within about $\pm 2 \mathrm{~J} /(\mathrm{mol}-\mathrm{K})$ by applying the "rule of constent $\Delta C_{p}{ }_{p}$. The molerulur repeat units are broken up into fundamental units or "beads" which loosen up in the T_{g} process. Each bead is assigned the valur $11.3 \mathrm{~J} /(\mathrm{mol}-\mathrm{K})$. The contributions of the beads to ΔC_{p} are assumed to be additive. Accepting the validity of this rule, it appears possible to obtain a crude estimate of κ^{\prime} from bole theory applied to volume-temperature teresiurements alone.

4. Results

4.1. Data Sources

Although we refer uswally to the original soutces, there are collections of data on the pertinent quantities in the literature, which are sometimes cited here. Extensive lists of polymers and their values of T_{p} appear in refs. [21-23], where the last is restricted to fluorine-conleining syslems. Tables of T_{g} and $\Delta \alpha$ are included in Refs. [24-26], and T_{g} and ΔC_{y} in Refs. [27] and [28). Reference [29], which is occasionally cited here, contains a more critical evaluation of C_{p} data on polymers for which the values on the same substance are often based on averages from different sources over wide ranges of temperature. Lists of polymers and their scaling factors hased on the hole theory appear in Refs. [17] and [30]; however, $P^{* *}$ is not available in the latter. Pyrolysis data on polymers are contained in refs. [31-34]. These are useful to prevent degradation during the densificalion prucess and to oplimize the amount of densification. Finally, ref. [35] gives an extensive list of refractive indices for polymers.

The number of digits for the values given in the subsequent tables is not intended to be an indication of precision or accuracy. Usually these numbers correspond to those given by the data sounces. It is our opinion that most of the entries in these tables have more digits than can be justified as significant.

Table 1 gives the lists of polymers studied, abbreviations used bere, and their valuess of T_{ρ} In all lables the sequence is in order of increasing T_{s}.

Taple I. Lis of poifmers shudied, abbreciations, and glass temperntares

Abbrevialions	Polymer a	T/ (K)
POMSi	Dinethyl silosthe	150
PIB	Enobusylene	202
NR	Nalural Rubber	204
PP	Propylene	244
SBR*	Styrne-buladiene	257
PMA	Methyl acrylate	2882
PrBMA	Thutyl methacrylate	299
PVAc	Vinyl acetale	304
i-PMMA	Lsotatic methel methocrylone	320
PEMA	Ethyl metacrilate	337
PET	Ethylene Ierephlhalate	340
PVC	Vinyl eblaride	349
P4POS	4 -phenoxyalymene	352
P3CS	3-chloroblyrene	363
PS	Syrene	363
a-PHNA	Atatic methyl methacrylate	378
PCHMA	Cycloheryl anethecrylate	380
P4MOS	4 -melhoxy styrene	381
${ }_{P 4}{ }^{\text {cs }}$	4-chlorowyrene	400
PomS	o-methyl styrene	404
Pent	Carbounte of bis(piocrel A)	416
Padis ${ }^{\text {che }}$	α-methyl ayrene (67\% gyodivatic)	448
PaMS (2)	a-melhyl 日lyrene (\$5\% symiotatic)	455

* 55 percenl Syrene.

4.2. Seraling factors

Table 2 gives the sealing factors based on the hole theory of Simha and Somcynsky [10]. These are delemmined through superposition of experimental equilibrium data on each polymer with respect to the theoretical equation of state. In this

Taple 2. Polymen sorting fachors

Polymer	Ref.	$\begin{gathered} T+4 \\ K \end{gathered}$	$\begin{gathered} \bar{V}^{*} \\ c \mathrm{~s}^{*} / \mathrm{g} \end{gathered}$	$\begin{aligned} & \mathrm{p}-1 \\ & \text { belr } \end{aligned}$	P*ealc bay	$\Delta \underset{\$}{\Delta Y^{*}} / P$
PDNEI	36, 30	$78 \mathrm{P3}$	0.9602	3061	9461	87
PDASE	37	7893*	.9602	5061	9461	87
P1B	38, 90^{4}	11220	1.0902	-	7208	-
PIB	37	11220	1.0902^{\prime}	7316	7208	-1.4
NR	39	6344	1.0353	-	8672	-
PP	40	8966	1.1230	8437	76829	-7.2
SBR ${ }^{\text {c }}$	41	9800	0.9828	-	8577	-
P4AA	42, 17	9200	. 7925	-	10990	-
PrBMA	43, 17	9968	. 9299	8456	9402	1]
PVAc	I, 14	9419	.8141	9880	10600	13
PVAt	37	9419*	.8141*	9158	10600	16
i-PhMA	44	11170	. 8160	$100 \% 0$	9659	-4.3
PEMA	45, 301	11540	. 8868	-	8094	-
PET	46	10879	.7406	-	10830	-
PVC	$47^{\text {d }}$, 17	11320	. 7105	10350	10990	6.2
PWC	48	11363	. 7063	9783	11000	12
PS	15	12880	. 9601	6688	7333	11
PS	$47^{4}, 17$	12700	. 9625	7638	7409	-2.9
PS	49	11634	. 9484	788)	80082	26
Ps	50	12680	. 9598	7453	7440	-0.2
a-PMMA	48	11490	. 8220	6987	9403	4.6
a-PMNA	43, 17	11920	. 8370	9147	8984	-1.8
a-PMMA	$47^{6} \cdot 17$	11690	. 8350	9385	9824	-3.0
PCHMA	43, 17	11290	0.8906	8382	8786	4.8
POMS	50	12740	. 9762	7458	7285	-2.3
Pearb	51, 30 ${ }^{\text {a }}$	12130	. 8100	-	9156	-
PoNㅔㅇ (1)	52, 30	12700	. 915	-	7792	-
Pands 12\%	5立, 30°	12790	. 8433	-	8403	\sim

[^2]work the scaling factors are used solely to estimate $d 7 / d P$
$=\Delta K / \Delta \alpha$ for each polymer using eq (15). When two mumbers appear in the reference colurn (in lable 2 only), the first applies to the data source, and the second to the work by which the scaling factors are evaluated. When only one number appears, the scaling factors are either evaluated in the reference given, or by us.

Twu values of P^{*} (or earh polymer (or row) usually appear. The first of these (${ }^{(}{ }^{\circ}$) is detenmined in the usual way through superposition as mentioned above. The second (Ptach) is oblained from eq (18). When volume-temperature data are available st atmospheric pressure only, it is necessary to use eq (18) to estimale P^{*}. With the exception of PDMSi, ${ }^{(4 *}$ and $P_{\text {cule }}$ agree to within 17 percent with an 8 percent relasive standard deviation of differences over 17 pairs. With PDMSi the disparity of 87 percent is outstanding, and it is to be noted that the reduced glass lemperalure lies significantly outside the range for which eq (18) was deduced. Similarly, V^{*} and T^{*} are obtained at considerably higher temperatures than those employed here. A decrease of T^{*} by 7.2 pereent and a concomitant decrease of $V^{* *}$ by 2.4 percent over 100 K has been estimaled [30] for this polymer. Accordingly, the sealing factors cannot be assigned significani constani values over the experimental range.

In order to obtain some measure of the uncertainty in the scaling factors, several data sources on each polymer are somelimes included.

4.3. Densificarion Retes from PVT Date

Table 3 gives the reaulte of calculations of the densification rales from PVT diata without recourse to molecular iheory. K_{1} is determined from the definition:

$$
\kappa_{1}^{\prime}=\left(V_{A}-V_{B}\right) / V_{A} P^{\prime}
$$

which is identical to eq (4) setling $\Delta P=P^{\prime}$, except that V_{A} replaced $V_{0^{*}}$ The difference between the values of κ_{1}^{f} determined from eqs (4) and (4') are insignificant in comparison with experimental uncertainty. κ_{2}^{\prime} is determined from eq (5b). Nole that there are only two polymers, PVAc and PaMS for which we found sufficient information to delermine both κ_{1}^{*} and κ_{2}^{2} Although the two methods are not necessanily fully equivalent because of the assumptions used to derive eqs (5), the agreement in both cases is good. In instances of more than one sel of values per polymer, it is clear that the deviations in $d T T / d P$ have the largest effect on the uncertainty of κ_{2}^{\prime}. These apparent discrepancies are usually consistent with the differences in ΔK. Fith palystyrene the maximum deviplion in $d T, / d P$ is 38 percent compared with those for $d T T_{d} d P, 23$ percent ard $\Delta \alpha, 10$ percent. Sipce κ_{2}^{f} involves the difference between the two transition rates, its maximum deviation is magnified to 56 pervent with its relative standard devialion over the five values being $\mathbf{2 6}$ percent. It is interesting to note that the direct method giving κ_{j}^{\prime} which one might expect to be more reliable, yieldg values for which the maximuth devialion (for pulystyrene) is 86 percent with relative slandard devialiun over seven values being 35 percent. The ratio of average values, $\dot{\kappa}_{2}^{\prime} / \bar{\kappa}_{3}^{\prime}$, is 1.6 . These digcrepancies are a measure of the difficulties in obtaining reliable PVT data on glassy polymers.

In many instances the values of $\Delta \alpha$ a $T_{\text {a }}$ and the required transition rates are not Lahulated in the dula sources and, therefore, had to be evaluated. The sccuracy of these evalua-
lions may be considerably limited when the dala are presented in graphical form only. In ref. [47] the values of $\Delta \kappa$ are determined by a different definition from the one used by us. In our definition κ_{g} is taken to be an isochromal (nonrelaxing) function of temperalure and pressure and therefore must be derived from data at temperatures below (or pressures above) the glass transition region. $\Delta \kappa$ al T_{g} is then obtained by extrapolation. This, apparently, was not dutre by Hellwege et al. [47], at least over the appropriate temperature range for the data to be effectively isochronal. The distinction between the two definitions is clearly illustrated by Boyer [57]. Our larger values of Δk are determined from the Tait parameters given in ref. [53], which apply to the data of Hellwege el al. [47]. Note that the values of $d T_{\mathrm{d}}^{4} / d P$ from reevaluating [53] their data are in good agreemeni with most of the others on the same polymers except for PMMA. This diecrepancy would be increased by using their value of Δk given in ref. [47], along with prarer overall agreernent with the ather two polymers.
[n ref. [1] the transition rates are given as tangent values along the transition lines at each experimental pressure. Here, we use the geceni values $d T_{g} / d P$ and $d T_{0}^{\dagger} / d P$ between 0 and 800 ber, This procedure gives average values and is more consistent with other treatments.
The smpllest value of $\kappa^{\prime}=0.7 \mathrm{Mbar}^{-1}$ in table 3 applies to PnBMA. Such a small value implies that the firsi Ehrenfest equation is a good approximation for this prolymer. [See eqs (5 c) and (6b)].
 data

Polyner	Ref.				$\mathrm{Mbat}^{\mathrm{k}^{x^{2}-1}}$	$\mathrm{Mbat}^{\boldsymbol{N}^{\prime}{ }^{\prime}-1}$
PnBMA	43	1.69	20.4	24.3		0.7
PVAe	1	4.32	21.2	42.4	8. 8	9.2
i-PMMA	44	3.49	21.1	35.2	-	4.9
PVC	47	2.93	13.5	${ }^{35} .{ }^{\text {m }}$		6.4
PVC	48	3.71	14	46	-	12
PVC	2	-			4.4	
P4POS	5	-	-		7.2	
P3CS	5		-		3.8	
PS	15	2.84	31	71	-	11
PS	47	3.05	30.0	$56.4{ }^{3}$		8.1
PS	49	3.15	25.0	49.8	-	7.8
PS	so	2.97	31.6	74.2	-	13
${ }^{\text {P5 }}$	2	-			5.5	
PS	4	-	-	-	10	-
${ }_{\text {PS }}$	6	-	-	-	7.2	-
PS	${ }_{8}^{6}$	-	-	-	4.3 5.6	-
PS	9	-	-	-	9.5	-
PS	54		2	-	4.5	
PS	55	3.12	32	73		${ }^{13.4}$
a-PMNA	48	3.1	18	71	-	15
a-PMMA	47	2.95	23	35.9n	-	3.8
${ }_{\sim}^{\text {a }}$-PMMA	43	2.35	23.6	54.5		7.3
a-PMMA	2		-	-	5.9	-
$\stackrel{\sim}{\text { PCPMMA }}$	54	38			4.9	$\overline{7}$
PGMOS	43 5			59.8	7.1	
P4CS	5		-		9.5	-
Poms	50	2.71	34.2	73.0	-	11
${ }_{\text {Pams }}$	${ }_{5}^{2}$	3.96	39	52	5.1 4.9	5.2

${ }^{*}$ The values of Δ_{x} here are not consistent with those given in Ref. [47]. For distinction, see text andfor Rer. [57].
${ }^{4}$ Taclicity not known to correspond to listinger in talle 1.

4.4. Theoretleal Estimetion of the Transition Rate $d T T_{0} / d P$

As slaterd in section 3 the transition rate $d T_{g}^{\dagger} / d P=\Delta \kappa /$ $\Delta \alpha$ applicable to the constant forrnation history, may be estimated from the value of $(\partial T / \partial P)_{h}$ at T_{c} Table 4 summarizes the results of these c:alculations. In all e:ases except for PDMSi and PIB the dala encompass T_{ρ} With these two polymers the first reference for each applies to the source of data at atmospheric pressure, and the second, at elevated pressures.

Equation (14) and the scaling temperatures and pressures as applied to eq (15) provide the requisite infurmation. The distinction between the values of $\left.(\partial T /)^{a P}\right)_{A}$ in columns A and B is that they correspond to P^{*} and $P_{\text {talc }}^{*}$, respectively, in table 2. Values of $d 7^{\dagger} / d P$ are included for comparison with those of ($\left.\partial T / \mathrm{A}_{\mathrm{P}}\right)_{\mathrm{n}}$ in cases where there is sufficient experizental information.

With natural rubber (NR) $\Delta \kappa$ is determined fram dynamic. compressibility data [60]. This involves the measurement of the adiabatic compressibility in a hydrostatic stress tield alternaling at low audio frequencies. The low- and high frequetcy limiting compressibilitits are converted from adiabatic to isothermal conditions, providing the difference $\Delta \kappa$. The fact thas $\Delta \kappa$ is determined al about 20 K above normal T_{g} is expected to have no appreciable effect.

Except for PDMSi, the corresponding values of ($\bar{\sigma} / \mathrm{C} / \mathrm{P}$) are nearly the seme in columns A and B. The discrepancy for PDMSi is explained by the factors mentioned earlier. (See sec. 4.2.). Excluding this polymer, the relative standard deviation of the differences between corresponding values in these columns is 6 percent, which is considered to be good agreement. For exomparison with experiment, the residual slandard devietion britween cortesponding values of ($\partial T / \partial P)_{\text {a }}$ (column A) and $d T / / d P$ is 18 percent. Poor agreement is noted for PuMBa, and two samples of a-PMMA.

Over a singhe subslance, for example polystyrene where we have four sets of values, the relative standard deviations with respect to the averages for $(\partial T / O P)_{4}$ (column λ) and $d T_{g}^{\dagger} / d P$ are 6 and 15 pereeni, respectively. That for the differences belween corresponding values of these quanlities is 11 percent. Thus, based on these simple statistics, the most serious limitation is not the inadequacy of the theory, but the uncertainty in the experimental determination of $d I_{0}^{\dagger} / d P$. The agreement between values of $d T_{0}^{T} / d P$ from different investigaturs is even worse for a-PMMA.

4.5. Application of Hole Theory

Atter determining the values of ($\partial T / \partial P)_{k}$ fot each sulstance, κ^{\prime} may be estimated by eq (16), where $d T$, $d P$ may be delermined by means of $P V T$ data, dynamic measurements at elevated pressures, or heat capacity and thermal expansion dala, both at atmospheric pressure.

PVT Data

Since PVT measurements are oflen made by the variable formation history only (for example, polypropylene, ref. [40]). there is insufficient information to delermine ΔK, and hence $d T T_{i}^{\prime} / d P$, to be applied to eq (5b). Accordingly, this quantity is replaced by $T^{*}\left(\partial \bar{T}^{F} / \bar{P}\right) \Delta P^{*}{ }^{*}$ leading to eq (16). The results of these estimates are given in table 5 , where κ^{\prime} corresponds
to K^{\prime} ' in 1able 3 . In all eases ($\left.\partial T / X P\right)_{n}$ is taken from column A of table 4. Since the expression for $\boldsymbol{\kappa}^{\prime}$ involves the difference belween two transition rates, its value is very sensitive to (∂T / aP) . This effect is reflected in the large standard deviation, $2.5 \mathrm{Mbar}^{-1}$, with a relative value of 28 percent, for the differences over 14 pairs of cotresponding values of κ_{2}^{\prime} and κ^{\prime} in tables 3 and 5 . The values of PoMS are not included in this calculation because there are insufficient data in ref. [56] to determine the scaling factors apphicable to this particular sample. Based on the fact that the starndard deviation of κ^{\prime} : for polystyrene (table 3) over five values is $2.8 \mathrm{Mbar}^{-1}$ cortespasding to 26 percent, the overall 28 percent value ahove appears to be dominated by experimental uncertainty.

Thble 4. Transition rotes caterdated from hole theary

Polymer	Ref.	$\times \hat{\mathbf{T}}_{\mathbf{1} 0^{B}}$		A		
				$(\partial \mathrm{F} ; \mathrm{aP})_{\mathrm{n}}$ K/khat	K/kber	
PDMSi	36, 37 150	1900	2014	31.4	16.8	-
PIB	37, $3820{ }^{2}$	1800	1878	28.8	29.2	
NR	39204	244.5	2888		27.6	24.
PP	40244	2721	3371	35.8	38.6	-
SBR	41256	2622	3185	-	36.4	
PMA	42.281	3054	4042	$\stackrel{\square}{\square}$	33.8	
PaBMA	43293	2934	3792	44.8	40.3	24.3
PVAc	1 1304	3226	4416	44.3	39.2	42.4
i-PMMA	44320	2865	3653	40.4	42.2	35.2
PEMA	45338	2928	3780	-	50.2	-
PET	46340	3128	42011		42.2	
PVC	471349	3083	4104	44.9	42.3	41
PVC	483949	3071	4075	47.4	42.1	46
Ps	153362	2811	3546	68.9	612.3	71.0
PS	47362	2850	3623	60.2	62.1	56
Ps	49365	31.38	4223	623	60.8	55.5
PS	50365	2879	3681	62.6	62.7	74.2
c-PMMA	49376	3272	4520	57.8	55.2	71
a-PMMA	47378	3179	4312	55.1	56.8	35.9
a.P4MA	43378	3171	4295	56.0	57.0	54.5
PCHMA	43380	3366	4735	63.8	60.8	59.8
PoMS	50) 404	3171	4295	73.4	75.1	73.0
Prabl	51423	3487	3020	-	66.5	-
PoMS ${ }^{\text {a }}$	56440	3465	4967		61.0	52
PaNS (1)	58.448	3528	5118	-	83.4	-
PoMSS (2)	522435	3357	5189	-	86.5	-

${ }^{\wedge}$ T, taken from ref. [58].
${ }^{6} T_{a}$ taken From ref. [59].

- Δx delernined fron dynamic conpressibility data [60] on vulcavized malural rubber with 12 pergent combined sullfur. See texi.
${ }^{4}$ Scaling factors taken the same si for PaMS (1).

Dynamic Data

From the assumption that the value of $d T j d P$, appraximales that of ($\partial T / \partial \mathrm{P})_{0}$, where to is the angular frequency, frequency-temperature-pressure superposition of dynamic data, including dielectric and ultrasonic, may be used to determine $d T T_{p} d P$ appearing in eq (16). The validity of this assumption is, of course, subject to the condition that (∂T / $\left.\partial^{(P)}\right)_{G}$ for the T_{g}-process is essentially independent of frequency. (Numerical comparisons between different experimental trantition rules are mede below.)
The results of these calculations are given in table 6. Since values of ($\partial T /\left(D^{2}\right)_{h}$ in column A of table 4 involve fewer assumptions than those in column B_{+}the former are used where there is a chaice. The standard deviation of the differences of κ^{\prime} over eight pairs, where there are values on the

Table 5. Beteiffication rate caliculasions using PVT dara and hote theory

Polynter	Ref.	$\Delta a \times 10_{\mathbf{K}^{-1}}$		(ariarin Kjlibar	$\kappa^{\prime} \mathrm{Mbar}^{-1}$
PP	40	4.41	20	35.8	7.0
PrBMA	49	1.69	20.4	44.8	4.1
PVAc	1	4.32	21.2	44.3	10
i-PMbA	44	3.49	21.2	40.4	6.7
PVC	47	2.93	13.5	44.9	9.2
PVC	48	3.71	14	47.4	12
PS	15	2.84	31	68.9	$1]$
PS	45	3,05	30.0	68.2	9.2
PS	49	3.15	25.0	62.3	12
PS	50	2.97	31.6	62.6	12
${ }_{\text {c }}$-PMMA	48	3.1	18	57.8	12
a-PMMA	47	2.95	23	55.1	9.5
$\boldsymbol{\pi}$-PMMA	43	2.35	23.6	56	7.6
PCHMA	43	3.38	22.4	63.8	14
POMS	50	2.71	34.2	73.4	11
Pads ${ }^{\text {a }}$	56	3.98	39	H1	17

sarne subslanees in table 3 including κ^{\prime}, for Pcarb, is 2.2 Mhar ${ }^{-1}$ or 30 percent, which is about the same as the experimental urcertainty given above ($2.8 \mathrm{Mbar}^{-1}$ or 26 percent) for polystyrene. This value is also about the same as the 28 percent value gived for the $P V T$ dala even though data on different substances are involved. It is possible, however, that $d T T_{d} d P$ values delermined from dynamic data, in particular dielectric, where high resolution is abtained, are more reliable than $P V T$ values. T_{f} determinations from $P V T$ data usually involve extrapolations which are not used in the superposition of dynamic: dala.

Heat Capacity and Thermal Expansion

The estimation of κ^{\prime} from heat capacity and thermal expansion date is based on the apparent validity of the second Ehrenfest equation [eq (7)], This relation is lested in the next section.) The results of the calculalions based on eq (17) are summarized in table 7. In this case the stalistics may not be meaningful because there are only five values of κ^{\prime} which correspond to those in table 3 including κ_{1} for Pcart. P α MS is excluded for the reason given above. The standard deviation of the differences is $1.4 \mathrm{Mbar}^{-1}$ or 17 percent, which is somewhal less than the experimental uncertainty (26 percent) based on polysylrene dala (table 3). In view of the high experimental uncertainty for all methods, this method of estimating κ^{\prime} appears to be reliable, except for PDMSi and PaMS.

In ref. [12] a negative value of $\boldsymbol{\kappa}^{\prime}$ for PDMSi [based on eq (17)) is reported. This is a surprising, but not necessarily an inteorrect result. The analysis of this polymer is hindered by the lack of good thermal expansion data through T_{p}, largely a consequence of the low temperatures required, and the strong tendency for this polymer to crystallize. The negative value of κ^{\prime} is oblained by using the value of $\Delta \alpha=10.28 \mathrm{~K}^{-1}$ from table 1 of ref. [26]. This value is based on the linear thermal expansion data of Weir, Leser, and Wood [58]. After a thorough examination of their results and consultation with Dr. Wood, it was decided that the temperature range for which $V \alpha_{1}$ was evaluated is too small and too remote from T_{s} to evaluate $\Delta \alpha$ at T_{σ} In order to oblain what we consider to be the best available estimate of $\Delta \alpha$, we used the value of $V_{\alpha_{0}}=2.7 \times 10^{-1} \mathrm{~cm}^{3} /(\mathrm{g}-\mathrm{K})$ from ref. [58], and $\alpha_{i}=8.7 \times$ $10^{-4} \mathrm{~K}^{-1}$ and $V_{\rho}=0.904 \mathrm{~cm}^{3} / \mathrm{g}$ from the densily-temperature

Table 6. Densffication rate calculations from dynamic date at etevoled presures and hate theory

Polymer	Ref.	$\mathbf{A} \alpha \times \times 10^{4} \mathrm{~K}^{-1}$	[$\mathrm{IF} / \mathrm{OP}$ in K/kbar	Bri.	Methed		\boldsymbol{N}^{\prime} UAbar ${ }^{-1}$
PTB	37, 38, 59	4.2	28.8	61	v	25	1.6
NR	39	5.40	27.6	60	C	24	1.9
PHA	42	3.7	33.8	62	D	18	5.8
POBMA	43	1.69	40.3	63	D	16.7	4.0
PVAc	1	4.32	39.2	13	D	22	7.4
PVAc*	I	4.32	39.2	64	C	20	8.3
PEMA	45	2.95	50.2	6.5	D	20	8.9
PVC	47	2,93	44.9	$6{ }_{6}$	D	18	7.9
PVC	47	2.93	44.9	67	S	16.5	8.3
PS	50	2.97	62.6	68	D	32	9.1
C-PMMA	43	2.45	56.0	67	S	24.5	7.4
Peart	51	2.81	66.5	13	D	44	6.3

all quantities derived for same sample.
$\begin{array}{ll}\text { U } & \text { Ulluraunic } \\ \text { D } & \text { Dielectric } \\ \text { C } & \text { Dynnmic Compressibility } \\ \text { S } & \text { Dynanic Shesar }\end{array}$

Thele 7. Densification rate caleulations fron thermat expansion and heat copecily dala and hule rhenry

Podymer	Ref.	$T_{\text {e }} \mathbf{K}$	$\mathrm{V}_{\mathrm{f}} \mathrm{cm}^{\mathbf{7} / \mathrm{f}}$	$\Delta x \times 10^{4} \mathrm{~K}^{-1}$		Ref.	$\Delta C, N(t) K$		$x^{\prime} \mathrm{Mbar}^{-1}$
PDMS ${ }^{\text {d }}$	58, 30	150	0.904	6.0	31.4	27	0.30	27.0	2.6
P18	59	202	1.072	4.2	28.8	69	. 377	24.1	2.0
NR	39	204	1.023	5.40	27.6	70	. 455	24.8	1.5
PFF	40	244	L. 127	4.41	35.8	71	. 51	23.8	5.3
SBR ${ }^{4}$	41	256	0.987	3.92	36.4	72	. 456	21.7	5.8
PVAce	1	304	. $\mathrm{B4} 3$	4.32	44.3	16	. 50	22.1	9.6
PVC	47	349	. 729	2.98	44.9	29	. 34	21.9	6.7
PS	50	365	. 976	2.97	62.6	291	. 308	28.8	10
a-PMMA	43	374	. 8664	2.35	36.0	29^{\prime}	. 33	23.3	7.7
Pcarb	51	423	-854	2.81	66.5	73	. 22	46.1	5.7
Pams ${ }^{\text {r }}$	56	440	.938	3.68	81.0	56	. 32	52.4	11

${ }^{6}$ Partially eryandline nample.
r All quandities derived from the samue sample.

r. Mewureneolu by J. J. Werks reporied in Ref. 16 .
'Average uver differem wources.
equation of Shih and Flory [36] Although this equation is derived from date al temperalures well above T_{o} its nearly linear response apparently allows valid extrapolation to much lower temperatures. The value $V_{\mathrm{g}} \alpha_{i}=7.9 \times 10^{-4} \mathrm{~cm}^{3} /(\mathrm{g}-\mathrm{K})$ is slightly leas than the average, 8.7×10^{-4}, of the others for this polymer in lable 1 of ref. [26] which are obtained from different sources of data at higher temperatures not encompassing T_{σ} Also the extrapolaled value of $V_{0}=0.904 \mathrm{~cm}^{3} / \mathrm{g}$ above essentially coincides with 0.905 in ref. [26]. The revised ithermal expansion values give the positive value of κ^{\prime} shown in table 7.

4.6. Comparison of Experimantal Transtition Rates

In tables 6 and 7 the assumptions that $d T_{g} / d P$ could be replaced by $\left(\partial T / \partial P_{)_{a}}\right.$ or $T V \Delta \alpha / \Delta C_{p}$, respectively, are employed. In iable 8 values of these quantities are compared for each polymer. A similar table was prepared by O'Reilly [13] in 1962 for glass-forming hquids not restricted to polymers. V alues of $\Delta x / \Delta \alpha$ are also included here for comparison; however, Agreement with $d T T_{d} d P$ is not expected since the validity of the inequality

$$
d T_{g} / d P<\Delta \kappa / \Delta \alpha
$$

appears to be quite strong and general. In most instances, agreement between $d T_{d} d P$, $\left(\partial T / \partial Q_{\text {en }}\right.$ and $T V_{\alpha} / \Delta C_{P}$ seems io

Tabie 8. Conparison of experimentat transition rates ${ }^{2}$

Polymer	PVT			Dyramie		Thumal	
	Ref.	$d_{\text {dred }}{ }^{\text {d }}$	$\Delta x j t a n$	Ref.	(ar) ${ }^{\text {a }}$	Rel.	TVAatACF
PIB				6	25	59, 69	24.1
NR	39,60		26°	60	24	39, 70	24.8
PP	40	20				40, 71	23.8
PVAcc ${ }^{\text {c }}$	1	21.2	48.2	64	22	1. $16^{\text {d }}$	22.1
PVC	47	13.5	33.5	© 6	18	47, 29	21.9
PVC	48	14	46	67	16.5	48, 29	28.6
PS	50	31.6	74.2	68	32	50,29	28.8
Pr	9	31					30.5
Ps	55	32	73			65	34
a-PMMA	44	23.6	34.5	67	24.5	43, 29	23.3
a-PMMst ${ }^{\text {e }}$	-	22				519	32
Pemh				13	44	51,73	46.1
PaMS	36	39	52			56	52

* $A \|$ units in K.jkbar.
$\bullet \Delta x=1.2 \times 10^{-3}$ barr $^{-1}$ determined frem dynamic compressibility.
- All given deterninations on same sarnple.
- Mcsuremenes by J. J. Wecke reporied in Rel. [16].
be within experimental error. Small differences may be anticipated because the conditions under which these quantilics gre evaluated may be vastly different.

According to these results the Prigogine-Defay ratio

$$
r=\Delta \kappa \Delta C_{P} /\left[T V(\Delta \alpha)^{2}\right]
$$

is essentially unity for natural rubber and PaMS. Unfortunately, we do not have a $P V T$ value of $d T_{p} d P$ for the former to test the validity of the Ehrenfest equations [eqs (6) and (7)] With PoMS it would appear that although neither of the Ehrenfest equations is obeyed, the Prigogine-Defay ratio is still unily ${ }_{+}$which is an alypical resuli. This implies that $d T\rangle / d P$ for volume and entropy are equal, but $d T d d P$ is dislinet. However, since data in tabular, or even graphical form, are nol included in ref. [56], evaluation af these numbers cannol be scrutinized. Poor agreement for PVC in all cases is spparent; however, this may be a resull of sample differences including the degree of crystallinity which is ditficult to control in this pulymer. Also poor agreement is noted for a-PMMA of ref. [9], where both quantities are obtained from the same sample. On the other hand, the data in the row above on the same polymer reveal good agreement including that with $d T T_{d} d P(P V T)$ of ref. [9] In all cases agreement is very good for polyslyrene.

These results indicate that $d T_{\alpha} d P=\left(\partial T / \partial^{P}\right)_{w}$ is a valid relation and $d T_{\mathrm{d}} d P P=T V \Delta \mathrm{cof}_{j} \Delta C P$ seems to hold most of the time. The validity of the first may be argued on a quelitative pheromenological basis (see sec. 2.) The serond relalimen is evaluated at stmospheric pressure only. There is no apparent reason to assume that the approximation will be as good at elevated pressures.

In zection 4.3 we mentioned that $P V T$ data on PnBMA sugesest that the first Ehrenfest equation [eq (6 b)] is a goond appraximation for this polymer. This result is Lantamoum to essentially no densification. (See table 3.) Dinfortunately, we have no heat capacity values for this polymer, which are needed to check the second Ehrenfest equation [eq (7)]. In section 3 we noled the pessibility of using the "rule of constant ΔC_{p} " [20] 10 estimate the heat capacity difference al T_{s} (For a comparison of experimental and "bead" values of ΔC_{P} on polymers, see ref. [28].) For PnBMA the molecular weight of the polymeric repeat unit is $142.2 \mathrm{~g} / \mathrm{mol}$. Assigning one bead to each of the two carton backbones, and one to the oxygen atom, we obtain a total of three beads, which for 11.3 $\mathrm{J} /\left(\mathrm{mol}-\mathrm{K}\right.$-bead) gives $\Delta C_{P}=0.24 \mathrm{~J} /(\mathrm{g}-\mathrm{K})$. Taking this value along with those for $\Delta \alpha$ and T, from lables 3 and 4 , respeetively, and $V_{p}=0.946 \mathrm{~cm}^{3} / \mathrm{g}$ from ref. [43], we obtain $T V \Delta \alpha f$ $\Delta C_{p}=20 \mathrm{~K} / \mathrm{kbar}$, which is in good agreement with 20.4 in lable 3. Thus both of the Ehrenfest equations appear to be fairly good approximations for this polymer, along with a corresponding Prigogine-Defay ratio of nearly unity. (The value 1.2 is obtained for PnMBA. The average value obtained from table 8, exclusive of NR and PoMS, which were treated separately, is 2.1.) These results imply that both the density and entropy of PnBMA are essentially independent of formation pressure, at least at low presbures.

4.7. Prescure Dependense of κ^{\prime} and Limitations Imposed by Chemiecal Instrability

The previous discussions in this paper pertain to the initial values of κ^{\prime} or at leass at very low fommation preessures. Most of these are either tangent values at $P^{\prime}=0$ (simospheric pressure) or secant values obtained from $P^{\prime}=1$ kbar or less. There are data in the literature, however, which include densifications oblained at different formation pressures.
There are two important physical considerations in optionizing the procedure to oblain "permanent." densified glasses. The first and more obvious, is to select and maintain the temperature of depressurization at temperatures auffieiently
below T_{p} It is elear that the ambient conditions must be sueh as to muintuin structural relaxation limes which are large in companison to the desired "lifetime" of the glass. Accondingly, high T_{g} substances are preferable for room temperature stabiitit. The second is to choose T_{0}, the temperature of isothermal pressurization, large enough that the equilibrium melt is always maintained during pressurization. Stated alternalively, the inequality

$$
\begin{equation*}
T_{0}>\gamma_{\theta}\left(P^{\prime}\right) \tag{19}
\end{equation*}
$$

must be approximately satisfied, as illustrated in figure 1 . This condition implies that the effective time of the pressurizalion procets must be large in comparison to the sinuctural relaxation time at the final pressure P^{\prime}. In cases where $T_{0}<$ $T_{p}\left(P^{\prime}\right)$ there will be a much smaller contribution to the densification process when the condition $T_{0}=T_{g}(P)$ is approximated and exceeded during pressurization. This situaliun is revealed by a leveling of in the volume as illustrated schematically in figute 4, where volume changes are ploted wilh respect to formation pressure al different pressurization temperalures. The derisification is expected to be independent of T_{0} al low pressures, when ineq (19) is satisfied, as is revealed by the coalencence of these curves with decreasing P^{\prime}. Such a coalescence is not expected, however, when $T_{0}<$ T_{g}^{\prime} as is illustrated by the data of Shishkin [54] on polystyrerue. In figure 4 the dashed line represents the exiension of the envelope estahlished from arbitratily large values of T_{0}.

Ficuri 1. Mupurption af the influence of the pressurixption tempernture T_{9} on the densificaliona process.

One of the betler experimental examples which illustrates the behsvior shown in figure 4 is provided by the data of Shishkin on PMMA and PS. Formation pressures up to four kbar are applied; but nol all of the pressurization temperalures are above $T_{d}\left(P^{\prime}\right)$. At ine lower pressures, κ^{\prime} increases with P^{\prime} is indieated by the increasing slopes of Shishkin's volurne-formation pressure curves, and as ís shown in fagure
4. This is the opposite of the trend for the isothermal compressibility κ, which decreases with increasing pressure (see for example refs. [12] and [74]). The data of Shishkin, as well as those of Kimmel and Uhlmann [75] on PMMA, show that some densification is poesible with pressurization temperatures below T_{g} but the efiect is diminished as the difference between these two temperatures is increased. Other examples illustrating the dependense of densification on formation pressure are refis. [6], [9] and [55] on polystyrene, atd [56]on PoMS. Youttee and Cooper [6] observe a very slight decrease in the densification rate with formation pressure for polystyrene over a 6 kbar range. For the same polymer, Weitz and Wunderlish [9] Cind a murh larger dependence with the same trend, where the density gradually becomes nearly constant at 4 kbar . These trends are contrary to the marked increase in the densification rate with fonnation pressure observed by Shishkin on PS and PMMA and Ichihara et al. [56] on PoMS. κ^{\prime} dues not necessarily have to tend to zero for the volume to be non-negative at large formation pressures. Using our definition of κ^{\prime}, the densified volume tends to zero at arbitrarily large formation pressures when \boldsymbol{K}^{\prime} is a positive constant.

According to the experiments of Weitz and Wunderlich on polystyrene, there is a monotonic increase in density at a decreasing rate which the densiry seems to level off at 4 kbar. Thus, beyond this point the formation pressure would have no effect on the densification process. On the other hath, with most of the other investigations mentioned above, including those on polystyrene, it would sppear that chemical stability is the limiting factor. Whether the reaction rate constant of a given rate process increases or decreases with pressure depends upon the sign of its corresponding activation volume [76]. In most calses it is expected that the tolul uetivation volume will be positive with a corresponding increase in the effective decomposition temperature with increasing pressure. This behavior may be complicated, however, by the different temperature and pressure dependencies of the varjous decomposition modes, and, pussibly by the initiation of new ones al elevated prexsures.
The important consideration here is whether, or not, the decomposition temperature and $T_{\text {, -pressure c curves come }}$ sufficiently close at any point to limit the densification process. For example, with polytelraflunroethylene the increase of decomposition temperature with pressure is only atiout $3.5 \mathrm{~K} /$ kbar [77]. Although this rate is small, the decomposition temperature is sufficiently remote from the observed phase transitions, since its initial (aimospheric pressure) value is about $700^{\circ} \mathrm{C}$. In addition, the meling and decomposition curves diverge with increasing pressure over the experimental range of 28 kbar , investigated 9 fl far.

In cases where the decomposition temperature T_{d} increases with pressure, T_{0} should also be allowed to inerease with pressure to optimize the densification. With polytelrafluoroethylene this process would appear to continue without bound because of the ohserved divergence mentioned above. In instances where T_{d} and T_{s} converge or intersect at a finite pressure, the densification would bee essentially limited by the effective intersection temperature as illusirated in figure 5. Except for the polymer mentioned above, pressure dependent pyrolysis data are apparently non-existent in the iterature ${ }^{\text {a }}$.
The results in table 9 summarize an allempt to estimate the optimum densification on a few polymers beyond which thermal decomposition would occur. In the absence of reliable pyrolysis data at elevated pressures, we will estimate optimum densification by commencing isothemal pressurization at $T_{0}=T_{g}$. Since in must casest T_{d} is expertled to increase with pressure, this procedure should underestimate the maximum densification as illustrated by the lower value of P^{\prime} max obtained by the dashed line path in figure 5.

[^3]

Fievie 5. Schenvatic ittastration of temperatureparessure history used to optimize the densification proms befove the ontat of pyrolysie.

Table 9. Estimestion of ancrivewn densifiration fram pyratysis dorta

Polymer	Ref.	aH klimol	$\boldsymbol{T} \mathbf{X}$	$k(T)$ \%/min	$T_{d} \mathrm{~K}$	$T_{g} \mathrm{~K}$	$d T T_{2} d P$ K/kbat	$P^{\prime \prime}{ }_{\text {max }}$ kbar	κ^{\prime} Mbar $^{-1}$	$-\left(\frac{\Delta V}{\boldsymbol{y}}\right)_{\text {max }}$
P18	79	218	593	0. 268	558	202	25	14	L. 6	2
PP	79	255	623	. 069	006	244	20	18	7.0	13
PMA	80	155	558	. 270	515	282	18	13	5.8	8
PVAc	81,82	112	497	5.58	$409{ }^{3}$	304	21.2	5	9.3	5
PVC	83	126	508	0.43	438	349	13.5	8	6.4	5
FS	80	218	608	. 163	577	363	30.0	7	8.1	6
a.PMMA	80	230	583	. 250	552	378	23.6	7	7.3	5
PaMS	80	248	546	. 276	519	448	39	2	4.9	1

[^4]In table $9 T_{d}$ is taken ashitrarily at the value for which the initial reaction rate constanı $k=1 \% / h r$, applicable to the tolal degredation process. Assuming Arrhenius behavior T_{d} may be calculated from the relation

$$
1 / T_{d}=1 / T-(R / \Delta H) C_{n}[(1 / 60) / k(T)]
$$

where $R=8.314 \mathrm{~J}($ (mol-K) and ΔH is the activation energy. T is ariitrariy chosen from the closest data point to T_{d} which in all eases, but one (PVAc), involves extrapolation. Theice decomposition lemperaures correspond to those given in table 7 of ref. [34], except the latter epparently apply to $k=1$ percent/finin and, accordingly, are larger. The ceiling temperatures in the same table, which apply to the propagation mode at equilibrium, are apparenily not relevant to the densification procest. $T_{0} d T_{p} / d P_{p}$, and κ ' are selected from previous tables in this paper, P^{\prime} mux, the pressure corresponding to the onset of pyrolysis a1 $T_{4}=T_{d}$ and $-(\Delta V /$ $V_{\text {max }}$ the corresponding maximum densification, are obtained from the simple relations

$$
\begin{aligned}
P_{\text {max }}^{\prime} & =\left[T_{d}-T_{\theta}(0)\right] /\left(d T_{\theta} / d P\right) \\
-(\Delta V / V)_{\text {max }} & =\kappa^{\prime} \times P_{\max }^{\prime}
\end{aligned}
$$

From these results it appears that P^{*} max varies inversely with $T_{;} ;$however, no trend is appatent for $(\Delta V / V)_{\text {max }}$ -

4.8. Dependence of Refructive Imelex on Densifloation

A reliable estimate of the change of refractive index on densificalion should be obtained by means of the LorentzLorenz equation,

$$
\begin{equation*}
\left(n^{2}-1\right) /\left(n^{2}+2\right)=K \rho \tag{20}
\end{equation*}
$$

where π is the index of refraction and ρ the density. K depends upon the polarizability, which is expected to be essentially independent of fommation pressure, or alternatively, the density at constant temperature and pressure. The relative shange of index of tefraction with formation pressure,

$$
\delta^{f}=(1 / \pi)(\partial n / \partial P)_{\mathrm{r}, P},
$$

is obtained explicitly by differentiation of eq (20), viz,

$$
\begin{equation*}
\delta^{\prime}=\left(1 / 6 n^{2}\right)\left(n^{2}-1\right)\left(n^{2}+2\right) \kappa^{2} . \tag{21}
\end{equation*}
$$

Table 10 presents the resulis for polymers for which values $\mathrm{far}_{\mathrm{n}} \mathrm{n}_{\mathrm{D}}$ (sodium D line) are available from rec. [35] with $\boldsymbol{\kappa}^{\prime}$ selecled from our tables. The no values are converted to those at T_{σ} by means of the temperature coeffirients given in ref. [84]. As seen from the table, these corrections are insignificant. Since all of these values renge between 1.48 and 1.58 , a very slight (10 percent) error will be incorporated in δ^{\prime} by taking the function $f(n)=\left(1 / 6 n^{2}\right)\left(n^{2}-1\right)\left(n^{2}+2\right)$ as a constant, as revealed by the table. Accordingly, in view of the large experimental uncertainties in κ^{\prime} (35 percent for polystyrene), the additional uncertainlies obtained on replacing eq (21) by the approximation

$$
\delta^{\prime}=0.4 \kappa^{\prime}
$$

are slight. The values of δ^{\prime} in the table however, are ediculated from eq (21). We do not have any direct experimental data giving the dependence of the index of refraction on formation pressure.

Tares 10. Estimation of change in refractive index fram densification rate

Polymer	$T_{F}{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{Nn}\left(\gamma^{\prime}\right)^{\prime} \\ & (\mathrm{C}) \end{aligned}$	${ }_{\substack{\sigma_{0} \\ \mathrm{C}^{-1} \\ \mathrm{l}^{-1}}}$	${ }^{5} 51 T_{0}{ }^{\text {d }}$	ffnod	$\text { Mbar }^{\prime \prime}$	$\mathrm{MBar}^{-\quad \text { - }}$
PIB	-71	1.51*	-0.0003	1.54	0.42 s	1.6	0.7
NR	-69	1.52(25)	-0,00037	1.55	. 428	1.9	. 8
PP	-29	$1.4 y^{\circ}$	$\left.{ }^{6}\right)$	1.51	. 400	4.1	1.6
SBR	-16	1.538	0	1.54	. 421	5.8	2.4
PMA	9	1.47420)	(c)	1.47	. 373	5.8	2.2
PnBMA	20	1.48(25)	(4)	1.48	. 380	0.7	0.3
PVAc	31	1. 48 (20)	-0.0001	1.48	. 380	9.1	3.5
FEMA	64	1.48(25)	c)	1.48	. 380	8.9	3.5
PVC	76	1.55	(*)	1.54	. 421	7.6	3.2
Ps	90	1.59*	-0.00013	1.58	. 449	8.2	3.7
c-PMMA	105	1.494(20)	-0,60012	1.48	. 389	7.4	2.8
PCHMA	167	$1.51(20)$	-0.00013	1.50	. 394	12.6	5.0
Pcat	143	$1.58{ }^{\text {c }}$	(")	1.57	. 442	5.1	2.3
- Taken Prom Ref. [35] - Takest from Ref. 184f. e Temperature taken and $25^{5} \mathrm{C}$.							

These evaluations have potential application in optimization or adjustment of the refractive indices of plastic lenses by appropriately seluing the molding pressure. The values in the last column in table 10 give the relative percent changes ($\Delta n / n$) resulting from a moding pressure of 10 kbar . For PS and PMMA, which are common constituents for plastic lenses, n would change by 4 and 3 percent, reapectively. However, it was estimated in the last section thal thermal decomposition of these polymers would limit the pressurizaLion to 7 and 8 kbar , respectively. In these analyses isuthermal pressurization is considered at the decomposition tempersature. If this temperature increases with pressure as indicated by ref. [78] for PS and PMMA, an additional increase in their refractive indices could be obtained by appropriately increasing the temperature during preissurization.

5. Conclusion

Several methods have been evaluated to estimate the densification rate, $\boldsymbol{\kappa}^{\prime}$, applicuble to glase formation by isobaric cooling at constant rate. Other than the direct measurement of the volurne difference in the glass, κ^{\prime} is always computed from an expression involving the difference between tho transition rates, $d T_{g} / d P$ and $d T_{g}^{\dagger} / d P$. The hole theory is shown tu be sufficiently accurate in estimating $d T_{d}^{T} / d P$ for the 23 polymers evalualed except for possibly those of dimethyl siloxane and α-methyl styrene. With these it is not clear whether the discrepancies result from experimental error or lack of generatity in the application of the theory. Although $d T_{s} / d P$ is only evaluated experimentally, there are independent alternatives. The simplest of these involves the differences between thermal expansions and heat capacities at $T_{\text {g }}$ for liquid and glass at atmospheric pressure only.

The principal problem in the estimation of densification using these procedutes appears to be the large amount of experimental uncertainty in all of the relevant quantities, in paricular, the compressibility. Since the expression for κ^{\prime} involves the difference between two quantities of similar
magnitude, even small experimental errors may have a pronounced effect. Accordingly, it is difficult to assess the relative merits of the different methods employed here, including the application of the hole theory.

The resultic of these analyses appear to have practical applications. Densifying glasses produces a hardening effecl as revealed by an increase in moduli. However, these effects do not uppear to be en pronounced, in particular viscosity or relaxation time, as those obtained at the same volume, temperature, and pressure in the glass by commensurately drcreasing the cooling rate at atmospheric pressure. This procedute however is usually nol practical because of the large limes required for glass formation. According to one investigation it is possible to optimize the ultimate properines through the appropriate adjustment of the formation or molding pressute. More work is necessary to estahlish the generality of this resull and to delemine the fommation pressures for maximum yield stress. Moreover, the relation between the refractive index and densification quantity presented could be used to quantitatively regulule the refractive index of lenses through apprupriale edjusiment of the molding pressure. The maximum value would appear to be limited by chemical instability at the high temperatures necessary to exceed $T_{\mathrm{g}}(P)_{\text {, }}$ which increases with pressure. The simple relation given does not include the influence of densification on oplical dispersion. Again, experimental work is required to assess the validity of our estimstes and the possible influence of densification on dispersion.

This work was supported in part by the National Science Foundation under Grant DMR 75-15401.

6. Appendix

As indicated earlier, eqs (5) in the text involve a linearization of pertinem quantities and proximity to the transition line $T_{g}(P)$ in figure 3. The experimental data found in the literature often do not satisfy these conditions. Hence we reconsider here the processes depicted in figure 3, by replacing the simplifications adopted earlier by the mure general form. This will not only permit the predietion of densification effects under more extreme conditions, but alko ullow us to gage the quantitative validity of the linesrization. Clearly, a knowledge of the equations of state is required for an explicit evaluation, but is certainly not available for the wide range of systems discussed here. However we shall be able to present lypical numerical illustrations using PVAc where appropriate data exist [1, 14].

From the definitions of the coefficients α and κ it follows that:

$$
V / V_{0}=\exp \left[\int_{T_{0}}^{T} \alpha d T\right] ; \mathrm{V} / V_{\mathrm{t}}=\exp \left[-\int_{P_{0}}^{P} \kappa d P\right]
$$

where the subscript indicates an initial value. However, it will be accurate enough to omil second and higher powers in the expansions of the exponentiels. Considering an sverage, temperature independent value for the liquid. $(\alpha)=8 \times$ $10^{-4} \mathrm{~K}^{-1}$, and a ternperature interval of 100 degrees, we obtain for the integral a value of 8×10^{-2}. Thus the quadratic term chenges the tolal resuli by 0.34 percent. The
values were chosen so as to magnify the effect. For the glass, the approximation will be even more axlequale. With s pressure difference of 2 kbar and $(\kappa)=4 \times 10^{-3} \mathrm{bar}^{-1}$, the magnitude of the relative volume change is the same and identical conclusions are obtained as for the α-lerm.

Denoting the initial temperature in the melt as T_{0} and the final temperature in the glans as $T_{\text {s s }}$ with the initial pressure taken as zero, we obtain instead of eq (3), when the pressure dependence of the α^{\prime} s and the lemperature dependence of the κ^{\prime} 's are taken inlo account, the following expression:

$$
\begin{align*}
& \left(V_{A}-V_{B}\right) / V_{0}=\int_{0}^{P^{p}}\left[\kappa_{A}\left(T_{0,} P\right)-\kappa_{g, k}\left(T_{F}, P\right)\right] d P \\
& -\int_{\tau_{p}\left(P^{\prime}\right)}^{\left.T_{\mu}\right)}\left[\alpha_{l}(T, 0)-\alpha_{\omega_{r r}(}\left(T_{+} \rho^{\nu}\right)\right] d T+\int_{\tau_{\rho}\left(P^{v}\right)}^{\gamma_{\varphi}}\left[\alpha_{1}\left(T, P^{r}\right)\right. \\
& \left.-\alpha_{k}(T, 0)\right] d T-\int_{T_{t}}^{T_{\omega}}\left[\alpha_{g, \Delta}(T, 0)-\alpha_{\sigma_{s}}\left(T, P^{r}\right)\right] d T \tag{A-1}
\end{align*}
$$

where the subscripts b and c pertain to the low and high pressure glazses respectively. This choice conforms with the nomenclalure used in refs. [1] and [14]. In the linearized derivation, α and κ for both liquid and glass are tuken to be constants. Accordingly, there is no distinction between the values of $\alpha_{a, s}$ and $\alpha_{0, x}$, and, similarly, $\kappa_{g, b}$ and $\kappa_{g, c}$.

To proceed further, we make use of an explicit equation of state. It is most convenient to employ the exlensively tested Tait relations for both melt and glass. To recapitulate the pertinent equation (14), [50]:

$$
\kappa(P, T)=C\left\{[P+B] \times[1-C \ln (1+P / B]\}^{-1}\right.
$$

where

$$
B(T)=a \exp (-b T)
$$

and

$$
\begin{equation*}
\alpha\left(T_{+} P\right)-\alpha(T, 0)=P \kappa(T, P) d \ell n B / d T=-b P_{\kappa} . \tag{A-2}
\end{equation*}
$$

The last transforms eq (A-1) into

$$
\begin{aligned}
& \left(V_{A}-V_{B}\right) / V_{0}=\int_{0}^{\rho r}\left[\kappa_{i}\left(T_{0}, P\right)-\kappa_{g, c}\left(T_{f}, P\right)\right] d P
\end{aligned}
$$

where the first two terms will predominate.
We now proceed to evaluate the integrals in eq (A-3) which are inentified as follows:

where the terms to the right of the arrows are the corresponding linear approximations used in eqe (5) in the text.

Since $C=0.0894$, the compressibility may be written in good approximation, and consistent with the expansion of the exponentials above, as $C /(\beta+P)$. Thus we find for J_{1},

$$
I_{1}=C C_{n}\left(\frac{1+P^{\prime} / B_{t}\left(T_{0}\right)}{1+P^{\prime} / B_{g_{x}}\left(T_{f}\right)}\right)
$$

I_{2} and l_{2} are evalualed by expressing the atmospheric pressure volume as $V_{0}=A_{0}+B_{0} T+C_{0}{ }^{2}$ for which $\alpha=\left(B_{0}+\right.$ $\left.2 C_{0} T\right)_{\text {av }}$ is a good approximation. $V_{a v}$ is taken as the average of the two bounds. Finally the general integral corresponeling to I_{4} and I_{3} is
$\int \kappa(T, P) d T=(C / P)\{T$

$$
\left.+(1 / b) \ell_{n}[P+a \exp (-b T)]\right\}+f(P)
$$

Using the parameters for PVAe given in tables 1 and 2 of ref. [14], the values of the integrals and their linearized counterparts are summarized in tahle A-1. From ref. [1] $T_{s}(0)$ $=30.7^{\circ} \mathrm{C}$ and $T_{s}\left(P^{\prime}\right)=48.0^{\circ} \mathrm{C} . T_{0}$ and T_{f} are laken to be 90 and $0^{\circ} \mathrm{C}$. These two temperatures are considered to be sufficiently remote from $T_{\partial}(P)$, to be characteristic of the equilibriurn and glassy states, respectively. The foral relative volurne differences are given at the butlom of the able followed by the correspending densificalion rales. The difference between the two walves of \boldsymbol{K}^{\prime} amounts to aboul 4 percent, which is quite salisfactory, since the experimental emor on this quantity sppeatis to be considerably larger. This good agreement seen in table A-1 arises however from a cancellation of approximation errors. Moreover, it is grelifying, that the value $\boldsymbol{x}^{\prime}=8.8 \mathrm{Mbar}^{-1}$, based on the Tait equation is essentially identical to that obtained by directly measuring the volume difference. (See kec. 4.3.) This illus1rates the satisfactory performance of the analytical expreasions in representing the experimental data.

Table A-1. Vatwes of integrals in eqs (A-4)

i	Inteyral Value, I_{1}	Linear Caunterpait
1	2.042×10^{-2}	1.465×10^{-1}
2	-0.649×10^{-2}	-0.733×10^{-2}
3	0.106×10^{-1}	0
4	-0.552×10^{-2}	0
5	-0.242×10^{-2}	0
$\begin{aligned} & \left.\hline V_{A}-V_{s}\right) V_{o} \\ & N^{\prime}\left(\text { Mbar }^{-1}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.205 \times 10^{-2} \\ & 8.8 \end{aligned}$	$\begin{aligned} & 0.732 \times 10^{-2} \\ & 9.2 \end{aligned}$

7. Refereices

[1] McKinney, J. E., and Goldatein, M.. J. Rea. Nal. Bur. Sand. (J.5.). 7BA IFtye and Chem. i, No. 3, $331-363$ (Nry-Jume 1974).
[2] Bree, H. Wi., Heijboer, J., Sruik, LL C. E., and Tak+ A. G. M., J. Polyra. Eci. Palymi Phys. Ed., 12, 1857 \{1974).
[3] Kuvecs, A. J. Strallog, R. A., and Ferry, J. D., J. Pbys. Chem. 67, 152 (1963).
[4] Dair., W. C.. and Roeers, C. E., J. Appl. Pohmer 5xi. 16, 21 (1972),
[5] Wetton, R, E., and Moneyperny, H. G., Br. Polym. J. 7, 51 (1972),
[6] Yourtee, J. R., und Cooper, S. L., J. Appl. Polym, Sci. 18, 897 (1974).
[7] Price, C., Polywer 16, 585 11975).
[B] Price, C., Wijllisms, R. C., and Ayers, R. C., in Amarphouls Materials, Eds, Douglua, R. W., and Eilia, B., (Wiley-Interscience. 1972), p. 117.
[9] Weits, Ah., and Fruderlich. B., J. Polym. Sci., Polym. Fhys. Ed 12, 2473 (1974).
[10] Sintha, F., and Someynoky, T. Maeromelecules 2, 342 (19691
[11] Goldakin, M., J. Phyy. Chem. 77, 667 (1973)
[12] McKinney, J. E., Ann. N. Y. Acad. Sci., 279, 88 (1976).
[13] 0^{\prime} Reilly. J. M., J. Polym. Sci. 57, 429 (1962).
[14] Wikinney, J. E., and Simha, R., Wacrompleculex 7, 894 (1974).
[15] Gee, G., Polymer 7, 177 (1966)

[17] Olabisi, ©, and Simhs, R., Macromoleculey 8, 211 (1975).
[18] Gunch, A., and Simtia, R. J. Phys. Chem. 76, 416 (1972).
[19] Berg, J. 1., and Simha, R.. J. Non-C.ysmalline Solida, 22, 1 1976).
[20] Wunderlich, B., J. Physe Chem. 64, 1052 (1960).
[21] Nieloen, L. E., Mechanical Propertios of Polymerx and Compasita. Vol. 2, (Marcei Dekker, New York, 1974) p. 515.
[22] Lee, W. A., atad Rutherford, R. A. in Polymer Handbook, Ed. Brandrup, J., and Immergut, E. H., (Interncience. New' York, 1575) Section III, p. 139.
[23] Bruwn, D. W., and Wall, L-A.,J. Polym. Sci. A-2, خ, 601 (1969).
[24] Simh, R., und Boyer. R. F., J. Chemi. Phye. 57, 1003 (1969),
[25] Bryet, R. F., and Simha, R., J. Polym. Sci., Polym. Leaterx Ed, I1, 33 (1973)
[26] Shwers, S. C., Mandelkem, Ln, and Sehling, F. C.. ihid, 10, 345 \{1972\}
(27) Buyet, R. F., J. Macronnot. Sci.-Phys. B7, 482 (1973k)
[28] Wunderlich, B. and Jonex, L. D., ibid B8, 67 (1969).
[29] Wunderlich, B., and Baur, H. Adv. Polym. Sci. 7. 151 ;19701
(30) Simhas, R., and Wilsen, P. S., Macromplecules 6, 908 (1973).
(31] Madorsky, S. L. Therrapal Degratation of Organic Polyrmere (Interbetence. New Yurk, 1964).
[32] Reich. L., and Stivalu, S. Eleavende of Polymer Degradation (MeGrave Hill, New York, 1971).
[33] Wall, L. A., in Analytical Chemistry of Pulymens, Part II, Ed. Kline, G. M, (Interasirace, 1962), po 18 L.
[34] Wail, L. A., in The mechanismes of Pyplysta, okidation, and buming of organic mplerialx, Nal. Hur. Stand. IU.S. i Spec. Publ. 357, 199 pages. (Junre 19721 .. Ed. Wall, L. A. p. ${ }^{47}$.
[35 f Braver, C. M.. and Horowilz E., in Analytical Cheraigiry of Polymers, Pay III, Ed., Klitue, G. M. (Intergcience, 1962), p. 46.
[35] Shitu H., and Flory, P. I., Wecromelecules 5, 758 (1972)
[37] Beret, S., and Pronunita, J. M., ibid 8, 5356 (1975).
[3B1 Einhiger. B. E., and Flory, P. J., ibid 1. 285 (1968)
(39] Martin, G. M., and Mandelkemi, L, J. Rees Nat. Bur. Sland. (U.S.) 62, Na. 4, 141-146 (A . 19 193), RP2944.
[40] Pabsag|ia, E., and Martin, G. J. Rees Nat. Bur. Stand. dU.S.), 68A, (Phys. and Cbem.) No. 3, 273-276 (May-lune 1964).
[41] Kraug, C., and Gruver, J. T.. J, Polym. Sisi., Part A-2, 571 (1970).
[42] Takahishi, M., Shen, 6. C. Taylor, R. B.+ and Tobolsky. A. V., J. Appl. Polyra. Sci, 8, 1349 (1964).
[43] Olabixi, O., and Simha, R.. Macromolecules S. 206 (1975).
[4A] (rumh. A., Wilion4 P. S., and Simha, R.. J. Macmonl. Sci-Phye B9, 533 (19741.
[45] Rogeri, S. S., atud Mandelkern, L., J. Phys. Chem, 51,985 (1957).
[46] Helinege, K. H., Hennig, J., und Knappe, W., Kollaid Z.: Z. Polym. 185, 29 (1962)
[47] Hellwege, K. H., Koappe. W., arsd Lehnamin, P., ibid 183, 110 (1962).
[49) Heydemana, P., wod Guicking, H. D., ibid, 193, 16 (1943).
[49] Breuer, H., and Rehage, G., ibid 216-217, 159 (1967).
[50] Quach, A.. pad Biraha, R, J. Appl. Phys. 42, 4596 [197L1.
[5] Mercier, J. P., Aklovie, J. J., Litt, M., and Tobobsky, A V., J. Appi. Polym. Sci. 9, 447 119651
［52］Cowit，J．M．G．，and Tapgrourski，P．M．，J．Marrumal．Sci．－Fhys．，1， 81 （1969）．
［53］Simha．R．，Wilson，P．S，and Olabisi，O．，Kolloid Z．；Z．Polyno 251， 402 （1973）．
［54］Shishkin，N．［．，Sow．Phys．Solid Stale Phys，2， $\mathbf{3 2 2}$［19（i）］．
［55］Ichihara，S．，Komalsu．Ar，Tsujita，Y．，Nowe，T．，and Hota，T．，Polym． J． 2,530 （1971） ．
［56］Ichihara，S．＋Koaralsu，A．，and Hats，T．＋Polym．J．2， 650 （1971）．
［57］⿴囗十yer，R．F．，Sterene Polymese（Phyxigal Properdiey－Themal Chatar：－ leristics），in Encyclopedia on Polymer Science and Techrology． Boyer，R．F．，Ed．，（Wiley and Soms，New Yotk，1970h，f． 297.
［58］Weit．C．F．，Leaer，W，H．，and Woud，L．A，J．Rea，Nat．Bur．Stand． （U．S．）44，361－372（Apr．1550），RP2094．
［59］Fenty，J．D．，and Parke，G．S．，J．Chem Phys．4， 70 （1936）
［60］McKinney，］．Er，Eelcher，H．V．，and Marvin，R．5．，Trans．Soc． Kheolagy 4， 347 （1960）
［61］Singh，H．，and Nolle，A．W．，J．Appl，Phys，30， 337 （1959），
［62］Brilinas，Ger Traas，Faraday Soc．60． 1556 11964）．
［63］WIllanta，G．，and Edwardn，D．A．，jbid 62， 1329 （1966）．
［64］McKinaey，J．E．4 and Belcher．V．＋J．Rea，Nad．Bur．Sand．（U．S．）， 674（Phys and Chern，）．No．1，43－33（Jan－－Feh．19631
［65］Williaras，G．4 Trans．Faraday Soc．62． 2091 （1966）．
 （1961）
［67］Zosel，A．，Kolloid 7，2，F，Polym．199，113（1964），
［69］Stanbe，H．，and Stilo，S．，Polym．J．3， 749 （1972）．
［69］Furakawa，C．T．，and Reilly，M．L．，J．Fles．Nal．Bur．Stand．（U．S．h 56，No．5，285－2B8（Myy 1956），BP2676．
［70］Bekkedah， $\mathrm{N}_{.}$，and Matheson，H．，J．Res．Nat．Bur．Stand，\｛U．S．J． 15，503－515（Nov．1935），RPB44．
［7］］Passaglia．E，and Keworkian．H．K．．J．Appl，Phys．34， 9011963 h ，
［72］Furukawa，G．T．，MeConkey，R．E．，and Reilly，M．L．，J．Rex．Nop Bur．Sand．（U．S．），55，No．3， $127-132$（Sepa．1955），RF26i0．
［3］OPReilly，J．M．，Kanaz，F．E．，artd Bioir，H．E．，ل，Polym．Sci．，Part C， 6， 109 （1964）．
［74｜McKinney，J．F．，and Lindear，F．，Density and Compressibility of Liquids，in Ameriean Inatitute of Physics Hamdbouk，Gity，D．W．， Eal．theGruw．Hill，New York，1972）Section 2，p． 167.
［75］Kinmee］，R．M．，and L＇hlman，D．R．，J．Appl．Phys，41，2917（19701
［76］Lin，S．H．，Li，K．Pr，and Eyring，H．，in Physical Chemigtry，An Advanced Treative，Vol VII（Academic Press．Nev．York，N．Y．， 19754．p． 38.
［7̄］Tpmayam．M，＇Andersen，T．N．，and Eyring，H．．Proc，Nal．Acad． Sci．57， 554 （1967）．
［78］Eyring．H．．in Proccedings，New Materials from High－Pressure High－ Tentiperature Processes．U．S．Anny Resespeh Office－Durham 27－28 Sept 1967 ax Waleryliel Arsenal，Walerviet，N．Y．
 No．6，361－370（Dec，1954），RP2553．
［80］Wall．Ln Ar，and Madoriky，S．L．，J．Polym．Sci，11，49］（1953k
［81）Grasie，N．，Trane Faraday Soc．48， 379 （1952k．
（82）ibid．49，835（1953）
（83）Stromberg，F．R．＋Strauw，B，ноя Achhnmmer．B．G．．J．Polym．Sei， 35， 355 （1959）．
［84］Newthant，S．B．，vef．［35］，p． 284.

[^0]:

[^1]:

[^2]: ${ }^{2} \mathrm{~T}^{*}$ and V" only are determined in this reference.
 listing.
 ${ }^{\text {i }} 35$ per cemi styrene.
 ${ }^{4}$ For additional comnenta uf interpretation on thege experimental data and evaluation of Taik parameters, seo Ref, [53],

[^3]:

[^4]: ${ }^{\circ}$ Stated to be unatable al tenaperatures above 463 K is Ref. [81]. During sample preparation [1] slight discoloration was observed after heating ovemight is a vacuum at 408 K .

