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The recently obtained complete solution of the simultaneous diagonalization of matrices H A and H in the
hydrodynamic diffusion equation has basically changed the diagonal values vp of the symmetric matrix H of
hydrodynamic interaction between all the beads of the elastic random coil model of the isolated macromolecule in
solution. Since these values enter explicitly the expressions for the intrinsic stress and refractive index tensor in an
alternating flow field if based on the concept of internal viscosity of the model one had to recalculate all values
obtained formerly by using the then generally accepted erroneous set of vp data. The new vp equal unity
independent ofp while the old values were larger than 1 for small/? and smaller for large/). Hence their too large
contributions in the former range are partially compensated by their too small contributions in the latter region. As
a consequence in the whole range investigated, between 3 and 300 chain links, the differences in rheological and
rheooptical effects are relatively small, up to a factor of 2, although at higher link number the differences tend to
grow with the logarithm of this number.

Key words: Bead-spring model; eigenvalues; frequency response; intrinsic optical tensor; intrinsic stress tensor;
polymer solution.

1. Introduction

The correct simultaneous diagonalization [I]1 of H A and
H matrices in Zimm's hydrodynamic equation [2] for the
ideally flexible necklace model of randomly coiled isolated
linear macromolecule in laminar flow makes possible a more
adequate calculation of intrinsic stress tensor in all those
cases where the coil is not yet noticeably deformed by the
flow. Such a zero gradient case includes the frequency de-
pendence of viscosity [2], shear modulus, shear birefrin-
gence, normal stress difference, and acoustic birefringence
but not the gradient dependence of these effects.

The main change introduced by the new solution as com-
pared with the older incomplete solutions [3-8] is not in the
eigenvalues kp of H A

Q " 1 H A Q = (1)

which were already calculated correctly in recent papers
[6-8] and even tabulated forZ between 1 and 15 and h* =
(3/TT)1/2 ah/b0 = .01, . 1 , .2, .3, [6] and for Z = 250, h* =
.3 and Z = 300, h* = 0.4 [1]. Here ah is the hydrodynamic
radius of the bead, Z + 1 is the number of beads, Z is the
number and bo the root mean square length of the links. The

difference is in the diagonal elements vp of the tensor

Q i H Q 1 7 = N = 1 (2)

which turns out to be the unity tensor with all vp = 1. This
makes the diagonal elements of

= A/N = A (3)

agree with those of A, i.e. fxp = kp. Here Q is the transfor-
mation matrix of the original 3(Z + 1) dimensional vector r
of bead coordinates to that of dimensionless normal coordi-
nates u

r = b0 Q u (4)

and Q1 its transpose.
Equation 3 completely differs from the original estimate [3]

that in first approximation the diagonal elements of the matrix
M equal the eigenvalues \PR of the Rouse model with vanish-
ing hydrodynamic interaction, i.e.

and hence

1 Figures in brackets indicate the literature references at the end of this paper.

/4z =

v(il =

= 4 sin2 [pir/2(Z + 1)] (5)

(6)
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FIGURE 1. Diagonal elements vv (new theory) and v^ = XPZ/XPR
theory, broken lines) for Z = 100 and h* = 0, . 1 , .2, .3, .4.

>r h* = 0 (Rouse) the values of both theories coincide.

100

(old

For h* =

The subscripts Z and R refer to Zimm and Rouse [9] model,
respectively. Such an estimate was based [3] on the supposi-
tion that the transformation matrix Q changes so little by the
introduction of hydrodynamic interaction that M remains
practically the same as in the free draining case, i.e. M =
AR.

The diagonal elements vpiorZ =100 and/i* = 0 (Rouse),
.1 , .2, .3, and .4 (Zimm) are plotted in figure 1 and the
eigenvalues kp collected in table 1. The old values of vp

l) =
^PZ/^PR are connected with a broken line. They are partially
situated below and partially above vp = 1. This reduces the
differences between the old and new values in quantities
dependent on vp. They show up in the excess stress tensor as
soon as internal viscosity, defined by the frictional parameter
<£>, is explicitly considered. The very large old values vp for
small p do not matter very much because in all formulae they
are multiplied by very small values <pp = p<p/Z. Since the
differences between old and new vp increase with /i*, in that
which follows, the comparison of calculated effects will be
mainly done for h* = .4, i.e., for a very large hydrodynamic
interaction. The differences are smaller for smaller h* and of
course disappear for the free draining coil with h* = 0 where
^pZ = ^pR-

The new values fip and vp do not enter the conventional
expressions for the intrinsic stress or birefringence tensor of
perfectly flexible necklace model so that no changes occur in
these quantities. The situation is completely different if one
considers the effects of internal viscosity which depend on vp
[10-26]. They will be most conspicuous in the values of
viscosity corresponding to high frequency flow field and in
the phase angle between the stress and strain rate or between
the birefringence and strain rate.

The interaction tensor H depends on the inverse intrabead
distances l / r^ which makes the hydrodynamic diffusion
equation intrinsically non-linear. By replacing l/r^ with its
average value (l/rjfc) the tensor H becomes a constant which
makes the diffusion equation linear and hence allows the
introduction of normal coordinates according to eqs (1) to (4).

Such a procedure eliminates the possibility of any realistic
consideration of the gradient dependence of any rheological
or rheooptical effect because it does not take into account the
change of shape of the random coil in flow which expands the
molecule and hence increases the interbead distances r^.
Note also that by preaveraging over all angles between the
velocity and the interbead vector the formulation of H as
function of l/r^ completely evades the consideration of ani-
sotropy of hydrodynamic interaction which by itself yields a
gradient dependence of intrinsic viscosity [27] large enough
for explaining experimental data.

The general toleration of such a profound modification of
hydrodynamic interaction by the replacement of l / r^ with its
average ( l / r^) makes hard to understand the almost general
objections to the introduction of internal viscosity as a resist-
ance of the necklace model against the deformational compo-
nent of the normal eigenmodes [28-30]. If one accepts the
rather questionable linearization of the hydrodynamic diffu-
sion equation one has to accept also the next step, i.e., the
concept of internal viscosity based on this linearity and its
introduction in such a manner that the mathematical treat-
ment remains as simple as possible.

In that which follows the results of the new theory will be
compared with those of the old one for h* = .4 and Z = 100
in the whole frequency range and the dependence of the
limiting values for (t) = °° on Z in the range between Z = 3
and 300 and on h* in the range between .1 and .4. In all
cases the ratio between the internal viscosity coefficient <p
and the frictional coefficient of the bead f = 67raf{r)s will be
assumed constant, <p/f = 2. Here rjs is viscosity of the
solvent. The subscript s applies to the properties of the
solvent. The corresponding non-subscripted quantities relate
to solution.

2. Internal Viscosity

The concept of internal viscosity was introduced in order to
express the inability of the randomly coiled polymer molecule
to change rapidly its shape [31, 32, 10, 11]. Such changes
occur during the rotation of the macromolecule in a flow with
a rotational component, e.g., the laminar flow with transverse
gradient, when the individual segments are alternatively
passing from the direction of compression to the direction of
extension and vice versa. The directions of maximum
compression and extension of the volume element are in the
flow plane perpendicular to each other. The rapidity of
change is given by the transverse gradient which equals twice
the angular velocity of the ideally flexible coil which rotates
with the volume element. The other case is the oscillating
flow field where the oscillation frequency determines the
rapidity of change from compression to extension and vice
versa.

In the limiting cases of zero gradient and zero frequency
the deformation inability of the macromolecule does not play
any role. All the changes occur so slowly that the effects are
identical for completely rigid and ideally flexible coils if only
their conformational distributions agree with each other.
With increasing gradient and/or frequency, however, the
time effects are playing a gradually increasing role. They are
maximum in the second Newtonian regime corresponding to y
—> °° or (0 —> °°.

The rigidity of the macromolecule can be assigned to
different properties of the chain. It can be caused by the
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p

1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50

H* = 0

0.000967
.003869
.008701
.015460
.024139
.034730
.047220
.061602
.077859
.095974

.115932

.137713

.161295

.186656

.213771

.242614

.273158

.305372

.339225

.374681

.411719

.450288

.490356

.531886

.574835

.619163

.664827

.711782

.759984

.809386

.859939

.911596

.964305
1.01802
1.07268
1.12824
1.18464
1.24183
1.29975
1.35835

1.41758
1.47736
1.53758
1.59839
1.65952
1.72098
1.78270
1.84464
1.90673
1.96890

.1

0.002170
.007318
.014650
.023986
.035175
.048140
.062802
.079111
.097010
.11646

.13742

.15984

.18370

.20895

.23556

.26350

.29272

.32320

.35490

.38778

.42180

.45694

.49316

.53041

.56867

.60788

.64802

.68905

.73093

.77361

.81706

.86124

.90610

.95160

.99771
1.0444
1.0916
1.1392
1.1873
1.2358

1.2846
1.3338
1.3832
1.4328
1.4825
1.5324
1.5824
1.6324
1.6824
1.7324

TABLE 1.

.2

0.003345
.010718
.020541
.032447
.046144
.061482
.078315
.096552
.11610
.13688

.15884

.18192

.20605

.23120

.25730

.28434

.31224

.34099

.37053

.40084

.43186

.46358

.49594

.52892

.56248

.59659

.63122

.66632

.70187

.73784

.77419

.81089

.84790

.88521

.92277

.96055

.99852
1.0367
1.0749
1.1133

1.1517
1.1902
1.2287
1.2671
1.3056
1.3439
1.3821
1.4202
1.4581
1.4959

Eigenvalues A

.3

0.004506
.014084
.026383
.040848
.057043
.074746
.093745
.11391
. 13509
\15721

.18017

.20390

.22831

.25335

.27896

.30509

.33169

.35870

.38610

.41383

.44186

.47015

.49867

.52738

.55626

.58527

.61438

.64356

.67279

.70205

.73130

.76053

.78970

.81881

.84782

.87672

.90548

.93410

.96254

.99079

1.0188
1.0467
1.0742
1.1016
1.1286
1.1554
1.1819
1.2021
1.2339
1.2594

pfor Z = 100 and h* =

.4

0.005643
.017417
.032173
.049177
.067854
.087907
.10906
.131113
. 15395
.17740

.20135

.22571

.25040

.27533

.30044

.32566

.35095

.37623

.40148

.42664

.45168

.47655

.50123

.52568

.54987

.57378

.59738

.62065

.64357

.66613

.68829

.71005

.73140

.75231

.77279

.79281

.81238

.83148

.85011

.86826

.88592

.90311

.91980

.93601

.95173

.96696

.98171

.99597
1.0098
1.0231

P

51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69
70

71
72
73
74
75
76
77
78
79
80

81
82
83
84
85
86
87
88
89
90

91
92
93
94
95
96
97
98
99
100

: 0 (Rouse),

h* = 0

2.03111
2.09329
2.15538
2.21731
2.27904
2.34050
2.40153
2.46236
2.52265
2.58244

2.64166
2.70026
2.75819
2.81538
2.87178
2.92734
2.98200
3.03571
3.08842
3.14007

3.19063
3.24003
3.28823
3.33518
3.38085
3.42518
3.46812
3.50965
3.54972
3.58829

3.62532
3.66078
3.69464
3.72685
3.75737
3.78624
3.81335
3.83871
3.86229
3.88407

3.90403
3.92215
3.93840
3.95278
3.96527
£.97586
3.98454
3.99130
3.99613
3.99903

.7, .2, .3, A

.1

1.7822
1.8320
1.8815
1.9308
1.9799
2.0286
2.0770
2.1249
2.1725
2.2195

2.2661
2.3120
2.3574
2.4021
2.4462
2.4895
2.5321
2.5738
2.6148
2.6548

(Zimm)

.2

1.5334
1.5707
1.6077
1.6443
1.6807
1.7167
1.7523
1.7875
1.8223
1.8566

1.8905
1.9238
1.9566
1.9889
2.0206
2.0517
2.0821
2.1120
2.1411
2.1696

2.6940 1 2.1974
2.7323
2.7695
2.8058
2.8410
2.8752

2.2245
2.2508
2.2764
2.3012
2.3252

2.9083 2.3484
2.9402
2.9710
3.0007

3.0291
3.0563
3.0823
3.1069
3.1303
3.1524
3.1731
3.1925
3.2105
3.2272

3.2424
3.2563
3.2687
3.2796
3.2892
3.2972
3.3038
3.3090
3.3127
3.3149

2.3708
2.3924
2.4131

2.4329
2.4518
2.4699
2.4870
2.5033
2.5186
2.5329
2.5464
2.5588
2.5703 i

2.5808
2.5904
2.5989
2.6065
2.6130
2.6186
2.6232
2.6267
2.6292
2.6308

.3

1.2846
1.3094
1.3339
1.3579
1.3816
1.4049
1.4277
1.4502
1.4722
1.4938

1.5150
1.5357
1.5559
1.5757
1.5950
1.6139
1.6323
1.6502
1.6676
1.6845

1.7009
1.7168
1.7322
1.7471
1.7614
1.7753
1.7886
1.8014
1.8137
1.8255

1.8367
1.8474
1.8575
1.8672
1.8762
1.8848
1.8928
1.9002
1.9071
1.9134

1.9192
1.9245
1.9292
1.9333
1.9369
1.9400
1.9425
1.9444
1.9458
1.9466

.4

1.0359
1.0483
1.0602
1.0716
1.0826
1.0932
1.1033
1.1130
1.1223
1.1311

1.1396
1.1477
1.1554
1.1627
1.1697
1.1763
1.1826
1.1885
1.1941
1.1995

1.2045
1.2092
1.2137
1.2179
1.2218
1.2255
1.2290
1.2322
1.2352
1.2380

1.2406
1.2430
1.2453
1.2474
1.2493
1.2510
1.2526
1.2541
1.2554
1.2566

1.2577
1.2586
1.2595
1.2602
1.2608
1.2614
1.2618
1.2621
1.2624
1.2625

energy barrier separating the gauche and trans conformations
which makes any conformational change more time consum-
ing than in the case of perfectly soft model [10]. Since the
height of the energy barrier is independent of the viscosity of
the solvent its relative effect as measured by the ratio of
internal frictional resistance <p caused by the barrier and the
frictional resistance / of the segment decreases with the
viscosity of the solvent. The macromolecule acts as very rigid
in a low viscosity liquid, e.g., acetone with V)s = .322cPoise
= 32.2 mNs/m3, and as very flexible in a high viscosity
solvent, e.g., Aroclor with 7)s up to 100 Poise (= 1 kNs/m3)
and higher.

Another cause of slow molecular response to the rapidly
changing flow field resides with the conformational restraints
of the chain which permit only an interchange of gauche and
trans conformations [20, 23, 24]. With almost rigid length of
valency bonds this means that most changes of length and
position of any chain segment require a much larger segment
displacement than formulated in the ideally flexible necklace
model which does not consider any inherent limitation of
bead motion. Generally an axial displacement of the segment
requires also some lateral displacement and vice versa. As a
consequence the resistance of beads to position change is
larger than assumed on the basis of hydrodynamic radius a^.
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The ratio of the so obtained coefficient <p t o / is independent
of solvent viscosity because <p and/are both proportional to
7]s. Their ratio just measures the ratio of true displacement to
the minimum displacement explicitely considered in the
diffusion equation. It seems to be close to 2 for vinyl poly-
mers

The effect of internal viscosity is formulated in the system
of normal modes [10]. For the pth normal mode of deforma-
tion one has a resistance coefficient <pp/Z. Such a choice is
reasonable for both origins of internal viscosity as just dis-
cussed. In the first case one can argue that the changes to
comply with any deformational mode are linearly increasing
with the number of chain atoms between subsequent nodes,
i.e., with Zip, because a conformational change takes place
with equal probability at any of these chain atoms. This
makes the resistance increase with p/Z. In the second case
the displacement at lower modes can be achieved in many
ways so that the actual lengthening of displacement path is
much less noticeable than at higher modes where the confor-
mational restrictions are soon becoming of overwhelming
importance.

One may argue that the whole concept of internal viscosity
can be discarded because it is not based on some strictly
fundamental analysis of chain dynamics. It was indeed intro-
duced in a rather pragmatic manner which also permitted an
easy mathematical treatment [10]. But it turns out that all
more detailed treatments of Brownian motion of beads or of
correlation between the motion of two or more beads [33-35]
lead to some, often hidden, statement of molecular rigidity
which is needed for the results of such a study to reproduce
the characteristic rheological features of polymer systems,
e.g., the non-vanishing limiting intrinsic viscosity at very
high frequency [36-51]. Such a state of affair seems more to
support than to refute the concept of internal viscosity in spite
of its more pragmatic than fundamental way of introduction.

3. The Distribution Function of the Beads

The continuity equation of the ideally flexible necklace in
laminar flow which determines the distribution function i//(r0,
r i ' ' ' rz) reads

V/ - (3D0/b0
2) HArip- D0HVr4>]

= -dty/dt. (7)

Here Do = kT/f is the translational diffusion coefficient of
the bead. By introduction of normal coordinates, eq (4), one
transforms eq (7) into a system of Z + 1 partial differential
equations

VP [vp </»P - (3D0/b<?)kp uP - ( Z W K Vp <J/P]

= -dfa/Bt (8)

each depending only on the coordinates of thepth eigenmode.
Note that vp in normal coordinates has the dimension s~1.
The distribution function of the coil is the product of all i//p

i//(u, *) = *l*i(uh t) - " tyz(uz, t). (9)

The functions ijjp depend on the kind of flow field v. The Oth
mode does not show up in i// because it represents a uniform
translation of the whole necklace which does not affect i//.

The introduction of internal viscosity adds a viscous type
resistance coefficient <pp = p<p/Z opposing the pth eigenmode
of the true deformation rate of the coil. This rate is obtained
by subraction of pure rotational velocity ft X up from the
total deformation rate dup/dt. This yields an internal viscos-
ity force [10, 11]

Fip = -(p<p/Z)(dup/dt - ft X Up)b0. (10)

If one introduces this force in the pth diffusion equation (eq
(8)) one obtains after some rearrangements

X Up - PP} = -dxf,/dt. (11)

The distribution function i//p depends on the kind of flow and
on the angular velocity vertor ft.

In a jet or plane flow with longitudinal gradient without a
rotational flow component one has ft = 0. In a flow with
transverse gradient, v = y(y,o,o), the angular velocity
equals ~y/2

ft = (0, 0, - y/2) (12)

for relatively soft molecules which rotate in phase with the
volume element. This is the case with practically all conven-
tional macromolecules if the degree of polymerization is so
high that a truly random coil is formed. Very short chains,
chains with a great many double bonds, ladder type and
multiple strand molecules, however, are more rigid and tend
to rotate with a non-uniform angular velocity which depends
on orientation of the molecule. It is different from that of he
volume element. Assymptotically, at very high rigidity and
fully extended shape of the macromolecule, it approaches
that of rigid bodies, e.g., rods or ellipsoides. In that which
follows only the case of practically undeformed relatively soft
coils with ft = — y/2 will be considered.

In the steady state flow with transverse gradient the pth
eigenmode distribution function of the soft necklace reads

exp {(1 ft2 -

+ [1 + ft
ft = jbo

2/6DoKp

ft = ft(l + vp<pp/f).

+ pP)W) + (1 + ft2)£P
2}

(13)

The index p runs from 1 to Z. The value 0 is excluded.
Without internal viscosity, (fp = 0, one has fBr

p = j8p and one
obtains the conventional distribution function. Note that eq
(13) and the distribution function eq (6.1) in Ref. [1] refer to
different flow fields: y(j,o,o) in the former and y(z,o,o) in the
latter case.
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Equation (13) explicitely contains the diagonal terms
p and vp. In the averages (dyadic formulation)

<rTAr) = = b0
2 (14)

P=l

which appear in the intrinsic stress and optical tensor the
coefficients \xp drop completely because the averages (upUp)
are proportional to 1//JLP. The coefficients vp, however, re-
main in j3'p as long as <p 4" 0. As already mentioned they are
equal to unity (new theory) while formerly they were approxi-
mated by (\Z/\R)P = kp(h*)/kp(h* = 0) + 1 (old theory).

In the oscillating flow field the gradient is a function of
time

y = (15)

The amplitude y$ is so small that the molecule remains
practically undeformed so that the zero gradient eigenvalues
kp and diagonal elements vp, calculated for the coil at rest,
are applicable.

4. The Intrinsic Stress Tensor

In dyadic formulation the intrinsic stress tensor reads

[o*] = lim
c->0

N

M

Here N is Avogadro number, M is molecular weight, and F is
the vector of forces exerted by the beads of the necklace
model on the flowing liquid. One has in the space of normal
coordinates

- ft X u) + (kT/bo) V In if;] (15)

which yields

<f>(v - ft x „)) + kT(uT V In <//>]: (16)

(1 +

The type of laminar flow shows up in v and ft.
The bilinear coordinate averages in eq (16) can be derived

from the diffusion equation, eq (11), by multiplication by £p
2,

^ ' ' a nd integration over the whole space.

5. Flow With Transverse Gradient

In the case of laminar flow with transverse gradient v -f
y(y,o,o), one obtains the set of linear differential equations

(rip2) - v

(UP)

= -rp

vt><pP/2f)(r]p
2)= -TP d<£pr,p)/dt

= -TP d(r,p
2)/dt

= -r'p d(r,p£p)/dt

= - T P d{lP
2)/dt

(17)

vp<pp/2f)(y)piP)= -r

The steady state solutions which apply after the complete
decay of transient phenomena read

l + ift>Tp V l + 2i<0Tp)\

i r - . 2 - (T' _ T \ /O / JLUtit \ "I

= ±_\1_y*li£p—isHl(1 + _^.— \]
3/jLp L 1 + itoTp \ 1 + 2io)Tp / J

(18)
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The averages are cut off beyond the lowest power y which is A rather similar but not identical expression applies to
needed later in zero gradient expressions for intrinsic viscos-
ity, normal stress difference and birefringence. These aver-
ages have to be inserted in the expression for the intrinsic
stress tensor.

[o-] = (N/M)[3kT(uTNiu)

+ (ybo
2/2)(uT<t>(<n, £,o)> - *H] X (1 + N^//)"1 (19)

yielding the frequency dependence of intrinsic viscosity

= [0*12]* hsy
V ~ Vs ,. °"l2 ~~ &128

= lim = lim
CY)S c-*0

Z

= [I + IV - £(II — III)]/o>

tan 8 , = (II - III)/(I + IV). (20)

intrinsic streaming birefringence

An* — Ans . An* — Ans
= lim = lim

cnsrjsy c-»o cnscr12s

y

4TT (n2 + 2\2 A ^ - q2)

f

_ 4TT (n2 + 2\2 A
5 \ 3n /

tan 8n = II/I. (21)

In the case of dynamic birefringence An is the difference
between the refractive indices in the diagonal direction in the
first and second quadrant. The extinction angle X = 45° as
long as the gradient amplitude y is small enough. The
birefringence [bn\JMr)sIKRT and the phase angle dn are
plotted in figure 3 for the same values of Z, if If and h* as in
figure 2.

The absolute value of intrinsic viscosity [r)]J\lr)s/RT and the
phase angle 8V as function of (ort are plotted in figure 2 for Z
= 100, <p/f = 2, h* = A according to old and new theory.
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The meaning of the symbols in eqs (17) to (21) is as
follows:

TP = bo
2/6Dokp

T'p =TP{1 + Vp<pp/f)

Tp -Tp = TpVp<pp/f

477 (n2 + 2 \ t / a i - a2\
K ~ 5 I 3n ) { kT )

I = 2 GWp/U + O2T'p
2)

II = 2 <»2TPTP / ( I + O)2TP
2)

in = 2 « V T ; - TP)/(i + ^2T;2)

IV = 2 «>3TPT; (Ti - TP)/(I + o>2r;2)

.4
300

FIGURE 4. Second Newtonian intrinsic viscosity [r)]x as
function of number of links Z and hydrodynamic interaction h
as parameter for <pli = 2.

New (full line) and old (broken line) theory.

The sums III and IV go to zero for vanishing internal
viscosity <p —>• 0. In this limiting case the intrinsic viscosity
and streaming birefringence are proportional to each other.
Here R is the gas constant, K is the rheooptical coefficient, n
is refractive index, 8 is the phase angle between the flow
gradient and viscosity or birefringence, ax and a2 are the
optical polarizabilities of the link in the directions parallel
and perpendicular to the link respectively.

Both definitions of intrinsic viscosity and birefringence in
eqs (20) and (21) tend to make the intrinsic values as much as
possible independent of the specific properties of the solvent,
i.e., of 17S and ns which influence the orientational forces,
rigidity and optical anistropy of the dissolved macromolecule
[52].

It is important to note that as a consequence of the new
terms III and IV, i.e., (r)p

2), caused by the introduction of
internal viscosity the expressions for intrinsic viscosity and
streaming birefringence, eq. (20) and (21), respectively, are
not proportional to each other. Hence the rheooptical law
does not apply to such a model. In particular [AAI]^ cannot be
written as K[r)]a) ~ [cr]12.

The proportionality, however, still holds in the first New-
tonian region, o> —> 0, where all the terms but I/(x) go to zero.
This means that the intrinsic viscosity [rj] and the Maxwell
constant [An] and hence the stress and the optical tensor are
proportional to each other for y —> 0 and a) —» 0. This is the
case in most applications of flow stress mapping by means of
streaming birefringence of dilute polymer solutions.

With increasing frequency and finite internal viscosity,
[Ara]̂  goes to zero while [TJ]^ tends to finite value. The
rheooptical law breaks down completely. In this second
Newtonian range the intrinsic viscosity is independent of
frequency. One derives from eq (20)

The limiting values [^OOMT^/RT forZ between 3 and 300
and A* = . 1 , .2, .3, .4 are plotted in figure 4 for the new (full
line) and old (broken line) theory. One sees that the absolute
values for vv = 1 and vp

v = kpZ/\pR differ by less than a
factor of 2. But their dependence on Z, i.e., on molecular
weight, is just the opposite for h* = .4. In the incorrect
formulation of the old theory [rjjoc slightly increases with Z
while in the correct formulation of the new theory it decreases
with Z. Such a dependence on Z is much more in agreement
with experimental data on polystyrene in Aroclor [44]. The
second Newtonian viscosity [TJJOO is 14.3 cm3/g if one goes
with M from 20,000 to 860,000. The old theory yields a
steady increase of [r}]^ with M in sharp disagreement with
these data.

The often used real and imaginary part of intrinsic shear
modulus

= [G]'

c-»o
;

cy
(24)

+f/vP<pP

(23)

are plotted in figure 5. The difference between the old and
new theory is relatively small forZ =100 but would be larger
forZ = 300.

The consequence of the non-vanishing second Newtonian
viscosity, [i7]oo =£ 0, is the linear increase of [G]f with O)T1 in
the assymptotic high frequency region. Such a behavior is in
perfect agreement with experimental data on polystyrene in
highly viscous Aroclor [44-51]. These data together with the
zero gradient intrinsic orientation data of streaming birefrin-
gence of polystyrene in solvents of increasing viscosity [53]
constitute the main support of the theory.
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A* =

M

(2TP -

2TP
2 ( T P -

P=I 4a>2Tp
 2)

(26)

is proportional to the square of the amplitude of the oscillat-
ing gradient as in the case of no internal viscosity. The value
(A/yo

2)(M/RT), the phase angle 8l9 and the frequency inde-
pendent displacement

(B • cos 82/y0
2)(M/RT) = (27)

4 are plotted in figure 6 as functions of (x)Tl for Z = 100 and h*
= .4. Both quantities A and B are going to zero with
increasing frequency. In contrast to intrinsic viscosity the

FIGURE 5. Intrinsic shear moduli [G]' and [Gf for Z = limiting first normal stress difference, at 0) —» °°, does not
100, h* = .4, <md <pli = 2 as functions of O)Tl according to become finite by introduction of internal viscosity although it
new (full line) and old (broken line) theory. goes to zero more slowly, as w"1 instead of as (t)~3.

The intrinsic first normal stress difference turns out to be

[0-11-0-22]*

M fix 1 + icoTp
(25)

while the second normal stress difference vanishes in all
isolated necklace models with ideal elastic links independent
of internal viscosity. In applying eq (25) one must not forget
that the phase angle 81 of A* is dependent only on the factor
of exp (2icot) and that the angle 82 only reduces the constant
vertical displacement to B cos 82 but does not yield any phase
shift.

The term 1 in the parenthesis, i.e., B*, keeps the first
normal stress difference positive during the whole period up
to very high frequencies. The oscillation is taking place with
twice the frequency of the flow field. All these effects are very
much the same as in the case of no internal viscosity. The
difference is mainly in the replacement of rp by r'p and the
term proportional to r1

 p — rp. The amplitude A of the
oscillating term

+ 3

FIGURE 6. The coefficient B, the sum B + A, the differ-
ence B — A of the relative intrinsic normal stress difference
[CTii-OaUttrn-Ofcl, = A e^" 1 6 1 + Bfor Z = 100, h*
= .4 and (f/i = 2 as functions of (x)Ti according to new (full
line) and old (broken line) theory.
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6. Flow With Longitudinal Gradient

In jet flow, v = y(~xl2, —y/2,z) the intrinsic stress
tensor

kn] (28)
M

x (1 + N
is independent of coil rotation in flow because the flow field
has no rotational component, 12 = 0. The bilinear coordinate
averages are derivable from the set of differential equations

(i + = -Tp d(£p7)p)/dt

= ~rP d(Vp
2)/dt

pip) = -Tp d(r)p£p)/dt

= -ri d(£p2)/dt

(29)

Under consideration of the symmetry of flow field one
obtains

X

p2> = ^ - e x p { - D

ftlT'P

exp [x + \JQT]
Jo

dx

Jo
exp [x - 2(y0Tp/i(OTp)e

i«"'>x] dx

(30)

These averages still contain the transient which, in the
general case, cannot be easily separated from the stationary
solution reached after the transient has tapered off (fig. 7).

The separation can be performed if yoTp/(OTf
p is so small

that one can replace the exponential function by its linear
expansion. In such a case one obtains for the stationary
solution

(£2) = — ( l - T )
3fjLp \ P 1 + icorp /

1 / e^
(lp) = — i + 2yo7"p —

3/JLp \ 1 + l(OTp

The intrinsic Trouton viscosity turns out to be

Ml
= l>33 ~ CTll]*/yVs

RT ^

(31)

(32)

= SRTy /T,(l - (OT'P Tp \

Mr)s
(I/a)

P = i
- T , ) / 3 - Ol/a).

The additional term 2J (TP ~ TP)/3 is independent of (O and
hence represents the Trouton viscosity in the second Newton-
ian range where 1/(0 and II/o) disappear. As in the case of
conventional intrinsic viscosity, eq (20), the finite value at (x)
—> °° is a consequence of internal viscosity, i.e., of partial
coil rigidity. The frequency dependence of [rj]^ and phase
angle 8iv are plotted in figure 8 for Z = 100, h* = .4, and
<p/f=2.

The intrinsic birefringence reads

(33)

which for small amplitude reduces to

,_. _,* 3KRT v^ ,,, . .
- i l l )

tan dm = II/I (34)

This expression differs from the streaming birefringence in an
oscillating flow field eq (21), only in the factor 3. The non-
proportionality between viscosity and birefringence is again
the consequency of the additional internal viscosity term in
eq (33).

1.5

1.0

.5

0

" J

11

f\ -8 f\

A \ 1
1/ ̂ W // \\ 1/

1 1
0 1 2

t/277-T'p

FIGURE 7. Time dependence of (£p
2) — (i7p2) according

to eq (30) plotted versus t/27TTr
 pfor the special case <fTf

p = 1
and a = 7 O T P / W T ' P showing the short duration of transient
effects and the rapid approach to the asymptotic periodic
solution.

The stabilizati r for low <OT'P.
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FIGURE 8. Relative intrinsic Trouton viscosity
and the phase angle 8^ for Z = 100, h* = .4, and <p/f = 2 as
function of oyTx according to new (full line) and old (broken
line) theory.

Acoustic birefringence is in many respects closely related
to birefringence in an oscillating jet flow. The main differ-
ence is the absence of lateral contraction as represented by
— y%l2 and —yy/2. In contrast to jet flow with constant
specific volume (incompressible liquid) the volume element
subjected to an acoustic wave is periodically compressed and
expanded. That means a constant (£/) yielding in eq (34) the
replacement of the factor 3 by 2.

One has

in]*c = lim

N

An

(OT

~l(0Tp

M ac (1 4- o)2r2)112

z

M'Kac' ^ i 1 + icor;

= —Kac(l - £
M

tan 8ac = II/I

_ 4TT /n2 + 2\2/ 2 \

5 \ 3n ) \pc3ac/

Iac = pB2cac/2.

sin [o)(t — zo/ca) — 8ac]

i/2
(

(35)

Here ZQ is the location of the center of hydrodynamic resist-
ance of the macromolecule, B is amplitude, lac is intensity
and cac is propagation velocity of acoustic wave, and p is the
density of solution. The frequency dependence of acoustic
birefringence and phase angle is exactly the same as in the
case of oscillating jet flow.

The difference between acoustic birefringence according to
the correct new and the incorrect old values vp can be seen in
figure 3 where [An]ac is plotted versus (x)Tl forZ = 100, h* =
.4 and (p/f = 2. The phase angle 8ac is identical with 8n and

7. Conclusions

The paper presents the calculation of most of the intrinsic
rheological and rheooptical effects of linear homopolymers in
an oscillating flow field which may be explored experimen-
tally. In the case of rheooptical effects only the intrinsic
birefringence of the polymer is included. The form-birefrin-
gence is completely neglected. The same applies to the
influence of large side groups which may effect independ-
ently the optical anisotropy of the segment and its frequency
dependence.

The introduction of the appropriate vp = 1 values instead
of the old values vp = \PZI^PR does not change drastically the
effects depending on internal viscosity. As a rule the ratio
between the new and old values of intrinsic viscosity, bire-
fringence, and first normal stress difference is less than 2, at
least in the range ofZ between 3 and 300. With higher Z the
differences increase as a linear function of log Z.

As already mentioned, the smallness of the difference is a
consequence of the peculiar dependence of old vpil) on p:
much larger than 1 at small/? and smaller than 1 at high p.
Hence the larger contributions in the former part of the sums
are partially compensated by the smaller contributions in the
latter part.

The most important changes occur in the second Newton-
ian intrinsic viscosity which is the most conspicuous conse-
quence of internal viscosity. Here the dependence of [TJJOO on
Z is much less according to the new theory than it was in the
case of the old theory.

No calculation of the gradient effects was attempted be-
cause one knows that in a flow with a finite velocity gradient
the randomly coiled macromolecule is deformed with a con-
sequent change of all interbead distances. This yields a
change of interaction tensor H which leads to a modification
of all eigenvalues kp. The rest values \p used in this paper
are only applicable to effects where an extrapolation to zero
gradient is straightforward. This is the case with dynamic
effects where one uses very small gradients and concentrates
on the frequency dependence of the effects measured. The
situation, however, is basically different in the non-linear
range of gradient dependence of excess stress and optical
tensor.
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