Pyrolysis of Some Polyvinyl Polymers at Temperatures Up to 1,200 °C

Sidney Straus and Samuel L. Madorsky

(May 10, 1962)

A study was made of the thermal behavior in a vacuum of polystyrene, polytetrafluoroethylene, poly(α -methyl styrene), polypropylene, polyisobutylene, and poly(methyl methacrylate), when pyrolized at 500, 800, and 1,200 °C. The volatile products of degradation were collected and fractionated, and the fractions analyzed by mass-spectrometric and microcryoscopic methods. Generally, the results from 500 °C pyrolysis resemble those obtained previously from the same polymer at lower temporatures. The results at 800° and 1,200° indicate a much greater fragmentation of the pyrolysis products than at lower temperatures. Thus, for example, at 1,200° polystyrene yields loss monomer but considerable greater amounts of C₂H₂, C₃H₄, C₃H₄, and C₄H₄ than at lower temperatures. Similarly, poly(α -methylstyrene) yields 100 percent monomer below 500 °C, but at 800 and 1,200 °C the yields are 88 percent and 34 percent, respectively. Also at the higher temperatures, pronounced amounts of H₃, CH₄, C₃H₄, C₂H₄, C₄H₄, C₄H₄, C₄H₄, C₄H₄, C₄H₄, and C₄H₈ are formed.

1. Introduction

While the literature contains a great deal of information on the behavior of polymers at temperatures up to about 500 °C, little is known about their behavior above this temperature. Natural crepe rubber was pyrolyzed up to 700 °C [1],¹ smoked crepe up to 650 °C [2], and polyisoprene up to 900 °C [3]. In all these experiments it was found that a higher temperature of pyrolysis produces a greater yield of isoprene in the degradation products [3, 4].

In the past few years a number of applications have been made of organic polymers as protective coatings for bodies subjected to very high temperatures. They have been used, for example, as the covering of the nose cones of missiles and satellites which develop considerable amounts of heat through friction with air at high velocities, and as the lining for the inner surface of nozzles that come in contact with the hot exhaust gases in jet propulsion. These applications have stimulated research on the thermal stability of polymers at high temperatures. In these investigations the heating of the materials has often been accomplished by means of an electric arc or by a stream of hot gas. However, in most of these experiments the polymeric materials were not in the pure state but contained extraneous materials such as carbon, glass, asbestos, etc. The products of degradation, therefore, consisted of a complex mixture of molecular fragments coming not only from the polymer but from the extraneous material as well. The gases from the arc or from the hot gas stream were an additional source of contamination of the products. This made it very difficult either to anlyze the products of degradation or to interpret the chemical reactions involved.

Studies were recently made by the present authors on the pyrolysis of polymers in a vacuum and, in

some cases, in a helium atmosphere in the temperature range of 500 to 1,200 °C. The polymers thus investigated were: polystyrene up to 850 °C, and polyacrylonitrile, poly(vinylidene fluoride), and polytrivinylbenzene up to 800 °C [5]; polymethylene, poly(vinylidene fluoride), and polytrivinylbenzene up to 1,200 °C [6]; and silicone, phenolic, epoxy, and ester resins up to 1,200 °C [7]. The present investigation extends the program to cover a few simple vinyl polymers at temperatures ranging from 400 to 1,200 °C. These polymers include polystyrene, polytetrafluoroethylene, poly(α -methylstyrene), polypropylene, polyisobutylene, and poly (methyl methacrylate).

2. Materials Used

The materials used had the following characteristics:

(a) *Polystyrene*. Thermally prepared. Molecular weight 230,000, as determined by the osmotic pressure method.

(b) Polytetrafluoroethylene. Teflon tape 0.07 mm thick. Molecular weight not known, but estimated to be very high.

(c) $Poly(\alpha$ -methylstyrene). Flaky material obtained from the Dow Chemical Company. Prepared by low-temperature polymerization. Molecular weight 350,000, as determined by light scattering.

(d) Polypropylene. Fine white powder obtained from B. F. Goodrich Company. Prepared by the Ziegler method. Molecular weight between 50,000 and 100,000.

(e) Polyisobutylene. Pure grade white gum. Currently used as a National Bureau of Standards standard material for viscosity measurements. Molecular weight 1,560,000, as determined by the light-scattering method.

(f) Poly(methyl methacrylate). Prepared from the monomer at room temperature without the use of catalysts. Molecular weight 5,100,000, as determined by light scattering.

I Figures in brackets indicate the literature references at the end of this paper.

3. Apparatus and Experimental Procedure

The apparatus used in the ovrolvsis studies was the same as that used in the pyrolysis of polytrivinylbenzene and other polymers [6, 7], except that the fused quartz tube holding the sample tube was replaced with a platinum tube. Samples weighing 15 to 30 mg were heated in a vacuum by quickly moving a preheated furnace into position surrounding the sample for pyrolysis. For temperatures of 500 ⁸C or lower a 5-min period was used to heat up the sample from room temperature to the temperature of pyrolysis, followed by a 30-min period at the pyrolysis temperature. Fluctuation of the final temperature was ±2 °C. For higher temperatures a 2-min preheating period was followed by a 5-min heating period at the required temperature, and fluctuation of the operating temperature was ± 5 °C. The residues were weighed, and the volatile products were collected and fractionated. The following volatilized fractions were obtained: (a) A waxlike fraction, designated as $V_{\rm nrr}$, volatile at the temperature of pyrolysis. but not at room temperature, and consisting of large molecular fragments deposited in the apparatus just beyond the hot zone; (b) a light fraction, V_{25} , volatile at room temperature, collected in a liquid-nitrogencooled trap; and (c) a gaseous fraction, V_{-100} , not condensable at the temperature of liquid nitrogen. In some cases a fraction, $V_{-\infty}$, volatile at the temperature of dry icc, was also collected. Analyses of fractions V_{25} , V_{-80} , and V_{-160} were made by means of a mass spectrometer.

4. Experimental Detail

4.1. Polystyrene

It was shown in an earlier study [5] on pyrolysis of polystyrene at 362 and 850 °C in a vacuum, and in helium at atmospheric pressure, that a higher temperature, a higher pressure, or both, cause a greater fragmentation of the volatile products. This study has now been extended to temperatures up to 1,200 °C. The volatile products were collected and fractionated in the usual manner, and the more volatile fractions were analyzed in the mass spectrometer.

Distribution of fractions from pyrolysis in a vacuum at 400, 500, 800, and 1,200 °C is shown in table 1, and from pyrolysis at similar temperatures in helium, in table 2. Results of analysis of the volatile products from pyrolysis in a vacuum are shown in table 3 and those from pyrolysis in helium are shown in table 4. As seen from tables 3 and 4, the yield of monomer C_8H_8 from vacuum pyrolysis decreases with increase of temperature, while in pyrolysis in helium the decrease is so drastic that at 1,200 °C only 0.6 percent of monomer is produced.

There is some discrepancy between the results shown in tables 1, 2, 3, and 4 of this paper and those obtained previously at 362 and 850 °C [5, 8]. However, this may be due to the fact that in this work the time of collecting fraction V_{13} by means of liquid nitrogen was 3 hr instead of the 1 hr in the previous work. The longer period of collection of V_{23} was used in all the experiments described in this paper.

TABLE 1. Pyrolysis of polystyrene in a vacuum

Experiment	Weight	Temper- sture	Volatili- ration	Fracti	Fractions based on total volatilized			
	sample			Vpr	V ₂₅	V-114		
1 2 3 4 6 8 8 8	mg 14.85 14.23 20.4 19.9 17.0 16.7 16.7 16.8 13.4	*(? 400 500 500 800 800 800 1200 1200	%8 92.0 100.0 92.7 100.0 98.0 96.1	48.0 48.0 48.5 38.6 28.2 29.8 34.4 33.6	63.1 63.7 63.8 61.4 71.8 71.8 65.0 66.0	0.6 -4		

TABLE 2. Pyrolysis of polystyrene in helium

Experiment	Weight	Temper-	Volatill- zation	Products based on Joint velatilized		
	alquras			V ppr 4	Vn	
9 10 11 12 18	19.6 19.6 15.7 16.6 16.1	°C 500 500 900 1200	73 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	% 35.2 29.4 40.0 39.8 74.6	% 54.8 71.6 60.0 60.2 25.1	

• Fraction V_{-10} could not be separated from the helium. In vacuum pyrolysis V_{-10} appeared in small smounts only at 1,200 °C (table 1). Here fraction V_{-10} is included in V_{007} .

TABLE 3. Analysis of volatile products from pyrolysis of polystyrene in a vacuum

								-
Component-	At 400 °C		At 5	00 °C	Ats	NO °C	At 1,200 °C	
	No.1	No.2	Na.3	No.4	No.5	No.6	No.7	No.8
II ₂	%	%	%	%	1%	%	% 1	% 0.1
Сана Сана Сана Сана		·			·	1.6	.1 5.0 3.0	4.2
CaRa Call	2.0 4.0	23	1.5	0.5	0.8	04 16 39	1.5 6.2 0.8	2.0
CaHa CaHa CaHa	46.5 0.2	30.0 0.3	6.4	61. 4 6. 1	47.4	47.6	41.6	41.1
V _{рут.}	46.9	43.3	326. Š	38.8	29. ž	22.6	24.4	33.0
Total	100.0	100.0	200.0	100.0	teor 6	100.0	100.0	100.0

Components are in weight percent of total volatiles,

TABLE 4. Analysis of volatile products from pyrolysis of polystyrene in helium

Components	At S	00 °C	ALB	00 °C	At 1,200 °C
	No.9	No. 10	No. 11	No. 12	No. 18
C+H1	% 1	%	%	%	
CH CH CH			6.5 0.2	5.8 0.4	2.6 0.2
СаНя СаНя		2.5			
CrH4 CrH4 CrH4	6.6 0.9	17.2	7.7 0.6	7.2	1.3
CeH CeH	69. 7 A 4	49-1	\$.8 ····	12.5	0. B
Ce and up	4.5 35.2	5.1 28.4	191.0 401.0	18.0 29.8	7. B 71. 6
Total	100. 0	100.0	100. 0	J00. 0	100.0

Components are in weight percent of total volatiles,

4.2. Polytetrafluoroethylene

It was shown in our previous work [9] that polytetrafluorocthylenc (Teflon), when pyrolyzed in a vacuum at temperatures up to 538 °C, yields about 95 percent monomer. In the present work the effect of higher temperatures of pyrolysis on the nature and relative amounts of the volatiles is revealed. Distribution of fractions and analysis of volatile products are shown in tables 5 and 6. The HF in the products at 1,200 °C was calculated from the mass spectrometer analysis of SiF₄, which forms in the reaction of HF with glass in the presence of even a trace of H₂O. In contrast with low-temperaturo pyrolysis, the products from pyrolysis at higher temperatures contain, in addition to monomer, considerable amounts of larger fragments collected as fraction V_{pyr} .

TABLE 5. Pyrolysis of polyletrafluoroethylene in a vacuum

Experiment	Weight of sample	Tempera- ture	Volatiliza- tion	Fractions isseed on total volatilized •		
				V _{DF}	V_{15}	
1 2 3 4 5 6	77 24.7 20.2 14.1 8.5 10.9 10.7	°C 353 252 252 252 252 252 252 252 252 252	% 17.2 16.1 99.7 100 100 100	0 0 1-8 11-8 16-9	100 100 100 98, 2 98, 2 84, 1	

Fraction V-no appeared to trace amounts,

 TABLE 6. Analysis of volatile products from pyrolysis of polytetrafluoroethylene in a vacuum

Composent +	At 500 °C		AL B	Ю°С	At 1,200 °C		
	No. 1	No. 2	No. 3	No. 4	No. 5	No. 8	
F	次 0 1.5 円.8 糸7 0	95.1 8.7 0	% 1.4 92.5 5.9 0	%0 1.8 89.9 6.5	80.2 1.0 5.8 11.8	% 0.5 2.6 75.2 5.8 15.9	
Total	100.0	100.0	100.0	100 0	100,0	100.0	

Components are in weight percent of total volatiles.

4.3. Poly(α-methylstyrene)

When heated in a vacuum at temperatures below 400 °C, poly(α -methylstyrene) decomposes almost completely into monomer [10]. The effect of a higher temperature on the distribution of fractions in the pyrolysis of this polymer is shown in table 7. Considerable amounts of fractions V_{ppr} and V_{-190} are produced at the expense of fraction V_{22} . This effect is even more clearly indicated in table 8, where analysis of the volatile fractions from pyrolysis of the polymer is shown.

4.4. Polypropylene and Polyisobutylene

Pyrolysis of these two polymers in a vacuum has been studied previously at temperatures up to about 400 °C. For polypropylene the yield of monomersize molecules, fraction V_{23} , is about 14 percent [11] and for polyisobutylene about 32 percent [4]. At higher temperatures fractions V_{23} are produced in larger amounts, as shown in tables 9 and 10.

TABLE 7. Pyrolysis of $poly(\alpha$ -methylstyrene) in a vacuum

Experiment	Weight Tomper of stare		Amount of volatio	Fractions bused on total volatilized			
	sample		Jantion	Vyst	Τ'3	V-n	
) 	π9 14.2 11.3 8.0 10.1 7.9 8.2	°C 500 500 800 1200 1200 1200	% 99.4 100.0 100.0 \$9.7 99.4	% 0 11.2 5.4 34.3 32.6	% 100 100 88.7 94.3 54.2 61.1	% 0 0,1 ,3 11,5 6,3	

TABLE 8. Analysis of volatile products from pyrolysis of poly (a-methylstyrene) in a vacuum

Component •	A¢ 5	ю°С	AtS	00 °C	At 2,200 °C		
	N 0.1	No. 2	No. 3	No. 4	No. 5	No. 6	
Н	%	%	% 0.1	% 0.1	% 1.7	्रू 1. व	
СНа			.3		6.6	3.1 0.7	
C:H4 C:H4 C:H4	•	 	.8	.8	1.0 0.7	1.8 0.4	
Calls		'•	2.0	 1.1 0.8	9.8 0.1	1.9 13.3 3.6	
Cal(a	100.0	100.0	83.9 11 9	92-2 5-4	2.6 33.0 34.3	4.2 33.9	
Totel	100.0	100.0	100-0	100.0	100.0	100.0	
			1		E		

Components are in weight percent of total volatiles.

TABLE 9. Pyrolysis of polypropylene in a vacuum

Erperiment	Weight of sample	Tamper- attars	Volatii- Ization	Fractions based on total volatilized			
				Мауг	V11*	1/-JM	
L 2 3 4 6	mg 16.0 10.5 11.0 9.6 9.4 40.8	* <i>C</i> 400 500 800 1200 1200	98.5 78.5 198.6 198.9 198.9 198.9 198.9	% 76.7 79.2 92.4 20.6 22.4 31.7	% 8 23,8 20,6 17,6 20,6 17,6 20,6 20,7 50,7	% Trace Trace Trace 0, L 1, 8 L4, 6	

- Includes V₋₈₅ (raction.

TABLE 10. Pyrolysis of polyisobulylene in a vacuum

Experiment	Weight Temper- of sample store		Volati}- ization	Fructions based on total volatilized			
			· · · · ·	۲ _{вуг}		V-1H	
1 3 5 6 7 8	75,9 15,9 14,1 17,0 15,8 13,8 13,8 13,8 14,1 14,0	*C 400 400 600 800 800 1200 1200	89.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4	63.8 67.6 52.1 3.6 3.1 11.7 7.6	×447.5600.5003	% 0 1.1 1.6 2.4 18.5 19.1	

• Includes V-Miracilon,

Analyses of the volatile fraction from pyrolysis of these two polymers are shown in tables 11 and 12. As compared with pyrolysis at temperatures below 500 °C, [4, 8, 11] the yields of monomers, C_3H_4 and C_4H_6 , are much higher at the higher temperatures. However, in the case of polyisobutylene at 1,200 °C the yield of C_4H_6 is very low and the yields of fragments of lower molecular weight, particularly of H_2 , CH_4 , and C_2H_6 , are very high.

TABLE 11. Analysis of volatile products from pyrolysis of polypropylene in a vacuum

Component •	At 6	0°C	0 °C At 500 °C A		At 1,3	200 °C
	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6
H1	%	%	%	% 6.1	% 0.1	% 9.4
CH4 C#H#	D. L . L	1.U 1		.4 .8 8.0	2.6 6.8	9.6 4.3
СіВ. С.В.		.3	.3	0.7 8.4	1.0	0.9
С.В. С.В.	.5	.5	:6	2.8	1.9	0.6
СаНа СаНа <u>С</u> аНа СаНа	2.5 L.8	L.7 L.3	-6 .7	8.0 12.4 1.3	5. 8.1 0.5	4.] 2.9
CeHe CeHe CeHe	0.8 3.3	0-6 3.9	.6 2.0	0, 5 	21	1.6 0.8 .3
Cells. Cells. Cells.	21 0.7	2.3	0.7	1.9	1.6 0.7	2.9
CaHp CaHp CaHp	4.0 0.9 2.2	3.7 1.4 1.8	3.0 1.0 1.0	4.0	.4	
СьНы. СыНы. Ушт	21	1.0	1.4 0.7 22.4	29.6	22.4	31.7
Total	100.0	100.0	100.0	шо.ф	100.0	100.0

Components are in weight percent of total volatilies.

TABLE 12. Analysis of volatile products from pyrolysis of polyisobulylene in a vacuum

Component -	A1 40	A1 400 °C		ю•с	At 6	ж. ос	At 1,200 °C	
	No.1	No. 2	No.3	N0, 4	No. 5	No.6	No.7	No.S
н.	%	%	%	%	%	%		% 18
СЦ, С,Я,	•				1.2 0.8		17. A 6. S	16.1 7.3
Сия		,	0.9	D. 6	2.7	5.0	9.6	13.6
OIH	0.6		1.1	L6	8.0	δ. 4	14.9	16.5
OIN,		•	0.7	L3			4.8	11
C.H.						0.7	4.5	6.9
C ₁ H ₁	35.6	31.5	88.0	84.9	72.7	65.8	10.6	16.8
Ċ,Ħ						0.5	1.0	1.9
Colle-			0.7	l			0.7	2.4
Ca and up	9.8	10.9	7.4	9.6	8.2	16.9	5.1	5.9
V	53. 3	57.5	δJ.2	52.1	9.6	8.1	14.2	7.6
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Components are in weight percent of total volatiles.

4.5. Poly(methyl methacrylate)

Poly(methyl methacrylate) decomposes primarily into monomer on heating in a vacuum at temperatures up to about 350 °C [10]. However, when the temperature is raised to 1,200 °C considerable amounts of other fragments, both larger and smaller than the

monomer, appear among the volatiles. Table 13 shows the distribution of volatile fractions for 500, 800, and 1,200° C pyrolysis. The appearance of preponderant amounts of V_{-190} at 1,200 °C is particularly notable and is mainly due to the formation of CO, CO₂, H₂, CH₄, C₂H₂, and C₄H₄, as indicated in table 14. It was found that fractions V_{24} and V_{-190} from pyrolysis at 800 and 1,200 °C, if allowed to stand for more than a day, tended to repolymerize and thus give misleading results. All the analyses of these two fractions were therefore made on the same day that they were produced and collected.

TABLE 13. Pyrolysis of poly(methyl methacrylate) in a vacuum

Erperiment	Weight al spinple	Τοπιράτ- μίμο	Volatil- ization	Finctions based on total volatilized		
				V _{P7}	V _B	V. #
1 2 5 6	70/3 9.9 8.5 11.3 9.8 9.8	*C 500 500 500 500 1200 1200	700 100 100 100 100 100	*0 23 JL2 80 82	% ↓ 96. ↓ 97. 7 88. 1 29. ↓ 26. 2	0 0 0.1 .1 85.6 65.6

TABLE 14. Analysis of volatile products from pyrolysis of poly(methyl methacrylate) in a vacuum

Component •	At 500 °C		At 900 °C		At 1,200 °C	
	No.	No. 2	No. \$	No.4	No. 5	No. 6
	%	%	%	%	20	%,
СН. С:Я.	· · · · · · · · · · · · · · · · · · ·				5.0 2.6	6.2 3.5
Сı В Сı В Сı Н	0.7	1.0		0.7 1.4	0.3 1.6 6.7	1.1 6.6
CiHiO, CiHi		•	.a .i	0. R . 7	<u>6</u> .2	6.6
С,Щ, С,Щ,					1.2	0. B 3. C
CiHi CiHiOi CiHi	93.0	95. t	2.0 90.5 0.9	B3.1	1.5 16.5	2.0 9.3
CH.			10	I. D	0.7	20
ço.	2.8	0.8	1.1	1.8 0.7	81.8 9.8	51,4 12,8
Total	<u> </u>	100.0	11.2	100.0	5.0	100.0

Components are in weight percent of total volatiles.

5. Discussion

As indicated in this paper, the method of heating a polymer sample consisted in moving quickly a furnace preheated to the required temperature into position to surround the sample. It is safe to assume that in the earlier work below 500 °C and also in most cases in the present work at 500 °C most of the pyrolysis took place at or near the specified temperature since the reactions proceed at a moderate rate. However, at the temperatures of 800 and 1,200 °C, where the rates of degradation are extremely high, it is quite certain that most of the volatilizable part of a given sample would degrade and evaporate while its temperature was rising from room temperature to 800 or 1,200 °C. An idea of the speeds of reactions at these temperatures can be gained from the fact that below 500 °C the rates were found generally to double for every rise of 10°. The only limitation on this rate is the limited rate of heat transfer to the sample to furnish the heat required in the endothermic reactions. Under these circumstances the data obtained at the higher temperatures indicate only a general trend in the results of pyrolysis as a function of temperature, on the assumption that a higher initial temperature results in a higher pyrolysis temperature.

Fraction V_{pyr} from pyrolysis of the various polymers discussed in this paper consisted of molecular fragments too largo to be analyzed by the mass spectrometer at our disposal, and the amounts collected were too small to be analyzed even by micro-chemical methods. Instead, the fractions were checked for their average molecular weight by a microcryoscopic method. The results are shown in table 15. Results for polymethylene are shown for comparison. Here again, as in the case of the lower molecular weight fractions, the higher the temperature of pyrolysis the greater is the fragmentation of the products, except in the case of polystyrene. It can be safely assumed that the V_{pyr} fragments consist of parts of the main chain, partially degraded.

TABLE 15. Average molecular weight of fraction V_{pv}, from pyrolysis of polymers at various temperatures

Polymer	Temperature of pyrolysis			
	500 °C	800 °C	1.200 °C	
Polystyrene Polystyrene	264	379	476 209	
Polypropylene Polyleobutylene Polyleobutylene	854 543		328 338	
Polymethylene, in vscuum. Polymethylene, in helium.	800 321	562 977	473 230	

Another point to be considered in connection with this work is the mechanism of degradation. The results of measurements of relative amounts of the gascous fractions and their chemical composition reflect two principal mechanisms: (a) a primary thermal degradation, and (b) a subsequent degradation involving thermal and catalytic cracking reactions in the hot chamber, similar to those that take place in petroleum cracking.

Results of pyrolysis at 500 °C do not differ essentially from those obtained previously at lower temperatures. However, results of pyrolysis at 800 and 1,200 °C show a conspicuous departure from those obtained below about 500 °C. This departure consists mainly in an increased fragmentation of the degradation products and in the appearance of V_{pyr} fraction in some cases where such a fraction is absent at lower temperatures. Pyrolysis in a neutral atmosphere such as helium also results in greater fragmentation of the volatile products due to their slower escape from the hot zone. Thus, in the case

of polystyrene, monomer is the main constituent in the V_{25} fraction when pyrolysis in a vacuum takes place at temperatures up to 500 °C. At 800 and 1,200 °C the yield of monomer is diminished, and C₂H₂, C₂H₄, and C₆H₄ appear in increasing amounts. Similarly, pyrolysis at 800 and 1,200 °C in helium at atmospheric pressure yields small amounts of monomer, only 0.8 wt-% at 1,200 °C, and appreciable amounts of C₂H₂ and C₄H₈. Formation of C₆H₆ can be assumed to take place as follows:

or a phenyl group may split off as a free radical causing a scission in the backbone of the chain

The free radicals could then absorb H from the surrounding medium causing further scissions. Compounds C_2H_2 and C_2H_4 could form through scissions in the backbone of the polymer chain, or they could form from the monomer. In either case, these reactions result in a decrease of the yield of monomers.

With polytetrafluoroethylene, the main product of pyrolysis at the lower temperatures is C_2F_0 , with small amounts of C_3F_6 and CF_4 . At the higher temperatures C_2F_4 is still the dominant product, but in addition there also appears small amounts of HF. There is no fraction $V_{\rm pyr}$ formed at temperatures up to 500 °C and only a small amount at 800, but at 1,200 °C the yield of this fraction is considerable. It was postulated in our earlier work [9] that this polymer breaks up at free radical ends of chains by an unzipping process to yield mostly monomers. The overall reaction is of first order [9, 12, 13]. This can be explained on the ground that the unzipping process is preceded by a process of scission of C-C chain bonds into free radicals. This reaction is slower and random and is therefore rate determining and of first order. The absence of any V_{pyr} at low temperatures is probably due to the fact that at these temperatures unzipping, once started, proceeds until the whole chain is consumed, so that large fragments (V_{pyp}) do not appear among the volatile products. At the higher temperatures some of the shorter free radical chains evaporate before they have a chance to decompose into monomer, thus yielding volatile fractions of V_{pre} size.

With poly(α -methylstyrene) the distinction bctween low and high temperature pyrolysis is clearcut. At lower temperatures the product consists of 100 percent monomer. At 800 and 1,200 °C various smaller fragments, from H₂, CH₂, C, H₃, and other small hydrocarbons up to C, H₃ make their appearance. In addition to these there are among the degradation products at the higher temperature a considerable amount of $V_{
m ny}$ size fragments, whereas at the lower temperature the yield of V_{pyr} is zero. The mechanism of degradation of this polymer is similar to that of polytetrafluoroethylene, and the reaction is of first order [14]. The appearance of larger molecules found in fraction V_{pyr} could be caused by the vaporization at higher temperatures of some of these molecules before they have time to break up into the monomer by the unzipping process. The formation of small molecules found in fraction V_{-100} is most likely caused by cracking of the larger molecules in the hot zone of the apparatus.

In the pyrolysis of polypropylene, the monomer, C₂H₅, appears in small amounts below about 500 °C. At 800 and 1,200 °C its yield is considerable. The reverse is true of V_{pyr} , due to the cracking of the V_{pyt} fragments into smaller molecules in the hot There is some H_2 and larger amounts of CH_4 , zone. C_2H_3 , C_2H_4 , C_2H_5 , C_3H_4 , C_4H_8 , and C_5H_{10} at the higher temperatures than at the lower. In this respect the mechanism of degradation of polypropylene is similar to that of polymethylene [6].

Pyrolysis of polyisobutylene generally follows the same pattern as that of polypropylene, except for the fact that at 800 °C the yield of monomer is higher than at 500 or at 1,200 °C. On comparing the yield of V_{prr} for the three temperatures, it appears that there is an inverse relationship between these products so that one may assume that at 500 and 800 °C the increase of monomer yield is at the expense of $V_{\rm prr}$.

Degradation of poly(methylmethacrylate), like that of polytetrafluoroethylene and $poly(\alpha$ -methylstyrene), yields at the higher temperatures less amounts of monomer than at the lower temperatures. Judging from table 14, the monomer decomposes at the higher temperatures, particularly at 1,200 °C, to yield considerable amounts of CO, CO₂, CH₄, C_2H_2 , C_2H_4 and similar compounds.

6. References

- [1] T. Midgley and A. L. Henne, J. Am. Chem. Soc. 51, 1215 (1929). [2] H. L. Bassett and H. G. Williams, J. Chem. Soc. p.

- [2] H. L. Bessett and R. G. T. Barner, 2324 (1932).
 [3] B. S. T. Boonstra and G. J. VanAmerongen, Ind. Eng. Chem. 41, 161 (1949).
 [4] S. L. Madorsky, S. Straus, D. Thompson, and L. Williamson, J. Research NBS 42, 499 (1949).
 [5] S. L. Madorsky and S. Straus, J. Research NBS 43A, 261 (1959).
 [61 S. L. Madorsky and S. Straus, Soc. Chem. Ind. (London)
- [6] S. L. Madorsky and S. Straus, Soc. Chem. Ind. (London)
- Monograph No. 13, p. 60 (1961). [7] S. L. Madorsky and S. Straus, Modern Plastics 38, 134
- S. L. Madorsky, J. Soc. Plastic Engineers 17, 665 (1961).
 S. L. Madorsky, V. E. Hart, S. Straus, and V. A. Sedlak, J. Research NBS 51, 327 (1953).
- [10] S. Straus and S. L. Madorsky, J. Research NBS 50, 165
- (1953). [11] S. L. Madorsky and S. Straue, J. Research NBS 53,
- 361 (1954).
 [12] S. L. Madorsky and S. Straus, J. Research NBS 644, (Phys. and Chem.), No. 6, 513-514 (Nov.-Dec. 1960).
- [13] Henry L. Friedman, Paper presented at the 136th Meeting of the American Chemical Society, Atlantia City, New Jersey, September 1959.
 [14] S. L. Madorsky, J. Polymer Sci. 11, 491 (1953).

(Paper 66A5-175)