Properties of Barium Titanium Silicate Glasses 1, 2

Given W. Cleek and Edgar H. Hamilton

The glass-forming region of the BaO-TiO₂-SiO₂ system has been determined. The refractive index, n_D , nu value, liquidus temperature, and transmittances in the near infrared have been measured. Also measured for representative glasses were linear coefficient of thermal expansion, deformation temperature, chemical durability, and hygroscopicity. A number of stable glasses were found, which have high refractive indices, good infrared transmittances, and high deformation temperatures, and which are unique in their resistance to attack by both acids and alkalis.

1. Introduction

The development of infrared detecting devices has created a demand for glasses for their construction. Many of these devices operate in the near infrared at the wavelengths of the so-called atmospheric windows, where atmospheric transmittance is high. The windows for which glasses are being developed are those at wavelengths of roughly 2.0 to 2.4 and 3.5 to 6.0 μ .

The requirements for the glasses include high transmittance at the wavelengths of interest, and good chemical durability. In addition, for refracting optics, glasses having high refractive indices over the range of about 1.80 to 2.00, and a range of dispersions for each index, are needed. B_2O_3 and P_2O_5 are not desirable as constituents of infrared transmitting glasses, as they cause rather strong absorption bands beyond wavelengths of about 2.75 μ [1].³ The silicate glasses, in general, do not transmit beyond about 5 μ , presumably due to the Si-O bond, which absorbs at 4.45 μ [2]. Germanate glasses transmit to about 6 μ [1], but GeO₂ is a scarce and expensive material so that it is not readily available as a constituent of glass. Another group of oxide glasses, which contain no so-called "glass former," are the calcium aluminate glasses [1], which also transmit to about 6 μ . They require very high melting temperatures, devitrify easily, and have poor chemical durability.

Most high-index glasses presently available are either extra-dense flint glasses, which have a high PbO content, or rare-earth borate glasses [3]. The extra-dense flint glasses have fairly good infrared transmittances, cutting off, as do most silicate glasses, at about 5 μ . They have high refractive indices, but their chemical durability is poor. The B_2O_3 content of most rare-earth glasses makes them useless for infrared applications.

Upon consideration of the above factors, it was decided that silicate glasses appear to offer the best possibilities for general use if other components could be found to impart the desired properties to the glasses. A system on which little information was available, but which appeared promising from the point of view of high refractive index and good infrared transmittance if glass-forming compositions could be found, was the ternary $BaO-TiO_2-SiO_2$

² Presented at the Fifty-Seventh Annual Meeting, The American Ceramic Society, Cincinnati, Ohio, April 27, 1955 (Glass Division No. 32).
 ³ Figures in brackets indicate the literature references at the end of this paper

system. The phase equilibrium diagram has not been determined, but information is available on the binary sides of the ternary system [4, 5, 6]. Rase and Roy have determined the liquidus temperatures and phase relations along the line BaO·TiO₂- SiO_2 in the ternary diagram [7]. This information was very useful in selecting compositions in the ternary system that could be melted and cooled as glasses.

2. Experimental Procedure

The glasses were made in 500-g melts from batch materials of sufficient purity to satisfy the requirements for the production of optical glass. The standard procedure was to melt the batches in platinum crucibles, $2\frac{1}{2}$ in. in diameter by 3 in. deep. After the batch was melted, the melt was stirred for 2 hr with a motor-driven platinum-10-percentrhodium double-bladed propeller-type stirrer. It was then poured into a heated metal mold to form a block about $\frac{1}{2}$ in. thick. When sufficiently rigid, the glass block was transferred to an electric muffle furnace, which was cooled to room temperature in approximately 18 hr. Only those compositions that could be melted below 1,500° C and in which no appreciable devitrification occurred during cooling were considered to produce glasses. These experimental conditions were used to define the glassforming region of the system, and no attempt was made to enlarge the region by melting at higher temperatures or by cooling the melts more rapidly to avoid devitrification.

A softening temperature for each glass was determined by a gradient method [8]. A fiber of glass, 0.4 to 0.6 mm in diameter, was supported at approximately ¹/₂-in. intervals on a platinum holder and placed in a known temperature gradient for 20 to 30 min. From the position at which the fiber sagged between supports, the softening temperature could be determined to ± 10 deg C. The softening temperature, so determined for these glasses, was found to be from 40 to 60 deg C above the deformation point as determined by the interferometric thermalexpansion method [9]. Using this information, the glasses were annealed by heating for 4 to 6 hr at a temperature about 60 deg C below their softening temperature and then cooling at a rate of $2\frac{1}{2}$ deg/hr to 350° C. It is believed that this treatment yielded glasses of comparable annealing, inasmuch as the temperature at which equilibrium was obtained would be a function of the composition and rate of cooling.

¹ The work described in this report was sponsored by the Bureau of Ordnance,

The liquidus temperature of each glass was determined by a temperature-gradient method [10].

Refractive-index determinations were made on polished annealed samples of the glasses in the form of 60° prisms for the C, D, and F lines by the NBS Optical Instruments Section. The spectral transmittances of the glasses were determined from 1.0 to $6.0 \ \mu$ by the NBS Radiometry Section, with a model 21 double-beam Perkin-Elmer infrared spectrometer.

The chemical durability of the glasses was determined by an interferometric method developed by Hubbard and Hamilton [11]. Cloth-polished samples were immersed about one-half their lengths in solutions buffered to the desired values of pH. After 6 hr of exposure at 80° C the samples were removed from the solutions and viewed through an optical flat with monochromatic light. Any shift in the inter-

ference bands as they pass from the unexposed to the exposed portion of a sample is proportional to the amount of attack by the buffered solution and is, therefore, a measure of the chemical durability of the glass.

The linear thermal expansions and the deformation temperatures of several of the glasses were determined by an interferometric method described by Saunders [9].

3. Results

3.1. Glass-Forming Area of the $BaO-TiO_2-SiO_2$ System

The compositions of all melts made in the system are given in table 1 and are plotted in the ternary

TABLE 1. Ternary BaO-TiO₂-SiO₂ Compositions

Melt	Composition			n _D	ν	Liquidus tempera-	Remarks		
	${ m SiO}_2$	BaO TiO ₂				ture			
F294 F293 F292 F291 F316 F331 F332 F332 F337	$\begin{matrix} Mole \\ \% \\ 65 \\ 60 \\ 55 \\ 50 \\ 45 \\ 40 \\ 35 \\ 30 \\ 25 \end{matrix}$	Mole % 20 20 20 20 20 20 20 20 20 20 20 20	$\begin{matrix} Mole \\ \% \\ 15 \\ 20 \\ 25 \\ 30 \\ 35 \\ 40 \\ 45 \\ 50 \\ 55 \end{matrix}$			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Devitrified in mold. Do. Do. Do. Do. Do. Do. Do. Do. Do.		
F363 F364 F365	$55 \\ 42.5 \\ 32.5$	22.5 22.5 22.5 22.5	$22.5 \\ 35 \\ 45$			>1,400 1,248 1,339	Do. Some devitrification. Considerable devitrification.		
$\begin{array}{c} F151\\F150\\F149\\F148\\F148\\F147\\F147\\F146\\\end{array}$	$70 \\ 65 \\ 60 \\ 55 \\ 50 \\ 45$	$25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\$	$5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30$	1. 73021 1. 77760 1. 82236	34.0 30.6 27.6	$\begin{array}{c} 1,408\\ 1,345\\ 1,265\\ 1,250\\ 1,248\\ 1,233 \end{array}$	Do, Do, Opal in center, Glass, Do, Do,		
F145 F289 F317 F333 F367 F336	$\begin{array}{c} 40 \\ 35 \\ 30 \\ 25 \\ 22.5 \\ 20 \end{array}$	$25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\$	$35 \\ 40 \\ 45 \\ 50 \\ 52.5 \\ 55$	1. 86682	25.3	$\begin{array}{c} 1,218\\ 1,242\\ 1,260\\ 1,305\\ 1,310\\ 1,333\end{array}$	Do, Dark-brown glass, Do, Black glass, Considerable devitrification, Contained devitrification,		
F366 F368	$27.5 \\ 37.5$	$27.5 \\ 27.5$	$\begin{array}{c} 45\\ 35\end{array}$			$1,266 \\ 1,288$	Considerable devitrification. Do.		
F 152 F35 F40 F45 F138 F139 F288 F280 F334 F335	$\begin{array}{c} 65\\ 60\\ 55\\ 50\\ 45\\ 40\\ 35\\ 30\\ 25\\ 20\\ \end{array}$	30 30 30 30 30 30 30 30 30 30 30 30	$5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 35 \\ 35 \\ 40 \\ 45 \\ 50 $	1. 63139 1. 67250 1. 71275 1. 75412 1. 79585 1. 83697 1. 87998	49. 9 43. 7 38. 6 34. 3 30. 9 28. 1 25. 8	$\begin{array}{c} 1,356\\ 1,301\\ 1,332\\ 1,342\\ 1,344\\ 1,350\\ 1,337\\ 1,354\\ 1,313\\ 1,331\\ 1,331\\ 1,302 \end{array}$	Glass. Do, Do, Do, Do. Some devitrification in end*of block. Some devitrification in block. Considerable devitrification. Do, Do,		
F353	33. 3	33, 3	33, 3			1,405	Devitrified in mold.		
F 144 F 143 F 142 F 142 F 141 F 140 F 315 F 287		35 35 35 35 35 35 35 35	$5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 35 $	1. 65158 1. 69148 1. 73037	49.0 43.1 38.3 	$1, 367 \\ 1, 354 \\ 1, 393 \\ 1, 415 \\ 1, 420 \\ 1, 423 \\ 1, 441$	Glass. Do. Do. Considerable devitrification. Do. Devitrified in mold, Do.		
F 282 F 283 F 284 F 295 F 285 F 286	$55 \\ 50 \\ 45 \\ 40 \\ 35 \\ 30$	$\begin{array}{c} 40 \\ 40 \\ 40 \\ 40 \\ 40 \\ 40 \\ 40 \end{array}$	$5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30$			$\begin{array}{c} 1,375\\ 1,401\\ 1,441\\ 1,462\\ 1,468\\ 1,484\end{array}$	Cloudy. Some devitrification spots. Considerable devitrification. Devitrified in mold. Do. Do.		
F296 F297 F298 F299	$50 \\ 45 \\ 40 \\ 35$	$45 \\ 45 \\ 45 \\ 45 \\ 45$	$5 \\ 10 \\ 15 \\ 20$			$1,404 \\ 1,462 \\ 1,462 \\ 1,488$	Do. Do. Do. Do.		

diagram in figure 1. As may be seen from the figure, the longest BaO isopleth along which glasses are formed is the 25 mole percent BaO line. Although glasses are not formed on this line to the BaO-SiO₂ binary, glass formation begins at about 20 mole percent of TiO₂ and extends to relatively high concentrations of TiO₂. This line of glass formation seems to follow a valley in the liquidus surface, as may be seen from table 1.

The color of the glasses changed very markedly as the TiO₂ content was increased. Those containing up to about 15 mole percent of TiO₂ were nearly colorless, whereas those containing intermediate amounts, from 20 to 35 mole percent of TiO₂, were orange colored, and the others having above 40 mole percent of TiO₂ were dark brown to black. Evidently, as the TiO₂ content is increased, the absorption increases at the shorter wavelengths in the visible region, and at higher TiO₂ concentrations very little visible light is transmitted.

3.2. Liquidus Temperature

The liquidus temperature for each composition is given in table 1. It will be noticed from the table that in no case was a glass formed from a composition that had a liquidus temperature greater than 1,400° The lowest liquidus temperatures were found along the 25-mole-percent BaO isopleth, which is also the longest line of glass formation in the system. Furthermore, the shape of the liquidus curve of the 25-mole-percent BaO series in the areas of best glass formation is relatively flat, indicating a high degree of dissociation of the primary phase at the liquidus temperature [12]. Probably, the ease of glass formation is related to the degree of dissociation of the primary phase in the melt, because a similar observation was made for the $BaO-B_2O_3-SiO_2$ glasses [8]. In the latter system, the glasses whose compositions lie in the $3BaO \cdot 3B_2O_3 \cdot 2SiO_2$ primary field, which has a flat liquidus curve, were the ones that were melted and homogenized with the least difficulty and had the least tendency to devitrify.

3.3. Refractive Indices and Dispersions

The refractive indices, n_D , and ν values are plotted in figure 2 for the three BaO isopleths along which glasses were obtained. The values of n_D varied from 1.63139 to 1.87998, and ν from 49.9 to 25.3. The refractive-index values appear to be linear functions of composition. The plots of the ν values definitely show curvature.

3.4. Infrared Transmittances

Figures 3 to 9, inclusive, give the transmittances for 2-mm thicknesses of the ternary glasses over the spectral range 1 to 5 μ . The figures compare glasses of constant TiO₂ content. In general, the glasses giving the highest transmittance at 4 μ lie on the 30-mole-percent BaO isopleth up to a TiO₂ concentration of 25 mole percent, then the compositions shift to the 25-mole-percent BaO isopleth. There are considerable differences in the transmittances of the various glasses, but no simple relationship between transmittance and composition is readily evident.

3.5. Chemical Durability and Hygroscopicity

The values of chemical durability of five representative ternary glasses are given in table 2 and are plotted as a function of pH in figure 10. All values are for 6 hr of exposure at 80° C. As may be seen from the figure, the glass containing 60 mole percent of SiO₂ is attacked in the alkaline range. As SiO₂ is replaced by TiO₂, the attack in this range is decreased, and although slight attack or swelling is noticed at pH 2, the glasses containing 20 mole percent, and more, of TiO₂ show no attack in the alkaline range.

The hygroscopicity [13], or the tendency of a powdered-glass sample to absorb water in a humid atmosphere, was very low for the samples of the ternary glasses on which determinations were made. The values obtained were, in all cases, equal or less than fused silica, which was used for purposes of comparison. These data are given in table 2 and plotted in figure 11.

The resistance of these glasses to chemical attack and their low hygroscopicity make them unique as compared to known oxide glasses.

TABLE 2. Hygroscopicity and chemical durability of BaO-TiO₂-SiO₂ glasses

Melt	Water sorbed		Surface alteration, a fringes, at $pH-$ (exposures, 6 hr at 80° C)						
	1 hr	$2\mathrm{hr}$	2.0	4.1	6.0	8.2	10.2	11.8	
F35 F49 F95 F138 Corning 7740 Fused SiO2	mg/cm^3 5.7 6.1 5.2 15.9 6.2	$\begin{array}{c} mg/\\ cm^3\\ 10.0\\ 9.1\\ 8.2\\ \hline \\ 28.3\\ 12.1\\ \end{array}$	ND ND 1/10 A 2/10 S 1/10 S ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND	1/2 A ND ND ND ND 1/4 A DA	2 A 2/10 A ND ND ND 1 3/4 A 1/2 A	

 $^{\rm a}$ ND, No detectable attack; A, attack of surface; S, swelling of surface; DA, detectable, but not measurable attack.

3.6. Thermal Expansion and Deformation Temperatures

The linear coefficient of thermal expansion has been determined for only three representative ternary glasses. The values obtained were 9 or 10×10^{-6} , which is near the values of most commercial soda-line-silica glasses. The deformation temperatures are somewhat higher than the usual values for silicate glasses. The expansion curves for the three glasses are plotted in figure 12. The deformation temperatures varied from 767° C for glass F35, containing 10 mole percent of TiO₂, to 791° C for glass F138, having 30 mole percent of TiO₂.

4. Summary

The glass-forming region of the BaO-TiO₂-SiO₂ system has been determined. The liquidus temperature, refractive indices and dispersions, and infrared transmittances of the glasses have been measured. The chemical durability and hygroscopicity, and linear thermal expansion of selected glasses have been determined. Glasses in this system are unique as compared to most glasses in that they have a high deformation temperature, exceptional chemical durability, and very low hygroscopicity.

5. References

- [1] Francis W. Glaze, Transmittance of infrared energy by
- [1] Handis W. Glaze, And Ceram. Soc. 34, 291 (1955).
 [2] Jack M. Florence, Charles C. Allshouse, Francis W. Glaze, and Clarence H. Hahner, Absorption of near-(and energy by certain glasses, J. Research NBS 45, 121 (1950) RP2118.
 [3] C. J. Phillips, Glass the miracle maker, p. 116 (Pitman Publishing Corp., 1948).
 (4) D. E. Deng, et al. (1977) Provided the second second
- [4] D. E. Rase and Rustum Roy, Phase equilibria in the system BaO-TiO₂, J. Am. Ceram. Soc. 38, 102 (1955).

- [5] E. N. Bunting, Phase equilibria in the systems TiO_2 Ti O_2 -Si O_2 and Ti O_2 -Al $2O_3$, BS J. Research **11**, 719 (1933) RP619. R. W. Ricker and F. A. Hummel, Reactions in the system TiO_2 -SiO₂; revision of the phase diagram, J. Am. Ceram. Soc. 34, 271 (1951). R. C. De Vries, Rustum Roy, and E. F. Osborn, The system TiO₂-SiO₂, Trans. Brit. Ceram. Soc. 53, 525 (1954).
 [6] P. Eskola, The silicates of strontium and barium, Am. J.
 [6] P. Eskola, The silicates of strontium and barium, Am. J.
- Sci., 5th series, 4, 331 (1922). J. W. Grieg, Immisci-bility of silicate melts, Am. J. Sci., 5th series, 13, 1 (1927).
- [7] D. E. Rase and Rustum Roy, Phase equilibria in the system BaTiO₃-SiO₂, J. Am. Ceram. Soc. **38**, 389 (1955).
 [8] Edgar H. Hamilton, G. W. Cleek, and O. H. Grauer,
- Some properties of glasses in the BaO-B₂O₃-SiO₂ system and a theory of glass structure (unpublished manuscript)
- [9] James B. Saunders, An apparatus for photographing in-terference phenomena, J. Research NBS 35, 157 (1945) **RP1668**
- [10] Oscar H. Grauer and Edgar H. Hamilton, An improved apparatus for the determination of liquidus temperatures and rates of crystal growth in glasses, J. Research NBS 44, 495 (1950) RP2096.
- [11] Donald Hubbard and Edgar H. Hamilton, Studies of the chemical durability of glass by an interferometric method, J. Research NBS 27, 143 (1941) RP1409.
- [12] John E. Ricci, The phase rule and heterogeneous equilib-rium, p. 123 (D. Van Nostrand Co., Inc., New York, New York, 2010)
- [13] Donald Hubbard, Hygroscopicity of optical glasses as an indicator of serviceability, J. Research NBS 36, 365 (1946) RP1706.

FIGURE 1. Compositions (in mole percent) studied in the system BaO-TiO₂-SiO₂.

FIGURE 2. Plot of refractive index and nu value as a function of composition for the glass-forming compositions in the $BaO-TiO_2-SiO_2$ system.

FIGURE 3. Spectral transmittance of 2-mm thickness of two glasses containing 5 mole percent of TiO_2 .

See table 1 for compositions of glasses.

Figure 4. Spectral transmittance of 2-mm thickness of two glasses containing 10 mole percent of TiO_{2} .

FIGURE 5. Spectral transmittance of 2-mm thickness of three glasses containing 15 mole percent of TiO_2 .

FIGURE 7. Spectral transmittance of 2-mm thickness of two glasses containing 25 mole percent of TiO_2 .

FIGURE 10. Chemical durability of five BaO-TiO₂-SiO₂ glasses as a function of pH.

WASHINGTON, July 11, 1956.

FIGURE 12. Thermal expansion curves of three BaO-TiO₂-SiO₂ glasses as determined by an interferometric method.