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Entropy Changes in Rarefaction Waves 1 

Robert F. Dressler 

F I' ict ional fl ow of a polytropic gas is in vcst i gatcd for cc ntercd rarefact ion wa vcs. En­
ergy balrlncc is mai nta inecl by assuming t hat mcc hanical cnergy loss due 1.0 fl'i cL ional for ce 
reappears as heat. E nt ropy behavior at t he wave front i s di scussed. The non homog;e nco us 
linear s.vstem of par t ial different ial eq uat ions w it h vari able coeffi cien ts fO I' fi rst.-o rder fri c­
t iona l effects is dCI·i ved. Utili zing t he geometri cal similari ty of t he M ac h lines, t.h e fun c­
t iona l form of t hese q uant it ies is ascer t ained , whi ch permit s ex pli ci t solut ions of t lw boundar y 
value problem. The expansion proceclure is si nglii al' at t he wave front, anel res llit s are no! 
appli cable t here. F irst-ord er effects are exprcssed as pol y nomials plus t erms singular at 
t he w ave front . R es ul ts ar c compared with expressions obtained wh en heat ge ner alio n 
dlle to fri ctional force i s neg lect ed . 

1. Introduction 

Equft tions for on e·dimensiomil , ullsteady flow of a compressible gas permi t explicit solu­
tion for ce ntered r Arefa ction waves, such as OCC llI' in shock t ubes 0 1' pn eumatic control circuit s. 
For some applicft lions, however , i t becomcs importftn t to include also the complications re­
sulting from fri ct ional cI iss ipatioll. Th is matter is discussed here in two Wftys, first wi th the 
simplifying Assumption th at the fri ctional effec ts consist mercly in ft retarding force, a nd 
second, by the more complete consid eration Lhat includes th e resulLing iJeat generation and 
accompflll y ing ch ft ngc in entropy. This meftn s t'hat the m ech anical energy destroyed by th e 
retm·d a.tion force reappea rs as heAt energy, resultin g in additional exp ft nsion . The s impler 
flow description wiLhou t heat gencra tion win be refer red to as mod el A, And th e second, morc 
accurate, one as model B. The equa t ions for s Leady friction al n ow in model B h ave bee n 
studied a nd y ield energy theorems a,nd a,n ex tend cd form of Bernoulli 's th eorem [1],2 but kn owl­
edge of the ull steAd y Dows nppefl rs to be rcs tri ctcd m ft inly to a fcw isolnted numerical cAlcu­
la t ions . 

A ccnLeredl'arefac ti o n wa vc is pcrh aps th e most bas ic pat tern in ull stcady riOII' ; th e present 
p ftper derives solu ti ons forfi rst-o rd er d iss ip a ti ve efl'ccLs in LIl is ull stea dy wa ve usi ng the full 
system of equations of m odel B , a nd comp Arcs rcsults with corresponding oncs for model A 
(which were prev iously pllbli sh ecl by Lhe AuLhor [2] AS a supplcmentary rcs ul t in a study or 
shock tubes with vary ing cross scc tion). 

A recen t paper by I Judforcl alld }, [Arti n [:3] h as discussed an iscn tropi c en'ec ts i n centered 
simple waves. They consider Hows where the specifi c entropy vHies from particle to p alt iclc, 
bu t remain s constan t for a given pArticle. In friction al flow , howevc r, thc specific c nt ropy 
for a given particle must vary with time , and a centered ra refAct ion wave ca nn ot rem a in a 
simple wave. 

Consider a poly tropic gas at rest for t ime t < 0 in a duct of uniform cross scc tion, fillin g 
the du ct to th e left of a diaphragm where x<O, And wi th a vacuum initially nt x>O. }Iea t 
exch ange between th e gas and the duct, heat condu ction andl'adiation , and v isco us cffects a re 
disrega rdcd. 'IiVh cn the diaphragm is removed at t=O, a centered r a refac Li on wavc begin s. 
Dimensional qu anLi t ies a re denoted by bars in order to defin e the unbArrcd dimcnsionless 
qu antitics to be uscd subsequ ently. Before flow , the gas state is desc ribed by so und speed 
Co , m ass dcns iLy Po, And temperature T o; After flow we h ave velociLy U, local sOllnd speed c, 
m ass dens ity p, a nd prcssurc p. 

F or model A , Ass uming 11 0 intcrn AI hca t ge neration a nd 11 0 cn tropy ch angcs, th c equ at ion 
of sLaLc can bc wri tten ill forms 

(1) 

I T' lli s rcsl'arc h \\US supported by the Office of :\an11 Hrscarch, L~S )J. 

2 Figures in brackets indicate the lite rature refe rell cC's a t t he end or th is paper. 
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\\'here 'Y is the adiabatic exponent, R the gas cons tant , T the temperature, and A* is a known 
constant (consistent with the assumption here of no entropy change) . III this simpler model , 
the friction produces merely a retarding force per unit mass of magnitude A1j} where A is the 
known friction fa ctor. There is some question concerning the constancy of this coefficient for 
fri ctional flows that are highly unsteady ; this question is discussed by Schultz-Grunow [4], 
Jenny [5], and others. Here it is considered to be a constant. 

Introducing dimensionless (unbarred) variables defin ed by x= x/D, t= (c/ D)t, u = u /co, 
c= c /co, p= p!Po, A=Dx where D is some length associated with duct cross sec tion , the momen­
tum and continuity equations for model A are 

(2) 

for the two unknowns u (x, t) and C (x, t); and the energy equation is neglected. 
In deriving equations for model B one must take accoun t of the mechll.nical energy lost 

through the action of the retarding force Au[u l. The action of a body force ca nn ot itself di­
rectly change entropy ; however, if ll. term is included in the energy equation for an amount 
of generated heat equal to the lost mechanical energy, thi s heat will change the specific en­
tropy. In this way , the energy equation becomes expressible directly ill terms of the fri ction 
<:oefficien t. The eq L1a t ion of sta te for model B now includes the en tropy dependen ce, 

(3) 

\\·here C, is specific hea t at constant volume, s is the specific entropy (entropy per unit mass) , 
lind So is a constant with a value depending ul)on the entropy level adopted . Letting climen-
siolliess specific entropy s be defin ed by s = ( 'J '0 /c02)s, the momentum, continuity , and energy 
equll. tions for model B become, respectively, 

(4) 

for the three unknowns u(x,t) , c(x ,t), and s(x,t). W·e set S= 8= 0 for the gas when initially at 
rest, and the equality 

(5) 
determines the constan t So. 

2. Characteristic Equations 

The Mach Jines for model B are defined by the system of characteristic equations equival ent 
to the t otally hyperbolic sys tem (4) . These consist of three families of real CUl'ves with direc­
tions given by 

.\ 1 : 

b 1 -=u - c dt 

dx 
(6) .\2 : 

:: u+, J 
.\3: dt - U 
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" 'h icll a re r esp ectively th e backward sound pa th , the forward sou nd pa th , and the par ticl e 
tl'aj ectol'Y (sec fi g. 1) . The correspond ing eli (1'e1"en ti al rela tions along each family ar e 

(7) 

These equatioll s arc used in [6] as the ba sis for a di scussion of a llumeri ca'! compu tation on a 
rarefact ion wave in a shock t ube. 

3. Entropy Behavior at the Wave Front 

From the above equ at ions and th e equ ati on of state (3 ), th e behav ior of s at th e forward 
wave fron t where p= O can be inferred , consis tent with th e assumed model for th e flow. For 
no tational simplicity and to permi t numeri cal results, we now specialize the gas Lo be ail' with 
'Y = 7 /5 ; however, the same arguments will apply ancl analogous solu t ions can be derived for 
any other admissible valu e of -y . 

If So is chosen as indicated and the rela tion -y = 1 + R/cv, is us('d , we ob ta in tIl e dime llsionl ess 
equation of sta te in the form c2 = rY (Y - l )S p Y - l , which for a ir is 

(8) 

On the wave front Cl1l've where p= O, this permits two possibilities: eith er (a) , s r ema ins fini te 
and hence c= O there, or (b), s becomes infinite and c is not known in advance. 1£ s were fini te 
and cont inuous and c vanished there , then by the third equa tion in (7), the rate of ch ange of s 
along the wav e fron t would be everywhere infinite as u ~o there. This follows from the fact 
that the wave-fron t locus is also a particle trajec tory and therefore a .\3 ~Ia ch line. Therefore 
s must actually be infini te on the wave-fron t curve, and c is not determin ed th e1"e by this argu­
ment. B ecause s is entropy pc]" mass, this does no t necessa riJ y imply tha L ('ntropy P(,I' volume 
becomes infini te at th(' wave front for this mod el. 

4. First-Order Effects 

By setting up asymp totic expansions of form 

V(X, t ,>- ) "-' VO(X, t)+ VA(:r ,t )>- + 

v(x ,t,>-) "-' VO(x, t )+ VJJ(x, t )>- + 
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a perturbation scheme will be defined to give information for small values of A. The quantities 
V(X, t ,A) represent each unknown U,C,8, and their various first derivatives. The unperturbed 
centered rarefaction wave is the known simple-wavc solution 

UO=5(1 + X/t)} 

cO=ir(5-x/t) 

8°= 0 

(10) 

which when A= O satisfies systcm (2) for model A and system (4) for model B. The first-order 
terms for model A are U\ C\ (and SA = O) and have been published in [21. Now we proceed 
to solve the more complicated problem for un, CB, and SB and to compare these with the 
previous r csults . 

The expansion 8",0+SB(2.,t)A + ... shows at once that the p81"turbation procedure for 
model B cannot be expected to retain validity in the neighborhood of the forward wave front , 
since S(X,t,A) = co for any A> O on the wave front whereas 8(X,t,0) = 0 there. The results 
therefore will not apply in the neighborhood of the forward wave front where a type of boundar.v 
layer eft'ect occurs. A separate analysis would be required in that region, possibly similar to 
the application of the Pohlhausen method as used by ,Vhitham [7] for a water wave problem. 
There would be little justification for it in this problem, however, because the model assumed 
for frictional dissipation would in any case become inaccurate in this region of extremely low 
density. (A singular situation does not occur in the perturbation for model A. In that case 
there is no edge layer effect, and results hold throughout the full wave; but on the other hand, 
the basic model itself is everywhere less accurate than model B.) 

When expansions of type (9) are inserted into system (4), after using (10) , the first-order 
terms satisfy the system: 

(5t-x) UB+25(t + x) CB + 30CB_:?' [JB+:? Cn 175(t + x)3 0 
tXt x t t t 6t 2(5t - x) (11) 

5(t+x) SB+ 6SB- 125(t + x)o 0 
t Xt t(5t -X)2 . 

The solution of these equations that is sought must satisfy the conditions UB = ('B = SB = O on 
the straight line t= -x, (t;::: 0). This nonhomogeneous linear system has the same character­
istic curves as the solution uo, CO plus its particle trajectories. By studying these curves one 
can infer an easy procedure for obtaining the desired functions. These curves in the flow 
wedge are 

ti: x=m t , 

tg: G)=5 (£)--6 (f)2
/3, 

tg: (~)= 5 (£)--6 (£)516, 
(12) 

where each equation defines a one-parameter family of curves over the range of a parameter as 
indicated. The tg and sg curves emanate from the back wave line X= -t at a point (- a,a) 
for any a > O (see fig . 2) . Writing tIl as (x ja) = m(t ja), one sees that the coordinates of an 
intcrscction point of a fixed s~ curve with any tg curve must be proportional to the parameter a. 
Therefore as the parameter a is varied, the quantities t/a and x/a at such intersection points 
remain constant as wc progress along a fixed s1 ray. Likewise an analogous situation will 
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apply for intersections of rg curves with a fixcd r7 ray. This gcometric similarity of thc char­
acteristics can be employed to find the function al form of the dcsircd solu tions lfB, (IB, SB. 
Thc characteristic relations associated with (12) ar c 

(J 3) 

The last equation docs not contain unknowns on t ll c right sid e and cou ld th erefore be illtegrated 
along any rg curve. Tf this werc cione, using th c third equation in (12) and the geomctrie, 
similarity, it is eas ily seen that it would lead Lo a relat ion of the form SB ja = }i\(t ja ) when 
SB = O at th e origin . Because t ja is constallt along a s~ ray , SB is proportional to a , and ben("l' 
to t th ere; thc functional form must th en be SB(X, t ) = L(m)t . Using this result for elSB ill til e 
second equation of (13), by analogous argument applied to th e rg cur ves, it follows that [}B + 

5CB= F 2(m)t. Finally, we see that if we integrate the first equation of (13) alo ng ally r~ ra~7 

(wh ere m = constant), we would h ave (lJB-5('B) proportion al to t if the quan tity 5(lJB- ('B )j3t 
were a constant along the ray, Then it would follow that UB and CD would separately be pro­
pOl·tional to t also. But in that casc, 5(lJB-CB) j3t would actually be consLant as des ired . 
There these considerations indica te the existence of a solution to (13) and (ll ), vanishing at tJlC 
origin as required , with the functional form j(m)t for each unknown lJB, CD, and SB, This 
information now permits immediate solution of the original system (ll ), as follows: 

First , system (11) is transformed through use of the new independent variables m and t, 
putting UB(X, t ) = U*(m, t ), and likewise for the other unknowns. Then setting U* = h (m) t , 
C*=le(m) t , and S* = L (m) t leads immediately to a nonhomogeneous system of three ord inary 
differential eq u atio ll s for h, le, and L. Although this system contaill s variable coefftciellts, it 
can nevertheless be solved exactly. The particular solution satisfying the condition s h( - 1) = 
!c( - 1) = L ( - 1) = Ois then finally obtained to givo the first-ordor dl'cC'ts for model B. 
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For comparison of these r esults with the corresponding expressions for the simpler flow 
model , we list below the expressions obtained in [2] for model A: 

UA =~ [~(s-m)3-s(s-m)2+36(S-m)-84] 1 t 144 9 

CA S 4 
T = 144 [9 (S-m)3- 10(S-m)2+ 72(5-m)-168+ 3(m + 1)2J 

SA = 0. J 
t 

(15) 

The expressions in (14) have singularities at m = S, at the forward wave front for the unperturbed 
flow. This is to be expected in view of the previous remarks concerning the en tropy behavior 
at the forward wave front that makes the perturbation procedure singular. On the other 
hand, th e expansion for model A does not possess this singular property, and the expressions 
(15) do not become infinite at m = S. A comparison of (14) with (15) must be restricted to a 
region that excludes the forward wave-fron t zone. Figure 3 gives the numerical evaluation of 
the quan tity SBlt. When drawn on a semilogarithmic plot, this curve is almost linear over the 
middle range 1 <m< 4, and for convenience can be accurately approximated there by t he 
expression .63 exp (1.95 m). Figure 4 compares the behavior of UBlt with UAlt. In the firs t 
half of the flow zone, the two models predict almost identical results, but further on the velocity 
becomes higher for model B . In equations (4), as 8 x>0 for this case, the effect of the entropy 
term in the momentum equation is to diminish the total resistive force, and this by i tself would 
increase the velocity. In the continuity eq uation , however, the extra positive term on the 
right side would have the effect by itself of decreasing the velocity in the back portion of the 
flow zone, because this term is analogous to the term that would be present for a converging 
duct in quasi-one-dimensional flow, as derived in [2]. E vidently the fact that the velocity 
term for model B is slightly below the model A curve in the beginning of the flow zone, is 
due to the extra term in the continuity equation dominating over the entropy term in t he 
momentum equation until 8 x grows sufficiently large to raise the velocity. 
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The first-ord er corrections for tIl e local sound speed c arc shown in figure 5 fo r Uti' two 
models. 1 n titis case there is no resemblall ce in the behavior of the two curves, as the soun d 
speecl , wit ic lt is propor tional to the square root of the tempel'atlll'e, is more directly sensi t ive 
t han the velocity to the in tern al heat ge ll eration assum ed in model B . 

Filially we use our results for sound speed and entropy in the two models to cal cul at~ th e 
corrections for the dimensionless density p= p/Po. The dimensionless equation of state of a il' 
for model A corresponding to (1) is p= c5• After inser ting expansions here, the coefficien t of A 
in t he expansion of type (9) for P is then equal to 5(CO)4('A This quantity, after division by t, 
is shown in figlll'e 6. For model B , when correspondin g expansions are in serted in (8), the 
coefficien t of A in the p expansion is equal to 5(cO)~ [('B-(7coSB/2.5 )]. This qu an t ity , after 
division by t, is likewise shown in figure 6, and one observes that the widely different resul ts 
of the two models for sound speed and entropy neve rtheless combine to produce d ensi ty co]'­
rcctions that an in close agreemen t. The pressure and tempel'atul':' beha vior fo r the ,,'ave ca n 
be obtained dircctly from (3 ) llslng t he r esults already prese nted . 
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