Research Paper 2689

An Examination of the 1955 Helium Vapor-Pressure Scales of Temperature

E. Ambler and R. P. Hudson

In a previous communication, magnetic thermometer calibrations in the region 1.3° to 4.2° K were used to examine the internal consistency of two provisional helium vapor-pressure scales of temperature. Since that article went to press, these scales have been made available in their final form, and further measurements have also been made. The results of all the measurements, seven runs in all and with two different apparatuses, are used here to examine the latter scales. The results of six runs were self-consistent and could be reconciled with the empirical scale of Clement et al. (T_{55E}) to within 2 millidegrees, and with the calculated scale of Van Dijk and Durieux (T_{55}) to within 5 millidegrees. The remaining run showed better agreement with T_{55} . It appears, therefore, that the previous assessment of the T_{55} scale may have been a little too favorable. The most critical interpretation of the findings is that the present technique of vapor-pressure measurement is not sufficiently precise to discriminate between the two scales.

1. Introduction

In a recent publication $[1]^1$ the authors examined the internal consistency of two vapor pressureabsolute temperature (p-T) relations through the calibration of a magnetic thermometer in the range 1.3° to 4.2° K. One such relation was that of Clement, Logan, and Gaffney [2], based upon an empirical equation, and the other a thermodynamic calculation by Van Dijk and Durieux [3].

After reference [1] had been prepared for publication both the new p-T relations were modified by their respective authors. Clement based his final temperature scale [4] (to be referred to by T_{55E}) on the experimental data of several authors, including Ambler and Hudson, obtained in one of two ways, viz, a measurement of the vapor pressure using (a) a separate vapor-pressure bulb, or (b) the pressure over the liquid helium bath plus an appropriate correction for the "hydrostatic head," when a heat source was employed to maintain a constant flow of bubbles up through the liquid. Van Dijk [5] has increased his temperature values slightly in the region 3.3° to 4.3° K so that his *p*-*T* curve is tangent to a curve through the gas-thermometer data of Berman and Swenson [6] near the normal boiling point. Temperatures derived from this new scale will be denoted by T_{55} .

Concurrent with this work, the present authors carried out further measurements, employing the "second apparatus" of [1] to augment the meager amount of data obtained therewith. This was especially important as these same data were not

¹ Figures in brackets indicate the literature references at the end of this paper.

in very close accord with those obtained with the "first apparatus."

The present paper deals with an examination for internal consistency of the T_{55} and $T_{55\text{E}}$ tabulation, based upon all of the magnetic thermometer calibrations referred to above.

2. Experimental Procedure

The apparatus has been described in detail in [1] (see fig. 1, b, and text therein). The only modification in procedure was the employment of a manostat ² to control the temperature of the bath. This proved very useful in that the system came to equilibrium twice as fast as previously and enabled one to obtain twice as many points per run. (It may be of interest to record that at the lowest temperature employed (1.3° K), where the magnetic thermometer is extremely sensitive, the bridge reading remained constant to within the equivalent of 10^{-5} deg for periods in excess of 5 min.)

3. Results

The data obtained in the new series of measurements are summarized in table 1. The pressures, p, have been corrected to 20° C and standard gravity, and the bridge readings, n, have been corrected for nonlinearity in the mutual-inductance decades.

The data of table 1 and those of table 1 in [1] will now be discussed in relation to T_{55} and T_{55E} .

² The authors are indebted to L. D. Roberts of the Oak Ridge National Laboratory for a drawing of this device. The original design is due to H. S. Sommers, Los Alamos, Rev. Sci. Instr. 25, 793 (1954).

TAFLE 1. Corresponding values of pressure in millimeters of mercury, p (corrected to 20° C and standard gravity) and bridge dialsetting, n (corrected for nonlinearity in decade scale)

January 4, 1956				January 18, 1956					
р	n	р	n	p	n	p	n	p	n
751.42	17.6077	124.33	20. 5650	740.46	17. 7534	40.395	22.8654	13.398	25. 1098
717.24	17.6786	97.26	21.0243	670. 52	17.8968	37.766	23.0118	9.016	25. 9244
716.63	17.6797	37.994	22.8817	583.62	18. 1039	32.392	23.3234	5.963	26.7913
628.73	17.8697	31.771	23.2392	489.08	18.3710	32.418	23.3208	4.017	27. 6320
506.19	18.1953	24.846	23.7329	360.65	18.8495	24.012	23.9254	4.031	27. 6271
357.75	18.7391	14.945	24.7613	197.36	19.8600	24.115	23.9168	2.984	28.2729
241.05	19.3912	8.123	26.0191	101.97	21,0572	18, 124	24, 4938	1.633	29,6006

3.1. Comparison With T_{55} Temperature Scale

The data were analyzed according to the procedure outlined in [1]. When the constants A and B in the formula

$$n - B = A/T \tag{1}$$

have been determined, a value of temperature, "magnetic temperature," T_m , is at once calculable for a given value of n. The corresponding value of pleads to T_{55} from the p-T table and $\Delta T = T_{55} - T_m$ may be plotted as a function of absolute temperature. This is done in figure 1. The values of A and B used for each run are summarized in table 2.

TABLE 2. Values of constants A and B in equation 1 for T_{55} evaluation

Date	A	B	
June 7, 1955	-34,0565	19.2841	
June 8, 1955	-34.0035	19.2644	
June 16, 1955	-34.0553	19.2896	
June 17, 1955	-34.0404	19.2809	
August 17, 1955	23.5765	11.3537	
January 4, 1956	23.6073	11.9922	
January 18, 1956	23.6069	12, 1151	

It is evident that only the results of August 17, 1955—the first run with the second apparatus—can be brought into very close accord with the T_{55} tabulation. The rest of the data can, however, be brought into very close harmony with each other by suitable choices for A and B in each case, and the entire group deviates considerably from the zero line with a maximum of +4.5 millidegrees at 3.6° K. There appears, furthermore, to be a discontinuity in the region of the lambda-point. (As described in detail in [1], the choice of A and B is made so as to give an optimum fit throughout the entire range of measurement. The implicit assumption is that the T_{55} scale is nowhere in error by a large amount.)

3.2. Comparison With T_{55E} Temperature Scale

Figure 2 was obtained by a procedure analogous to that leading to figure 1, now using T_{55E} instead of T_{55} . Small changes in the values of A and B were necessary as may be seen by consulting table 3 and

TABLE 3. Values of constants A and B in equation 1 for $T_{55\rm E}$ evaluation

Date	A	В
June 7, 1955	-34.1649	19. 3138
June 8, 1955	-34.1461	19.3027
June 16, 1955		19.3187
June 17, 1955		19.3100
August 17, 1955		11.3273
January 4, 1956		11.9693
January 18, 1956	23. 6962	12.0917

comparing with table 2.³ With this temperature scale it is possible to restrict the value of ΔT within the limits of ± 2 millidegrees. The discontinuity at the lambda-point is still evident. (Although such a discontinuity is more likely due to faults in the measuring technique than genuinely anomalous behavior of the *p*-*T* curve, it has been observed by other investigators. See, for example, Erickson and Roberts [7].)

4. Discussion

In [1] reasons were given for reposing more trust in the results obtained with the second apparatus (August 1955 data) than in those for the first apparatus (June 1955). These were based upon the attempted improvement in design and the fact that a (rather rough) measurement of the bath pressure plus the hydrostatic-head correction agreed with pmeasured in the bulb system, within the limits of error of measurement. It can be seen, however, that the measurements of January 1956 reproduce the earlier results obtained with a different apparatus. and fail to agree with the first measurements, using the same apparatus. At the same time, the quality of the second apparatus, as determined by the abovementioned criteria, had not changed. We have been unable to find a plausible explanation for the discrepancies, which must therefore be held to indicate the degree of trustworthiness for the entire series of experiments. Hence, while the present results viewed as a whole favor $T_{55\rm E}$ to the disadvantage of T_{55} , it is probably correct to conclude that the presently used techniques of vapor-pressure measurement are

 $^{^3}$ It may be noticed, further, that in all cases the constant A decreased slightly on the second day of a 2-day series. This effect, though very small, seems to be real.

not sufficiently precise to resolve the discrepancy between the two scales. This latter is illustrated in figure 3 where we have plotted $T_{55\rm E}-T_{55}$ as a function of T.

In conclusion, it should perhaps be emphasized that although use was made of the results in [1] in the development of T_{55E} , no greater weight was accorded them than any other of four additional independent investigations over the same temperature range. This accounts for the systematic deviation in the regions 1.3° to 2.2°K and 3.6° to 4.2°K, visible in figure 2.

- 5. References and Notes
- [1] E. Ambler and R. P. Hudson, J. Research NBS 56, 99 (1956) RP2654
- [2] J. R. Clement, J. K. Logan, and J. Gaffney, Phys. Rev. 100, 743 (1955).
- [3] H. Van Dijk and M. Durieux, Proc. Conf. de Phys. des Basses Temperatures, Paris 1955; Commun. No. [4] J. R. Clement (unpublished). This scale is the one
- referred to in the "note added in proof" to reference 2. [5] H. Van Dijk (private communication). It is understood
- that copies of this scale are available on request to the Kamerlingh Onnes Laboratory.[6] R. Berman and C. A. Swenson, Phys. Rev. 95, 311 (1954).
- [7] R. A. Erickson and L. D. Roberts, Phys. Rev. 93, 957 (1954).

FIGURE 1. Deviation of T_{55} (from vapor pressure) from T_m (from bridge reading) as a function of T. Apparatus I: ●June 7, 1955; ▲June 8, 1955; ■June 16, 1955; ▼June 17, 1955. Apparatus II: ○August 17, 1955; △January 4, 1956; ▽January 18, 1956.

FIGURE 3. Deviation of T_{55E} from T_{55} as a function of T.

WASHINGTON, April 10, 1956.