Journal of Bessarch of the Natienal Bureaw of Standards Vel, 87, Ne. 5, Hovember 10536 Keggarch Paper 2718

Entropy Changes in Rarelaction Waves'
Robert F, Dressler

Frictione]l Aow of o polytrople gas s investigated for centered rarefaction saves. En-
ergy belance iz maintesined by saenming thet mechanical energy Ioss due to frictional force
raippedrs us heat. Entrgﬂ#r bahaviar ut the wave frant is discoased.  The norhe neous
linear eyatem of paridal ercntial equations with vearisble coefeiente for Gvst-order fric-
tipnal effects is derived. [Tilizing the geometrioal gimilarity of the Mach lings, the funs.
tlonal form of these quantities is sseertuined, which permits explicit solutlons of the boundary
value problenn.  The expansion procedure 1a singular st the wave front, and results are not
a-l]:plinahle there. TFirst-order effects are expressed =a polynomisls plus terms singulsr at
the wave front. Tesulls are compared with expressions obtained when heat generation
due to fricticnsl force 15 neglecied,

1. Intraduction

Equations for one dimensional, unstendy flow of & compressible gas permit explieit solu-
tion for centered rarefaction waves, such as ocour in shock tubes or pneumatic eontrol eircuits.
For some applications, however, it becomes important to include slso the complications re-
sulting from frictional dissipation, This matter is disco=sed here in two ways, first with the
simplifying sesumption that the frictionsl effeets consist merely in a retarding force, and
second, by the more complete consideration that includes the vesulting heat generation and
accompanying chenge in entropy. This mesns that the mechenical energy destroyed by the
retardation force reappestz a= heal energy, resulting in additional expansion. The simpler
flow deseription without heat generation will be referred to as model A, and the second, mare
accurata, one 83 model B. The aquations for steady frictional flow in model B have been
studied and yield energy theoreme and an extended form of Bernoulli's theoram [1] 2 but knowl-
edge of the unsteady flows appears to be restricted muinly to & few isolated numarical caleu-
lations,

A centered rarefaction wave is perbaps the mosi basic pattern in unstoady flow; the present
paper derives solutione for first-order dissipstive effects in this unsteady wave using the full
systetn of equations of model B, and comparss results with corresponding ones for model A
{which were praviously published by the author [2] as & supplementary resull in a siudy of
shiock tubes with verying crosa scotion).

A racenl paper by Ludford and Macvin [3] has discussed anisentropic affests in centered
stmple waves. They eonsider flows whern the specific entropy varies from particle to particls,
but remains constant for & given particla. In frictional flow, however, the apacific entropy
for a given particle must vary with time, and & centered rarefaction wave cannot remain a
simples wave.

Consider & polytropic pas at rest for time { <70 in a duct of uniform cross section, filling
the duct to the left of & dizphragm where <70, and with & vacuum initislly at =0, Heas
axchangs between the gas and the duct, heat conduetion and radiation, snd viseopus effects are
disregarded. When the diaphragm is removed at £=0, & centered rarefaction wave begina,
Dimensional quantities are denoted by bars in order to define the unbarred dimensionless
quentities to be usad subsequently. Before flow, the pas siate is described by sound speed
To, mass density pg, snd temperature Ta; after flow we have velocity %, locel sound speed o,
mass density p, and pressurs 5.

For model A, assuming no internal heat generation aod no entropy changes, the equation
of stata can he written in forms

F=4%F", T=yA's""'=1ET, (1)

! Thip resesrch @ a8 aupported b the Sfe: of Maval Research, UEN.
# Figtires. in hrackets indicake the Hwermtore refenences gt the end of Lhis poper,
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where ¢ is the adiabatic exponent, K the ges conatant, T the temperature, &nd A% is a known
constant (eonsistent with the assumption here of no entropy chenge). In this simpler model,
the friction produces merely a retarding force per unit mazs of magnitude 2% whare ) is the
known friction factor. ‘There s some question concerning the constancy of this coefficient for
frictional flows thet sre highly unstesdy; this question iz disenssed by Schultz-Grunow [4],
Jenny [5], and others. Hera it is considerad to be 2 conatent.

Introducing dimensionless (unbarred) variebles defined by z=3/T7, 1=(E/ DM, u=%/F,,
£=¢/¢3, p=p{po, A=17A where T} iz some langth assoriated with duct eross section, the momen-
tumn and continuity aquations for model A are
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for the two unknowns ¢ (x, f) snd ¢ {2,1); and the energy equation is neglected.

In deriving equations for mode]l B one must take aceount of the mechanical energy lost
theough the action of the retarding force Meu|. The action of 8 body force eannol itself di-
rectly chenge entropy: howevar, if a term is included in the snergy equation for sn srmotunt
of generated heat equal to the lost mechrnical energy, thie heat will change the specifie en-
tropy. In this way, the energy equation becomes axpressible direetly in terms of the [riction
coafficient. The equation of state for model B now includes the entropy dependence,

=A@, A@=(r—1eT%"  P=yRT(.3) (3}
where ¢, is specific heat at constant volume, # is the specific entropy {entropy per unit mass)
and ¥, iz & constent with & value depending unon the entropy level adopted. Letting dimen-
sicnless gpecifie entropy ¢ be defined by s=(¥,/e;*1%, the momentum, sontinuity, and energy
equations for model B become, respectively,

-+ uﬂ#% £ = —Aut|u| e,
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for the three unknowns wiz.t), e(gf), and #xd). We set §=8=0 for the za=s when initially at
rest, and the equality _ )
A=Ay ={y— 1}~ {5
determines the constant 7.

2. Characteristic Equations

The Mach lines for model B are defined by the system of characteristic equations equivalent
to the totally hyperbolic sysiem {4). Thesa consist of three families of real curves with direc-
tions given by

.
I1H %=1ﬂ—c

foN $=H+{-‘ b {8
fa: $=u )
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which erc respectively the backward sound path, the forward sound path, and the particle
trojactory (sen fig. 1). The corresponding differential velations along each famnily ere

Oiod (u—_% n:)+:: dr=—hu|u| (1 +[r—1) if) @t

Z
& d(u+FIc —¢ ds=—Mu|t| (1—h~1l E) dt - )
a
e d&z}h-m?ldt. )

These equations are wsed in 6] as the basis for 2 dizcussion of A numerical computation on a
ravefaction wave in & shock tube.

3. Entropy Behavior at the Wave Front

From the sbove equations and the equation of state (3}, the behavior of ¢ at the forward
wave front where g=0 ean be inferred, consistent with the assumed model for the flow. For
notational simplicity and to permit numerice] results, we now specialize Lhe gas 1o be air with
¥="T/3; however, the sume arguments will apply and analogous solutions can be derived for
any other admissible value of +. _

I1i ¥ i chosen as indicated and the relation y=1-+ /€., i3 used, we ohisin the dimensionless
equation of state in the form =" """ which for air i=

TS, (8)

Om the wave front curve where p=0, this permits two possibilities: either {8), # remains finite
and henece =0 there, or (b}, & becomes infinite end ¢ s not kmown in advence. 11 8 were finite
and eontinuous and ¢ vanished there, then by the third equation in (7}, the rate of chenge of &
along the wave front would be everywhere infinite as 40 there. This foliows from the fact
that the wave-front locus is also a particle trejectory and therefore a §3 Mach line. Therclore
# must actuslly be infinite on the wave-front curve, and ¢ is not determined therc by this argu-
ment. Becanae 7 1s entropy per mass, this dees not necessanly imply that entropy per volume
beeomes imfinite at the wava front for this model.

4. First-Order Effects
By seiting up asymptotic expansions of form
gla M e BT 4 - . - (model A)
o(aE M e 4T e d+ . . . (model E}}
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# perturbation scheme will be defined to give information for small values of &.  The quantities
oz, x) reprezent each unkoown e, and their various first derivatives. The unperturbed
centersd rarefaction wave 1= the known simple-wave solution

w=5(11z/f)
e"=}{5—x/t) (10}
=0

which when =0 satisfies eystem (2} for model A and system (4) for model B. The first-order
terma for model A are 7%, C*, (and 8*=0) and have besn published in [2]. Now we proceed
to solve the more complicated problem for £/, €@, and S® and to compare these with the
previous reaults,

The expaneion §~0+ &%z 14+ . . . shows at once that the perturbetion procedure for
madle]l B cannot be expected o retain validity in the neighborhood of the forwerd wave front,
ginee glxd == for any A >0 on the wave front wheress e{x{01=0 there. The resulis
therafore will not apply in the neighborhood of the forward wave froot where 4 typa of houndary
laver effect occurs. A scparnte analysis wonld be required in that region, possibly similar to
the application of the Pohlhavsen method as used by Whitham [7] for & weter wave problem.
There would be little justification for it in thiz problem, howaver, because the model wesurmed
for frictional dissipation would in 2ny case become naccurede it this region of extrermnely low
dengity. (A singuler situstion does not oecur i the perturbation for model A. In that case
there is no edge layer effect, and results hold throughout the full wave; but on the other hand,
the basic madel itsell is everywhere legs accurste than model B.)

¥When expansiona of type (9) ave inserted into system (4}, after vsing (10}, the first-order
terma satisfy the svatem:

{Ertt—ix]l" S?_Eﬂ[tt-i-mj 170 _3p[7P— 3[i[5: x) o 3[! 30 /-5 + ooy 28Ut {H-xj 0
(ht—m) ..E[f-l—;r]l - B 175{H—x}’
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The solution of these equations that is sought must satisfy the conditions [®={"=5%=0] on
the atraight line t=—x, #>0). This nonhomogeneous linear syatem has the saame charaeter-
istic curves as the aolution 2% ¢ plus its particle trajectories. By studying thess curves one
can infer an easy procedure for obtaining the dosived funetions. These curves in the flow
wadge are

4 oz=mi, ~1<m=h
# (5)=5(3)s(5)" o<a a2
o Qe o

where each equation defines a one-parameter femily of curves over the renge of & parameter as
indicated. The 7 and §§ curves emanate from the back wave line #= —f at. a point (—a.%)
for any o0 (see fie. 2). Writing {7 as (xfe)=m(lja), one sees that the coordinates of an
intersection point. of & fixed !§ curve with any {7 curve must be proportional to the parameter o,
Therefore as the parameter & is voried, tha quoniities {2 and z/e at sech intersection points
remain constant as we progress along s fixed It ruy. Likewise nn analogoua situation will




Fragae 2,

apply for intersections of [ curves with & fixed {f ray. This geometric sitoilarity of the char-
ecteristics can be employed to {find the functional form of the desired solutions /2, £, S%
The characteriatic relations gascciated with {12) ara
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The last aquation does not contain unknowns on the right side and eould thercfore be integrated
glong any {§ curve. I this were dole, using the third equation in {12) and the geometric
gimilarity, it is easily seen that it would lead to & relation of the forim SFa=Fyt/e) when
S¥—=1) at the orgin. Because g s constant along o 5 ray, 5% iz proporiional to 4, and hence
to f thers; the funetional form must then be 82z, fHl=Lim)!. Using thiz result for 45% in the
second equation of {13), by anslogous argument applied to the [} curves, it Tollows that TP+
5= Fy{m)i. Finally, we see ihat if we integrate the first equation of (13) along any 3 ray
fwhere m=constant), we would have {L"®—50C") proportional to £ if the quantity 5{L™— £ 3¢
were 4 constant along the ray. Then it would foliow that £ and €™ would separateiy be pro-
portiongl to § also. But in that ease, 5(£/2— /3t would actuslly be constani as desired.
There these considerntions indiente the existence of & solution to {13) snd (113, vanishing at the
orgin as requived, with the functional form f{m)t for each unknown ['®, {12 and 5% This
information now permits immediste sohrtion of the oviginal system (11), as follows:

First, eyatem (11} is transformed through use of the new independont wariables s and f,
putting T®(x, £}=E"*{m, #), and likewise for the other unknowns. Then setting L™ =A{m)1,
OF=E{m)i, and S*=L{m}{ leads immediately to 2 nonhomogeneons system of thres ordinary
differentis] equations for b, &, and L. Although this system conteins varisble poefficients, it
can nevertheloss be zolved exacily. The particular solution satisfying the conditions k({—11=
F{=1y=L{—1)={} i then finally obtnined to give the frst-order effectz for modol B.

Ek 25[108{5-—7»}5 Ea—m}“-l-&-i{a-ml—lﬁ-i-{ ) )
2 (5 m)! o 1868 90 F0+mE|
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For comparison of these results with the corresponding cxpressions for the simpler flow
model, we list below the expressions obtained in [2] for model A

U+ _25([2 . 3
=B [ 25— mp—sts—my+ 36(6—m)—4

$=% [% (E—m}’—lﬂiﬁ—m}’+72{5—m]-—1ﬁ5+3(m+1}=:| \ (15)
ISI.IL

T =0

-

The expressions in {14) have singularities at m =35, ot the forward wave front for the unperturbed
flow. This i ta be expected in view of the previous remarks concerning the entropy behevior
at the forward wave front that makes the perturbation procedure singular. On the other
hand, the expansion for model A does not possess this singular property, and the expressions
(15} do not become infinitc at m=5. A comparisen of (14) with (15) must be restricted to &
region that excludes the forward wave-front zone, Figure 3 gives the numerical evaluation of
the quantity 8% When drawn ot & semilogarithmie plot, this curve is almost linear over the
middle range 1<"m<'¢, and for ronvenience can be aceurately spproximated there by the
expression .63 exp {1.95 m). Figure 4 comparss the behavior of LM% with L2 In the frst
holf of the flow zone, the two models predict almost identical results, but further on the reldeity
kecomes higher for model B.  In equstions (4), as &.~0 for this case, the effect of the entropy
term, in the momentum equation is to diminish tha tota! resigtive force, and this by rteelf would
increage the velocity., In the continuity equaetion, however, the extra positive term on the
right side would have the effect by itself of decreasing the velocity in the back portion of the
flow zouae, because this term is analogous to the term that would be present for a converging
duct in guasi-onp-dimensionnl flow, as derived in {2]. Evidently the fact that the velocity
term for model B iz alightly below the mode]l A curve in the beginning of the flow zone, is
due to the extra term in the continuity cquation dominating over the entropy term in the
momentum equation wniil 3, grows sufficiently large to raise the velociiy.
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The first-order corrections for the local sound speed ¢ are shown in figure 5 for the {wo
models, In this case there is no resemblance in the bebavior of the two curves, as the sound
speed, which is proportional to the equare yvoot of the temperature, is more direetly scositive
than the velocity to the internal heat generation assumed in model B.

Finslly we use our resulta for sound speed and entropy in the two modcls to caleulate the
corrections for the dimensionless density s=p{p;. The dimensionless cquation of state of air
for model A corresponding to {1) is p=¢*. After inserting expansions here, the coefficient of A
in the expansion of type (9) for 21 then equsl to 5{c")'0™.  This quaniity, after division by {,
is shown in figure 6. For model B, when corresponding expansions are ineerted in (8}, the
coefficient of & in the p expension is equal to 5(c%)* [ —(7¢"S%/25)]. This quantity, after
division by {, 13 likewise shown in figure 8, and one obscrves that the widely different results
of the two models for sound speed and entropy nevertheless combine 1o produce density cor-
rections that are in close agreement.  The pressure and temperaturs behavior for the wave can
ko obtuined directly from (3} using the cesulla already presented.
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