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A Method of Computing Exact Inverses of Matrices 
With Integer Coefficients 1 

J. Barkley Rosser 2 

In t heory, t he problem of computing t he exac t inverse of a matrix A with integer co
efficients is completely solved by solving exact ly the simultaneous equations Ax=y, in which 
both x and 11 are variable vectors. This solution can be carried out by anyone of numerous 
well-known procedures, resulting in expressions for t he components of x as linear combina
tions of the components of y. The coefficients of these linear combinations are just the 
compon ents of A- I because we have X= A - Iy . 

In act ual prac tice, if the order of A is at all large, the exact components of A- I will be 
fraction s whose numerator and denominator each have a large number of digits, and t he 
usual methods of solution become extremely labor ious due to t he necessity for carrying an 
even larger number of significant digits throughout most of the computatio n. In t he method 
p resented herein , t he number of significant digits involved builds up gradually, and only the 
final stages of the computation involve a large number of digits. Moreover , t he method 
can be readily adapted to use on IBM equipment, and so all bu t t he final stages (in wh ich 
many significant digits must be carried) can be readily mechanized. 

1. Illustration of a Solution by Previous Methods 

Suppose we require the exact inverse of 

152 - 128 183 83 - 141 - 27 

103 - 89 156 - 91 135 - 96 

72 195 75 113 - 187 178 
A = 

157 - 192 - 37 - 138 71 - 179 

34 190 - 120 102 37 65 

191 77 - 15-1 117 - 131 - 112 

To invert this, we write 

152xl - 128x2+ 183xa + 83x. - 14lx, - 27x6= Y' 

103x1 - 89x2 + 156xa- 91x, + 135x,- 96x6 =Y2 

72xI + 195x2+ 75xa+ 113x, - 187x, + 178x6=Ya 

157xl-192x2- 37xa- 138x,+ 71 x, - 179x6=y, 

34xI + 190x2 - 120xa+ 102x,+ 37x,+ 65x6= Y' 

191xI + 77x2- 154xa+ 117x, - 131xs- 112x6=Y6. 

Eliminating Xl from the last five of these by use of eq 1 gives 

344x2- 4863xa+ 22381x,- 35043x, + 1181lx6= 103YI - 152112 

- 4857xz + 222xa - 1400x, + 2284x5 - 3625x6 = 9YI - 19Ya 

9088x2 + 34355xa + 34007x, - 32929x5 + 22969x6 = 157 y, - 152y, 

- 16616x,+ 12231xs- 6341x, - 5209x, - 5399x6= 17y, - 76ys 

- 36152x2+ 58361xa- 1931x, - 7019x, + 11867x6= 191y, - 152Y6. 

1 The preparation of t his paper was sponsored (in part) by the Office of Naval R esearch. 
'National Bureau of Standards and University of California at Los Angeles. 
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The multipliers that were used in eliminating XI are apparent from the coefficients of the 
y's on the right sides of the reduced equations. 

We now use eq 2 to eliminate X2 from the four equations that follo·w it. The multipliers 
we use for eq 2 are, respectively, 4857 , 1136,2077, and 4519. We get 

- 235 43223x3+ 1082 22917x4- 169418155x5+ 56119027x6=5 03367YI- 7 38264Y2- 6536Y3 (3) 

- 70 01633x3+ 239 62515x4 - 383 92901x5+ 124 29629x6= 1 10257YI - 1 72672Y2+ 6536Y, 

- 9574518x3+ 46212674x4 - 730 08298x5+ 242 99290X6= 2 14662YI - 3 15704Y~- 3268Y5 

- 194 66374x3+ 101O 56706x, - 1586 61l34x5+ 538 84190X6 = 4 73670YI - 6 86888Y2-6536Y6' 

We now use eq 3 to eliminate X3 from the three equations that follow it. The multipliers 
we use for eq 3 are, respectively, 3 68507, 167974, and 1024546. I'Ve get 

101885427 75664x4 - 1485 84797 36168x5+ 52784896 85096x6 = 488729 40000YI 
- 580946 41224Y2- 24085 61752Y3- 80988 68712Y4 (4) 

- 90900039612'8x, + 169 74292 29652x5- 6100170 01012x6 = - 4111 209360YI 
+ 63889 07320Y2- 10978 78064Y3+ 13498 11452Y5 

- 1434 17256 47920x, + 2302 301.53 46048x5 - 92722912 23488x6= - 7 12099 03008YI 
+ 947491 69752Y2 - 66964 32656Y3+ 80988 687121/6. 

We now use eq 4 to eliminate X4 from the two equations that follow it. The multipliers 
we use for eq 4 are, respectively, 63 21634 and 99739385. We get 

263433734069713 22772x5- 9854 75613 37432 23540x6= 17 65250 77603 04880Y1 + 85 4401053886 36424Y2 
- 930174224170 60256Y3- 51 1980838113 15408Y4 + 95 64239 81708 51884y" (5) 

1 49345838 ]320139 98936x5- 1 30525 23686 92201 70136x6 = - 17110024 03515 99936Y1 
+ 9192344701231 65744Y2- 714 71168 36351 59272Y3- 807 7761845306 22120y,+ 573 85438 90251 11304Y6. 

We now use eq 5 to eliminate X:; from the equation that follows it. The multiplier we use 
for eq 5 is 13 52291 10622. We get 

1 78080 7616783302 24294 95529 75104x6=646 84381 45668 50109 91756 88544YI 
- 10372785359149 81148 61699 71008Y2+ 446 95683 03519 19158 33166 05736Y3 
+ 1234 46556 51847 48058 62839 54504y, + 1293 36364 42399 49987 74131 11848Y5 
- 1368 83204 20859 69018 78357 06376Y6. 

Dividing this tlll'ough by the common factor 191284796341703768, we get 

93097185 49728x6= 3 38157 46308YI - 5 42269 20056Y2+ 233660 40527Y3+ 6 45354 77403y, + 676145 55311 Y5 

(6) 

- 7 15598 97507Y6. (7) 

Substituting this back into eq 5, 4, 3, 2, and 1, we get 

93097185 49728x5 = 1 88884 62180YI + 99087 63656Y2- 2 41312 82729Y3 
+ 60486 42243y, + 5 90937 51511y,-2 67697 ·13115Y6, 

930 9718549728x, = 546840 79248YI- 1 05392 26192y,-4 94982 08180Y3 
- 320138 43300y, + 5 11496 67628y,- 1965885132Y6, 

930 97185 49728x3= -'- 29934 79728YI + 4 29235 11632y,+ 43989 17764Y3 
- 3 68561 73708y, - 2 89478 23484y, + 1 30251 85404Y6 

93097185 49728x2=- 4 95059 83764YI + 5 01313 85144y,+2 21002 58797Y3 
- 377781 95727y, - 3 87417 30707y,+ 4 19819 57079Y6 

9309718549728x1 = 168307 83936Y1 - 41475 04752y,+ 2 21089 12392Y3 
+ ,1 71153 69576y, + 4 11243 40200Y5- 1 67986 905841/6 

From these results one can easily write down A -1. 
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We hardly need to stress the fact that the procedure outlined above is not a really prac
ticable method to find A-I. In the present case, we did carry the computation through to the 
bitter end, just to show how unwieldy it becomes, but it required 38 hours of computing time 
by a trained professional computer. We might note further that Lhe computation would 
have been even more unwieldy and extensive if we had not deviated from a strict mechanical 
procedure by l'emoving common factors from our multipliers when combining equations . 
Precisely, what we did do in this direction is described below. 

In general, if we wish to eliminate Xi from two equations aXi+ ... , bXi+"" the 
mechanical way to proceed is to multiply the first equation by b and the second equation by 
- a, and add. However, in order to mitigate somewhat the frightful increase in the sizes of 
the coefficients in the later stages of the process, we have in every such step of the present com
putation determined the greatest common factor, c, of a and b, and have multiplied the first 
equation by blc and the second by -(a/c), and added. For example, in the case of eliminating 
X5 from eq 5 and the equation following it, a is a 20-digit number and b is a 2l-digit number. 
However, the common factor, c, is a lO-digit number, so that our multipliers, ble and - (a /c), 
are 12- and ll-digit numbers, respectively. If we had used b and -a as multipliers, the coeffi
cien ts in eq 6 would each have had about nine more digits. 

Similarly, in the multipliers used with eq 4, a six:-digit factor was removed, and in the 
multipliers used with eq 3 a two-digit factor was removed. Without such removal of factors , 
the coefficients of eq 6 would each have had about 15 more digits, so that it is doubtless worth 
while to carry out such a determination of common factors. Nevertheless, this portion of 
the computation can be quite a chore, especially when (as in the pre ent case) the greatest 
common factor of a 20-digit number and a 2 I-digit number is required. Also, if determination 
of common factors is carried out, mechanization of the process is more much difficult. 

One could effect a further saving in the number of digits carried by extracting common 
factors from each of the equations derived in the course of the computation, instead of only 
from eq 6. However, this entails a great increase in labor with only a moderate decrease in 
the number of digits in the various equations. In the present case, if all possible common 
factors would be extracted from previous equations, one would still obtain a the equation 
corre ponding to eq 6 an equation with a 23-digit coefficient for :f6, and there would be much 
additional labor in the determination and extraction of common factors. 

2. A New Method of Solution 

We tr6at the same matrL'C A as in the previous section. If G is the inverse of A , then GA 
is the unit matrLx. To find G, we find in succession B, 0, D, E, and F with the propertie 
that BA has its first column the same as the unit matrix, OA has it first two columns the 
same as the unit matrix, DA ha its first three columns the arne as the unit matrL'C, and so on 
up to GA, which has all its columns the same as the unit matri.x. 

Our method for finding B, C, ... , G is a modification of the algorithm set forth in a 
previous note.3 In addition, we use the following well-known property of matrix multiplication. 
If Wand V are matrices with W A = V , then if we form W* and V* from Wand V by performing 
the same elementary transformation on the rows of each, we will have W*A = V*. By an 
elementary transformation on the rows, we mean one of (a) Multiplying the ith row by a 
constant a. (b) Interchanging the ith and Jth rows. (c) Adding a times the ith row to the 
jth row. 

By a sequence of uch transformations, we can reduce V to the unit matrix, and so the 
same sequence of transformations performed on W will reduce it to A -I. This fact is the basis 
of various methods for computing A -I. The novelty in our method lies in the fact that we 
are able to use mainly transformation (c) with an occasional transformation (b) until the final 
stage of the reduction, and also that we have a mechanical procedure for keeping the sizes of 
the numbers small until the final stages of the reduction. 

3 J , Barkley Ro er, A note on tbe linear Diophantine equation, Am. Math. Mo., 48662 ( l941). 
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- ------ - - - - - --- -------- - -- - - ------ - - - ---- -----

As indicated earlier , we carry out the reductions on V in a certain order. First we reduce 
the first column of V to be the first column of the unit matrix. Then W has been reduced 
to the B mentioned earlier. Then , restricting ourselves to transformations that leave the 
first column of V unchanged, we reduce the second column to be the second column of the unit 
matrix. Then TV has been reduced to the C mentioned earl ier. Proceeding in this way, column 
by column, we eventually reduce V to I and W to A-I. 

To get started, let us take ltV to be the unit matrLx, 1. Then V is A. We first seek trans
formations that will bring the first column of V to the desired form. So we temporarily ignore 
all other columns of V, and consider only the first column, which is (I ) . This is to be reduced 
to form (II) . 

(I ) 

152 

103 

72 

157 

34 

191 

(II) 

o 
o 

o 

o 

o 

One can do this in many ways, but we follow the way that is proposed in the note referred to 
in footnote 3, since this is quite mechanical but keeps the sizes of the numbers involved rea
sonably small . Specifically, we apply the elementary transformation (c) to those two rows 
containing the two numbers of maximum absolute valu e. Thus we first add - 1 times the 
fourth row to the sLxth, getting (III) . Then we add - 1 times t he first row to the fourth, 
getting (IV) . Then we add - 1 times the second row to the first , getting (V). 

(III) 

152 

103 

72 

157 

34 

34 

(IV) 

152 

103 

72 

5 

34 

34 

(V) 

49 

103 

72 

5 

34 

34 

Clearly, if we were trying to reduce the sizes of the numbers as rapidly as possible, we would 
now add - 2 times the first row to the second. However, this presupposes that good judg
ment is to be applied at the various steps. One of the advantages of the procedure we are 
describing is that it gives quite good results even when applied quite mechanically. To 
illustrate, we ignore the smart transformation, and proceed according to rule, adding - 1 
times the ith row to the jth for the following values of i and j: 

We then have 

_~_. 1-~1-~1~'~'~'~'~1~'-~1-1 1~1~I_l 1_1 
j 1 2 1 3 I 1 I 6 1 5 1 2 I 3 1 I 3 2 I 1 1 4 1 5 I 4 

2 

o 
o 

o 
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W'e now have a situation that occasionally arises, in which the largest number is at least twice 
as great as the next largest. In such case, our multiplier can conv eniently be differen t from 
the - 1 used uniformly so far. Thus we could conclude by adding - 2 times the second row 
to the first, then - 1 times the second row to the fifth , and, finally, by interchanging the fir t 
and second rows. However, we co uld equally well con tinue mechanically, since exactly the 
same result would ensue if we twice add - 1 times the second row to the first row, and then 
add - 1 times the second row to the fifth , and, finally, interchange the first and second rows. 

Applying the transformations listed to the unit matrix transforms it into B , which is 

1 - 4 0 1 0 

- 1 - 3 10 - 1 - 3 0 

- 3 2 3 0 1 0 

- 2 2 - 3 2 0 . 0 

- 2 - 1 3 1 0 

0 0 0 - 1 - 1 

and has the property that the first column of BA is the same as the first column of the unit 
ma,trix. Yforeovel', the coefficients of B are quite small , which is why there is little increase 
in the sizes of our numbers as yet. 

We now seek to bring th e second column of BA into agreement with the second column of 
the unit matrix by means of elementary transformations. In order not to change the form of the 
first column, we must avoid the following transformations: (a) Multiplying the first row by 
a constan t different from unity: (b) interchanging the first and jth rows; (c) adding a times the 
first row to the jth row for a ~O . 

However, the remaining transformations are quite adequate to effect the desired redu ction. 
The second column of BA is 

- 807 

1967 

981 

- 891 

928 

79 

Confining attention to this column only, we see that the following sequence of transformations 
is called for . We add a times the ith row to the jth row for the following succession of a, i, and j: 

a - 2 - I + 1 - 1 II - 1 - } - 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 - 1 4 + 1 

3 5 4 4 6 6 3 5 6 4 3 5 4 2 2 2 2 6 4 2 

j 2 3 5 1 4 6 3 5 6 4 3 5 4 3 5 2 6 4 

Performing these transformations on B gives C, namely, 

- 2 6 - 5 0 7 - 1 

6 - 6 7 8 7 - 12 

3 5 - 4 - 6 2 1 

12 - 9 8 - 6 - 10 - 1 

- 9 15 - 7 - 9 - 5 10 

23 - 13 - 65 - 80 56 
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The first two columns of CA are identical with thoseoftheunitmatrix. The thinlcolumn'is 

- 491 

1399 

857 

2968 

- 439 

5637 

In dealing with this, we must now curtail transformations on the first two rows. Nevertheless, 
we can reduce it to the desired form by adding a times the ith row to the jth row for the follow
ing succession of 0:, i, and j: 

a - 1 - 1 - 1 - 3 + 1 + 1 - 1 + 1 - 1 - 2 - 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 2 

i 463 355 5 3 4 3 6 644 643 3 6 3 3 663 3 633 

j 6 4 2 632 5 343 2 6 1 4 6 4 536 

Performing these transformations on C gives D, namely, 

- 293 815 - 1464 - 5481 - 6270 5967 

65 - 187 

283 - 796 

350 

1373 

1317 

5057 

1509 - 1434 

5745 - 5493 

- 68 158 - 351 - 1447 - 1721 1597 

- 24 79 - 49 - 51 5 36 

- 744 2095 - 3608 - 13278 - 15079 14421 

3 2 643 6 

The first three columns of DA are identical with those of the unit matrix. The fourth 
column is 

II 
5 51061 

. - 133644 

- 503483 

1 51308 

- 2958 

1321462 

In dealing with this, we must now curtail transformations on the first three rows. Nevertheless, 
we can start out to reduce it to the desired form by adding a times the ith row to the jth row for 
the following succession of a, i , and j: 

~~~2 ~1 ~~1 ~1 ~1 ~1 ~~~1 ~~~1=+1~~1~~~ i 6 5 4 ___ ~~'J 6 6 6 5 5 444 654 6 6 6 6 5 --- --I -- ----------
j 3 6 543 1 263 5 1 2 4 654 1 236 

a - 8 - 3 + 3 + 1 - 1 - 1 - 2 + 1 - 1 - 3 + 1 - 2 + 1 + 3 - 1 - 1 + 2 + 1 + 1 + 1 + 1 

i 4 4 4 4 6 644 644 4 4 5 5 5 4 4 5 5 6 

j 6 1 3 2 4 1 6 3 4 6 1 2 3 4 1 2 5 4 2 5 
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W"e now have the fourth column reduced to 

- 1 

o 
- 1 

o 
- 2 

o 

'Ve cannot reduce the - 2 in the fifth row to unity except by dividing b y 2, which would intro
duce fractions. vVe would prefer to delay the introduction of fractions until the last possible 
moment. Accordingly, we multiply the first and third rows by 2, then subtract the fifth row 
from the first and third, then multiply the fifth row by - 1, and, finally, in terchange the fourth 
and fifth rows. 

vVe have now changed the first and third columns so that they are no longer the first and 
third columns of the unit matrix, but have a 2 where the unit matrix has a uni ty. Also our 
fourth column has the same property. This can readily be corrected by multiplying the appro
priate rows by one-half, but we will postpone this step until we can no longer avoid fractions. 

Performing the indicated transformations on D gives the matrix 

- 32262 147945 - 111285 - 133369 - 13466 99868 

- 12391 60699 - 46328 - 5411 7 - 3115 39630 

3330 - 20337 16173 17547 - 1298 - 11972 

- 36052 168729 - 127507 - 151577 - 13242 

- 14752 74554 - 57273 - 66137 - 2494 

11271 8 

47933 

83708 - 393352 207521 353125 29905 - 262237 

This is not exactly the matrix E as we defined it earlier, but is close enough so that we shall 
call it E. The first four columns of EA are essentially the first four columns of the unit matrix, 
merely having 2 in place of unity in the first, third, and fourth columns. The fifth column 
of EA is 

222 81663 

9455740 

- 3473233 

25687577 

11787645 

- 600 10368 

We now reduce this by adding ex times the ith row to the Jth row for the following succession 
of ex, i, and J: 

_ a + 5 ~~~~~~ + 11 - 3 1 - 2 + 2 ~I - 181 1 - 4~ - 3~ - 3~ - 5 ~~1~1- 3 
i 5 5 5 5 6 6 6 6 6 1 5 5 5 5 56 6 6 6 

----------1-----------------
j 6 4 1 2 5 3 2 4 1 6 1 3 1 2 454 11 1 2 

a + 2 5 - 2 + 2 - 2 1 + 1 2 11 - 1 1 + 1 1 - 1 1-1 1 + 1 1-1 + 4 1-1 + 2 + 1 + 1 

;- :: : ::1 :: I : -+I- : ~ :1- :1 f :-:1- :- : :-: 
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We now multiply the second, third, and fourth rows by 3, then add - 1 times the sixth 
row to the second and + 1 times the sixth row to the third and fourth. Finally, we interchange 
the fifth and sixth rows. 

We could perform these transformations directly on E to get a matrix that we will call F. 
However, it is computationally easier to proceed as follows. We perform the transformations 
on the unit matrix, getting the matrix. 

100 0 

030 0 

2953877 

10836604 

5 80221 

21 28600 

o 0 3 0 - 346 28689 - 68 02003 

o 0 0 3 - 339 84487 - 66 75463 

o 0 0 0 - 9019777 - 1771726 

o 0 0 0 - 20003456 -3929215 

Then, if we multiply E on the left by the matrix above, we get the same matrix F that we 
would get by performing the indicated transformations on the rows of E. This matrix F 
follows. 

At this point, we can read off the determinant of A. .Most of the transformations that we 
used in forming F are such as to leave the determinant unchanged. Compiling those that do 
change the determinant, we find that the determinant of F is 108. So the determinant of A is 
- 558583112 98368. 

One can readily write down the inverse of FA, namely, a matrix whose components are 
fractions with the common denominator 930 97185 49728 and the following numerators 

i65 48592 74R64 0 0 0 0 6873751 46424 

0 310 32395 16576 0 0 0 168 1138607101 

0 0 155 1619758288 0 0 - 268 60639 59500 

0 0 0 155 16197 58288 0 - 263 6094.5 88452 

0 0 0 0 31032395 16.576 - 1399284624473 

0 0 0 0 0 - 1 

356 



Finally, we compute A -I from the equation A -I= (FA) - IF. This gives the same matrix for 
A) - I that was compu ted in section l. 

The computations outlined in section 2 required 23 hour of computing time by a pro
fessional computer. This time included the time needed to train the computer in the unfamiliar 
method. 

3. Remarks on Computational Details 

One advantage of the procedure outlined in section 2 is the ease in making numerical 
checks. Since all the operations are on rows, one can easily carry an extra check column 
which is the sum of all the columns with which one is dealing. However, this is not needed, 
for other checks are possible, as follows. The computation of B is easily checked by computing 
the first column of BA and seeing if it agrees with the first column of the unit matrix. Then 
one can check 0 by computing the first two columns of OA and seeing if they agree with the 
first two columns of the unit matrix; and so ou. 

Not only does this furnish a convenient check, but when a check is not forthcoming, one 
can often find the error by this method. For example, in computing E, two mistakes were 
made, and the resulting matrix was 

- 32262 1 -17945 - 1 11285 - 1 32919 - 13466 99868 

- 12391 60699 - 46328 - 54117 - 3115 38872 

3330 - :?O337 16173 17997 - 1298 - 11972 

- 36052 1 68i29 - 127507 - 151127 - 13242 1 12718 

- 14752 74554 - 57273 - 66587 - 2494 47933 

83708 - 393352 2 97521 352225 29905 - 262237 

which differs from E in most elements of the fourth column (where the original CLTor had snow
balled) and in the second element of the sixth column. When we multiplied this matrix on the 
right by A, we got 

70652 

- 1 44778 

70650 

70650 

- 70650 

- 141300 

as the first column, instead of twice the first column of the unit matrix. So, except for the 
second row, our errors are all multiples of 70650, which is (450) X (157). As 157 is Ule fourth 
element in the first column of A, it seems clear that there are errors in the fourth column of 
what purports to be E, and tllat these errors are multiples of 450. With this information, the 
mistake in computing in the fourth column was quickly discovered and eliminated. Now 
multiplication on the right by A verified all but the second row, and a trivial amount of uetec
tive work on the second row of the product sufficed to locate the error in the second row and 
give its magnitude. 

In setting up the computation for use on IBM machinery, we notice that the majority 
of the steps consist of adding ex times a row vector to another rolV vector, and that commonly 
IX is a small integer. It is not difficult to wire a multiplier so that if we insert a deck with a 
card containing ex followed by cards with the components of the two vectors interleaved, the 
multiplier will punch cards with the components of the resulting vector. At various stages 
in the procedure, some columns are computed for the product of two matrices, of which the 
ti.rst has as rows the row vectors that we are manipulating, and of which the second is always A . 
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uch a matrix multiplication can also be wired up for the multiplier. After the matrix multi
plication, one then makes a list of a's and rows to be operated on by inspection from a column. 
This is most conveniently done by hand, which permits the exercise of judgment at this point. 
However, one can proceed perfectly mechanically, as we did in the illustrative example. In
deed, it is not clear that one can really do much better by exercising judgment than we did 
with our purely mechanical procedure. Once th e list of a's and rows to be operated on is 
compiled, the respective operations can be quickly performed on IBM machinery. With 
only a multiplier, one must keep each row as a deck, and the row decks have to be interleaved 
and separated repeatedly. If a card programmed calculator is available, one may put an 
entire row on a single card (unless the matrix is of really high order) and the operations are 
greatly speeded. 

The matrix A that we used was constructed from a table of random numbers in an effort 
to furnish an example tha t might be considered typical. 

vV"ith an increase in the order of the matrix to be inverted, the method presented herein 
becomes even more of an improvement over the standard methods. The method was first 
devised in the summer of 1948 while working with Dr. N. G. Gunderson at Cornell University 
on a problem in number theory, in which we required the exact solution of 15 equations in 16 
unlmowns (one unlmown was transposed to the right-hand side, and a solution obtained in 
terms of it). Fortunately, many of the coefficients were zeros. Even so, the usual methods 
of solution led us to hopelessly large numbers, whereas a solution was carried out by the method 
of this paper without encountering any integer of more than 12 digits . 

Some of the procedural details of the present method were devised by Dr. Gunderson. 
The computations for the present paper were carried out by Lillian Forthal, Nancy Mann, 
and Gerald K imble, under the direction of Marvin Howard. 

Los ANGELES, August 14, 1950. 

o 
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