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On Approximate Solutions of Systems 
of Linear Inequalities * 

Alan J . HoHman 

Let ~x ~ b be a. consis tent system of linp,ar inequal ities. The principal result is a 
quantitative formulatIOn of the fa ct t hat if x "almost " sa t isfi es the inequalit ies t hen x is 
"close" to a solut ion. It is fur ther shown how i t is possible in certain cases to e~timate the 
$ize of the vector joining x to the nearest solu t ion from the magn itude of t he posit ive 
coordi nates of A x - b. 

l. Introduction 

In many comp utational schemes for solving a 
ystem of linear inequali ties 

(1) 

(briefly, Ax ~ b ), one arrives at a vector x that 
" almost" satisfies (1). It is almost obvious geo­
metrically that, if (1) is consisten t, one can infer 
that there is a solution Xo of (1) " close" to x. The 
purpose of this r eport is to justify and formulate 
precisely this assertion .l We shall use fairly general 
defini tions of functions that measure the size of 
vectors, since i t may be possible to obtain better 
estima te of the constan t c (whose importan t role 
is described in the statemen t of the theorem) for 
ome measuring functions than for others. We shall 

make a few remarks on the estimation of c after 
completing the proof of the main theorem. 

2 . The Main Theorem 
vVe require the following 

Defini tions: 
For any r eal number a, we de fine 

a if a ~ o 
a+= -

o if a< O. 

For any vector y =(y" ., Yk), we define 
y+= (yt , . . . , y:) . (2) 

.. A. posi tive homogeneou function F k defined on 
k-space is a r eal con tinuous function satisfying 

(i) F k( x ) ~ 0, Fk(x ) = 0 if, and only if, X= 0 

(ii) (3) 
'This work was sponsored (in part) by t ile Office of Scient ific Research , USAF. 
1 A . M. Ostrowski has kind ly poin ted out that part of the results given below 

is im plied by the fact t hat if J( and L are two convex bodies each of which is in 
a small neighborhood of the other, then their associated gauge fnnctions d iffer 
slightly. 

Theorem : L et (1) be a consistent system of ine­
qualities and let Fn and F m each satisfy (3). Then 
th ere exists a constant c >0 such that for any x there 
exists a solution Xo of (1) with 

The proof is essentially contained in two lemma 
(2 and 3 below) given by Shmuel Agmon.2 

L emma 1. If Fm satisfies (3), there exists an e> O 
such that for every y and every su bset S of the half 
spaces (1 ) 

F", (if ) ~eF",(y) 

where Y=(YI, . .. ,y",), g = (y" . . ',Ym), and 

_ Yi if the i th half space belongs to S 
Yi= 

o otherwise. 

P roof. It is clear from (3) (i) that any e will 
suffice for y = O. B y (3) (ii), we need only consider 
the ratio Fm(if)/Fm(Y) for Y such that F (y)= ], a. 
compact se t . H ence, for each subset S, Fm(y )/Fm(Y) 
has a maximum es . Set e=max es . 

L emma 2. L et Q be the set of soluti ons of (1), let 
x be a point exterior to Q, and let Y be the point in Q 
nearest to x . L et S be the subset of the half spaces 
(1), each of which contains y in i ts bounding hyper­
plane, and let Qs be the intersection of these half spaces. 

Then x is exterior to Qs and y is the nearest poin t 
of Qs to x . 
- L emma 3. L etM be an m X n matrix obtained from 
A by substituting 0 f or some of the rows of A , and 
let Q be th e cone of solutions oj ~Mz ~ O. L et E be 
the set oj all points x such that (i) x is exterior to Q , 

and (ii) the origin is the point oj Q nearest to x . 
Then th re exists a ds>O such that xeE i mplie 

P rooj oj the theorem . Let x be any vector exterior 
to the solutions Q of (1), let Xo be the point of Q near­
est to x, and let S be defined as in lemma 2. 

Let M be the matrix ob tained from A by substi tut-
2 S. Agmon. T he relaxation method for linear ineq nalities, National Applied 

M athematics Laboratory Report 52-27, N BS (prepublication copy). 
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ing 0 for the rows not in S, and let ;; be the vector 
obtained from b by substituting 0 for the components 
not contained in S. 

Then lemma 2 says that Xo satisfies Mz= b, x is 
exterior to the solutions of Mz ~ b, and Xo is the 
solution of Mz~ b nearest to x. Perform the trans­
lation z' = Z- Xo. Then Mz ~ b if, and only if, 

Mz' = Mz - M Xo= Mz - b ~ o. 
Thus X- Xo belongs to the set E of lemma 3, and 

Fm((Mx- b )+)=Fm((M(x- xo»)+) ~dsFn(x-xo) ~ 

dFn(x- xo), 

where d= min ds . 
s 

Thus, 
1 - e 

Fn(x- xo) ~dF m(M x- b) ~dF m((Ax- b)+), 

using lemma 1. Setting c= eld completes the proof of 
the theorem. 

3. Estimates of c for various norms 

None of the estimates to be obtained is satisfac­
tory, since each requires an inordinate amount of 
computation except in special cases. It is worth 
remarking, however, that even without knowledge 
of the size of c, the theorem is of use in insuring that 
any computation scheme that makes (Ax- b)+ 
approach 0 will bring x close to the set of solutions of 
(1). This guarantees, for instance, that in Brown's 
method for solving games the computed strategy 
vector is approaching the set of optimal strategy 
vectors . 

In what follows let 

I'x l = maximum of the absolute values of 
the co Ol·dina tes of x; 

Ilx ll = sum of the absolute values of the co­
ordinates of x; 

Illxlll= the square root of the sum of the 
squares of the coordinates of x. 

Note that if Fm is anyone of these norms, then 
e = 1. We consider these cases: 

Case I. Fn=111 III , Fm=1 I. If G=(Cii) IS a 
square matrix of rth order, let 

where the Gi/s are the cofactors of the elements of 
CiJ' Using this notation, and assuming that the 

n 
rows of (1) are normalized so that :8 ail = 1, Agmon 

j=1 

(see p . 9 of reference in footnote 2) has shown that if 

A is of rank r, then 

where iI, . .. , ir are r (fixed) linearly independent 
rows of (ati) ; A~:::::: {; is the r X r submatrix 
formed by the fixed rows and indicated columns, ancl 
where the summation is performed over all different 
combinations of thej's. 

Case II . Fn=1 I,Fm=1 I· 
CaseIII. Fn=1 I, Fm=1 1 II· 

For cases II and III, it is convenient to have a 
description of E alternative to that contained in 
lemma 3. We shall use the notation of lemma 3. 

Lemma 4 . Let K ' = the cone spanned by the ruw 
vectors oj M, with the origin deleted. Then K' = E. 

Proof. Let Mil . . ., A;[m be the row vectors of 1\1, 
and let X= AlA;[1 + .. . + AmM m, where x7"" 0, and 
A i~ O , i = l , . .. , m. Then x is exterior to Q, and 
the origin is the point of Q closes t to x ; that is, z E a 
implies (x- z ).(x- z )-x·x ;;;;O. For z· X= Z·(A1Ml + 
.. . + AmM m)= A1Z·Ml + .. . +Amz·Mm ~O. H ence 
(x- z) · (x - z) - x . x= z.z- 2z.x ~ O . This shows that 
K' C Eo 

We now prove thatE C K' . Assume x eE. Then, 

Z ea implies z·x ~ 0 (4) 

(o therwise let w be a sufficiently small positive num­
ber; then w z eQ and wz·wz-2wz·x< O). Consider 
z as the coordinates of a half space whose bounding 
plane contains the origin. Then (4) says that all 
half spaces (" through" the origin) containing the row 
vectors of M also contain X . It is a fundamental 
result in the theory of linear inequalities 3 that this 
later statement implies that x is in the cone gener­
a ted by the rows of M . H ence E C K' . 

4 . Case II 

I t is clear from the proof of the theorem tha t all 
we need is to calculate min (IMx )+l/lx J) , for each .M 

XEE 

corresponding to a subset S of the vectors AI , .. " 
A m. Let All ... , A le (say) be the vectors of tho 
subset S. Then by lemma 4, xeE implies that 
there exist AI, ..• , Ale with Ai ~ 0 such that 

H ence, 
k 

Ix l ~ as :8 Ail 
j= l 

(5) 

(6) 

where as is the largest absolute value of the cO-Ol'di­
nates of AI, ... , A le. 

It follows from the homogeneity of I(Mx )+l/l xl that 

3 T. S, Motzkin , Beitl'llge ?ur TheOt'ie del' Linearen Ungleichungen. Jerusalem, 
1936, with references to proofs by Minkowski a nd Weyl. 
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we need only consider x~E such tha t if x is expressed 
k 

as in (5), ~ }. j= 1. 
j= 1 

Then 

I(M x)+I=max (A i· x)+=max (A i ' X)= 
i i 

where gii= A i · A i> }. j ;:':; 0, ~}.j= 1. 

H ence, 
k 

min I(Mx)+I= minmax ~ 9ijAj=VS, (7) 
A ; j= 1 

where Vs is the value of zero sum two person game 
whose matrix is gij. 

Therefore, from (6) and (7) 

min I(Mx)+I;;::: vs . 
x,E Ix l - as 

Can vs= O? Clearly, if, and only if, the origin is in 
convex body spanned by A I, . . . , A k • But this 
would imply that the set E is the ent ire space (except 
for the origin). And it follows from the proof of the 
main theorem th at this can occur only for a subset 

that would never arise in lemma 2. 
Therefore, using the language of the theorem 

where 
as c=max - · 

• 8>0 v s 

(8) 

A pecial case occurs when all A i'A j>O. Lct 
v=min A r A i> a = max la ij/ . Then, 

i, j i, j 

/x - xo/ ~~ /(A x - b)+/. (9) 
v 

5. Case III 

Reasoning, along the lines of case II, we need only 

est imate min /IC±9iiAj) +//, and it is possible to derive 
A J= 1 

from it an expression analogous t o (8) , which un­
fortunately does not seem to have a neat statement 
in terms of games or any other familiar object. An 
interesting special case occurs, however, if the 
matrix 91j (for S all the rows of A), has the proper ty 
that 

Then 

min II Cttg ijAj) +1/ ;:,:; n~in iti ~gijAj 
k k k 

= min ~Aj~9ij;:':; mjn ~}.jW=W. 
A j=1 ;=1 A j=l 

Then we obtain, with a having the ame meaning as 
in (9) 

(10) 

'W ASHING TON, J une 5, 1952 . 
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