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Hydraulic Resistance Effect Upon the 
Dam-Break Functions* 

Robert F. Dressler 

The dam-break solution, a known ce ntered simple-wave when resistance is neglected, 
is studied with the Chezy r esistance formul a added to t.he nonlinear shallow-water equations. 
Resistance transform s the wavefront from a characteri stic curve into an envelope of charac
teristics . The flow near the t ip differs from t he other parts, due to a distinct boundary-layer 
t ype of regio n adjace nt to the wavefront envelope. Then a perturbation leads to a syste m 
of partial differential eq uations with variable coefficients . I nitial condi tions are deri ved 
fo r the sin gularity at the origin. By studying its characte ri stic equations, this system is 
solved explicitly for the correction fun ctions. Except at the tip, resistance raises the water 
s urface a nd lowers velocities. These function s, no lon ger simple-waves, possess concurrent 
s t raight characte ri st ic lines t hat map into another set of t he sa me t.ype. The critical flow 
locns moves downst rea m, faster for more resistance, a nd d i scha r~e rates are reduced. The 
method fail s in the t ip layer because t he asymptotic expansions fo r the .first deri vatives lose 
validi ty t here. Est imates a re made indirectly for t he wavefront velocity by observing where 
t he bou ndary-layer effect becomes predominant. 

1. Introduction 

Sudd en destruct ion of a dam r esul ts in a highly 
unsteady flow, with a forward wave (the "posit ive" 
wave) advancing over a dry channel, and a back dis
t urbance (the "negative" wave) propagating in to the 
still water above the dam. We consider a two
dimensional problem, a horizontal stream bed, with 
initi ally no water below the dam and water at rest 
above th e dam. An expli cit solu tion to this problem 
was given in 1892 by Ri tter [1]l by applying certain 
general expressions of Saint Venant [2]. The equ a
tions used were the usual approximate ones involving 
small curvature, du e to Saint Venant, often called the 
nonlinear shallow-water eq uat ions. 

Th e problem under consideration possesses genuine 
practical significance, not merely for the applications 
involving dynamit ing of dams through military 
action, for example, the destruction in 1941 by 
Russian engin eers of the Dnieprostroy Dam (140 
feet high) near Kichkas on the Dnieper River , and 
the occasional mechanical failure, for example, th e 
St. Francis Dam (205 feet h igh ) in California, whi ch 
broke in 1928 b ecause of defective geologic founda
tions, causing the loss of hundreds of lives and 
immense property damage, but also for the more 
common occurrences, such as the opening of canal 
and sluice gates and controls at hydroelectric sta
tions. The problem is most important, however , 
b ecause of the information desired about the basic 
ques tion of the b ehavior of any wave advancing along 
a dry channel, concerning which very little work has 
been done so far. 

In the case of a wave advancing into s till water of 
appreciable depth, the problem can be handled by 
approximating the flow with the discontinuity condi
tions of mass, momentum, and energy for a bore. In 
that case, one evaluates the relation between hydro
static forces and rate of change of momentum at the 
wavefron t . F or our present case, however, this is not 
possibl e; rath er , the controlling factor in the propaga-

• The preparat ion of this paper was sponsored (i n partl, by the Office of Naval 
Research. 

I F igures in brackets ind icate the literature references at the end of this paper. 

tion of th e wave is th e hydraulic r esistance caused by 
stream bed fri ction and turbulence. This cffect will 
predominate especially in the shallow front r egion of 
th e How. For this reason the classical solu tion of 
Ri tter, which neglects res istance, is not realistic. It 
should, therefore, be signifLCan t to ini tiate some study 
on the effects of resistance upon this unsteady flow . 
Forchheimer [3] has presented a summary of most 
previous work on the dam-break problem. 

The experim en ts of Scholdi tsch [4] indicate tha t 
actual velocit ies for the forward wave may be as low 
as 40 percen t of the theoret ical r es ult given by 
Ritter's solut ion without resistance, whereas t he 
experimental and th eoretical results agree for th e tip 
of the negative wave. Thus it is clear that th e for
ward part of th e fiow is highly sensit ive to hydrauli c 
resistance, and it is our presen t purpose to dedu ce 
some approximate quantitative information of this 
effect by consid ering the equations containing the 
resistance term. Experiments of Eguiazaroff [51 
likewise confirm the above observations; in his report, 
the author r emarks abou t t he almost complete 
absence of data concerning the propagation of a wave 
over dry land . 

One can determine analytically the exact wave
front velocity (neglecting resistance) for the case 
where the bottom is inclined below th e horizon tal. 
We will study here, however, only the horizontal case, 
since the resistance predominates over the slope 
effect for the usual small slopes occurring in nature. 
Both effects could be handled simultaneously by the 
present approach, but since it is only the resistance 
term that seriously complicat es the equations, th e 
slope will be ignored . 

In 1946 R e [6] computed, by a finite-difference 
calculation on the characteristic equ ations, th e flow 
to be expected from the destruction of a dam, for one 
specific value of slope and Chezy resistance co
efficient. This was done in anticipation of possibl e 
des truction of a dam at the German-Swiss fronti er in 
World War II . R e's probl em included the preqence 
of some water b elow the dam initially, causing the 
forma tion of a bore in his solution. 
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2. The Basic Equations 

We first define the problem in dimensional quan
tities (denoted by bars) and then transform immedi
ately to dimensionless variables (unbarred). Let Y 
denote the height of the dam, and let the horizontal 
direction downstream from the dam be measured by 
x. Upstream the water is at rest until time t= O. 
L et y be the vertical distance of the water surface 
above the bed and u the horizontal component of 
velocity. Introducing c = ~ gy, the momentum and 
continuity equations used are 

(1) 

containing ,t he.:Chezy ~'esistance term, in which the 
lwghness coefficient R has dimensions of accelera
tion. Neglecting resistance, the well-known Ritter 
solution is 

uO=~(~+H) 

co=~( 2l~ -~} (2) 

where H=~ 9 Y . This defines the parabolic surface 
profile for any fixed i, with the negative wave propa-

gating upstream at velocity -~ gY, and the forward 

wave advancing at velocity 2-JgY. This profile 
always intersects the line x = O at height y =(4/9) y 
with u = (2/3) H, giving the constant discharge rate 
Q= uy= (8 /27) (H3/g). The wave tip at c= y = O 
has a horizontal tangent at all times, whereas it is 
known exp erimen tally that the wavefront is actually 
vertical. 

Transforming to dimensionless notation by the 
relations 

x = (g!IJ2) x , t= (g(H) t, u = u(H, y = y!y, c= c/H, 
R = R / g, Q= (g(H3) Q, and m = x/t, the equations 
becom e 

for whieh the Ritter solution at R = O becomes 

(4) 

---- ------------_._-------" 

FIGURE 1. Diagram of the R ille?' solution. 

At the site, x= O, y = 4/9, u = 2/3, and Q= 8/27 (fig. 1). 
The characteristic equations equivalen t to system 

(3), when R = O, are 

I . dx _ ° ° +'(jj - u - c , 

I . dx _ 0+ ° - 'di - u c, 

I I +:d(uO- 2cO)= 0, 

II _:d (uo+ 2cO) = O, 

(5) 

defining two families 1'+ and 1'- of characteristic 
curves, along which the corresponding relations given 
above must hold. A study of these equations pro
duces the Ritter solution by utilizing the solutions 
for the characteristic curves, which are 

(6) 
I' _:x= 2t - 3a2/3tI /3, 

wh ere m and a are parameters. The 1'- curves pass 
through the points (- a, a). Since the 1'+ curves 
are concurrent str aight lines through the origin in 
the x, t plane, the Ritter solution exemplifies what 
is now commonly called a "cen tered simple-wave." 
This simple-wave interpreta tion of the dam-break 
solu tion is discusRed in Courant-Friedrichs [7] and 
Stoker [8]. Figure 2, A, shows the familiar pattern 
of characteristics for this solu tion given by (4) , (5), 
and (6). Line OB marks the propagation of the 
disturbance into the still water , while OF is the 
trajectory of the forward wavefront , along which 
cO= O. Therefore by (5) the two characteristic 
directions coincide along OF, which must belong to 
both the 1'+ and 1'- families. This means the solu
tion of (3) with R = O degenerates from hyperbolic 
to parabolic type along the boundary defined by 
the forward wavefront double characteristic . 

As the resistence R changes from zero to a positive 
value, it will distort all the characteristics lying to 
the right of OB, as shown qualitatively in fi gure 2, B. 
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FIGUR E 2. Pattern of characteristics. 
A, Without res istance; B , with resistance. 

The charac terist ic equa tions for R > O become 

dx 
1+: ([i = u-c, 

I d:c + - :-(Jj= u c, 

(7) 

(8) 

mtroducing characteristic parameters a and (3, which 
vary along '1'+ and '1'- , respectively. Equations (8) 
can be_~vrit ten in simpler notation as 

II +:d(u - 2c)= - R (~ydt, 
(9) 

The characteristics for this solution in the region of 
motion are now unknown. In the still-water region 
upstream where u=O, '1'+ and '1'- have slopes dx/dt= 
+ 1, respec tively; hence they become straight lines 
here. Because the disturbance emanating from the 
origin will be carried as a derivative discontinuity 
along a '1'+ curve from (0, 0), on this curve we still 

have u = O, c= 1, and therefore OB remains straigh t 
with slope - 1. R esistance will decrease t he for
ward wave velocity, turning the wavefronL curve 
OF above the straigh t line m= 2. 

If R has any nonzero value, however small, it is 
seen in (3) that cer tain terms must become infmiLe 
at the wavefront , where c= O, to maintain the equal
ity. It is experimentall:v Imown, or can be seen from 
these equations, that Cx -!> - 00 at th e tip , tha t is, a 
vertical wavefront is maintained. Likewise, 
c.,-->+ 00, while u, U x , and u, remain bounded. This 
singular behavior of these derivatives will cause 
complications in the subsequ ent analysis. If the 
variable hydraulic radius were not present in th e 
denominator of the resistance term, the entire prob
lem would be basically simpler. In a somewhat 
similar way, it is this variable denominator that 
produces instabili ty in a unilorm flow and creates 
the possibili ty of roll-wave formation (see [9] and 
[10].) 

The eq (3) used here are based upon hydrostatic 
pressure (negligible vertical accelerations or stream
line curvature) , and the qu estion arises concerning 
their validity to describe the flow in t he tip reg ion. 
Wi th Cx-!>- 00 , the profile curvature becomes large, 
bu t the depth of water becomes zero, so that Lheir 
product for the actual flow may stay small. Ft:ied
richs [11] has shown that eq (3 ) apply when this 
product is small . Alterna tively, one sees from experi
men t that the wave tip moves along somewhat like 
a separate mass of nearly fixed shape, with vertical 
accelerations therefore possibly negligible. In any 
case we wish to study the mathematical implica
tions of (3) when applied to the dam-break problem. 

In order to justify why the characteristic pattern 
should be as shown in fi.gure 2, B , we will consider the 
following argument. Let the wavefron t OF be 
defined as the locus, wh ere c= O. I t is impli cit in the 
basic eq (3 ) that particles at the tip always remain 
at t,he t ip , hence the velocity, u, evalu ated along OF 
must always equ al the reciprocal slope dx/dl of the line 
OF. Each of eq (7) is then satis fi ed by Lhe vvave
front curve; and at every point of OF , bo th charac
teristic directions '1'+ and '1' - coincide with the 
direction of OF. This line cannot be a characteristic 
curve itself, however , since neither of relations (9) 
can hold along OF for any R > O. Therefore, it must 
be an envelope of '1'+ and '1'- curves (fig. 2, B). Since 
the reflected '1'+ curves of class O'F' cannot intersect 
each other , they must approach some limit lin e 01' 
as O' -!>O. Three patterns therefore arise: (a) OT 
coincides with OB, (b ) 0'1' lies in the interior of 
section BO:F, entering 0 at some intermedia te angle 
between OB and OF, (c) 0'1' is interior to BOF and 
enters 0 at the same angle as OF and OF" . Case 
(c) is shown in figure 2, B , because the following 
discussion indicates that (a) and (b ) are not possible. 
'Ve assume that the dam-break functions U (x, t, R ) 
and c (x , t, R ) are continuous in R at R= O (but not 
necessarily so for their derivatives). Then the char
acte:ristic directions given by (7) will be continuous 
in R, and their curves must distort continuously as 
R -!>O. 
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If we transform to new variables by x= x*/K , 
t= t* /K with u (x, t) = u* (x*, t* ), c (x, t) = c* (x *, p*), 
defining a radial stretching cen tered at the ongm 
with constant magnification K , eq (3) transform to 

These equations are identical (in. the starred q.uan
t ities) with (3) except for the r esIstance coefficIent. 
Hence the effect of letting K -> OJ , R fixed , increas~n.g 
the stretching, is equivalen t t? the effect on .th~ ongI
nal quantities when R -70 . rhe characten stlC pat
tern for R > O must therefore approach by continuous 
radial stretching the known limit pattern for R = O 
(fig. 2, A) . This is possible only for case (c) . . ~he 
limi t chracateristic OT can now be used as a defimtlOn 
for the beginning of .the t ip layer TOF ~nd as t he 
eparation lin e for thIs boynd;ary-layer effect. 

To obtain some quantItatIve results, we let the 
unknown solutions u and c to eq (3) be represented 
as asymptotic expressions of form 

u(x, t , R) "-'uo (x, t) + U(x, t) R + U(2) R2+ 
(10) 

where uO, CO is given by (4). B ecause of the ~bove 
remarks about oc/ox and oc/ot at the wave t~p f<?r 
any R > O, whereas oc%x and .oc% t stay fimte, It 
follows that the derived expanSIOns oc/ox,,-, oc%x+ 
... , and oc/ot,,-,oc% t+ .. . , ca~not remai~ valid 
in the neighborhood of the wave tIp. That IS, t he 
perturbation procedure based upon (10) becon:tes 
singular near the line OF, and from thIS standpomt 
also we see that some type of boundary-layer 
complication must develop th~re. The~'efore these 
calculations, using the c~rrectlOn functIOns U and 
0, camlot be applied dIrectly to the wavefront 
layer. . . 

Substituting (10) into (3) and equatmg terms m
dependent of R produce eq (3) with R.= O and their 
solution (4). At the next s~ep , usmg. terms of 
first degree in R , the equatlOns definmg U(x, t) 
and O(x,t) become, by (4) , 

2 2 
- U- - O+3 
t t r 1+':' ]2 t 

~- = 0 
1 -~-

'- 2t 

(11) 

In order to solve this nonhomogeneous system 
with variable coefficients, we will first derive the 
appropriate initial and boundary. c.onditio~s and 
then study the associated characten stlc equatIOns. 

3 . Initial and Boundary Conditions for U, C 

At the initial moment of breakage, the water 
height and the velocity ar e . multival~ ed a~ x= O. 
TillS means that the full solutIOn u , c wIth resIstance 
has a singularity at the origin; tl:lC low~st order 
approximation uO, CO p<?ssesses ~ smg~l~nty. there 
also . \iVill there likewlse be smgulantws m the 
higher order terms at (0, 0) , or is the entire effect 
contained in uO, CO? In order to get the procedure 
started in his finite-difference calculat ions, Re [6] 
assllUled that the flow could be considered ini tially 
as two fini te shocks, one positive and one n e~ative . 
When our problem is consid~red as defined ~y (3) 
with R > O, since the velocIty starts off dlscc;m
tinuouslv with nonzero values, the opposmg 
force -'R (U/C)2 must become operative il~stl:l;ntan
eously. Al though it has already been. mdlCat~d 
that resistance effects on u and c can b e Ignored m 
the immediate neighborhood of the origin, a more 
detailed discussion will also be made now for the 
behavior of U and 0 there. 

Let the limi t values be U i , Ci for the solutions 
u , c as we approach the origin along a curve wi th a 
limiting slope mi . By (4), 

(12) 

For example, as we approach (0, O~ along .OB 
(fig. 2, A), c? = l; along OF, c? = O; a!ld Ill t.ermedmte 
values result for an approach wlthm r eglOn BOF. 
For all such approaches, by (12); u? + 2c?=2 
tlu-ough the origin point, consistent wI~h the char
acteristic relation d(uo + 2 CO) = O for "1 - III (5) . One 
may consider this ori~i~ point to b~ stre~ched ?ut 
into a "1 - characten stlc curve,. wIth c varymg 
continuously from 1 to 0 along thIS curve from left 
to right. . . 

Now going over to th e full problem wIth R > O. 
(fig. 2, B), we likewise consider poin~ 0 to ~e stretched 
into th e arc MN, shown schematlCally m figu~'e .3. 
Interpreting the. curve M~F as a "( _ charactenstlC, 
the relation holdmg along It by (9) IS 

(13) 

if c ~ 0; but c= O only at N. Henc~ (13) is applicab~e 
on MN, along which dt= O. ThIS means u + 2c IS 
constan t along M N, and so 

(14) 
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FIGURE 3. S chematic diagra lll of characteristics at origin . 

Approaching MN along any 'Y + curvc, 

1. dx 
m j = 1m (jj = U i-C; 

by (7). The solution of (14) and (15) is 
2 2 

u i=3 m i+3' 

2 1 
ci=3-3 mi, 

(15) 

(16) 

Using (10), ui=lim (uo + U R-f-, 
by (12) 

. ), we obtain 

Uj= O, OJ = O, (17) 
which are the desired condi tions on U and 0 at the 
on gm. This resul t shows that the resistance effects 
on th e main solution can be ignored at the initial 
instant. 

The r ela tions c( - t,t,R) = 1, u ( - t,t,R) = 0, previ
ously discussed, give thc ncccssary data for U and 
o along line OB. The use of these with (10) yields 

O( - t,t) = 0, U( - t,t) = 0. (18) 

4 . The Solution for U and C 
To obtain a clue for solving most easily for U and 

o subj ect to the conditions just derived, we now 
study the characteristic equations cquivalent to 
system (11), which are 

I . dx _ 0 0 
+ '([i - u -C, 

I . d x_ 0+ 0 - ' dt - u c, 

1I+ ,d(U - 201~ [ :,(0-U1- [ ::~J}' if T <2 

[

X ,2 
1+-

IL:d(U+20)=- ~J dt, if f < 2. 
1- -

2t 

(19) 

The characteristics are the same a (6) for uo, CO 

(fig. 2, A), but now the relations along them are more 
complicated . R elation lL has the righ t side inel ('
pendent of the unknown, and can therefore be inte
grated along the 'Y _ curves, using (6) and (18). The 
resulting integral along 'Y - become 

This equation used wi th II+ of (19) now indicate 
bow to solve explicitly fol' U and 0 as follows . 

If we move out from (.he origin along a straight 
'Y + characteristic, the value of t at an intersection 
with a 'Y _ curve emanating from (- a, a) must be 
proportional to a. This is immedia tely seen since 
the equations for the two curves can be written in 
the form (x/a) = m (t fa) and (x/a) = 2(t/a) - 3 (t /a) 1/3 . 

Now by (20), the quantity (U+20) /a is a function 
of t/a, which is constant along each 'Y+ ray. There
fore, U+ 20 is also proportional to a along the ray, 
and so U + 20 must be proportional to t th ere. Next 
we observe in the II+ relation of (19) that U- 20 
would likewise be proportio nal to t along a 'Y+ ray if 
the t erm (4f3t) (0- U) wer e a constan t there; then 
each of the quantities U and 0 would separately be 
proportional to t. Bu t this would then be sufficient 
to make (4/3t)(0- U) constant as required. There
fore t he solutions U, 0 must actually be linear in t 
along each 'Y+ ray, since this will al 0 satisfy the 
condition (17) at the origin. With this information, 
the original system (11) can now be solved explicitly , 
subj ect to the other boundary condition along OB. 

We transform to the ne'iv independent variables m 

and t, p utt ing C(x,t) = C(m,t) and U(x,t) = rf(m,t). 
Then (11) transforms to 

2- m oU +3 oU + 2(2- m) 00 + 
t om ot t om 

t t m' 
~U_~0+ 3 ( I +m) 2= 0 

1-2' 
(21) 

2- m oU + 2(2 - m) 00 +6 ~Q_~ U +~G= O 
t om t om ot t t ' 

with U( - I,t)=G(- I ,t)= O for cond ition (18) . In
troduction of U = h(m)t and C= 7c (m)t leads to the 
system 

dh dle (2- m)- +5h + 2(2 - m) - -
dm elm 

1n ' 
2lc + 3 ( I + m ) 2= 0 

1- -
2 

dh dle 
(2 - m)- -2h+2(2-m) - +8lc= O. 

dm elm 

(22) 
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This possesses the solution, for h(- l )= k(- l )= O, 

h( )=_ lOS +~_~+S-J3(2 _ )3 / 2 
m 7(2 - m )2 2 - m 3 IS9 m, 

k (m) 6 
5(2- m ) 

~+4-J3 (2 _ )3 /2 
3 135 m. 

(23) 

The desired quantities U, C are then given by ht, kt, 
respectively. 

The characteristic eq (19) have thus furnished an 
easy method for obtaining the particular solution 
U, C. It would have been possible, however, to 
solve the original system (11) first for its general 
solution, but with much more difficulty. This 
general solution to (11) is 

2 (X) ( lOS 12 S) U(x,t)=--'It - - 2 --+- t + <I>(r), 
t t 7(2 -~) 2-~ 3 

t t 

where 'It and <I> are arbitary functions , 0 is an arbitrary 
cons tan t . and r = (2 - x/t )t2/3 • In order to keep the 
corrections finite at the origin, one must select 
'It == 0 and 0= 0. These expressions for the general 
solution indicate in an alternative manner the conect
ness of our conditions (17) at the origin, since we 
can now see that no other finite values except Ui= C; 
= 0 could be prescribed there. Then conditions (IS) 
along line OB require the selection <I>(r) = (S-J3/1S9) 
(2-X/t) 3 / 2t. The resulting particular solutions are 
seen to be identical with those previously given by 
(23 ). 

These particular solutions U and C no 10l~ger de
fine a centered simple-wave (as for uo, CO for which 
the maps of all the X, t characteristics fall on one r 
curve in the u, c plane), but rather define what might 
be called a "centered seimilinear wave" . The map 
of its characteristics is shown in figure 4. For these 
solutions it is clear that the 'Y + straight lines in figure 
2, A, must map into a pencil of straight lines r + 
through the origin (fig. 4). The 'Y _ family goes over 
into curves r _ (dotted in fig. 4) also concurrent at 
the origin. The line OB and the origin in the X, t 
plane map into the single point (0, 0) in the U, C 
plane. All of the curves remain inside the wedge 
formed by AO (with slope- !) and the negative 
U axis. 

The dam-break solution with first order resistance 
correction is then 

2 
u (x, t,R)"'"3(l + m)+h(m)tR + .. . , 

1 
c(x,t,R)"'"3(2-m) + k(m)tR + ... , (24) 

I.' 

1.0 

.. 
o LI 

FIGURE '!. Map of characteristics i n U, C plane. 

+ 30 
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FIGURE 5. 

with h, k defined in (23) and m = x/t. Up t o first
order terms, the solutions depend only upon the 
product tR= (J. Both hand k have poles at m = 2 
due to the tip effect; the behavior of these functions 
is shown in figure 5. It is seen that resistance causes 
a much greater effect upon the velocity than upon c 
or the height, since Ih l greatly exceed s k . 

For a fixed R, (23) implies that the value given 
by (24) for U must eventually become negative as 
we go far enough out from the origin along any 'Y+ 
curve. Thus the asymptotic validity of our series 
weakens with increasing distance from the origin, as 
the U, C characteristics diverge further from the 
true characteristics of figure 2, B. For all numelical 
results presented here , the calculations have been 
restricted arbitral'ily to a region comprising less than 
one-third the distance to the points where the series 
would indicate a zero value for u. 
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5 . Locus of Critical Flow 

In the u O, CO solu tion , the flow always remains 
critical (where u=~gy or u = c) for all t> O at x = O, 
with sub crit ical flow· for x< O and super-cri tical for 
x> O. The resistance will distort this critical flow 
locus. To calculate it, we denote the locus where 
u = c by x= s(t, R ) ",S(t)R + S(2) (t )R 2+ .. . , since 
s°(t) = 0. Using the relation u(s[t, R ], t, R ) =c(s[t , R], 
t, R) we obtain 

UO(s[t, R], t ) + U(s[t , R], t)R + .. . 

=cO(s[t ,R], t)+C(s[t,R]'t)R + ... , (25) 

and th en expand each function in this identity in a 
series about x = O. Equating terms of first order in 
th e resulting double series gives the result Set) = 
t[C(O, t) - U(O, t) ]. The equation of the locus of criti
cal flow correct to first order is therefore the parabola 

x= [k(O ) -h(0)]Rt2 == 0 .395Rt2. (26 ) 

Figure 6 shows this locus for various values of R 
within extreme practical limits. We observe that 
the critical flow position moves con tinually down
stream, and the resistance increases the proportion 
of the total flow· which is sub critical. 

We note parenthetically that this double series 
method cannot be utilized to obtain the locus of th l' 
wavefront because of th e tip effect. If one desig-

0:: 
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2 .0 

5000 10000 15000 20000 

FWURE 7. Discharge rates. 

nates by x=z(t,R) the locus where c= O, with z ",2t + 
Z (t) R + . .. , and u( z, t, R ) = Zt, one would compute in 
this manner the formal results 

which are undefined in this case because of th e singu
larities of U and C along the line x = 2t. 

6 . The Discharge Rate 

From the dimensional discharge rate (/ = u y, we 
define Q= (gjHa)7f= u c2, the corresponding di.men
sionless quantity. For- th e discharge rate at the site 
of the dam, 

Q(O ,t, R)== [~+U(O,t)R ] [~+C(O,t)R J, 
which becomes, after neglecting terms above first 
order, 

Q(0,t,R)==287 (1- 0.239tR). (27) 

Figure 7 presents these data for various r esistances. 

7. Approximations for the Wavefront 

We see from the experimental profile obtained by 
Schoklitsch [4], converted into dimensionless form 
by Keulegan [12], figure 8, that the dam-break wave 
actually governed by resistance has a vertical slope 
at the ti p . As previously discussed here, eq (3) 
shows that Icxl and IYxl become infinite when c= o. 
In the region where Icx l begins to grow large, our 
expansions lose validity and the present method of 
attack breaks down. To handle the tip region 
accurately, some type of boundary-layer technique 
would be necessary. This is being investigated at 
present, but no results are yet available. Figure 9 
illustrates schematically this spearation of the two 
regions, with T marking the transition zone. For 
present purposes, this point T of transition will b e 
described merely as a point where Icxl and IYxl 
begin to gro \T large rapidly. 
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In the absence of any more satisfactory boundary
layer results , we will apply th e following approxi
mate considerations to obtain some data about the 
wavefront. This rough method seems justifiable 
since there appeal' to be no other theoretical data 
and almost no experimental data available on this 
problem. 

We visualize the tip region to be moving some
what like a separate entity pushed along by the 
water behind it, and in the tip, U should be changing 
(increasing) rather slowly toward the front. Hence 
U T could be taken as an approximation for Up. 

N ext we make th e following appl'oximation for 
U T . The results in (24) are graphed in figures 10 
and 11. Each curve corresponds to a particular 
value of the parameter IT = Rt. The c curves, being 
based upon expressions that lose validity toward 
the tip, reach a minimum and then t urn upward. 
Analogously, each U curve attains a maximum. 
Since the true values for c and U should no t increase 
or decrease, respectively, toward the tip , these ex
tremal points must lie already in the tip region. 
As estimates for UT we will take UM , th e maximum 
values of u, indicated by th e small circles in figure 
11. Actually the tip region will begin before 
these maximum points are obtained, thus making 
the approximation too high ; but if UM is now taken 
as an approximation to Up , since u T< Up , these effects 
will partly compensate for each other to improve 
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the accuracy of th e approximation. In figure 11 
the locus of maximum poin ts defi nes a function 
IT(m) . Using ou(m,IT )!om= O, this relation is found 
to be 

( [ 54 3,f3 J)-1 
IT(m)= 6 7(2 - m)3- (2 - m)2+ 63 (2 - m)t . 

(28) 

Using (24) , the value uM = u(m(IT ), IT ) where m(IT ) 
is the inverse function in (28) . Applying this as an 
est imate for the wavefront velocity, these values 
are graph ed in figure 12 as functions of t, with R 
as a parameter over the limits of the practical range. 
All the curves must leave the point (2, 0) with verti
cal tangents. 

To obtain the corresponding estimate for the 
trajectory of th e wavefront, the velocity curves of 
figure 12 are integrated to give the position of th e 
tip in the x,t plane, with R as parameter (fig. 13). 

A series of experiments is contemplated here at 
the National Hydraulic Laboratory to check th e 
validity of the analysis presen ted and to inves tigate 
in more detail the actual behavior of water particles 
at the tip of a positive wave advancing over a dry 
channel. 

224 



, . 4--

.. 

•• '0 100 ". 150 17, 200 

FIGURE 12 . Approximate wave-front velocity. 

8 . References 

[1] A. Ri tte r, D ie Fortpflanzung del' Wasserwell en, Z. Vcr. 
d eut. lng. 36 (1892) . 

[2] B. de Sain t Vena nt, Theorie du movement nOll perm a nent 
d es ea ll X, Co mpt. rend. 73 (1871). 

[3] Phil ipp For chh eimer, H ydraulik, (T eubn er, Leipzig 
1930). ' 

[4] A. Schokl it sch , fibe r Dambruchwellen, Sitzber. Akad . 
Wiss. W ien. 126 (19] 7) . 

[5] 1. B. Eguiazaroff , Regulation of (he wate r level in t he 
r caches of canalized river., XVI In tcrn atio na l Con
g ress of Navigation , B russels (1935). 

[6] R e, Etude du lacher instantane d ' un e retenue d'Eall 
dans un cana l par la mCthode graphiqu e, (La Houi ll e 
Blan che, :vr ay 1946). 

[7] R; Courant and K. O. Friedrich s, Supersonic flo\\' and 
s'lock waves, (In te rscie nce, New York, 194 8). 

225 

1000 

o ~oo 1000 "00 

FIGURE 13. Approx imate wave-front trajectory. 

[8] J . J . Stoker, Formation of b reakers and bores, Com
mun ications on Appl ied :Mathcmat ics I, No. 1 (Now 
York Un iversit.y, 1948) . 

[9] R . F . Drcssler, Roll-waves in in elincd open channe ls 
Commun ications on Appl icd Mathematics II, No: 
2/3 (New York Univcrsit y , 1949). 

[10] R.. F . Dresslcr, Stabili ty of uniform fl ow and ro ll-wave 
formation , Symposium on Gravity ""avc, NBS 
Circula r 521 (in press). 

[Il] Ie. O. Friedrichs, On t he deri vat ion of t he shallow
water t heory, ApJ;>cnd ix to Stokcr papcr [8]. 

[ 12] G. H . K culcgan , E ngi necrin g h yd rau lics, Chapter Xl 
on wave motio n (J ohn Wil cy & Son ~, New York, 
N. Y. 1950) . 

Wash ington, May 28, 1952. 


	jresv49n3p_217
	jresv49n3p_218
	jresv49n3p_219
	jresv49n3p_220
	jresv49n3p_221
	jresv49n3p_222
	jresv49n3p_223
	jresv49n3p_224
	jresv49n3p_225
	jresv49n3p_226

