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On Calculating the Zeros of Polynomials by the 
Method of Lucas 

Herbert E. Salzer 

When f(x) is a polynomial of degree n and Xi, i = O, 1, ... , n, are any n + 1 points at which 
f (Xi) "" ° the zeros of f(x) are known to be identical with t he zeros of 1 "I.ai/ (X - xi), where 
ai = f(x.) /ll ' (Xi - Xj). Lucas proposed t his principle for use in an electric analogue device 
for finding zeros. The present note evaluates this principle in digi tal computation for 
both real and complex zeros when t he coefficients of f(x) are given exactly (integral or rational) 
so that the zeros of f(x) are identical with t he zeros of "I.A d (x - i), A i in tegral. The chief 
advantages are (1) the saving of labor in tabulat ing "I.Ai/ (x - i) instead of f(x) in t he neigh
borhood of t he zero especially for complex zeros, and (2) somewhat less work in the inverse 
in terpolat ion for tl;e zero. Three examples in locating a real root, and one example in 
loca tin g a complex roo t were worked out in support of these findings. 

In three separate notes F. Lucas 2 describes an 
electric analogue device for calculating the roots of 
equations (also mentioned by J. S. FrameV Al
though the principle is familiar, as far as the writer 
knows it has no t b een investigated from the stand
point of digital computation. The present note is 
intended to call attention to its advantages in finding 
the roo ts of polynomial equations with exact coef
ficients wh en one has a first approximation as a 
starting point. 

If j(x) deno tes a polynomial of degree n, and Xi, 
i=O, l , .. . ,n, denotes any n + l points where 
j(Xi) ~ O , from 

there follows th e well-known result (which is the 
basis of Lu cas's method) that th e zeros of j(x) are 
identical with the zeros of 

In problems where the coefficients of j(x) are 
ra tional, the choice of xi=i is very convenient. By 
multiplying through, one obtains th e equation in th e 
form ~A ;/(x-i) =O , At integral, which saves a con
siderable number of multiplication operations, espe
cially when getting all or even several of the zeros of 
the same j(x). 

By choosing xi= xo+ ih, for any Xo and h for which 
j(Xi)~ O , Lu cas's principle can be formulated also as 
follows: 

The zeros of j(x), a polynomial of the nth degree, 
are identical with the zeros of Dom{j(t) /(x-t) L m 

1 Here and elsewhere the summation is over the range 0 to n ; similarly II indio 
cates a product over the same range, and II ' indicates such a prod uct with the 
vanishing factor omitted. 

'Lncas, Compt. rend . Acad. Sci. Paris 106, 645--48 and 1072- 74 (1888); 111, 
965- 67 (1890). 

3 J . S. Frame, M'J'AC 1, 337-53 (especially 347- 50) (1945). 

any integer ~n, where thej(t) /(x-t) is tabulated for 
any m+ 1 equally spaced values of t. 

Of course, in obtaining Dom{j(t )/(x-t) }, t islthe 
variable, with X as the parameter, and th e resulting 
eA1Hession is then regarded as a function of x. (The 
proof is left for the reader.) 

This principle of Lu cas, nam ely, calculating th e 
zeros of j(x) by tabulating 'Eat!(x-xi) or ~At! (X-X) i' 
instead of j(x) itself, in the neighborhood of a zero, 
was tried out in several different examples wher e th e 
zeros had already b een obtained from the tabulation 
of j(x) itself. In all examples, th e use of Lucas's 
method showed a very great saving of compu tational 
labor. The two main advantages were (1) mu ch less 
work in calculating A t!(X-Xi) instead of the eparate 
terms of f(x), esp ecially those of high degree/ and 
(2) somewhat less work in th e inverse in terpolation 
from th e tabulated 'EA;/(X-Xi) instead of the tabulated 
j(x) near the zero, which was apparent from th e 
tendency of Do m /Do to b e less in th e former case. 5 

In connection with (1), in adding the sep arate 
terms of ~Ad(x-Xi) considerably more ignifican t 
figures were lost than in th e summation of th e 
separate terms of j(x); bu t that disadvantage is sli gh t 
because of the ease in getting any numb er of places 
in A t/(x-x i) by performing continu ed division on an 
ordinary lO-bank desk calculator (the X-X i is almost 
certainly an exact numb er having fewer than 10 
significant figures), and th e total work in tabulating 
the ~Ad(x-Xi) is still much less than that in tabulating 
thef(x). But if the x;'s are not exact, or the coeffi
cients inj(x) are approximate, this principle of Lucas 
is sever ely limited in applicability, even to the point 
of not yielding a single significant figure. Thus, if in 
the example below, one were to in troduce a r elative 
error of 10- 10 in those exact coefficients of j (X) , it is 
apparent that the heX) could not b e obtained to even 
one significant figure. However, the choices of 
xt= i or x t = i-[n/2] seem most suitable for many 
problems. For example, in the case of the classical 

~ 'rhere is the very wellwknowll computational scheme lor anX"+an_IXn- l+ 
an_2X n- 2+ ... +atx+ao in the form un=arlx+an- l, Un- I = u nx+an-2 , .. • , etc., 
until [(X)=ul=".x+ao, which avoids the calculation of powers of x, but which 
may be less convenient for checking and the retention of sign ifican t figures. 

, The rate of con vergence of most in verse interpolation ser ies depends upon the 
rapidity with which the am/a fall off. 
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orthogonal polynomials where the coefficients are 
given exactly (for example, Hermite, Laguerre, 
Chebyshev, Legendre, etc.) the A i/(x-xi) can be easily 
had to any required number of places. 

A an illustration, consider the calculation of the 
zero of the polynomial 

j(X) = X 6- 156X5+ 8580X4- 205920X3 

+ 2162160X2-8648640X+ 8648640 , 

which is near 67.28. H ere l eX ) was chosen to be 
H 13(X) / (2x), where X = 4X2 and H 13(X) is the Hermite 
polynomial of order 13 . Choosing X j=i, one has 

j (O) = 86 48640 

j (l) = 19 64665 

j (2)=-1515008 

j(3) = - 2739879 

j (4)=-2489408 

j (5) = - 13 89935 

j (6) = 69120 

- -~------~----------

The numbers II' (X i-X j ) have no more than three 
digits. After obtaining the a j in their lowest terms, 
one sees that the zeros of j (X ) are identical withJ.he 
zeros of 

(A) = 12012 _ 392933 
9 - X 24 (X - 1) 

94688 +~4431 
3 (X - 2) 4 (X - 3) 

1555 8 277987 96 
- 3 (X - 4)+24 (X - 5)+X - 6' 
(; 

which, in turn, are identical with the zeros of 

24g(X) == heX ) == 28i88 392933 
X - I 

757504 
X - 2 

+ 1 26586 _ 1244704+277987+ 2304 . 
X - 3 X - 4 X - 5 X - 6 

An approximate valu e of th e zero is X = 67.2838 , and 
h eX) was calcula ted for X = 67.2838(0 .0001 )67 .2841. 
The separate terms of h eX) are given h ere to show the 
loss in significant figures upon summation: 

X =67. 2838 X =67. 2839 X = 67. 2840 X = 67. 2841 
~ 

288288/ X = 4284. 65693 07916 61588 7 4284. 6.>056 2764643547 7 4284 . 6441947565 54307 1 4284.6378267673 93782 5 

-392933/ (X - I ) = -5928. 0397321819207710 -5928. 0307887737 44453 8 -5928.02184 53925 53255 7 -5928. 01290 20383 47054 6 

- 757504/(X - 2) = - 11603. 24613 45693 72493 6 -11603. 22836 10507 33795 0 - 11603. 21058 75865 44942 1 - 11603. 1928141768 05684 7 

1826586/(X -3) = 28414. 40611 78710 65494 0 28414.36191 64363 08313 6 28414. 31ii! 51390 70375 2 28414. 27351 39793 51037 0 

- 1244704/( X - 4) = - 19668. 60397 13165 13862 9 - 19668.5728913673 14593 4 - 19668.54 18115163 39043 0 - 19668. 51073 1763586746 1 

I 
27797/( X -5)= 4463. 2312093995 54940 5 4463. 22404 3452641854 5 4463.2 168775287 39323 1 4463. 20971 1627847235 5 

2304/( X - 6) = 37.5955799085 56584 3 37.59551 85619 71415 0 37.595457215586450 0 3i. 59539 58694 01688 2 

h(X )= - 0. 00000 00969 68520 0 + 0. 00000 0023 7 72288 6 + 0. 00000 01445 132146 + 0. 00000 02652 54257 8 I 
That only three values of h eX ) at intervals of 0.0001 
are required in order to find the zero X to the max
imum attainable accuracy, follows from these 
differences : 

x h(X ) II ll' 
--

67.2838 --0. (6)09696 85200 + 0. (6)12074 08086 +0. (12) 1174 

67. 2839 +. (6)023i7 22886 . (6) 12074 09260 . (12)1172 

67.2840 . (6) 14451 32146 . (6) 12074 10432 ------------------

67.2841 . (6)26525 42578 --------------------- - ------------------

When these differences were compared with the 
corresponding differences in j (X ) , it was noted 
that D,2Jt:. for h eX) was only (1/25) of t:.2/t:. for j(X), 
from which one can infer that the inverse interpo
lation is better for the function 11, (X ) . The zero 
X = 67.2839 + 0.0001p was found from the three
point formula 6 p= r- r2s, where 

Thu 

r = - 2h(67 .2839)/ {h(67 .2840) - h(67.2838) } 
s = t:.2/{ h (67 .2840)-h(67 .2838) }. 

11, (67.2840) - 11,(67 .2838 ) = 0. (6)2414817346 , 
• H . E. Salzer. B ul. Am. M ath. Soc. 50, N o. 8, 513-16 (19H). 

r = - 0. (7)47544 5772/0. (6)2414817346 
=-0.196886846 , 

s = 0. (12) 1174/0. (6)24148 = 0. (6)486, 
rZ= 0.03876, rZs= 0. (7)1884, 
p =-0.19688 6865; X = 67.28388 03113 135, 

which happens to be correct to 13 decimals. 
This method was tested upon the calculation of 

two different roots of the same tenth-degree polyno
mial in X (the example was to find both the smallest 
and largest zero of H zo(x» , the resul t being that the 
relative saving of labor was even greater than that 
for H13(X), In fact , as the degree of the polynomial 
increases, the proportion of work saved also increases. 

Finally, this method wa applied to the computa
tion of a complex root of a tenth-degree polynomial, 
from a rough first approximation. There the 
relative aving of labor was even greater than that 
for the examples involving real root , due in par
ticular to the avoidance of the calculation of high 
powers of complex numbers. Even when the 
compu tation is for complex roots, the choice of 
xi=i or xt=i- [n/2] i still suitable, so that if the 
coefficients of j (x) are real, the calculation involves 
the sum of fractions with only real numerators . 
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