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On Calculating the Zeros of Polynomials by the 
Method of Lucas 

Herbert E. Salzer 

When f(x) is a polynomial of degree n and Xi, i = O, 1, ... , n, are any n + 1 points at which 
f (Xi) "" ° the zeros of f(x) are known to be identical with t he zeros of 1 "I.ai/ (X - xi), where 
ai = f(x.) /ll ' (Xi - Xj). Lucas proposed t his principle for use in an electric analogue device 
for finding zeros. The present note evaluates this principle in digi tal computation for 
both real and complex zeros when t he coefficients of f(x) are given exactly (integral or rational) 
so that the zeros of f(x) are identical with t he zeros of "I.A d (x - i), A i in tegral. The chief 
advantages are (1) the saving of labor in tabulat ing "I.Ai/ (x - i) instead of f(x) in t he neigh­
borhood of t he zero especially for complex zeros, and (2) somewhat less work in the inverse 
in terpolat ion for tl;e zero. Three examples in locating a real root, and one example in 
loca tin g a complex roo t were worked out in support of these findings. 

In three separate notes F. Lucas 2 describes an 
electric analogue device for calculating the roots of 
equations (also mentioned by J. S. FrameV Al­
though the principle is familiar, as far as the writer 
knows it has no t b een investigated from the stand­
point of digital computation. The present note is 
intended to call attention to its advantages in finding 
the roo ts of polynomial equations with exact coef­
ficients wh en one has a first approximation as a 
starting point. 

If j(x) deno tes a polynomial of degree n, and Xi, 
i=O, l , .. . ,n, denotes any n + l points where 
j(Xi) ~ O , from 

there follows th e well-known result (which is the 
basis of Lu cas's method) that th e zeros of j(x) are 
identical with the zeros of 

In problems where the coefficients of j(x) are 
ra tional, the choice of xi=i is very convenient. By 
multiplying through, one obtains th e equation in th e 
form ~A ;/(x-i) =O , At integral, which saves a con­
siderable number of multiplication operations, espe­
cially when getting all or even several of the zeros of 
the same j(x). 

By choosing xi= xo+ ih, for any Xo and h for which 
j(Xi)~ O , Lu cas's principle can be formulated also as 
follows: 

The zeros of j(x), a polynomial of the nth degree, 
are identical with the zeros of Dom{j(t) /(x-t) L m 

1 Here and elsewhere the summation is over the range 0 to n ; similarly II indio 
cates a product over the same range, and II ' indicates such a prod uct with the 
vanishing factor omitted. 

'Lncas, Compt. rend . Acad. Sci. Paris 106, 645--48 and 1072- 74 (1888); 111, 
965- 67 (1890). 

3 J . S. Frame, M'J'AC 1, 337-53 (especially 347- 50) (1945). 

any integer ~n, where thej(t) /(x-t) is tabulated for 
any m+ 1 equally spaced values of t. 

Of course, in obtaining Dom{j(t )/(x-t) }, t islthe 
variable, with X as the parameter, and th e resulting 
eA1Hession is then regarded as a function of x. (The 
proof is left for the reader.) 

This principle of Lu cas, nam ely, calculating th e 
zeros of j(x) by tabulating 'Eat!(x-xi) or ~At! (X-X) i' 
instead of j(x) itself, in the neighborhood of a zero, 
was tried out in several different examples wher e th e 
zeros had already b een obtained from the tabulation 
of j(x) itself. In all examples, th e use of Lucas's 
method showed a very great saving of compu tational 
labor. The two main advantages were (1) mu ch less 
work in calculating A t!(X-Xi) instead of the eparate 
terms of f(x), esp ecially those of high degree/ and 
(2) somewhat less work in th e inverse in terpolation 
from th e tabulated 'EA;/(X-Xi) instead of the tabulated 
j(x) near the zero, which was apparent from th e 
tendency of Do m /Do to b e less in th e former case. 5 

In connection with (1), in adding the sep arate 
terms of ~Ad(x-Xi) considerably more ignifican t 
figures were lost than in th e summation of th e 
separate terms of j(x); bu t that disadvantage is sli gh t 
because of the ease in getting any numb er of places 
in A t/(x-x i) by performing continu ed division on an 
ordinary lO-bank desk calculator (the X-X i is almost 
certainly an exact numb er having fewer than 10 
significant figures), and th e total work in tabulating 
the ~Ad(x-Xi) is still much less than that in tabulating 
thef(x). But if the x;'s are not exact, or the coeffi­
cients inj(x) are approximate, this principle of Lucas 
is sever ely limited in applicability, even to the point 
of not yielding a single significant figure. Thus, if in 
the example below, one were to in troduce a r elative 
error of 10- 10 in those exact coefficients of j (X) , it is 
apparent that the heX) could not b e obtained to even 
one significant figure. However, the choices of 
xt= i or x t = i-[n/2] seem most suitable for many 
problems. For example, in the case of the classical 

~ 'rhere is the very wellwknowll computational scheme lor anX"+an_IXn- l+ 
an_2X n- 2+ ... +atx+ao in the form un=arlx+an- l, Un- I = u nx+an-2 , .. • , etc., 
until [(X)=ul=".x+ao, which avoids the calculation of powers of x, but which 
may be less convenient for checking and the retention of sign ifican t figures. 

, The rate of con vergence of most in verse interpolation ser ies depends upon the 
rapidity with which the am/a fall off. 
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orthogonal polynomials where the coefficients are 
given exactly (for example, Hermite, Laguerre, 
Chebyshev, Legendre, etc.) the A i/(x-xi) can be easily 
had to any required number of places. 

A an illustration, consider the calculation of the 
zero of the polynomial 

j(X) = X 6- 156X5+ 8580X4- 205920X3 

+ 2162160X2-8648640X+ 8648640 , 

which is near 67.28. H ere l eX ) was chosen to be 
H 13(X) / (2x), where X = 4X2 and H 13(X) is the Hermite 
polynomial of order 13 . Choosing X j=i, one has 

j (O) = 86 48640 

j (l) = 19 64665 

j (2)=-1515008 

j(3) = - 2739879 

j (4)=-2489408 

j (5) = - 13 89935 

j (6) = 69120 

- -~------~----------

The numbers II' (X i-X j ) have no more than three 
digits. After obtaining the a j in their lowest terms, 
one sees that the zeros of j (X ) are identical withJ.he 
zeros of 

(A) = 12012 _ 392933 
9 - X 24 (X - 1) 

94688 +~4431 
3 (X - 2) 4 (X - 3) 

1555 8 277987 96 
- 3 (X - 4)+24 (X - 5)+X - 6' 
(; 

which, in turn, are identical with the zeros of 

24g(X) == heX ) == 28i88 392933 
X - I 

757504 
X - 2 

+ 1 26586 _ 1244704+277987+ 2304 . 
X - 3 X - 4 X - 5 X - 6 

An approximate valu e of th e zero is X = 67.2838 , and 
h eX) was calcula ted for X = 67.2838(0 .0001 )67 .2841. 
The separate terms of h eX) are given h ere to show the 
loss in significant figures upon summation: 

X =67. 2838 X =67. 2839 X = 67. 2840 X = 67. 2841 
~ 

288288/ X = 4284. 65693 07916 61588 7 4284. 6.>056 2764643547 7 4284 . 6441947565 54307 1 4284.6378267673 93782 5 

-392933/ (X - I ) = -5928. 0397321819207710 -5928. 0307887737 44453 8 -5928.02184 53925 53255 7 -5928. 01290 20383 47054 6 

- 757504/(X - 2) = - 11603. 24613 45693 72493 6 -11603. 22836 10507 33795 0 - 11603. 21058 75865 44942 1 - 11603. 1928141768 05684 7 

1826586/(X -3) = 28414. 40611 78710 65494 0 28414.36191 64363 08313 6 28414. 31ii! 51390 70375 2 28414. 27351 39793 51037 0 

- 1244704/( X - 4) = - 19668. 60397 13165 13862 9 - 19668.5728913673 14593 4 - 19668.54 18115163 39043 0 - 19668. 51073 1763586746 1 

I 
27797/( X -5)= 4463. 2312093995 54940 5 4463. 22404 3452641854 5 4463.2 168775287 39323 1 4463. 20971 1627847235 5 

2304/( X - 6) = 37.5955799085 56584 3 37.59551 85619 71415 0 37.595457215586450 0 3i. 59539 58694 01688 2 

h(X )= - 0. 00000 00969 68520 0 + 0. 00000 0023 7 72288 6 + 0. 00000 01445 132146 + 0. 00000 02652 54257 8 I 
That only three values of h eX ) at intervals of 0.0001 
are required in order to find the zero X to the max­
imum attainable accuracy, follows from these 
differences : 

x h(X ) II ll' 
--

67.2838 --0. (6)09696 85200 + 0. (6)12074 08086 +0. (12) 1174 

67. 2839 +. (6)023i7 22886 . (6) 12074 09260 . (12)1172 

67.2840 . (6) 14451 32146 . (6) 12074 10432 ------------------

67.2841 . (6)26525 42578 --------------------- - ------------------

When these differences were compared with the 
corresponding differences in j (X ) , it was noted 
that D,2Jt:. for h eX) was only (1/25) of t:.2/t:. for j(X), 
from which one can infer that the inverse interpo­
lation is better for the function 11, (X ) . The zero 
X = 67.2839 + 0.0001p was found from the three­
point formula 6 p= r- r2s, where 

Thu 

r = - 2h(67 .2839)/ {h(67 .2840) - h(67.2838) } 
s = t:.2/{ h (67 .2840)-h(67 .2838) }. 

11, (67.2840) - 11,(67 .2838 ) = 0. (6)2414817346 , 
• H . E. Salzer. B ul. Am. M ath. Soc. 50, N o. 8, 513-16 (19H). 

r = - 0. (7)47544 5772/0. (6)2414817346 
=-0.196886846 , 

s = 0. (12) 1174/0. (6)24148 = 0. (6)486, 
rZ= 0.03876, rZs= 0. (7)1884, 
p =-0.19688 6865; X = 67.28388 03113 135, 

which happens to be correct to 13 decimals. 
This method was tested upon the calculation of 

two different roots of the same tenth-degree polyno­
mial in X (the example was to find both the smallest 
and largest zero of H zo(x» , the resul t being that the 
relative saving of labor was even greater than that 
for H13(X), In fact , as the degree of the polynomial 
increases, the proportion of work saved also increases. 

Finally, this method wa applied to the computa­
tion of a complex root of a tenth-degree polynomial, 
from a rough first approximation. There the 
relative aving of labor was even greater than that 
for the examples involving real root , due in par­
ticular to the avoidance of the calculation of high 
powers of complex numbers. Even when the 
compu tation is for complex roots, the choice of 
xi=i or xt=i- [n/2] i still suitable, so that if the 
coefficients of j (x) are real, the calculation involves 
the sum of fractions with only real numerators . 
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