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Solution of Systems of Linear Equations by 
Minimized Iterations 1 

Cornelius Lanczos 

A simple algorithm is described whi ch is well adapted to the effective solu tio n of large systems 
of linear a lgebraic eq uations by a succession of well-convergent approximations. 

1. Introduction 

In an earlier publication [14)2 a method was 
described which generated the eigenvalues and eigen
l'ecLors of a matrix by a successive algorithm based 
on minimizations by least squares.3 The ad Irantage 
of this method consists in the fact tha t the successive 
iterations arc constantly employcd with maximum 
efficiency which guaran tees fastcst convcrgence for 
a gilren number of iterations. Moreover, with thc 
proper care the accumulation of rounding elTors 
can be avoided. The resulting high precision is of 
gl'ea t ad van tage if the separation of closely bunched 
eigcnvalues and eigenvectors is demanded [16) . 

It was pointed out in [14, p. 256) that the inversion 
of a matrix, and thus the solu tion of simultaneous 
systems of linear equatio ns, is contained in the 
general procedure as a sp ecial casco HowC\rer , in 
view of the great importance associated wi th the 
solution of large systems of lineal' equations, this 
problem deserved more thall passing attention . 
It is the purpose of the present discussion to adopt 
the general principles of the previous imrestigation 
to the specifi c demands tha t arise if we are not inter
ested in the complete analysis of a matrix but only 
in the more special problem of ob taining the solution 
of a gi I'en set of linear equations 

Ay = bo (1 ) 

with a given matrix A and a given right side boo 
This is actually eq ui valent to the c valuation of one 
eigen vector onl~' , of a symmetric, positive definite 
matrix. It is clear that this will require considerably 
less detailed analysis than the problem of construct
ing the entire set of eigenvector~ and eigenvalues 
assoc iated with an arbitrary matrix. 

2 . The Double Set of Vectors Associated 
With the Method of Minimized Iterations 

The prelrious investigation [14) started out with 
an algori thm (see p . 261) which genera ted a double 
set of polynomials, later on deno ted by Pi(X) and 
qt(x) (see p . 274). Then a second algorithm was 

I '1'he preparation of this paper was sponsored (in part) by the Office of Naval 
Research. 

, Figures in brackets indicate the literature references at the end of this paper. 
3 The prescnt papcr is a natural sequel to the previous publication and depends 

on the prcvious find ings. The reader's familiarity with the earlier development 
is assumed throughout t his paper; the sym bolism of the present paper is in har 
mony with that used before, in particular the notatiolll'Q, if applied to vectors, 
shall mean the sCll iar product of these two vectOl S. 
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introduced, called " minimized iterations", which 
avoided the numerical difficulties of th e fi rst algor
ithm (see p . 287) and had , in addition, theoretically 
valuable proper ties for the solution of differential 
and integral equa tions (p . 272). 

In this second algorithm, however, only one-half 
of the previous polynomials were repre ented, cor
responding to the Pt(x) polynomials wh o e coeffi 
cients appeared in the full columns of the original 
algorithm [14, (60)). The polynomials gi (X) , asso
ciated with the half columns of [14 , (60 )) did not 
come into evidence in tho later procedure. 

The vectors bi , generated by minimized itera
tions, correspond to the polynomial Pt(x) in the 
sense 

(2) 

We should expect that the vector generated by 
qk(A )bo might also have orne significan ce. 'Ve will 
see that this is actually the case. It is of consid
erable advantage to translate th e entire scheme 
[14 , (60)) into the language of minimized iterations, 
without omitting the half columns. IVe thus get 
a double set of vector , io tead of Lhe single set 
considered before. 

The addi tional work thu involved is not super
fluous becau e the second se t of polynomials can be 
put to good use. :Moreover, the two set of poly
nomials belong logically toge ther and complemen t 
each other in a natural fashion. From th e practical 
standpoint of adapting the resultant algoj'i thrn to 
the demands of large scale electronic computers, we 
gain in the simplicity of coding. TIle reCUlTence 
r elations which exist between the polynomials 
Pi (X), qt(x) are simpler in structm e than the recur
r ence relation obtained by eliminating the second 
set of polynomials. 

We want to simpl if~' and systematize Ollr notations. 
Th e vector ob tained by letting the polynomial 
Pk(A ) operate on the original vector bo, shall be 
called Pk: 

(3) 

We thus distinguish between Pk as a vector and 
Pk(A) as a polynomial operator. Hence the no tation 
Pk will take the place of the previous bk • Cor
respondingly we denote the associated econd set 
of vectors by qk: 

(4) 
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Both of LLcse vector seLs have invarian t signifi
cance. The vectors Pk(A ) bo can be characterized 
as the solution of the following minimum problem. 
Form the polynomial 

Pk= [A "-(ao+ a1A + . .. + ak_lA k--l) ]bo 
(5) 

p: = [A*k_ (ao+ aIA *+ . . . + aH A *k- I) ]bo* 

determining the coefficients a t by the condition that 
the square of the length of Pk, that is, the invariant 
PkP: shall become a minimum. 

The vectors q,,(A )bo can be characterized as the 
solution of the following minimum problem. Form 
the polynomial 

'?h=[1-(aIA + a2A 2+ . . . + a"A ") ]bo 
(6) 

q: = [l - (alA *+ a2A *2+ . , . + a"A *k) ]bo* 

determining the coefficients ai by the condi tion 
that the square of the length of q", tha t is, the 
invariant qkq:, shall become a minimum. 

In the case (5) the high est coefficien t of the 
polynomial is normalized t o 1, and in the case 
(6) the lowest coefficien t is unity.4 

After the minimization we shall normalize, for the 
>lake of convenience, the largest coefficien t of qk 
once more to 1; h ence we define 

(7) 

While the vectors Pk and pi form a biorthogonal 
set of vectors [14, p . 266], this cannot be said of the 
vectors qk. However, the vectors qk are of particular 
importance for the solu tion of sets of linear equations. 
If we form the ratio 

we have obLained a solution of the equation 

AYH- bo= - qk' 

(8) 

(9) 

H ence we see that if the vectors qk are at our disposal, 
we can at every s tep of our algorithm obtain an 
optimum solution oj smallest residual. Indeed, the 
vector q" was defined by the condition that it shall 
h ave the smallest length among all the lineal' com
binations which can be formed with the help of the 
successive iterates 

(10) 

up to the order k. 
The alternate solution 

(11) 

• The defini tion of the vectors p. and Pk leveals the following remarkable 
p roperty of th is vector set. Let bo remain unchanged but the matrix A be 
changed to A - )J. where A is arbitrary. The vectors N. Pi: remain invariant 
with respect to th is transformation. '1'he same cannot be said of the vectors 
q .. qt, 

gives a largcl' residual for the same k, except if we 
proceed to the very end of the process, k = n, in 
which case the residual vanishes for bo th y" and y" 
ann both coincide with the exact solution y : 

Yn- l = Yn- I= Y' (12) 

3 . The Complete Algorithm for Minimized 
Iterations 

vVe will now proceed to the exposition of th e 
completed algorithm which does n ot omit one-half 
of the basic algori thm [14 , (6 )] but translates the 
entire algorithm into the frame of reference of min
imized iterations. 

The algorithm [14 , (6 )], generated a double set of 
polynomials, mutually interlocked by the following 
recurrence relations: 

Pk+l(X) = PkPk (X) + Xqk(X) 

(b+l (x) = O'"q" (x) + Pk+l (x) . 
(13) 

Elimination of the q,,(x) leads to the three-term 
recurrence relation for the p ,,(x) alone: 

with 5 

(15) 

On the other hand, elimination of the Pi(X) leads to 
the three-term l'ecurrence relation of the qj(x) alone: 

with 

(17) 

Replacing x by A , A * and letting these polynomials 
operate on bo, bci , we obtain the following relation 
between the vectors Pk and q,, : 

(18) 

The notation " prime" refers to the multiplication 
by the matrix A : 

(19) 

, The negative signs in (14) and (16) are chosen becanse for symmetric and 
positive definite matrices an important prediction can he made concerning th e 

: signs of the fundamenta1 scalars. The original algor ithm which introduces the 
: h, and h; coefficients reveals [14, p. 262) that both of these coefficients arise from 

a minimization process and both of them have the sigllificance of the square of a 
length. In the case of symmetric (or H ermitian) and pOSitive defin ite matrice 
the metric is real and the square of a length necessarily posith' e. H ence the 
h, and hi ' are all positive, the Pi , u, all negative. This makes the a , !Ind fJ, (and 
likewise the ai, fj; ) always positive for such matrices. 
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K ow the biorthogonaliLy of the vecLol's P i g ives, 
if we multiply the uppel' left equation (18) by P: the pW'po e of olving linear equations that can al

ways be symmetrized, by transforming the originally 
given et 

(20) into 
Gy= g (29) 

::, [oreover, the same equation shows the orthogon
ality of g; to all pi) except m = k and lc+ 1. In 
particular 

(21) 

x ow we prime the second equation and multiply on 
both sides by pt. This gives: 

P:P~+ l pt+lPk+l 
(fk = - - *- ,- = - --*- ,- ' 

Pk qk Pk qk 

,Ve introduce the scalars hi and h/ by putting 

nnd obtain: 
h~ 

Pk= - hI; 

hk +1 
(Jk= - h~ . 

(22) 

(23) 

(24) 

This completely translates the " progressive algo
TiLhm" into Lhe language of minimized iterations. 
The h i numbers are identical with Lhe hi of the 
cheme [14], (60) (p. 263), corresponding to the full 

columns 0, 1,2, ... , while the h: give the h-numbcrs 
of the half columns 0.5 , 1.5, 2.5, .... 6 

A remarkable relat.ion between the PI and the de
terminant of the matri:x A can be obtained if in the 
first equation of (13) we substitute x= O: 

Pk+l (0) = Pklh(O). (25) 
Hence 

Pk(O) = POPl . . Pk- l (26) 
nnd 

Pn (0) = POPl . . Pn-l ' (27) 

'ince Pn(A ) bo= O yields the characteristic equation 
of the matrix A, (-1) "Pn (0) must be the determinant 

, associated with the matrix A. The determinant of 
A is thus obtained as the product of all the Pi, 
multiplied by (- 1)": 

(28) 

In the follo\ving sketch of the general work scheme 
we will restrict ourselves to the particularly impor
tant case of symmetric matrices. This suffLces for 

6 The same algorirhm shows another remarkable propcrty of the q, vectors. 
'I'hcse vectors do not form an orthogonal sct because tbe polynomials q,(A) have 
tho property to give orthogonality only if tbey operate on ."fA bo ratber tban bo it· 
self. But theu by the associative law [q,(A) .JAbo] [q.(A) ."fAbo]*=O implies 
[Q,(A)bo) [q.(A)Abo]*=O, which gives q,qt' =0 (ir'k). This means that in the 
following work scheme the first rows (the p vectors) form an orthogonal set, but 
in addition the second and third rows/orm likewise a mutually orthogonal (biorthogo· 
llnl) set. 
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Ay= bo, (30) 
where 

A = G*G (3 1) 

bo= G*g. (32) 

The matrix A is now symmetric and positive definite. 
In this case the general cherne is reduced to one 
half of it original size, since 

A = A* 
(33) 

bo= bci. 

We need not distinguish between PI and p7, ql, and 
qt, since our reference system is orthogonal and the 
adjoint vector coincides with the vector ieself. 

The actual construction of the symmetrized matrix 
A is a very "expensive" operaLion, ince it is equiva
lent to n matrix multiplications of the type A b. 
Actually, we never need the matrix A itself but only 
A operating on a certain vector b. By the associa
tive law (G*G) b= G*(Gb). Hence the operation A b 
is equivalent to the performing of the two successive 
matrix multiplications b(') = Gb and b(2) = G*b (l). 
Thi requires 2n2 multiplications, compared with 
tn2(n+ 1) multiplications required for constructing 
G*G. 

Every cycle in the following iteration scheme 
consists of the construction of three~ vectors, viz., 
Pi, qt,q:. The third is merely the matrix A applied to Ill' 
Hence the problem is reduced to the construction of 
the vectors Pt and qt. In the following ymbolic 
work scheme (34) the sequence of operations i indi
cated by going from row to row, and in each row 
from the loft to the right: 

ql = CTOqO+ Pl 

q~=Alll 

h~ 
Po=-ho 

(34) 

This scheme is characterized by great uniformity and 
is well suited to coding for large seale machines. 
The generation of each new pair of Pi, qt vectors 
occurs constantly by the same scheme and involves 



for both vectors uniformly the immediately preceding 
vector an d the penultimate vector (we skip th e vector 
between) . For example, P I is obtained as a combi
nation of q~ and bo (we skip qo) , whereas ql is obtained 
as a combination of PI and qo (we skip q~). The 
immediate predecessor is merely added, whereas the 
earlier predecessor is always multiplied by the nega
tive ratio of the last two h-numbers (h~ and ho in the 
case of PI, hi and h~ in the case of ql) ' 

It may help the coder to have a geometric picture 
of the sch eme as a whole- such as the scheme that 
might profitably be used by a desk computer. In 
such an arrangement, the Pi and (1 i fac tors should be 
placed in front of the respective rows that they mul 
tiply . H ence we keep a column free in front of the 
vector scheme and write down Po, immediately in 
fron t of Po; (10 in front of qo, and so on . Moreover, 
it is of advantage to carry an extra column at the 

- 1 o 
2 - 1 

end of the vector scheme which makes the vectors 
n + I-dimensional instead of n-dimensional. This 
extra column does no t participate in the formation of 
the hi and h; . but otherwise we operate with it 
exactly as with the other columns. The element 
that completes q; is always put equal to zero . The 
first two vec tors Po and qo are completed by 1. 

This "surplus" column provides two importan t 
scalars, namely, Pk(O) and qk(O). The last row gives 
p n. which is the null vector. The "surplus" elemen t 
Pn(O) associated with Pn terminates the algorithm, 
and gives the determinan t of A, multiplied by 
( _ l)n. 

The following numerical example is in ten tionally 
simple, since the aim is to display the operations 
rather than the numerical details. For the same 
reason the fractions en countered are no t changed 
into decimals but left in fract.ional form . 

[-; - 1 
:]y = 1 

2 - 1 

o - 1 

Po: -~- I Po : 1 1 1 0 

uo: -t qo : 1 1 1 0 

q~ : 1 0 1 - 1 

PI: -H- PI : t 2 --:I" t - 1 

0" 1: -! ql : -t -~ -t - 1 

q; : t - 2 3 - t ~ 

P2: _J;O_ p, : - } -i • 3 
11" 11" 

U2: - i. q2 : 0 0 0 1 

q; : 0 -- 1 1 1 

P3: -1 P3 : 2 - .} -t 1 .,. .,. 
1 q3 : ~ - t -T3'4 T. 

q; : , 
-T5• -T" T\ .,. 

I p. : 0 0 0 

The schem e comes au tomatically t.o a halt whenever 
the first Pi vanish es in all its component.s . If the 
vector bo has no " blind spots" in the direction of any 
of the principal axes, then the scheme will continue 
until k = n, and the first Pi that vanishes will be pn. 
This is P4 in our example, since n = 4. The element 
in the bracketed column associated with P4 is 5. 
H ence the determinant of the given system is estab
lished as 5. 

N umerical checks. The algorithm provideg the 

0 
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2 0 

Po (O) = 1 110 : 3 

qo(O) = 1 

0 II~ : 2 

PI(O)= -1- hi : t 
ql(O) = -t 

0 h '. I· t 

P2(O) = 7 h2 : 7 -r; 11" 

q2(O) = 2 

0 h; : 2 

P3(O) = - 2 h3 : 1 .,. 
q3(O) = _ J.,.'. 

0 h; . , 
. T' 

. 

P4(O) = 5 

following powerful checks for the numerical calcula
t ions : 

(a) The dot-product of any two differ en t p-vectors 
IS zero . 

(b) The dot -product of any q-vector with any q'
vector except its own pair, is zero. 

(c) Within each cycle the scalar h/ can be obtained 
in two different ways: h/ = piq/ = q;q/. 

If we are interested in finding the characteristic 
equation of the matrix, we proceed in identical fash-



ion with the only difference that we put in the brack
eted column opposite to q/ not zero but the algebraic 
quantity >. time the element immediately above it . 
In our example, if we write the successive vertical 
elements of each cycle horizontally, the bracketed 
column becomes: 

Cycle 0: 1, 1, X 

1: - i + >' , - j + >' , _ j >. + >.2 

2: i-\8 A+>,2, 2- 4>. + >. 2, 2>. - 4>.2+ >.3 

3: _ 2+ \° >. _ 378>.2+ >.3, - V +l'! >. - ¥ X2+ X3, 
_ ¥ >' + 572 >.2 _ _ yV+ >.4 

The last polynomial is the characteristic polynomial 
whose roots give the eigenvalues >' j of the matrix , 
The significance of the last column 71 i will be ex
plained in the next chapter. 

4. Solution of the Linear System b y the 
q-Expansion 

So far we have constructed the two vector sets P i 
and <i i, which characterize the method of minimized 
iterations. Our aim is, however, to obtain the solu
tion y of the given linear set. For this purpose we 
assume that the vector y is expanded into the qi
vectors: 

n= l 
Y= 2: 71 t q i . 

i=O 

We now form the equation 

(35) 

(36) 

for the right side of (35) . Making use of the first 
equation of the fundamental recurrence relation (18), 
we obtain the following recurrence set for the coeffi
cients 71 i of the expansion (35) : 

Hence 

starting with 

In solved form 

- Po71 o= 1 

1 
71 0= - - · 

Po 

1 1 
7) i= - POPI ' , • Pi - Pi+I(O)' 

(37) 

(38) 

(39) 

(40) 

The vector equation (35), if translated into matrix 
language, has the following significance, Write the 
1] 1 as a column vector and multiply this column with 
the successive column of the matrix Q, formed 
out of the middle vectors ql of the iteration scheme 
(34), For this reason the numerical scheme (34) 
is augmented by a last column, composed of the 
successive 7) 17 and written down in the corresponding 
rows of the vectors q i' We find in our numerical 
scheme the element 

1 3 
710= - -=

Po 2 

in the row qo, the element 

1]0 3 21 5 
711=-=- ' -= - -

PI 2'10 7 

111 the row ql , and so on, Multiplication of this 
column by the successive columns of the ql yields 
the successive components of the solution y : 

9 13 12 6 
Y=s'T'T's' 

Substitu tion into the original equation shows tha t 
this is indeed the correct solut ion. 

If we do not carry the bracketed surplus column 
of our schem e, then it is convenien t to generate 
the 71 i in succession on the basis of the recursion 
(38), writing each 1] 1 in line with the vector ql ' If 
t he bracketed column is at our disposal, th en we 
mercly take the negative reciprocal of the first 
bracketed elemen t in each cycle and transfer it to 
the qi immediately preceding it, For example the 
first clemen t of cycle 1 in the bracketed column 
, 21 . . 1 , 3 1'1 
IS - "3' t 1e negatIve reClproca l S '2' w 1I.C 1 is trans-

ferred to the m iddle line of the previous cycle, Then 

i is transferred as -* to the middle line of the pre

vious cycle, and so on, until all the first elements 
of the bracketed column are exhausted , the last 
1] i= 71 n-1 being the reciprocal of the determinant 
IAI. The sign of the 71 i always alternates between 
+ and - . 

The objection may be raised that the vectors 
P i and q i have no invariant significance in relat ion 
to the matrix A, They depend on bo and thus, 
while we did get the solution or the given linear 
set, yet the matrix inversion gives much more because 
it is immediately applicable to any given right side 
boo 

Now the remarkable fact holds that actually our 
P i, q i, although generated with the help of some 
specific bo, n ever theless, include the solution of a 
linear set with any given righ t side C. The righ t 
side of the equations (37) is t , 0, 0, .. . only 
because the vector bo, analyzeu in the reference 
system of the p i, has these componen ts. Since, 
however, the P i form an orthogonal set of vectors, 

37 



we can immediately analyze any given c m this 
frame of reference. The componen ts of c in this 
system become 

gen erally 

CPn -l 
. hn - 1 

(4 1) 

and th ese are th e quantities that in th e general case 
appear on the right side of (37): 

Po'r}o=- J.L o 

(42) 

This set is again readily solvable by recursions. 
Then after obtaining th e vector 'r}, we obtain y once 
more by (39). 

Example. In our numerical example let us replace 
th e right side by 

c= o, 0, 0, 1. 

The do t-products of this c with th e vectors Pi, 
divided by ht b ecom e: 

3 3 
J.L = O, --, - , 1 

5 7 

and th e step by step solution of (42) gives: 

21 1 
'r} = 0 , -7'"2' 5' 

Multiplying again by th e q-vectors we ob tain 

1 2 3 4 
Y=5' 5' 5' 5' 

which is the correct solu tion. 

Ay= c (43 ) 

with any given righ t side c is ob tainable if. we first 
construct th e Pi, qi vectors with th e h elp of some 
d efinite bo, which can b e a1'bitmry excep t for th e fact 
that it shall have no blind spots in th e direction of 
any of the principal axes. If bo is deficient in th e 
direction of m aXt'S of A, th en th e iteration sch eme 
will come to an end after n-m iterations. This 
will necessarily happ en if th e m atrix: A h as multiple 
eigenvalues, no matter how bo was chosen. Let a 
certain At have th e mult iplicity J.L . Then there is a 
J.L-dimensional subspace in which th e direction of th e 
principal axes is undetermined . L et us proj ect bo 
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into this subspace. W e get a d efinite vector which 
m ay b e chosen as one of th e principal axes. Then 
bo is still deficient in the othel' J.L - 1 possihle orthogo
nal axes. 

From this viewpoint th e premature termination 
of our sch em e can always b e conceived as a conse
qu ence of the defi ciency of bo, no matter whether that 
d eficien cy originates in the accidental degeneracy of 
bo, 01' in the d egeneracy of th e matrix A. Wnen
ever this situation is encountered , we do not obtain 
a full solution of the equation (43). Yet we h ave 
obtained a preliminary y (1) which solves the equation 
at least in fiJI the nondeficient directions. If we th en 
form Ay (l) -c=c(l), this C ( l ) will contain only 
dimensions which b efore did not come into evi
den ce. 'Ve can now r ep eat the sch em e (34) 
on ce more, using C (l ) as th e bo of th e new sch em e; we 
obtain a n ew set of p i, qi vectors which can b e added 
t o the previous set. Assuming that C (l) does no t 
bring in n ewer d eficiencies r elat ive t o the previously 
omitted subspace, we will now have a complete set of 
Pt, qt vectors which includ e the entire space. If som e 
dimensions are still omitted, the procedure can be 
continu ed , until all n-dimensions of th e vector space 
are exhausted . 

The outstanding feature of the recurrence r elat ions 
(37) and (42) is the fact that they ar e two-term r e
lations. This h as th e following r emarkable conse
qu ence. 'Ve have pointed OUG before that we can 
consider th e successive stages of our iteration process 
as a su ccession of approximations. At every step of 
th e process we can form th e ratios (11 ) 01' (8) and 
thus obtain approximations Yk and Yk which come 
n earer and n earer to th e true solution as th e residual 
diminishes. Now the set (42) shows that, this suc
cessive approximation process does not n eed constant 
readjustments as we go from k to k + 1. The pre
vious approximation remains unchanged, we m erely 
add one more vector, mamely, ?] k+lqk+l ' 

The e:>l."])ansion (35) into the q-vectors thus imi
tates the b eh avior of an Ol' thogonal exp ansion whose 
coefficien ts remain unchanged as we gradually intro
duce more and more vectors of th e fun ction space 
until finally all dimensions are exh austed . This 
shows the sup eriority of th e qt-vectors for expansion 
purposes. If the vectors Pi are used , th e relations 
involve three-term recurren ces and we cannot solve 
the set by on e sin gle recursion, but need the propel' 
lin ear combination of two recursions; this involves 
constant n'lodification of th e approximation pre
viously obtained. 

If we pursu e our procedure as a sequ ence of suc
cessive approximations which may b e terminated at 
any point where th e residual has dropped down below 
a preassigned limit, it will b e important to obtain 
not only the subsequ ent corrections, but also the 
remaining residual. This r esidual is directly avail
able. The r emainin g r esidual, that is, righ t side 
minus left side of the lineal' system aftm' substituting 
the kth approximation Yk, is simply given b y the 
quantity 

(44) 



For cxamplc , if in our numerical scheme we slop 
with 112, " -e obtain the approximation 

The residual associated with this approximation 1S 

thu s 

,,-hich can be verified by substitution . 
By merely watching the last two columns of our 

cheme we can constantly keep track of the successive 
whittling down of the residual. The length of the 
remaining residual is obtained by multiplying the 
last l1 i by the square root of the next following hi (we 
kip h /). For example in our numerical problem the 

lengths of the successive residuals become: 

h i: , '3= 1.7321 , !--J% = 1.9365 , 4 i= 0.8452 , 

~ ,/t= 0 . 1890 , i 0 = 0 . 

The simple expression of the residual (44) is of 
great ad vantage if we decide to use our process in 
" blocks" rather than as a continuous succession of 
operatiOl!;. The accumula tion of rounding elTors 
tends to destroy the orthogonality of the P i more and 
more. If we do not want to tal.;:c recourse to the 
lengthy process of constant reorthogonalization, we 
can break our opera Lions in blocks as soon as we 
noLice that the rounding errors ha lTe done too mlJch 
damage to the orthogonality. In that case we 
evaluate the remaining residual and start the process 
independently over again. The accumula tion of 
rounding errors is thus avoided, at the price of 
retarded c01l\T ergence. 

Now the expression (44) sho ws that very little 
itdjustment is needed in order to change from the 
con tinuous teehnique to the block Leclmique. 

The residual of the last block serves as the initial 
vector of th e new block. N ow the residual of a block 
of lc + 1 cycles (the cycles being numbered as 0 , 1, 2, 
. . . , lc ) is - l1 kPk+1 ' In the continuous flow of 
operations th e next cycle would have started with 
Pk+I' The changing 0 vel' to independent blocks 
merely requires that we should multiply this vector 
by the negative value of the preceding 11k, but this is 
equilTalent to the division by Pk+1(O) which can be 
found in the surplus column of the same Pk+1 ro\v. 

Henee the change to the bloek technique merely 
requires that we should continue in the regular 
fashion up to the row 

PH I, Pk+I(O) 

which terminates that block:. The nexL block starts 
with 

and ,,~c repeat under it once more 

~, 1 
P"+ l(O) . 
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These are the Po, qo of Lhe new block, and now we 
co n ~inu e with the ~ch em e in the regular fashion , 
untIl the next block IS exhausted , amI so on. 

The soluLion itself is obLained exacLly as before bv 
Lransferring the - l /Pk+l (0) to th e row of the qk ~n(l 
Lhen. adding up thecontributions of all the qk. 

We .see that the block technique does no t require 
essentIally more work than th e continuous technique, 
except that the total number of cycles needed for a 
certain accuracy is increased, compared with th e con
tinu~)Us .technique constantly corrected by reorthog
onalizatlOn. 

If th e right side bo is changed to some oth er given 
vector c, th en special precaution is necessary due to 
the fact that we do not possess now a universal 
'orthogonal reference system which includes th e entire 
space bu t each block provides its own partial refer
ence system. "VVe determine for th e fil'St block th e 
Pi according to (41) and th en obtain the l1i b tb e 
recursions (42 ). But coming to the econd block we 
h ave to replace c by the new vector C (2) = C - "JJJ.l.iP i 

and r epeat t h cprocess of obtaining the J.l. i and th e 
11i for th e new block with this new vector. Then we 
reduce similarly C (2) to C (3) for th e next block and so on. 

'l'l.te duality of th e vectors JJi, qi is mUTored by th e 
duali0'" of the two kinds of approximate solutions Yk 
and Yk, defined by (11 ) and (). The recun-ence 
relations (13) permit us to es tablish recurrence rela
t ions between th ese two sets of solu tions. We per
form th e operation (l] ) (mel. (8) in (13), replacing x 
b: A, and let these polynomials operate on boo This 
grves : 

Pk+I (O)Yk= Pk(O)PkYk- l-qk 

qk+I (O)Yk= qk(O)<TkY k - l - Pk+l (O)Yk' 
(45) 

We can simplify th ese I'dations by introducing the 
proportional vectors 

sUlce Itom (26 ), Pk+I(O)=POPI ... Pk 

Hence we ob tain 

The recurrences (4-8 ) and (49) start with 

qo 
Yo=-

Po 

- Po qo Vo=- - Yo=-' 
<To <To 

(46) 

(4 7) 

(4 ) 

(49) 

(5 0) 



The recursion (48) expresses our previous solu tion 
(35), (3 7) in slightly different form . However, an 
additional approximation is now provided by the 
scheme (49) which generates the Vk by a process anal
ogous to that in (48). The vectors Vk are of value if 
we want a solution of smallest residual, since this 
solution is Yle and not Yk. After obtaining v" by the 
sch eme (49), we can also obtain Yk by multiply ing 
by the constant UOUt • •• Ud qk+t(O) . 

The residual associated witl) Yk is given by 

(51) 

and this is the absolutely small est r esidual obtainable 
by k iterations. In the previous numerical example 
the length of the r esidual associated with Yt is l.9365 , 
which is larger than the original length l.7321 of the 
vector boo The length of 1"1 associated with the solu
tion Yl, on th e other hand , is 

which is smallm- than t he original length. 
The result is diiferent, however , if we investigate 

th e eITor of th e solution, that is, /Y - Yk/, rather than 
the magnitude of the residual, which is /L'l (Y-Yk)/. 
The solu tion Yk has the property to minimize 
(1I - Yk) A (Y - Yk) while th e solut ion Yk minimizes 
[A(Y - Yk) ]2. Th e first quantity is less biased com
pared with the direct.,.. .. or square /Y - Yk/2 than the 
second. H ence Yk yields a smaller el:Tor in th e solu
tion , although a lal"gei· e1"rO"l· in the residual than Yle. 
To illustrate ; in th e numerical example the length of 
th e vector Y - Yl is l.884, wb ile the length of th e 
vector Y - Yl is 3.0768. For this reason the vector 
Yle will usually bc of smallel· significance than the 
vector 11k. 

5. The Preliminary Purification of the 
Vector b o 

In principle we have obtained a method for the so
lution of sets of linear eq ua tions which is simple and 
logical in s tructure. Yet from the numerical stand
point we must not overlook the danger of the possible 
accumulation of round ing errors. The theoretically 
demanded orthogonality of the vector set Pi can be 
quickly lost if we do not watch out for rounding 
errors. N ow we can effectively counteract the dam
aging influence of rounding elTors by constantly 
orthogonalizing every new P i to all the previously 
obtained Pi. We do Lhat by a correction scheme 
described in t he earlier paper [14 , p. 271 , (6 )]. 

This constan t orthogonalization, however , is a 
lengthy process which basically destroys the sim
plicity d the generation of every new P, and qi by 
using only two of the earlier vectors. In order to make 
the corrections, all the previous Pi have to be con
stan tlyemployed. 

This consideration indicates that it will be advis
able no t to overstress our algorithm to too great a 

length. If by some means fast convergence can be 
enforced, the scheme might terminate in much fewer 
than n steps. Even if theoretically speaking the last 
vector vanishes exactly only after n iterations, it is 
quite possible that it may drop practically below neg
ligible bounds after a rela t ively few iterations . 

We can predict in advance, under what condition 
we may expect fast convergence. If we want the 
scheme to terminate after less than n steps, it is neces
sary and sufficient that the vector bo shall be deficient 
in the direction of certain axes. The more "blind 
spots" the vector bo has in the direction of variolls 
principal axes, the quicJ.::er will the scheme terminate. 

In the practical sense it will not be necessary that 
bo shall be exactly deficien t in certain axes. It will 
suffice if the components of bo in the direction of cer
tain principal axes are small . Strong convergence in 
this sense means that we shall reduce the component 
of bo in as many axes as possible . 

That snch a " purification" of bo of many of its com
ponents is actually possible, is shown by the Sylves
ter-Cayley procedure by which the largest eigenvalue 
and associated eigenvector of a matrix may be ob
tained [8 , p. 134]. In principle any linear set of 
equa tions is solvable by the Srlvester-Cayler pro
cedure. Indeed, let us homogenize the linear system 
(29) by completing the matrix G by an n+ 1st column 
defined as - g, and an 11,+ 1st row defined as identi
cally zero. Then the linear eq (29) can now be for
mulated in the homogeneous form 

where 
G1 = GO - g 

Yl= a (Y,l) , 

where a is any nonzero constan t. 

(52) 

(53) 

I'Ve now consider (52) as th e solution of the follow
ing least-square l)"["oblem . NEnimize 

(54) 

lInci or th e auxilim·.\' condition 

yi = l. (55) 

Th e solu tion of th is minimum problem is th e princi
pal axis ploblem 

where 
A 1Yl-AY1= O, 

A 1= GiGl . 

(56 ) 

(57) 

vVe are partieularl.\- interested in th e principal aXIs 
associated with th e smallest eigenvalu e 
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A= O. (58 ) 

Let us now assume that we somehow estimated 
the largest eigenvalue A.M of the nonnegative matrix 
AI. Th en the matrix 

(59) 



------------------------------------------------------------------------------------------------------~ 

is a new n+ I-dimensional nonnegative matrix whose 
iw-gest eigenvalue 

(60) 

corresponds to the zero eigenvalu e of AI . 
Now the Sylvester-Cayley asymptotic method 

consists in choosing an arbitrary trial vector bo 
which has to satisfy th e one condition that it sh all 
no t b e deficient in the direction of th e eigenvector 
co nnected with the largest eigenvalu e AM. W e now 
form the sequen ce 

bO= bo, bl =A2bo, b2=A2bl =A~bo, . 

. ~nd obtain asymptotically 

(61) 

This method i of great th eoretical importance, 
even if it often converges too slowlvto b e useful 
numetically. A proper refinement of th e m ethod 
however, will make it well adap ted to our present 
alll1s. 

For th e purpos~ of. mak:ing th e Sylvester-Cayley 
procedure more eff ective, let us analyze th e problem 
Irl th e reference system of th e principal axes of th e 
matrLx A 2• L et LI S fLrst normalize th e largest eigen
valu e to 1 by dividing A 2 by AM'. ' Ve thu s want to 
operate with th e m atrLx 

A _ A 2 
0-

AM 

whose eigenvalues lie b etween ° and 1. 

(62) 

In th e reference system of th e principal axes th e 
trial vector bo shall h ave the components 

(63 ) 

assuming that tll e eigenvalu es Ai are arranged ac
cording to increasing order on magnituci c. The 
opemtion bm= A 'Obo generate the vector 

Now 
(64 ) 

(65 ) 

H ence, as n grows to infinit~·, we get in th e limit 

Ai'---?o (i= 1, 2, ... , n), (66 ) 

while A:;'+I remains constantly equal to 1. ' Ve thus 
get in th e limit th e vector 

0, 0 , ... , 0, i3n+IO, (67 ) 

wb lch differs only- by a factor of proportionality 
from th e vector 

0, 0, . . . , 0, 1. (68 ) 

Tbis, however, is the principal aXIS assoc iated with 
t he largest eigenvalue An+ l = 1. 
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While this method works very well in obliterating 
the small eigenvalues, it b ecomes very inefficien t 
for a At, which is ncar to 1. 

Taking oW" lead from the Hamilton-Cayley 
pJ·ocedur e we will now approach the problem fro.m 
a more general viewpoint. W e go back to our 
original matrix A and the given right side boo In
stead of considering a mere power bm , we will consider 
an arbitrary polynomial P m (A) operating on boo For 
the sake of convenience we will once more introduce 
the reference system of th e principal axes and we 
will once more normalize the largest eigenvalue of 
A to 1 by int roducing the new matrix 

1 
Ao=~ A , 

1\;\ ,/ 

where Aftf is the largest eigenvalue of A . 
Our aim is to solve th e equation 

• 
where we have pu t 

AoY= bO, 

bo- 1 b 
-~ 0· 

I\ il£ 

(69) 

(70) 

(il ) 

Instead of th e exact solution we consider an 
approximation fi obtained by letting some pol~'nomial 
P",(A o) operate on bOo This leads to a residual 
vector 

(72) 

and our aim is to reduce 1'",+ 1 to a small quantity-. 
Instead of P ",(x) let us consider th e polvnomial of 

one higher order . 

F "'+l (x) = l -xP m(x). (73) 

Apart fromLhe boundary condi t ion 

F (O) = l (74) 

F(x) may be chosen as an arbitrary polynomial of 
th e order m+ 1. 

At this point we wan t t o extablish a defini te 
measure E",+I for the closeness of our approximation. 
We define Em+l as the ratio of the length of the residual 
vector 1',n+l to the length of th e correct solution y: 

Jr m+d 
Em+l=lYr· (75) 

Let us now discuss our problem in th e reference 
system of tb e principal axes. The components of 
Y in this system shall be denoted by 

YIO, Y20,···, YnO· (76) 

Then the components of bO becom.e 

(77) 



--------~--~~-~-~-

while th e compon ents of the vector r become 

F( 'II.1)AIYl 0, ••• , F(An) AnYno. 

.rTow by definition : 

n 
~ YZo 
k= l 

(78) 

(79) 

and the theorem of weighted means gives the estima-

which have integer coefficients. For the sake of con
venience we list the first five gm(x) polynomials: 

go(x) = 1 

gl(x)=6-4x 

g2(X) = 20-32x+ 16x2 

g3(X) = 50 - 140x+ 160x2-64x3 
(89) 

t ion g4(X) = 105 - 448x+ S64x2 - 76Sx3 + 256x4 

(SO) 

H ence OLlr aim must be to choose the polynomial 
F (x) in such a fashion tha t th e maxima of xF (x) shall 
remain uniformly small in the interval between 0 
and 1, which covers the entire range of the 'll. i . 

'iiV e make our choice as follows. We introduce the 
Chebysh ev polynomials Tn(x),7 normalized to the 
range 0 to 1; [13, p. 140]. These polynomials are 
defined by [19, p . 3] 

with 

We now put 

x 
I -cos I) 

2 
• 2 I) 

Sin -. 
2 

sin 2 (m+ 2) ~ 

(m +2)2 sin2 ~ 
and no tice tha t the quantity 

is bounded by 
xFm+1(x) 

1 

thro ughou t the range O~x~l. H ence 

1 
e m+l ~(m+2)2· 

(S1) 

(S 2) 

(S3) 

(S4) 

(S5) 

(S 6) 

Since we have made our choice Fm+1(x), the cor
responding approximate solution 

(S 7) 

is uniquely determined. W e introduce the poly
nomials 

(m+ 2)2 I - F m+b) 
4 x 

T m+2(X)+~c;+2)2X- l , (SS) 

7 The use of the Cbebyshev polynomials for the solution of linear systems has 
been suggested at various times (4). The author is not aware that the specific 
method bere recommended has been suggested before. 

This table is actually no t needed for the generation 
of the successive vectors gm(Ao)bo. We can obtain 
these vectors much more elegantly and with smaller 
rounding errors by a simple recursion scheme. vVe 
start out with the recursion formula of the Chebyshev 
polynomials, normalized to the range 0 to 1: 

(90) 

and obtain for the polynomials gm(x) the following 
recursion relation: 

starting with 

go(X) = 1 

gl(X) = 2(1 - 2x) + 4 = 6 - 4x. (92) 

In order to utilize this relation for the generat ion 
of the vectors gm(A o) bO, we introduce the matrix 

B = 2I- 4Ao 

= 2I-.i.. A 
'll. M 

and obtain the generating scheme 

starting with 
go= bO 

gl = Bgo+ 4bo. 

(93) 

(94) 

(95) 

The last term of (94) can be absorbed in the simpler 
recursion formula 
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(96) 

if we agree to operate again with a sLlrplus column 
similar to that used in our previous numerical example 
(cj. the bracketed column of th e numerical sch eme of 
section 3). We extend th e matrix B by an n + l st 



column for which we choose lhe given righ t s ide bO: 

(97) 

Similarly, we ex tend the vec tors g", b~T a surplu s 
clem ent, defined as the integer (m + 2)2: 

(9 ) 

The surplu s column of the v ector sch eme gm can be 
filled out in advance by the squares of the integers, 
starting with 4, 9 , 16, ... , in contrast to the brack
eted column of th e previous sch eme which was filled 
ou t as th e sch em.e unfolded itself . The surplus 
column of the matrix B and the surplus elem ents of 
the v ectors g"" participa te solely in the formation of 
the product Bg"" but h ave no effect on the sub trac
tion of g",- l , which is sub t rac ted without its surplus 
element. 

The definit ion of th e gm(x) polynomials shows that 
th e ftpproximat e solution (87) is in th e followin g 
rC'lation to th e vectors gm just generated 

(99) 

::'IIol'eover , if w e want t o find the residual vector 
associated with th e solution wm , we have to form 

(1 00) 

The last equation allows th e following interpreta
t ion. L et us assume th a L at a COl' Lain m we want to 
terminate our process. W e will now want t o know 
how much the r emaining r esiduftl is. For this pur
pose 'ive merely add one more i terat ion according to 
(96) , th en th e quantities r equired in (100) ar e avail
able with the only modification tha t ins tead of sub
tracting gm-I we subtraet 2g", . This vector, divided 
b? (m + 2)2, gives t he r esidual rm + l' 

Numerical example. The following illustrative ex
ample is chosen to demonstrate th e operat ion of th e 
m.ethod. Our m atrix A is on ce more th e mat rix of 
t il e numerical example of section 3. The right side 
is ehosen as bo= O, 0, 0, 4. 

Estimation oj the largest eigenvalue AM. The larg
es t eigenvalue of a matrix can b e estimated by the 
method of Gersgol'in [9], (cf. also [3] and [20]) . 
E ven if this estimation is not always very close, it 
gives a definite upper bound for AM by a very simple 
te t. Such an estimate is what wc nced since an 
ovelCstimation of AM m erel? mal(es th e largest 
eiO'envalue smaller than 1. The only thing we have 
t o avoid is a AM larger than 1, because then 've 
would overstep the r egion where the Chebysh ev 
pol~Tnomials are bounded by unity in absolu te value. 
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Th m eth od of Gel'sgorin, restricted for our casC' 
to th e e timation of the largest eigenvalu e, is based 
on Lhe defini tion of th r eigenvectors of a ma trix A 
by th e equations 

n 
~ a i aX a= A Xt. (101) 
a = l 

W e consider only one equation of th e given set, pick
ing out that particular index i whieh b elongs to th e 
absolu tely largest X i . W e now divide b~~ X i on both 
sides of th e equation. Since [Xa/X i[ ~ 1, we find at 
once 

(1 0 2) 

H ence th e absolute value of our chosen A is smaller 
than th e Sllm of th e elem ents of some row ( 01' column) . 
Now we can evaluate Lhe sum of the absolu Le values 
of all th e elem ents for each row (01' column) and se
lec t the maximum of this equellce of m number . 
Then we know tha t for any At th e absolut.e value of 
Ai cannot surpass this sum. W e thus obtain th e 
estimat e 

(103) 

where 8 M is th e maximum among th e SLlm s of the 
absolute values of all th e elements of t he rows 1, 
2, . . . , n. 

It was pointed ou t before thaL the aetual genera
tion of th e symmetrized mat rix A = G*G, which is a 
numerically heavy load, is not demand ed since all 
our operat ions can b e performed with th e h elp of G 
and G* alone . Bu t th en it b ecomes necessary to 
es timate th e largest eigenvalue of A by u Lilizing G 
and G* only , withou t generat ing th e clem en t of A. 

vVe assume the general case tha t G has arbilrary 
complex elem en ts and conceive G as th e sum of 
Lwo H ermitian ma trices G' and G" , defined by 

G' = .l (G+ O*) 
2 

G" =-~- (G- O*) (104) 
- 2 

(the symbol '" means conj ligate complex) . Then 

G= G' + iG" 

G*= G' -iG" . (l05) 
H ence 

N ow the largest eigenvalue of a posi tive defini te 
H ermitian m atrL,,{ A can be defined as th e larges t 
possible length of any vec tor Abo, where [bol = 1. 
In order to find this larges t leng th, we let the eq 
(106) opera te on boo W e thus ob tain the estimate 

or 
(107) 



where A,\/ is the largest eigenvalue of Gf and A~~ 
the largest eigenvalue of Gff . Since A~( and A~; 
can be estimated by Gersgorin 's theorem, we thus 
obtain an upper bound for AM, without using the 
elements of the least-squared matrix A. 

In our simple numerical example the given matrix 
is already symmetric and positive definite . We can 
thus operate directly with A. The sums of the 
absolute values of each row are 3, 4 , 4, 3. Hence 
we can choose AM = 4 as a safe es timate of the largest 
eigenvalue. 

We construct the matrix B according to (93), 
and extend it by the column bo=ibo= O, 0, 0, 1. 
We choose m = 5, and continue the scheme by one 
more row to obtain the new residual. The factor 
(m + 2)2 is in our case 49 . Hence the fifth row 
has to be multiplied by 4/49 in order to obtain the 
approximate solution 'W5, while the sixth row S 6 has 
to be multiplied by 1/49 in order to get the residual r 6' 

o 

o 

o 

o 

1 

o 

o 

o 
1 

4 

o 

1 

o 

1 

o 1 

1 4 

4 9 

9 16 

o 

o 

o 

1 

4 

9 

16 

25 

g4: 4 9 16 25 36 

g5: 8 16 25 36 49 

1 2 2 

Th e last row was obtained b.v multiplying th e row 
5 by the matrix B and then sub tracting th e row 5 
(and not 4) twice. 

W e can test th e residual estimate (86) on om 
sch em e. According to this estimate (m+2)2 ~ m+ l 
must b ecome smaller than Ym+l' If th e vector gm, 
mul tiplied by 4/(m + 2)2 is a fairly good approxima
tion of y, th en th e length of th e vector Sm+ l canno t 
s urpass 4/(m + 2)2 of the length of gm- In our case 
(m = 5) : Ig51=46.34, while IS51 = 2.24 . H ence 

(108) 

If this test fails, it is an indication that our approxi
m ation is far from the correct solution, caused by 
th e influen ce of the small eigenvalues, as we will 
show presently . 

The approximation W5 is obtained by multiplying 
row 5 by -.\-= 0.081633 . This gives w 5= 0.65306, 
1.30613, 2.04082, 2.93879. 

The correct solution is y = 0.8 , 1.6, 2.4 ,3 .2. 
"What did we accomplish with this algorithm? 

Let us analyze the situation in the reference system 
of the principal axes. L et us plot the eigenvalues 
Ai, normalized to the range 0 to 1, along the abscissa, 
while we plot the components of the right side bO, 
associated with a certain Ai, as ordinates . In the 
language of physics we 'have a " line spectrum" since 
only certain definite " frequencies" Ai, namely, the 
eigenvalues of A, are r epresented. 

Whatever approximation scheme we may use , 
based on iterations, we will always obtain a prelim
inary solution Yk+l, which does not satisfy the equa
tion exactly but generates a new right side in the 
form of a residual vector r k+ l. Hence quite generally, 
for any iterative solution we will have 

(l 09) 

where P k(x) is some polynominal in x. Then the 
r esidual rk+ l, associated with this solution, becomes 

This residual vector is th en th e n ew "righ t side" of 
the next approximation. • 

The result of our approximation can now be de
scribed as follows, if we view everything from th e 
reference system of the principal axes. The original 
componen t bi 0, associated with the eigenvalue Ai, 
b ecame attenuated b~' the factor T(A;) where the 
function T(X) is defined by 

(111) 

In these discussions we have considered two kinds 
of a pproxima tions: the p urifica tion techniq u e dealt 
with in the present section , and the method of min
imized iterations, discllssed before. Since the purifi
cation precedes the application of th e algorithm 
technique given in section 3, let us call it algorithm I , 
while the algorithm of section 3 shall be called 
algorithm II . The attenua tion obtained by these 
two kinds of algorithms is based on two very differen t 

. principles. W e discuss th e algorithm I first. 
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Here we get according to (83 ): 

wi th 

Si1l2 (m + 2) ~ 
T(X)= 8 

(m + 2)2 sin2 2" 

• 2 e X= Slll - . 
2 

(112) 

(113) 

The attenua tion thus obtained starts with 1 and falls 
off with l /x. The factor T(X) cu ts out effectively the 
higher frequ encies but has little influen ce on the small 
frequencies (small AJ. W'hat we accomplish here is 



that we put the spotlight on the small eigenvalues, 
while the large eigenvalues can b e eliminated to any 
desired degree. 

Actually this algorithm serves a double purpose. 
W e limit the field of vision to a relatively narrow band 
of small eigenvalues . Aside from that, however, we 
can make the fo cusing effect of the process increas
ingly sharper. L et us limit ourselves to th e case 
m = 5, that is, to five iterations of the type described. 
vVe can now take the r esidual r 6 and repeat the proc
ess, thus obtaining a second " block" of five iterations 
The attenuation factor achieved as the result of the 
two blocks of iterations is the square of the previous 
T(A). Generally, if the process is repeated k times, 
the attenuation thus obtained is characterized by 

Figure 1 plots T(A), (for m = 5) and the second , 
third , and fourth powers of T(A). If our matrix A 
co n tains a very small eigenvalue of the order of 
0.0001 sa,y, this very small eigenvalue will no t be 
able to compete with the larger eigenvalues, except 
if the larger eigenvalues arc blotted out very strongtl/ · 
At first sight we might think that from the stand
point of such a small Ai it maims no great differen ce 
how often we repeated the process since it will 
remain in the illuminated part of the spectrum for a 
practically unlimited time even if k is large. How
ever, the situation is quite d ifferent if the alg?rithm I 
is conceived as a mere preparation to algonthm II . 
Then we are reconciled to the fact that our first 
efforts are unable to take ou t the contribution of 
tha t small eigen val ue . W e leave tha t task to the 
second algori thm . But tha t second algori thm will 
operate much more satisfactorily if the large eigen
values are eliminated with great accuracy. H ence 
the advantage of continuing the first algorithm to 
several blocks is not so much th e increased accuracy 
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of th e solution as th e proper preparation for the 
second process, which will then tackle the problem 
of small eigel) values much more effectively. The 
field of vision is perhaps not much r educed . But 
the dim ligh t that still spreads over the high er 
por tion of the spectrum is more and more sharply 
eliminated . 

The continuation of the g-algorithm to a secoI1d 
block can b e achieved without any basic interruption 
of the operations. After obtaining the r esidual rG, 

we transfer this row to B as an additional sixth 
column. The fifth column now remains inacti ve. 
Consequen tl:'-T, the squares 4, 9, ] 6, ... arc now 
moved over b~~ one column. The resulting scheme, 
now extended to two blocks, and omitting the Jh'sL 
five lines which ha ve been obtained b efore, looks as 
follows: 

g"" I ' 

g'21. 2 • 

g(2) . 
3 • 

g(2) . 
4 • 

g(2) . , . 

o 

6 

19 

42 

73 
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o 
1 

o 

1 

6 

20 

48 

92 

150 
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o 
1 

o 

2 

11 

32 

68 

120 

] 87 

12 

~ l 
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10 

27 

54 

91 

138 
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o 
o 
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16 

25 

36 
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T he successive blocks can be generated con tinuously 
by one mechanized algorithm. If k blocks are 
generated , the approximation becomes 

In our numer ical example the two contributions and 
their sum becomes: 
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4 (I ) 

49 g , 
0.65306 1.30613 2.04082 2.93879 

..±- (2 ) 

492 g , 
0.12162 0.24990 0 .31154 0 .22990 

W (2) 0.77468 1.55603 2.35236 3.16869 

(y 0.8 1.6 2.4 3.2) 

If we perform tha ratio tes t (108) once more on the 
second block , we find 

17.944 
286.08 

0.0627 < 0.0816. 



Hence the inequality (86), multiplied by the factor 4, 
can still be verified. vVe can expect that, as we come 
to higher and higher blocks, the ratio test will even
tually fail. The ini tial vec tors of the successi ve 
blocks become more and more purified of th e larger 
eigenvalues. As a consequence, the purification 
process, which leaves the very small eigenvalues 
untouched, becomes less and less effective. Even
tually the polynomial gm (A ) will operate on an 
initial vector bJk ) , which contains only small eigen
values. We will then approach the extreme case 

while Sm+ l approaches (m + 2)2bJkl . The ratio test 
t hen gives 

that is , 1/4, if m = 5. This gives an upper bound for 
the ratio test, which cannot be surpassed, no matter 
110W far the process is continued. 

We now come to the analysis of the T (A)-factor 
connected with algorithm II (see fig. 2). The 
principle by which this process gives good attenua
tion, is quite different from the previous one. Here 
we take heed of the specific nature of the matrL,( A 
and operate in a selective way. The polynomials 
F m +1 (A) of this process have the peculiarity that 
they attenuate due to the nearness of their zeros to 
those A-values which are present in A. These 
:polynomials take ad vantage of the fact that the 
spectrum to be attenuated is a line spectrum and not 
a continuous spectrum. They work efficiently in the 
neighborhood of th e Ai of the matrix but not for 
intermediate values. They are thus associated with 
the gi \Ten specific ma trix A and are of no use for other 
matrices. If we proceed to the polynomial of nth 
-order Fn(A) , the zeros of this polynomial hit all the 
Ai exactly, and thus make the entire residual \Tanish. 

This analysis explains the ad vantages and the 
{lisad vantages of the second algorithm. The ad
vantage of the process is its great economy. The 

bi O 

• 
• 
• 

o 

FIG U RE 2. Attemtation behavior of algorithm II. 
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exact solution (apart from rounding errors) is obtai.n
able in n iteratio11s; this is the minimum number of 
steps for generating a polynomial that will have its 
zeros a t the Ai of the ma trix A. If the number of 
components present in bO is smaller than n, then the 
order of F m (A) is cOl'l'espondingly lower and tho 
solution is agai.fl obtai11cd ifl the mi:Gimum number of 
steps. 

The price we have to pay is that the successive 
iterations of this process are more complicated than 
those of algorithm 1. Instead of one new vector, a 
pair of vectors has to be generated. :1\1oreo vel', the 
previous recurrence relation , based on the properties 
of the g-polynomials, had fixed coefficients, which 
needed no adjustments throughout the procedure. 
Here at every step a pair of scalars have to be eval
ua ted which arc needed for the generation of the new 
p , q vectors. The constants of the recurrence rela
tions have to be readjusted at each new step of the 
process. 

Another difficulty arises from the inevitable 
accumulation of rounding errors. If we want to 
maintain a long chain of interlocked operations, we 
have to counteract the effect of rounding errors. 
This can be done by constant reorthogonalization of 
the p vectors which, however, is a lengthly process. 
It is preferable 110t to correct for the rounding errors 
but avoid them by breaking the long algorithm i11to 
a sequence of shorter blocks. Then , however, we 
lose in con vergence and the number of iterations has 
to be extended. 

The two algorithms together complement each 
other. The first algorithm succeeds in purifyi11g the 
given vector bO of all its large eigenvalues. The 
spectrum is thus effectively reduced which means 
that only a relatively small number of At remain 
practically present in the finall'esidual. This is now 
the point where the second algorithm takes over. 
Because of the small number of eigen vectors still 
present in bO, a polynomial of low order will be suf
ficient for the final elimi:flation of the residual. The 
process has thus good con vergence and will be finished 
after a small number of i terations. The breaking up 
of the process into blocks will not be necessary since 
the rounding errors will have no time to accumulate 
to the point where they endanger the solution. The 
small extension of the spectrum te11ds to reduce the 
deorthogonalizing effect of the rounding erl'or~, th.us 
increasing the length of a block and preventmg ItS 
premature termination. The opening of a second 
block will thus but seldom be required. 

6. Iterative Solution of Nearly Singular 
Systems 

In practical numerical work we frequently en
counter nearly singular systems. W e shall therefore 
discuss the relative merits of iterative sch emes and 
other matrix inversion methods with respect to such 
systems. 

We begin with the extreme case when the deter
minant of the matrix G and all its minors up to a 
certain order n - v vanish exactly , thus reducing the 



• . ... 
Ta nk of the matr L'f to n-11. In this case the linear 

ysLem (29) is generally not solvable, excep t if the 
righ t side satisfies cer tain compatibility conditions. 
The reduction of the rank from n to n-11 means that 
the left side of the system satisfi es 11 independen t 
l inear iden tities. The compatibili ty of the system , 
which is the necessary and sufficien t eondiLion for 
its solvability, demands that the same identi ties shall 
·be satisfied by th e given righ t sides . 

If the compat ibili ty conditions are actually· saLis
fied and th e system thus solvable, then another 
p eculiarity arises. The solut ion is not unique. T o 
any given solution an arbitrary linear combination 
of 11 independen t vectors may be added without 
disturbing the validity of the equations. 

These theoretical conditions have to be translated 
in to practical conditions if we wan t to analyze the 
n umerical behavior of linear systems which are n ot 
exactly but nearl.'T sing ular. We can base our analy
, is on the beh a vior of the eigenval ues and eigen
vecLors associated wiLh the matrix G. 

In th e light of eigenvalu es Lhe lowering of the 
Tfl.llk of the matrix G from n to n - v means Lhat the 
m atrix G possesses 11 vanishin g eigenvalLl es. Such 
a matrL,( oper ates in an n - v-dimensional subspace 
(ml v and blots out all the 11 dimensions which are 
(Jrthogonal to th is subspace. H ence the linear set 
(29) can only be solYable i f the righ t side .q is free 
of all those dimensions which the matrix rejects. At 
t he same time, th e solu tion Y may con tain any vector 
which belongs totally to the rejected portion of the 
n-dimensional sp ace, since the operation (l y extin
gLlishes this vector and thus docs Dot disturb the 
b alance of the equation . 

If the matrix G is no t exactly but nearly singular 
in 11 directions, this means that 11 of the eigenvalues, 
a lthoLlgh not exactly zero, are nevertheless very 
small compared wi th the other eigenvalues. ",Ve 
can associate s Ll cb a matrix geometricall.v with a 
strongly skew angular frame of reference which 
almost collapses into a lower dimensional space. In 
t his interpretation we conceive the successive 
columns of Gas n basic vectors 

.. . , (114) 

which establish an n-dimensional set of axes. The 
linear sys tem Gx=g now assumes the following 
significance: 

V1Xl + V 2X2 + ... + Vnxn=g. (115) 

This means tha t the given vector g shall be analyzed 
in the reference sys tem of the base vectors V i. 

Now th e skew-angular ch aracter of a frame of axes 
can be properly described by evaluating th e volume 
included by these axes. This again is nothing but 
the determinan t 1 GI of the matrL,( G. The smaller 
the included volume, the more skew-angular is the 
system . However , "this measure is adequate only 
jf th e various axes of our reference system are properly 
scaled. Otherwise even an orthogonal set of axes can 
have a very small determinant, caused no t by the 
inclination of th e axes, but by uneven scaling. 
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This uneven scaling can always be eliminated by 
th e following linear transformation of th e var iables 

(116) 

Th en lhe original equation (11 5) now appears in th e 
following form 

U1Yl + U2Y2+ . + UnYn= go, (117) 

where 
U V I 

i=I V d' 
g 

gO =l gl (118) 

and thus 
IU i != l , Igol = l. (119) 

In matrix language th e transformation (116) m eans 
that the columns of the matrix G= (g lk) are mult iplied 
by 8 

1 
(120) 

and the righ t side by 

1 
'Y n+ l (121) 

which transforms the vector x into 

(122) 

The consequence of "Lhis transforma"Lion on the 
symmetrized matrix A is that all th e diagonal ele
ments become 1, while all th e nondiagonal element 
range between ± 1. This is of great advantage from 
th e viewpoint of num erical operations [1 5]. 

If the original matrix is already given as a posit ive 
defini te, symmetric matrix A, then th e scaling of th e 
matrix is performed by the transformation 

(123) 

We multiply all the rows, and th en all th e columns 
by 1f.Jaij, which makes th e result ing diagonal ele
ments once more equal to 1. Moreover, the vector 
g is transformed into th e vector b by t he t ransforma
t ion 

(124) 

Finally, th e length of this vector is normalized to 1 
by putting 

(125) 

(126) 

8 The conditions (120) and (121) need not be met with any high degree of 
p recision . The m ul t ipliers "J'i can be rounded off to two Significant figures. 



We now consider the vector equat ion (11 7). The 
smallness of th e determinant 1 GI associated with 
the rescaled system now actually measures the 
strongly skew-angular nature of our r eference sys
tem. Neverth eless, the linear equation (117) can 
be considered as well adjusted if th e right side go 
falls inside th e narrow space included by th e basic 
vectors U i . This condition is a natural counterpart 
of th e compatib ility condit ions set up for the ?ase 
that th e vectors eventually collapse completely mto 
a lower dimensional space. If the right side lies 
constantly inside the space included by th e basic 
vectors, th en it remains coplanar with those vectors 
even in th e limit when th e vectors do not include 
any finite volume any more. Practical compatibility 
includes thus the limiting case of theoretical com
patibility . Let us examine, in what form this condi
tion of " insidedness" comes into evidence in relation 
to th e least-squared matrix A and its righ t side boo 
Let us project th e vector bo on the principal axes 
of A. We obtain th e componen ts {3 iO' Let us divide 
each one of th ese components by th e eigenvalue 
Ai associated with that axis . This gives th e sequence 

{310 {3 20 - , - , 
Al A 2 

{3 no 
~. . .. , (127) 

We pick out the absolutely largest of th ese num
bers and consid er 

I {3 . 01 fJ. = max -t; (1 28) 

as th e m easure of th e adjustment of the given sys
tem. No matter how small th e determinant of A is, 
th e linear equation Ay= b can b e considered as 
solvable practically if fJ. is a reasonably small numb er. 
The measure fJ. does not refer in any way to th e 
condition of A itself . It measures th e relation of 
the right side of t he system to th e left side. The 
meaning of a reasonably small fJ. is that th e near 
identities which exist on th e left side, lead to near 
identities also on th e right side. 

As a consequence of (117) we have 

(129 ) 

Let us collapse the given frame of axes more and 
more into a lower dimensional system, but keep fJ. 
bounded. Then in th e limit a certain numb er II of 
Xi vanish. However, as a conseq uence of (129), th e 
corresponding {3 iO vanish too. This is exactly th e 
compat ibility requirement of a singular system . The 
measure fJ. is thus a reasonable measure of the adjust
ment of th e given linear system. 

If we are able to invert a matrix exactly, th en th e 
smallness or largeness of fJ. is of no importance. If, 
however, approximation techniqu es are employed, 
then i t is natural to restrict ourselves to well ad
justed systems whose fJ. is not too large. We cannot 
expect that any approximation procedure shall re
main successful if fJ. b ecomes arbitrarily large, since 
in that case a minute ch ange in the right side may 
cause a large error in the solut ion. For th e same rea-

48 

son we can add at once that physical systems, whose 
right sides are given as th e result of observations, 
must satisfy th e condi t ion of not too large fJ. , in 
order to allow any valid conclusions. 

We will thus restrict ourselves to the solu t ion of 
systems that can b e considered as "well adjusted" in 
the sense of prescribing for fJ. a not too large upp er 
bound. The length of our approximation procedure 
will depend on the magnitude of}.L. If fJ. is too large, 
then we have to abandoll the use of iteration tech
niques, or we have to employ th e full techniqu e of 
minimized iterations with all its precautions, con
tinuing to th e very end of n iterations. 

Singular systems, however, sh ow a second pecu
liarity, namely, the indeterminate character of the 
solution. Let us examine what th e correspo nding 
phenomenon is in th e case of nearly singular, that is, 
strongly skew-angular systems. The cOl'1'esponding 
phenomenon is that ver~- small ch anges on th e right 
side cause much larger changes in th e solu t ion. Th e 
danger exists solely in th e direction of the small 
eigenvalu es, and is caused by th e fact th at th e com
ponent {3iO of th e right side in the direction of the ith 
eigenvector h as to b e divided by Ai in order to get Yi o. 

This phenomenon is of considerable significance if 
we are interested in the solut ion of linear systems 
which arise from' physical measurements. Let us 
assume that we know in advance from physica.l 
reasons that th e given system is well ad justed, that, 
is, that fJ. is reasonably small, compared with th e 
accuracy of th e measurements. Then an appearance 
of a large Yi 0 on account of dividing by a small Xi 
must be caused by e)'.'perimental errors and should 
be discarded. In such a sit uat ion th e use of an 
iteration technique for finding the solution is sup e
rior to the exact solu t ion. The exact solution, ob
tained by matrix inversion, would be of little h elp , 
since it would not separate th e influence of the 
errors in th e direction of th e small Xi. On the othe;' 
h and, if we use the above advocated method of 
taking out first the contribut ion of the large eigen
values by th e g-polynomials, th en we can actuall~j 
separate th e desirable part of the solu t ion from th e 
undesirable part. The first approximation, which 
leaves th e small eigenvalues practically untouch ed, 
does not offer any difficulty and can stand as it is. 
Now we come to th e second algorithm, which de
termines th e contribu tion of th e small eigenvalu es. 
If in this successive approximation process a COl'l'eC
tion appears, th e length of which is more than fJ. 
times th e length of th e remaining residual, we know 
that we should stop at this point, since this contri
bution comes from th e errors of th e data. 

This analysis indicates that in th e case of strong1.v 
skew-angular but well-adjusted physical systems the 
separation of the two algorithms has more than tech
nical significance. It makes smoothing of th e data 
possible by discarding large errors in th e solution 
caused by small observational errors in th e direction 
of the small eigenvectOJs.9 Th e iteration technique 
gives in such a case a more adequate solut ion than the 
mathematically exact solu t ion obtained by matrix 

9 'rhe expression ilsmall eigenvector" is used ill the sense of "au eigenvector 
associated with a small eigenvalue." 



inver ion b ecause it capitalizes on the sluggishness 
with which th e small eigenvalues come into play. 
Th e smallest eigenvalu es, which essentially test the 
compatibility of the system, appear last. Now the 
given system i such that this test of compatibility 
is not needed since we know in advance from physical 
considerations that the system is well "adjusted. 
By omitting the contents of the last equations we 
take advantage of the good part of our measurements 
and reject the errors. \Vhile th e uncertainty of the 
result is not completely eliminated by this procedure, 
it is nevertheless essentially r edu ced in magnitude. 

7. Eigenvalue Analysis 
The underlying principles of the two algorithms 

discussed in the previous sections can also be 
employed in the problem of finding the eigenvalues 
and eigenvectors of a matrix. The general p, q, p*, q* 
algorithm give a complete analysis of the matrix:, 
namely it gives all it eigenvalues and eigenvectors. 
If performed with the proper care, this method gives 
sati factory results even when the eigenvalues are 
closely grouped [16] . 

However, in many ituations we are not intere ted 
in the complete se t of eigenvalues and eigen vectors. 
We would welcome a technique which puts the spot
light on ajew eigenvector only, or we might want to 
single out just one particular eigen value and its 
associated eigen vector, for example, the smalle tone. 
The method now to be outlined should pro ve useful 
in connection with snch problems. 

The preliminary purification of bo ser ved Lhc 
purpose of increasing the con vergence of the final 
algorithm by properly preparing the vector on which 
it operates. We were able to effectively eliminate 
all components of the original vector except those 
associated with the small eigenvalues. 

After the purifi cation, the spotligh t is put on the 
mall eigenvalues; we will therefore first obtain the 

small eigenvalues and the associated eigenvectors 
with great accuracy, in marked contrast to the 
Sylvester-Cayley asymptotic procedure which first 
obtains the absolutely largest eigenvalue and its 
as ociated eigenvector. 

In " flutter" problems we are usually interested in 
the smallest eigenvalues of the given matrix. In 
order to apply the asymptotic power method, we 
first invert the matrix, thus transforming the smallest 
eigen values to the largest eigenvalues of the new 
matrix. If we possess a direct method for the 
evaluation of the smallest eigenvalues, we might 
dispense with the preliminary inversion of the 
matrix, thus saving a great deal in numerical effort . 

However , our previous purification procedure, 
based on the properties of the Chebyshev polyno
mials, i trictly limited to nonnegative matrices and 
canno t be generalized to arbitrary complex eigen
values, because the outstanding properties of the 
Chebyshev polynomials are not preserved in the 
compiex range. We will now see that the general 
eigenvalue problem of an arbitrary complex matrix 
can always be formulated in such a way that it 
becomes transformed into the determination of the 
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smalle teigen value and eigen vector of a nonnegati ve 
H ermitian matrix. 

Let u first observe that all our previous procedures 
remain valid if we apply them to a nonnegative 
Hermitian matrix 

A*=A (130) 

where A * is the transpose and A is the conjugate of 
A. The quadratic form associated with a H ermitian 
matrix is still real. 

We consider the solution of the linear equation 

(131) 

where the matrix G is a general matrix with complex 
elements; the vector g has likewise complex elemenLs. 
We multiply on both sides by 'G* and obtain once 
more the standard form 

Ay= b 
with 

(132) 

A = G* G (133) 
and 

b= G*g. (134) 

The maLrix A defined by (133) is not only H ermitian 
bu t also nonnega Li ve. 

All the ch aracteristic feaLures of the previous 
algorithm remain the same. The largest eigenvalue 
>'M can once more be e timated by Gersgorin's 
theorem. The g-algorithm carries over without any 
modification, although all the vectors involved have 
now comple elements. 

The p, q al~oritlun can 81 0 be carried over with 
the only modification that the adjoin t vector p *, 
q* are now n~t identical with P, q but with ~, q. 
H ence the baSIC scalars h i and hi of the algon thm 
have to be defined a follows : 

(135) 

We see from these relations that the hi are again all 
positive; moreover, the h; are all real. Actually, 
the theory of the basic algori tlun [14], section 6, 
allow a further conclusion . The significance of the 
ht and h; within the framework of this algorithm 
reveals that for nonnegative H ermitian matrices no t 
only the h i but also the h; remain positive. H ence, 
in spite of the complex nature of the vector elements, 
the reality (and even positiveness) of the basic 
scalar remains preserved. 

Let us now consider the eigenvalue problem con
nected with an arbitrary nonsymmetrie and complex 
matrix K : 

(K - Xl) y= O. (136) 

We put 

(137) 



-- " 

and write the equation 

Gy= O (138) 

in the "least square" form 

a *Gy= o. (139) 

This introduces the H ermitian matrix 

There is generally no predictable relation between 
the eigenvalues of an arbitrary matrix and its "least
square" form . Yet there is one exception, namely 
the eigenvalue zero . The eigenvalue zero of G 
carries over to the H ermitian matrix A. Let us now 
assUIll:e. that w~ wan t to operate solely wi th the 
H ermitian matnx A and abandon the original matrix 
K completely. Then we can still ob tain all the 
eigenvalu es of K by determining an those values of A 
in (140), which make the smallest eigenvalue of A 
equal to zero . 

We now see how we can make good use of a method 
which discriminates in favor of the small eigenvalues. 
Such a method can be utilized to put the emphasis 
on one particular eigenvector, instead of an arbitrary 
mixture of eigenvectors. 

q enerally, if we start the p, q algori thm with some 
arbitrary bo, bri vector, we have no control over the 
sequence in which the successive eigenvectors and 
eigenvalues will be approximated. The particular 
eigenvector in question migh t appear quite late in 
the process. Let us assume, however, that we suc
ceed in purifying the trial vector bo, bci of most of 
i ts componen ts and emphasize strongly one particular 
eigenvector in which we are in teres ted. 

Such condit ions actually arise if we possess a first 
approximation AO to the desired eigenvalue A. We 
can now form the H ermitian matrix (140) with this 
part icular A= AO and let us assume that we can 
ob tain its smallest eigenvector. If AO were the cor
rect value for A, the smallest eigenvalue would be 
zero and the associated eigenvector the correct 
so.lution. Since AO is only an approximat ion, we 
still get a good vector whieh has a strong component 
in th e desired direction. This is enough for a good 
start of th e algorithm II. 

However, our work is only half done. Since the 
original matrix is not symmetric, we need the com
plete p, q, p *, q* process. That process starts with 
bo and the adjoint bri. So far we have obtained bo 
only . In order to obtain a well-suited bri, we pro
ceed as follows. We consider the adjoint solution 

(K *- AI)y*= O, (141 ) 

which in "least-square" form leads to th e new matrix 

The third part of this matrix is ident ical with th e 
previous third part; the second part differs from the 
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previous second par t only in the change of i to - i. 
The first part, however, is an entirely independent 
!lew matrix, ~ormed ? y multiplying the rows of K by 
Its rows, while preVIOusly the columns were multi
plied by columns. 

The smallest eigenvector of this new H ermitian 
matrix .if can now be introduced as a well-purified b: which will strongly emphasize the desired eigen
vector. Then two steps of the p , q algorithm will 
give an improved eigenvector and a mu ch improved 
value for A. This lTl.ethod resembles Newton 's 
n:etb.od of obtaini~g t~l e root of an algebraic equ a
tIOn if a near root IS glVen. 

'l'~l e problem is thus. reduced to the problem of 
findmg the smallest eigenvector of a H ermitian 
matrix. Our aim is to purify a t rial vector bo of all 
its large eigenvalues, reducing it to a new vector in 
\,;hich the smallest eigenvector is strongly empha
Sized. 

This was accomplish ed before in form of the 
residual of the previous g-process. There th e atten
uat ion obtained . was c~laracterized by the kth 
power of a certam functIOn T (x), if k blocks of the 
process were employed . As figure 1 illustrates 
increasingly strong attenuations are ob tainable eve~ 
with a few blocks of five iterations. Since in our 
cas.e the solution y is of no importance but only the 
resldu~l.' .we can generate that residu al immediat ely 
by ut illzmg the Fm+1(x) polynomials. We mul ti
ply by (m + 2)2, in order t o get integer coefficients. 
H ence we wan t to operate wi th the polynomials 

(143) 

These polynomials once more satisfy a simple 
recurrence relation: 

which agai,lliead s to the previous algori thm 

fm+l= B]m-fm- l (145) 

with the only difference that the surplus column of 
th e vectors fm now remains 2 throughou t the process: 

(146) 

The ma trix B IS once more defined as before, see 
(93) and (97 ). 

The termination of a block and ch anging over to 
the next block now occurs by the following simple 
procedure. We go on uninterrup tedly with th e 
recurrences, until the last vector fm+l is reached. 
This vector is transferred t o if as th e new surplu s 
column which will b e in operation during the second 
block. Moreover, the last vector fm+l becomes th e 
init ial vector fJ2 ) of tb e second block. Then the 
algorithm starts over again until th e new block is 
finish ed which occurs at f::t l, and so on. 

In . orde!' to demonstrate th e operation of this 
algonthm, we once more make use of the previous 
simple matrix of fourth order and choose once more 



m = 5. Two blocks of SiX iterations are used in 
accordance with our previous g-algorithm, but now 
generating directly the residuals. As trial vector 
we could use the vector 1, 1, 1, ] . However, in 
on1er not to capitalize unduly on the symmetry of 
our highly simplified matrix, the trial vector is 
chosen as 1, 1, 1, O. The resulting work sch eme 
looks as follows: 

r ~ 
1 0 

~ ] 
[) 

0 7 

l: 0 6 

0 0 3 

fo 1 1 0 2 

f, 3 4 3 2 

f2 5 7 6 3 2 

fa 6 9 9 5 2 

f. 6 10 10 6 2 

f . 6 9 9 5 2 

f. !i 7 6 3 

f~'). : 5 7 6 3 2 

1") . 
1 • 17 25 22 12 2 

1'2). 
2 • 35 53 49 28 2 

P2) . a . 46 73 7l 43 2 

f(2) . 
4 • 4-8 78 79 49 2 

1'2) . 
5 • 42 68 68 42 2 

1'2) . 
6 • 30 46 43 25 

For chec king purposes we lisL t he first six fm (x) poly
nomials: 

fo(x) = 1 

f,(x) = 4 - 4x 

h(x) = 9 - 24x + 16x2 

fa (x) = 16 - 80x + 128x2- 64x3 

f. (x) = 25 - 200x + 560x2 - 640x3 + 256x' 

f. (x) = 36 - 420x+ 1792x2 - 3456x3 + 3072x' - 1024x5 

fo(x) = 49 - 784x + 4704x2 - 13440x3+ 19712x' - 14366x5+ 4096x· 

The last row of the sch eme y ields the vector that 
is strongly graded in favor of the small eigenvalues. 
In our numerical example the smallest eigenvalu e of 
the given maXLl'LX A is known to be 

2(1 - cos 36°) = 0.3819660. 
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The as ociated eigenvector has the components 

] , 2 cos 36° , 2 cos 36° , 1 

- 1, 1.6180340, 1.6180340, 1. 

If the length of this vector is nOl'lnalized to 1, and 
the same is done with f J2), we obtain the following 
comparison: 

f (2) 

If J2)1= .404888, .620828, .580340, .337407 

u\ 
~=.371748, .601501 , .601501 , .371748. 

W e notice that the approximation is not very close. 
However, our aim is merely to provide a good start 
to the econd algorithm. If we perform two cycles, 
the cycles 0 and 1, of the p , q algorithm, we obtain 
the following basic scalars: 

Po= - 0 .38506375 

0"0= - 0.0080299090 

PI = - 1.37489569. 

The first-order polynomial glves th e solution 
A= - Po= 0.385064. 
This is already a close approximation of the correct 
A, which is A= 0.3819660. The second-order poly
nomial gives the quadratic equation 

A2_ ] .76798935A+ 0.52942249 = 0 

whose roots arc Al= 0.38198259, A2= 1.38600677. 
The approximation to the true Al is already re
markably clo e, the error b eing only 1.7 units in 
the fifth decimal place. Moreover, the econd 
root is a very good first approximation to th e next 
smallest characteristic value, whi ch is 2(1- cos 
72°) = 1.3819660. 

In addition, the first two cycles allow a conection 
of the first principal axis, according to Lhe formula 

This gives, if again the length is normalized to 1: 

u\ 
jUJ=. 3713944, .6 025945, .6003686, .3721606 . 

The length of the enol' vector is 1.66 .10- 3 . A 
strong improvement compared with the error of 
f J2) , which was 5.57.10- 2• 
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This example demonstrates that we have no diffi
culty in improving a given first approximation Ao of an 
eigenvalue; moreover, we obtain a good approxima
tion to the eigenvector associated with that eigen
value. Hence the problem is reduced to the question 
of obtaining a good first approximation of a certain 
desired A. Usually it is the A of smallest absolute 
value in which we are primarily interested. 

We can now proceed as follows . For a first crude 
approximation we put A= O and apply the purification 
process to the Hermitian matrices A and A. The two 
vector thus obtained may be too crude to be useful 
as starting vectors of the p, q algorithm. It may be 
preferable to improve this approximation by a least 
squares method now to be explained. If we had the 
right y , we could obtain the right A from the condition 
(136). Since we do not possess the right y, we can 
still obtain a preliminary A by minimizing the square 

. of the length, that is, kk, of the vector k = (K - H )y. 
This gives one complex A. Another complex A= A * is 
obtainable from the adjointproblemk*= (K* - A * I )y*, 
again minimizing the square of the length of this 
vector. While for the correct A the two values A and 
A * should coincide, this is not necessarily true for the 
approximations. We now use the approximation A 
as the AO of the process above for obtaining bo and A * 
as the AO for obtaining bci. 

If we have not been successful in our start and ob
tained too slow a convergence in the ensuing p, q proc
ess, we can at any point of the process speed up the 
convergence by applying the purification procedure 
again, but now using for Ao the absolutely smallest 
root of the last characteristic equation. 

The following interesting problem offers itself. Let 
A= AO be a good approximation of an eigenvalue of the 
arbitrary matrix K . Then forming the Hermitian 
matrices (140) and (142) with this Ao and obtaining 
the smallest eigenvectors of these matrices, these vec
tors will have a strong component in the direction of 
the principal axis u , u* of the matrix K , associated 
with that particular A. The first cycle of the p, q 
algorithm will then bring us closer to the true value 
of A, and two cycles will improve further and give a 
good correction to the vector u , u*. But what can 
we say about the second root of the characteristic 
equation? Can we assume- in analogy with the be
havior of symmetric matrices- that our initial vector 
is not only close but also well graded, that is, that tho 
second root will be a good approximation of the A that 
is nearest in the complex plane to the first A? This 
question requires further discussion which cannot be 
given here. 

In this section we have merely sketched a method 
for obtaining the eigenvalues of an arbitrary complex 
matrix. However, no extensive numerical experi
ments have been performed so far . The writer hopes 
to go into further details about the method at some 
future time. 

8 . Summa ry 

The present investigation advocates a combination 
of two procedures for the solution of large scale linear 
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systems of equations. . The first procedure evaluates 
the contribution of the large eigenvalues, the second 
the contribution of the small eigenvalues. The first 
algorithmJhas ,the advantage that it operates with a 
constant routine which does not change throughout 
the process. The second algorithm is more lengthy 
and requires corrections to counteract the accumula
tion of rounding errors. Hence it is of advantage to 
cut down the length of this algorithm to a minimum' 
this is achieved by the application of the preceding 
algorithm. 

The final work scheme can be systematized into 
three distinc.t,,'phases: 

(a) Rescaling of the columns of the given matrix 
G by normalizing the length of each column to 
approximately 1. This makes the diagonal elements 
of the associated Hermitian matrix A nearly equal to 
1, and all the nondiagonal elements numerically less 
than 1. 

(b) Purification of the given right side bo of all 
its components in the direction of the large eigen
vectors of A; a two-block scheme of fi ve iterations each 
eliminates practically 90 percent of the A spectrum. 
An additional block of five iterations eliminates about 
94 percent of the spectrum. In this algorithm every 
iteration generates one new vector, by a recurrence 
scheme which has fixed coefficients involving the last 
vector and its penultimate. 

(c) The remaining components in the direction of 
the small eigenvalues are eliminated by an algorithm 
which is again based on recurrences. However, 
every cycle now requires the generation of a pair of 
vectors, called p and q, apart from the matrix multi
plication applied to q. Thus every cycle consists of 
three vectors. The recurrence rei a tions in vol ve the 
generation of two scalars in each cycle. In absence 
of rounding errors the first vectors (called Pi) of 
every cycle form an orthogonal set of vectors, while 
the second and third vectors are biorthogonal to each 
other. In view of the deorthogonalizing effect of 
rounding errors we check from time to time the 
orthogonality of the vectors obtained and interrupt 
the scheme if the orthogonality is no longer sufficiently 
strong. We then form the residual and start an 
independent second block of approximations. The 
solution is obtained as a given linear combination of 
the q-vectors and can be generated along with the 
other vectors, by constantly adding one more 
correction. 

This method is not recommended when the princi
pal aim is the evaluation of the elements of the 
inverse matrix, because it depends primarily on con
sidering the matrix together with the given right side 
as a unified system. It is true that the method of 
minimized iterations can be adapted to arbitrary 
right sides (which is equivalent to inverting a matrix). 
This is so in spite of the fact that the basic vectors are 
obtained with the aid of one specific right side. How
ever, the convergence of the process changes greatly 
with the gi ven right side. For an arbitrary right side 
we ha ve to assume tha t the process does no tend 
before n steps. This requires that we have to gener
ate a complete set of basic vectors. But then con-
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stant reol'thogonalization is required which is a 
lengthy procedure. The simple successive orthog
onalization of the columns of the matrix, which also 
gives the inverted matrix and does not require any 
rna trix multiplica tion, is preferable for this purpose. 

In a given problem the inverted matrix will not 
always be required . The number of right ides with 
which we have to operate may not be too large and 
thus we may prefer to repeat the algorithm for every 
right side, particularly if the number of iterations 
required for the gi ven accuracy happens to be much 
less than n. For example, we may imagine the 
situation that a given 50 X 50 matrix is not too skew
angular, to the extent that the ymmetrized matrix 
A has no eigenvalues below 0.1 of the maximum 
eigen value. In this case a simple recurrence routine 
of 10 iterations will give the solution with sufficient 
accuracy, while the inversion of the matrix may 
require a much more elaborate calculation. A fur
ther ad vantage arises in the case of strongly skew
angular but" wcll-adju ted" phy ical y terns. Here 
it is of definite ad vantage to eparate the contribution 
of the large from that of the mall eigenvalues 
becau e we call thus ameliorate the damaging in
fluence of observational errors. These errors are 
greatly magnified in the theoretically exact mathe
matical olution, while in the iteration procedure 
they come into evidence only in the la test phase of 
the calculation, and that phase can be discarded. 

The literature on the iterative solution of linear 
equation is very exten ive; ( ee [8] for the oldeL liter
ature, and [2] and [1] for the ne vel' literature on the 
ubject). During the last few year many itera

tive schemes have been investigated. Among tho e 
developed at the National Bureau of tandards the 
gradient method of Hestenes and it modification 
[11, 17] de erve particular attention, together with 
the a ymptotic acceleration technique of Forsythe 
and Motzkin [7]. There is also the Monte Carlo 
method of Forsythe and Leibler [6']. The latest 
publication of Hestene [10] and of tiefel [18] i 
closely related to the p, q algorithm of the present 
paper, although developed independently and from 
different consideration . 

The present investigation i ba ed on year of 
research concerning the behavior of linear systems, 
starting with the author's consulting work for the 
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Physical Research Unit of the Boeing Airplane Com
pany, and continued under the spon orship of the 
National Bureau of tandards. The author is in
debted to Mi Lillian Forthal for her excellent as-
istance in the extensive numerical experiments that 

accompanied the various phe,ses of theoretical deduc
tion . The author is likewise indebted to the ad
mini tration of the Institute for Numerical Analy is 
and the Office of Naval Research for the generous 
support of his scientific activities. 
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