
Journal of Research of the National Bureau of Standards Vol. 48, No.6, June 1952 Research Paper 2332 

Two Applications of Group Characters to the Solution 
of Boundary-Value Problems 1 

E. Stiefe1 2 

It is 8ho\\"n that t he nu merical work involved in solving a boundary-valUe or e ,g(}IJ­
value problem by fini te difference methods in a domain with man~' symmetries can often 
be reduced by applying the theory of group characters to t h e group of symmetries of t he 
domain. 

In the second part t he author considers t he problem of solYing t.u = O in a c ll be when 
t he prescribed boundary values are invariant under the group of rotatio ns of the cube. 
In the series representation of the solution in terms of harmonic polynomials only a su bset 
of t hese polynomials actuall y occurs, and the t heory of group clla racters facilitates con­
siderably the determination of this subset. 

It is very well known that representation of gro ups 
may be a useful tool in discussing var ious eigenvalue 
problems in quantum mechanics. This is du e to the 
fact that boundary-value problems of Schroedtnger's 
equation are to be solved mostly in the whol e space I 

or inside a, sphere as fUl1damental region and therefore 
the high symmetry of those domains can be used . 

It is the purpose of this paper to show tha t group 
characters sometimes are appropriate also to sim­
plIfy the numerical computation of boundary-value 
or eigenvalue problems in more general-shaped do­
mains, in particular if the problem has been trans­
lated into the language of difference calculus. It 
will be suffi cient to explain this discussing simple 
examples. 

Let, for instance, A be any plane region and D a 
differential operator invariant under Euclidean mo­
tions or reflections of the plane. More exactly, if 
j(x,y) is a function in our plane and Nl a Euclidean 
rotation, transla tion , or reflection, then 

D (iY£j) = M(Df) , (1) 

which is to say that D must commute with any 
motion M. The Laplace operator Ll and the operator 
.1Ll of elasticity problems have this property. 

In order to solve any given boundary-value prob­
lem with respect to the region A and the operator 
D, we may use the difference technique, introducing 
a square lattice L in A and replacing f by a lattice 
function (defined only in the lattIce points) and D 
by a difference operator, which approximates the 
given differential operator. In the case of a Ll-prob­
Iem, the corresponding difference operator ma~T be 
given by figure 1. Relation (1) will be true again in 
the difference case, provided that by J1;[ is understood 
any motion or reflectIOn transformmg the lattice 
into itself. 

Suppose now that the given region A is invariant 
under a group G of transformations of this type. If 
A has no symmetry at all , we may use Schwarz's 
alternating process dividing A into overlapping sub ­
regions, each of them having symmetry propert,ies . 
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by the Office of Naval Research. 
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FIGURE 1. 

It is our goal to show how the group G can be used in 
order to simplify the solu tion of the given boundary­
yalue problem in the region .11. 

Take, for instance, the square region A of figure 2. 
The gro up (J is in thIS case the symmetry group of 
the square of order 8 havmg the following similarity 
classes : 

l\ um ber 
Class Elements of 

e lements 
I 

[1] - ----- Identity .. _________________ I 
[21------ R otation s ± 90° ----------- 2 (2) 

[31 --- - -- Rotation 180° _____________ J 
[4]·-----1 Reflection in horizontal or 

yerticalli ne _______ ____ _ 2 
[51 - - --- _1 R e fl ections in diagonal lin es _ 2 

Ttl I 8 
I 

o a _______________ 

The gIven boundary-value problem is equivalent to 
a system of nine linear equations for the values of the 
wanted function m the nme interior lattice points . 
Any lattice function f may be visualized as a vector 
in a nine· dimensional vector space S. Therefore, 
applying the operations of the table to the lattice 
functions , we get a linear representation R of the 
basic gro up G in S. 
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FIGURE 2. 

I t is not too hard to show that its character X is 
given by the folloll' in g rule: The value xU\!l) of X for 
an element Nlof G is equal to the number of lattice 
points fixed under the operation J\1. (Use as coordi­
nate system in S the lattice functions no t equal to 0 
only in one single latti ce point ; they arc permuted b.v 
M .) We want to decompose the representation H 
into in-cd ucibl e componrnts: 

Where HI , H2 , .. . , R5 are the irreducible repre­
sentations of G. (There are exactly five b eca use (J 
has five sImilarity classes) . According to the ortho­
gonality theorems of representation theory this has 
to be done working on tlle table of cha,raeters of (J 
as follows : 

Class _______ [l] [2] [3] [~] [5] c 

K o. ofelemellLs_ I 2 I 2 2 

--

XI l J I I 1 3 ( ~) 
X2 I I I - ] - 1 o 
X3 I - I I I - I J 
X, I - ] I - 1 I 
Xs 2 0 - 2 0 0 ~ 
x 9 I 1 3 3 

I 

In the first line we have listed the similarity classes 
"with their numbers of elements and in the following 
lines the values of the characters of th e irreducible 
representations in those classes. They are recorded 
in many textbooks of representation' theory.3 The 
last line is the character X of our representation Fl , 
computed according to the rule previously mentioned. 
The first number in each line is the degree of the 
representation (dimensio n of the vector space trans­
formed by the representation) . Aceording to a 
general formula of character theory the coefficient, 
Ci in (~ ) is 

(5) 

3 A. Speiser, Die Theol'ie del' Grllppen von endlicher Ordnung, 3d cd., p . 179-
180 (Sprin!(er. Berlin ; and Do\'cl' Pub). 
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with the group clement 1\11 running through the \\'hole 
group G. By this we have for instance from our table 

c4 = t(9·1 - 2·1 + 1·1 - 2·3 + 2·3) = 1. 

The multiplicities Ci are listed in th e column to th e 
righ t of the table. Finally, we find 

(6) 

Therefore , the yeetor space S splits inLo subspace 

(7) 

each of them being invariant under R and being 
transformed by the irredu cibl e r epresentation given 
b? its subscri pt. 

Take now a set of subspaces hftving the same sub­
sc ript (i. e. , being transformed by the same repre­
sentfttion) and inLroci uce base vectors in each space 
of the seL. For instance, S5 and S"" being both 
lwo-dimensional , ma.\- be spanned by the base veclors 

S5: e5 l, eSt 

(8) 
S~ : 

, 
esl , 

, 
eS2 ' 

Generally speakin g, each set 01' eq ually Lransformed 
subspaces y ield s a rectangular arrangement of base 
vectol'S by listing the base vectors of each subspace 
in a line. The leng Lh of the rectangle is the degree 
of the irreducible represen tation under consideration 
and its h eighL the mulLiplicity of this representation 
as a compon en t of R. It is , of co urse , pos ible to 
choose the base vectors in such a way that each line 
of the rectangle is transformed exactly in the ame 
way. 

] t follows Lhen from a we11-1;;:nown generalization 4 

of Schur's lemma that each linear operator in S com­
mutable with the transformaLions of R transforms 
the vectors of each column in our r ectangle among 
themselves and in each column in th e same way, 
Taking into account the relation (1) , we see that the 
difference operator of the given boundary-value 
problem has this property, From this follows imme­
diately that the original system of nine linear equa­
tions with nine unlmowns splits into partial systems. 
The rectangle (8), for instance, yields two system s of 
two equations each, having the same coefficient 
matrices. From the first and the C column of the 
table (4) we get therefore the followin g final result, 
The system of nine equations splits into one system of 
three simultaneous equations, one single equation, 
one single equation, and two systems of two simul­
taneous equations. 

If we have to deal with an eigenvalu e problem in­
stead of a boundary-value problem, the analogous 
st.atement is , that the wanted characteristic poly­
nomial is the product of a factor of third degree, two 
linear factors and the square of a quadratic factor . 
In order to cany out the decomposition of the system 
of nin e equations explicitly, it is, of course, necessary 

• B. L. van del' Waerden, Die gruppcntheoretisehe M ethode in der Quanten· 
mecharu k, sect . 13, p. 47- 50 (Springer, Berlin, 1932) . 
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to es tablish th e lattice functions, which build th e 
base vectors of the differen t rectangles (8) . The 
three basic lattice functions corresponding to the 
first irreducible representation RI are simply three 
linear ind ependent fu nctions invariant under all 
motions of the square. As anoth er example we give 
the valu es of the lattice functions (8) in the nin e 
If) tt ire poin ts. 

0 0 0 0 1 0 
e 51= - ] 0 1 e5Z = 0 0 0 

0 0 0 0 - 1 0 
(9) 

- 1 0 1 1 0 ] 
I 

0 0 0 I 0 0 0 e5 1= CS2 = 
- 1 0 1 - 1 0 - 1 

Taking as n the operator of figure 1, \\"e get 

(10) 

The functions e52, e~2 ar c transfo rmed in the sam e wa.\·, 
Th e eigenvalu e probl em of th e operator D with 

vanishing boundary values gives th e eq uation 

Dj + Xj = O. (ll) 

Let us put j = ae51 + be~" Then (10) yields the eigen­
valu e probl em 

(>. - 4)a+ 2b = 0 

a+ (>' - 4)b= 0. 

And from this follow tilC eigenvalues 

>. = 4±·/2" 

(12) 

(13) 

of the operator D , each of them ha\Ting at least the 
multiplicity 2. 

I t is not too hard to establish for a lattice in a 
given region A the r ectangles of base vectors when 
we know the characters and th e irreducible repre­
sen tations of the symmetry group of A . It is con­
venient to choose all those vectors (their total number 
is equal to the number of lattice points) orthogonal 
to each other. This is possible b ecause the re­
presentation R is orthogonal , and therefore the ir­
redu cible subspaces of S are orthogonal. 

At the Institute of Applied Mathematics in Zurich 
(Switzerland) we u sed th e methods of this paper in 
order to solve the boundary-value problem of 
Airy's elastici ty function inside a dam. As subre­
gions in Schwarz's alternating process, we chose 
squares of 16 la t tice points . 

In his book about eigenvalue problems, L. Collatz 1> 

in troduces th e notion of "eigenvalu es of a graph" 
and di scusses an example, where the graph is built 
b.'~ the segm ents joining two midpoints of 
edges of a cube . This problem may also be trea ted 

5 L . C0119tz, I~ i gen w('rtaurgabcn mi t techn iscilcn Anwf'nd ung(,Il , p. :::';2 
(L ei pzig. 1949) , 

by cha racters , USlllg the group of all ro tations of 
the cube. 

In this section another applica tion of character 
theory is discussed , rcla.t.ed to the methods of S. 
B ergman and M. Picone fo r th e solution of 
boundary-value problems . For our purposes those 
m ethods may be characterized by the following 
procedure. At first a complete set of particular 
solutions of th e given partial differential equat ion 
is constructed and then the solu tion of the boundary­
value problem is expand ed into a series having as 
terms those particular integrals. Let us take, for 
in stance, Laplace 's eq uation ,6u= O 111 three-dImen­
sional space. The particular solu tions may be in 
this case the harmonic polynomia Is of degree n 

n = O,:i ,2 , . 
(14} 

m running from (-n) to (+ n ). On the right sid e, 
1', 0, c/> are polar coordinates, P,~"') is a gen eralized 
L egendre polynomial. Suppose now that the fun­
d amental region A of the boundary-value problem 
is a cube having its center at th e origin and suppose 
fur thermore that the given boundary values are 
invariant under the group G of the 24 rotations of 
the cube. It is obvious that under those cir cum­
stances only harmonic polynomials appear in the 
B ergman-Picone expansion, which have the sam e 
symmetry properties. In other words , we have 
the problem to establish all harmonic polynomials 
invariant und er the group (! of rotations of the cube.& 

The theory of characters gives general m ethods 
in order to solve problems of this type. G has th e 
following similarity classes: 

Class T y pi cal element 

[11 --- Identity ____________ -- -~ ----
[21- __ Rotation ± 90o _______________ _ 
[31 - _ _ Rotation 180 0 (z-axis) _________ _ 
[41 - -- Rotation 180 0 (axis: z= O,:r= y) __ 
[51- -- Hotation ± 120o (axis = diagonal)_ 

Number 
of ele­
ments 

1 
6 
3 
6 
8 

Total ___________________ 24 

( 15) 

B~- any rotation of th e cube the (2n+ 1) harmonic 
polynomials of a given degree n are transformed 
linearly among themselves and yield therefore a 
representation R n of degree (2n + 1) of G. Let]o.;[ 
be any rotation of G and Xn(]o.;[ ) the character of R n' 
The number of linear indep endent harmonic poly­
nomials of degree n invariant under G is equal to 
the multiplicity en of the uni t r epresentation in th e 
decomposition of R n into irreducible components. 
(The unit representation of a group maps every 

6 'l'his question has been posed an d answered by O . Polyu. and B . l\1ever, 
Sur les svm~tries des fonctions spheri(J ues d e La place, Compt. rend . 228, 28-30 
(1949) ; S il l' les fO Il ctioll s s phcl' iou es (le Lal~ l ac(' de syrnHrie cristallograr!'iq no 
donn 6e, Compt. rent). 225 , (19~9). 
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group element inlo Lh c one-row matri." = ]) . Thi s 
multiplicity is given by the character formula 

1 
c"= ')4 .z=xn(M), 

~ C\1) 
(16) 

l l({ l'unning Lhrollgh the group. It remains Lo com­
pute Lhe character Xn(lYJ ). In order to do this 
we may restrict ourselves to rotations M around 
the z-axis. Let J.I. b e th e rotation angle. Taking 
into account (14), it follows that the (2n + 1) har­
monic polynomials of degree n are transformed by 
j\([ in the fo11O'1\' i ng way : 

(17) 

The m aLrix of the transformation is pure diagonal 
with the trace 

+n sin (2n + 1) ~ 
Xn(j\([) = .z= emi~= --. (18) 

"'~-n . J.I. sm 2 

From (16) and th e table (15) follows now the result: 

=~{ (2 + 1)+ 6 sin (2n + 1)45° 
Cn 24 n sin 450 

(19) 

The final result ma.\' be expressed in ll lc followin g 
Lerms. 'iVrite n in t he form of a multiple of 12 n,nd 
the corresponding remainder 

n= 12·k+ T, (20) 

Then 
(21 ) 

where t(T) is given by the table 

I ~ 
o I 

(22) 
o 2 3 4 5 6 7 8 9 10 T 

1 000 o o 

The polynomials themselves can be builL by choosing 
any harmonic polynomial of degree n, appl~~ing the 
24 1'0LaLions of the cube and adding upLhe 24 result­
ing polynomials. 

A more general problem would be Lo establish the 
harmonic pol.\~nomials being transformed b.\T 0 
according to a given irI'edueible representaLion of 0. 
This can be used to simplify the solution of a bound­
ary-valu e problem in which th e given bounda]'.\~­
values have not the symmetry of th e eube. The 
basic idea is, of course, the same as outlined pl'eyjously 
in this paper . 

Los A NGELES, January 29 , 1952 . 
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