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Gradient Methods in the Solution of
Systems of Linear Equations’

Marvin L. Stein

The results of various experiments with iterative methods for solving systems of linear

algebraic equations are discussed.

Modifications of the optimum gradient method are com-

pared, and the rather interesting self-acceleration properties of a class of methods here named
“almost optimum”” gradient methods are pointed out.

1. Introduction

The method of steepest descent, or the optimum
gradient method, has been known to mathematicians
since the time of Cauchy [1].? Others who have dis-
cussed this method include Curry |2], Forsythe and
Motzkin [3], Householder [4], Kantoroviteh [5], and
Temple (6]. TIts infrequent application in compu-
tationa! worl\ is no doubt due to the slowness with
which it converges. This slowness of convergence
is unfortunately generally true of gradient methods.
However, with the advent of large-scale computing

nachinery it has become feasible to seriouslv consider
ﬁwm in practical numerical analvsis.

In a forthcoming paper, Hestenes and Stein [7]
discuss a large class of gradient procedures for solving
systems of hnear equations. These procedures con-
tain the optimum gradient method as a special case.
The present note is mainly a report on some numer-
ical experiments with them that were carried out on
the IBM Card-Programmed Electronic Calculator af
the Institute for Numerical Analysis of the National
Bureau of Standards. Some attention is also given
to an 0\[)011111011( in which the problem of solving a
systera of linear equations was changed to an equiv-
alent eigenvalue ]),oblom and then solved by a mod-
ification of one of the gradient methods discussed by
Hestenes and Karush [8]. The mest striking result
of the experiments indicates that there is a large class
of gradient methods that is self-accelerating, that is,
which irregularly shows a large increase in the rate of
convergence without the introduction of any modi-
fication in the computational routine. This be-
havior is in sharp contrast to that of the method of
steepest descent, which in the light of the present
results can no longer be considered as optimum from
an over-all point of view unless modified by some
special accelerating routine |91.

2. Summary of the Theory

Let A denote an m-rowed and 7n-columned matrix,
and let b and z be m-rowed and n-rowed column
vectors, respectively. The vector r(@)=b—Az is
then an m-rowed column vector. In the following
a star (*) affixed to the symbol for any vector or
matrix will indicate its conjugate transpose. Hence,

1 The preparation of this paper was sponsored (in part) by the Office of Naval
Research.
2 Figures in brackets indicate the literature references at the end of this paper.
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if /7 is a positive m X m Hermitian matrix, we have
JEl =81, r*Hr >0, provided 730. Clearly, the
Il()IlIl(‘g‘El‘ll\'t‘ real-valued function

=iy (1)
vanishes if and only if
Az=Dh. (2)

Therefore, the problem of minimizing (1) is equiva-
lent to the problem of solving the system (2), pro-
vided a solution exists. If no solution exists, a
vector x which minimizes f(z) vields a best fit of
b by Az in a least-squares sense with the metric
determined by 1.

Hestenes and Stein [7] have analyzed the following
algorithm for constructing the minimum of (1)
Consider 1terations of the type

o a=eHaéy (0=0,1,2, . . .), @A)
where 7, 1s chosen initially and where, after z; has
been determined, the gradient vector & 1s (lvhn((l by
the rule EI_A*I!/(.,,). If £&=0, the problem is
solved. 1If &0, the scalar a; 1s taken to be of the
form o;=8;v,;, where

VT A AL,

and B; 1s any complex number. The sequence (3)
has been shown to converge to the minimum of

f(x) provided the coefficients B; satisfy the conditions

_+ > 145,

where 6 1s arbitrary on the range 0<6<1.

Setting B;=1 gives the optimum gradient method,
which has the following geometrical interpretation.
Starting at xz,, one proceeds along the normal to that
member of the family of concentric ellipsoids

f(x)=constant, 4)

which passes through z, until a point tangent to
another ellipscid of the family is reached. One then
goes along the normal to this second ellipsoid until
one is again at a point of tangency to a member of (4)
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and so on until the common center is reached. Clear-
ly, it would be highly desirable to land on an axis
of the family. However, as simple two-dimeusional
examples illustrate, one usually overshoots the major
axis bv proceeding all the way to a point of tangency.
Hence, 1t was conjectured by M. R. Hestenes that
of the allowed values of B; some of those chosen
from the range §;<1 would yield better convergence
than B;=1. This conjecture is the motivation for
the experimental work whose results will be tabulated
and discussed below.

3. Experimental Data

The algorithm described in the preceding section
was carried out for the problem Axz=b with
.02634 —. 04640 —.07368 —.02131 —.00431
. 26841 —. 02243 .15952 —.05923 —.12797

06667
02634
—. 04640 ,
A= ®

—. 02243 . 10932 05150 —. 04100 . 08558

—. 07368 . 15952 . 05150 .25152 —.01141 —.07169
—. 02131 —.05923 —.04100 —.01141 . 14403 . 01105
—. 00431 —.12797 . 08558 —. 07169 . 01105 . 19450,
and
—. 008609
—. 014279
—. 000243
= l (6)
004576
. 008043
—. 004895,

Runs were made with fixed values of 8; ranging be-
tween 3;=.1 and 8;=1.9. Since the matrix 4 and

the vector b were obtained from an original matrix
B and vector ¢ as

A=B*B,  b=B*c, ()

A is positive and symmetric. Hence, a convenient

metric is
H=A"". (8)

In the metric (8) the gradient becomes &=r(z;).
Thus the other significant quantities defined in sec-
tion 2 assume the form

i r* () r(x,)

VT ) Ar ()
Jle)=c*e—(xib-Fb*z,) ¢ Az,
=c*c—uxt(b+r(x)).

Table 1 lhsts runs of f(x,) and f(x;)/f(x;_,) for
various fixed values of 8;. In each case the initial
z=x, was zero. The values of f(z;) are given here
to the same number of places as in the original
calculation, while the ratios f(z;)/f(z;_,) have been
cut down from a six-place table. Table 2 gives the
values of a; corresponding to the runs listed in table
1. These numbers were originally computed to 10
places. The results listed in tables 1 and 2 are based
for the most part on single runs of the Card-Program-
med Calculator. The main check used in the ma-
chine computations was the monotonicity of f(x).
However, the run 8,=.9 has been exactly duplicated
on two separate occasions The results of the run
B:=1 check closely with results obtained by A. L.
Forsythe in an entirely independent manner.
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TABLE 1
o | 1@ . . J@) | f@) | @

iy | Lt Tr [ . e (o | - | (4 S |

@) Fa) 7@ | e | @) iy | @ | ey |

| i | ‘

0.1 0.3 [ 0.6 0.8

S |_ K — -
333840 | ______ 333840 | 333840 | . 333840 | ______
203093 0. 8779 224451 0. 6723 153663 0. 4603 127922 0. 3832
257410 | 8782 152582 6798 98661 6421 | 93810 - 7333
226497 " 8799 111480 7306 77941 7900 | 73423 7827
199981 - 8829 87335 7834 67416 8650 65477 8918
177424 | 8872 72579 8310 61492 9121 \ 58631 8054
158324 8923 63339 8727 57677 9379 55826 9521
142190 " 8981 57304 9047 55073 9548 [ 51049 9144
128561 9041 52467 9156 52979 9620 | 49055 9609
117033 "9103 14607 8502 51324 9688 23614 1814
107265 L9165 39040 8752 19604 9682 22633 9584
98962 9226 38532 9870 48416 0743 19411 8576
91885 T 9285 36121 0374 46747 9655 18091 9320
85836 0342 35705 9885 145718 9780 16729 0247
80647 L9395 34881 9769 11494 9076 16068 9605
76184 L0447 34138 9787 10042 9650 14243 8864
72336 9495 33281 9749 39063 9755 13389 9400
68999 L9539 32693 9823 38192 9777 13008 L9715
66094 " 9579 31085 9508 37193 9738 12727 9784
63546 9614 30737 9888 36444 9799 12414 9754
61295 L9646 20969 9750 35033 9613 12152 " 0789
59273 L9670 20460 9830 34325 9798 11807 | . 9716
57423 | 0688 27849 9453 18343 5344 11544 o7
55677 L9696 27540 9889 16437 8961 10972 T 0504
53951 - 9690 27027 09814 16011 9741 10595 - 9656
52120 T 9661 26105 9659 15288 | 0548 3604 3486
49948 9583 25789 9879 14955 9782 2468 6681
46891 T 9388 21529 8348 13055 18720 2389 T 9680
42130 " 8985 21171 " 9834 12441 19530 1956 8187
36978 L8777 20929 T 9886 12216 T 9819 1767 9033
31700 8573 20649 T 9866 1111 19095 1723 - 9751

0. 85 0.9 0.95 1.0
|

333840 | 333840 | . 333840 T 333840 | .
124168 0. 3719 121487 0. 3639 119877 0. 3591 119341 0. 3575
91763 - 7390 89569 - 7373 87412 7202 85444 7160
71835 7828 70668 7890 70104 8020 70047 8198
64192 8936 63092 8928 62460 8910 | 62360 8902
57521 8961 57047 9042 57261 9168 | 57853 9277
54774 0522 54256 9511 54401 9500 54050 9500
19772 9087 50251 9262 51556 9477 52692 0587
47378 9519 17793 9511 19435 9589 50807 9642
27275 5757 38645 8086 16729 9453 19095 T 0663
25034 9178 33695 8719 44405 0522 47519 L9679
23465 9373 31606 9380 10884 9188 16036 9688
22561 9615 30107 9526 38017 9299 44634 L9695
21653 9597 27239 9047 28607 7525 13304 L9702
21039 9716 25370 09314 22011 8009 12036 9707
20108 9557 24619 9704 20890 9118 | 40825 9712
19456 9676 24072 9778 19416 9204 39667 9716
16602 8533 23518 9770 18906 9737 | 38557 " 9720
14946 | 9002 23014 9786 18497 9784 | 37489 0723
14384 | 9624 22453 9756 18089 9779 36462 0726
13963 9707 21954 9778 17701 9785 35473 | 0729




TasLe 1.—Continued

@)

410

\
f(a:) f(z;) | f(x:)
\ » J&) . J ” ok 5|
N\ 8 iid = f) Fa) 100 ey @) s
‘ \\\\\ 0.85 0.9 0.95 ‘ 1.0
21 12095 8662 21356 L9728 17306 9777 34518 9731
22 10917 T 9026 20842 L9759 16935 T 9786 33597 " 9733
23 10509 0626 20115 L0651 16551 9773 32706 L9735
24 10201 L9707 19515 L9702 16190 L9782 31843 0736
25 8748 8576 18227 L0340 15818 L9770 31008 19738
26 7837 8959 17230 9453 15469 9779 30197 9738
27 7570 T 9659 598 S 0347 15103 L9763 20413 L9740
28 7366 9730 280 4682 14761 9773 28648 L9740
29 6762 " 9180 273 L9750 14396 9753 27910 L0742
30 6352 | . 9394 264 L0670 14059 L9766 27191 L0742
1.1 1.3 1.6 1.9
0 333840 333840 | 333840 | 333840
1 121486 3639 138645 4153 196562 5888 203001 | . 8779
2 82591 6798 84466 | 6092 124599 6339 256477 | 8751
3 70272 8508 69395 | . 8216 85428 | 6856 219046 | 8540
4 62021 8954 62726 9039 68301 | 8006 188063 8585
5 58869 9356 58755 9367 60665 | . 8870 162600 | 8646
| |
6 55940 9502 56019 0534 56682 | 9343 141685 8713
7 53827 09622 53906 9623 54190 | 9562 124461 8784
8 52000 9662 52138 9672 52332 9655 110243 8858
9 50457 9701 50571 9690 50740 9696 98480 8933
10 49000 9711 19131 9715 19290 9714 88712 9008
11 47669 9728 47784 9726 47936 | 9725 80574 9083
12 46391 9732 46512 L9734 16660 | 9734 73768 9155
13 45190 0741 45301 9740 45440 | 9738 68046 0224
14 44031 9743 44144 - 9745 44277 9744 63212 9200
15 42929 9750 143035 | 9749 43165 L0749 59100 0349
16 41866 9752 41970 | 9752 42097 L9752 | 55587 9405
17 40851 9757 40048 | 9756 41068 9755 | 52560 - 9455
18 39865 9759 39961 9759 10077 | 19739 49934 9500
19 38917 9762 39009 9762 39123 | L9762 47640 0540
20 38001 9765 38091 L9765 38200 9764 45618 L9575
21 37114 9766 37203 9767 37307 9766 43820 9606
22 36257 9769 36341 9768 36444 L9769 42212 9633
23 35426 L9771 35506 9770 35607 L9770 | 40757 - 9655
24 34619 9772 34700 L9773 34795 L9772 39433 9675
25 33835 | 9773 33912 L9773 34007 L9773 | 38210 09692
2 33073 9775 33149 9775 33239 9774 37097 9706
27 32333 9776 32407 L9776 32406 L9776 36053 L9718
28 31613 L9777 31684 L9777 31770 L9776 35075 L9729
29 30913 9778 30082 L9778 31066 L9778 34155 L9738
30 30230 9779 30298 19779 30380 L9779 33283 L9744




TaBLE 2.

\i\\ﬂ 0.1 0.3 0.6 0.8 0.85 0.9 0.95 1.0 1.1 133 1.6 )
[ |
| | | | |

i 1 0. 553 1. 660 | 3. 320 4. 427 4.703 | 4. 980 5. 257 | 5.533 | 6. 087 7.193 | 8. 853 | 10. 513 1
; 2 . 595 2.094 | 3.576 2. 827 | 2.691 2. 602 2. 558 | 2. 551 | 2.625 2.983 | 3.751 4. 613 |
| 3 635 2.377 | 3.491 | 4.642 5. 158 5. 543 5.657 | 5.442 | 4.437 3.242 | 3. 335 3. 844 }
4 670 2.764 | 3.585 | 2.676 2. 532 2. 486 2.525 | 2. 641 | 3. 057 3251413335 3. 827 |
5 . 702 3.319 | 3.587 | 6.157 7.173 7. 484 6. 865 | 5. 781 | 4. 217 3. 635 ’ 3. 398 3. 826 ‘
6 . 732 4. 064 | 3. 766 2. 391 2. 315 2. 362 2. 508 | 2.756 | 3.369 3.740 | 3. 522 3. 827 l
7 L762 | 5.168 | 3.714 | 12. 626 | 16. 049 | 13. 847 | 9.251 | 6.267 | 4.197 3.822 | 3.684 | 3.829 |
8 [ 792 7.863 | 4.012 2. 027 2. 030 2. 141 2.412 | 2. 829 | 3. 620 3. 883 3. 824 3. 832 |
9 ‘ 825 | 22. 205 | 3. 688 |125. 896 |108. 543 | 50. 509 | 12. 958 | 6. 466 | 4. 166 3. 921 3. 903 3. 834 |
10 1 862 | 21. 294 4. 390 | 2.248 3. 025 1. 886 2.248 | 2. 849 | 3. 766 3.944 | 3.939 3. 837 |
\ %
11 902 1. 519 ( 3. 336 | 25. 889 4. 738 | 17.968 | 22.431 | 6. 513 | 4. 112 3. 956 ; 3. 955 3. 841 |

12 ‘ 947 | 11. 598 5. 688 1. 825 2. 912 2. 128 2. 085 | 2.853 | 3. 847 3.963 | 3.963 3. 845

13 ‘ 996 1. 198 | 2. 492 | 15. 493 6. 140 | 29. 005 | 79. 571 | 6. 530 | 4. 066 3.968 | 3.967 3. 849

14 1. 052 4. 095 | 19. 081 | 2. 087 | 2. 634 2. 525 1. 958 | 2. 856 | 3. 895 3. 971 3. 970 3. 855
153 1.113 | 3.761 | 1.447 | 27. 349 ; 9. 972 5.586 | 27.906 | 6. 542 | 4. 036 3.973 3. 973 3. 860 |
16 1. 182 4.595 | 4.218 3. 301 ‘ 2. 206 3. 407 2. 685 | 2. 858 | 3. 926 3. 975 3. 975 3. 866 |
17 1. 260 2.977 | 3.611 | 4.480 | 41. 576 5. 009 4.786 | 6.550 | 4.016 | 3.977 3. 976 3. 873 |
18 1. 349 9. 809 | 4. 832 3. 474 1. 799 3. 207 3.565 | 2.859 | 3.947 | 3.978 3. 978 3. 880 |

19 1. 454 1. 233 } 2. 990 4. 986 9. 919 5. 628 4. 596 | 6. 557 | 4. 005 3. 979 3. 979 3. 887

20 1. 581 4. 668 | 8. 239 3. 103 2. 218 2. 954 3. 488 | 2. 860 | 3. 961 3. 981 3. 980 3. 895

21 1. 742 2. 893 ‘ 1.919 | 6.463 | 41. 303 6. 818 4. 747 | 6. 563 ‘ 3. 998 3.982 | 3.981 3. 903

22 1. 958 | 11. 156 |116. 743 2. 567 1. 799 2. 657 3.398 | 2.861 | 3.970 | 3.983 3. 982 3. 911

23 2.264 | 1.131 ‘ 1. 259 | 13. 274 | 10. 109 0. 627 4.942 | 6. 568 | 3. 994 3. 984 3. 983 3. 918

24 2.735 | 3.300 | 1.595 1. 962 2. 207 2. 332 3. 295 ‘ 2. 862 ‘ 3.976 | 3. 984 3. 984 3. 926

25 3.534 | 6.757 ; 9. 841 [198. 581 | 44. 570 | 20. 471 5.200 | 6.571 | 3.992 ‘ 3. 985 3. 985 3. 933

| |

26 5. 083 1. 714 1. 759 1. 628 1. 793 2. 015 3.179 | 2.863 | 3. 981 3.986 | '3. 986 3. 940

27 | 8606 | 35.356 | 30.924 | 2.204 8. 887 1326. 505 5.550 | 6. 574 | 3. 991 [ 3. 986 3. 986 3. 946

28 | 15. 945 0. 755 1. 344 | 42. 957 2.314 | 1.817 3. 049 ‘ 2.863 | 3.984 | 3.987 3. 987 3. 952

29 | 20. 844 0. 993 2.467 | 1.695 | 24.873 | 3.018 | 6.038 | 6.576 | 3.990 | 3.988 3. 988 3. 957

30 | 25. 971 2.110 | 22. 538 5. 189 1. 884 6. 291 ‘ 2.907 | 2.864 | 3.986 | 3.988 3. 988 3. 962

[ {

4. Conversion to an Eigenvalue Problem

By introducing the variable x,,,, an equation
Br=c can be expressed in the homogeneous form

Ol/— “7 W h(‘] (3}
J &L n+1

G=(B
Multiplying through by C* gives the system of order
one higher Dy=0, where
B*B
D=
155

c),

B*e

c*c

is a symmetric matrix whose legst eigenvalue is zero.
The nontrivial eigenvector corresvonding to this
zero eigenvalue yields a solution of the original
system of linear equations.

As is well known, the least eigenvector of the sym-
metric matrix /) can be found by minimizing the
Rayleigh quotient

ot

w(y) y#=0.

Hestenes and Karush [8] have examined in detail
the convergence of various methods for accomplish-
ing the minimization of u. The following algorithm
for constructing a sequence {y,} that minimizes u is
a modification of their “optimum «”’ procedure.
We define the gradient as &,=&(y,)=Dy;—uy )y
Let

_
#(fi)

and let a;=pBvy;, where g is a positive number less
than or equal to one. Then, given y;, we determine
Y41 by the formula y; =y ;— ;.

This algorithm was actually carried out with the
matrix

Y1 ) #(Ei)#()y

A b

D=
b*

chc/s
where A is given by (5), b is given by (6) with all
components multiplied by 10 and ¢*¢=.333840. In
view of (7) Dy=0 is actually a problem of the type
just described. Runs were made with various val-

ues of B ranging between .7 and 1. For purposes

)y
vty

of comparison, the same starting point (origin) as
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in the computations recorded in section 3 was used
and a record of

=YDy

f(J)_ ].7/71 4—1[2
was kept. In table 3% we present the results of the
run 8=.9. The runs for other values of g showed

substantially the same unstable behavior, while that
for B=1 (optimum) showed a very stable behavior
and as a result converged quite slowly. The num-
bers f(z;) and «,; appearing in table 3, were orig-
inally computed to 10 places. The ratios f(x,)/f(z;-1)
were computed from the original values of f(z,) and
then cut down to the present size.

TABLE 3.
. ] o
| ) f(x;) | f@)/f(@i-) | 0.9y 1
| | |
e e —
S0 333840 I
1 1 121482 0. 3639 0. 4980
\ > 86700 | . 7137 . 2575
3 70323 r . 8111 . 7076 1
4 57533 . 8181 . 3951
| 5 60698 1 1. 0550 \ . 5478
‘ 1 |
| 6 53564 | 0.8825 . 3968
: 7 53869 1. 0057 . 5494
| 8 49788 1 0. 9242 . 3479 |
3 9 46902 ‘ . 9420 ? . 5237 '
|10 45704 ; . 9744 ; . 3046
\ %
| 11 41266 \ . 9029 . 5577
12 41045 ‘ . 9947 . 2761
13 36337 . 8853 . 6639
14 36011 ; . 9910 . 2482
| 15 31318 j . 8697 . 9109
; i
| 16 30291 ‘ L9672 . 2189
[ 17 24919 . 8226 ‘ 1. 7145
| 18 22095 . 8867 5 0. 1909
19 7468 . 3380 ; 5. 9172
20 6963 . 9324 ; 0. 2758
21 5985 . 8595 * . 6081
22 5541 . 9258 1 . 2493
| 23 4642 .8378 | . 8282
o 4206 . 9060 . 2201
| 25 3171 . 7540 1. 5481
| 26 2644 . 8339 0. 1912
| 27 264 . 0998 6. 6970
| 28 151 . 5733 0. 1766
| 29 117 . 7708 1. 4380
| - 30 91 . 7806 0. 1908
|
31 11 . 1274 6. 4755
| 32 8 . 6933 0. 1890

5. Conclusion

The error function f(z) goes monotonically to zero
in each of the gradient methods. Hence the number
P,=100f(z,)/f(x) tells us what percentage of the
distance from the starting point to zero remains to
be covered at the nth step. Table 4 gives Py, for
various values of 8, We note

3 The author thanks R. M. Hayes for furnishing him with most of the data
appearing in table 3.

TaBLE 4.
— S S
B 01 | 03 06 08 085 ugw
Po | 949 618 333 052 190 008
| |

0. 95
Py | 421

:
\

‘ \
| |

1.0 ‘ 1.1 ; 1.3 1. 6 1%

;3i 9
8. 14 ‘ 9. 05 9

9. 07 9. 10 9!

after 30 steps that, with the exception of the case
B,=p=.1, all the gradient methods for values 8<1
are converging faster than the optimum method,
while all the gradient methods for values g>1
are converging at a slichtly slower rate than the
optimum method. For the eigenvalue method we
have P;=.002. The increased rate of convergence
for this case is offset on the Card-Programmed
Calculator by the greater length of time needed for
each step. However, on a high-speed machine this
factor would be negligible. An explanation of the
speedier convergence of the eigenvalue procedure
lies in the fact that the transformation of the prob-
lem to the homogeneous form has shrunk the ratio
of the largest and the smallest nonzero eigenvalues.
This improvement of “condition’” is something that
one could not generally expect to occur [10].

The ratios f(x;)/f(x;,_,) compare the rate of con-
vergence at each step with that of a geometric
progression having the same ratio. A study of these
numbers and of the corrections a; brings into sharp
focus the contrast between the instability of the
gradient methods employing <1 and the stability
of those employing 8>1. 1In the method of steepest
descent it is just this stability that permits accelera-
tion. However, this acceleration must be achieved
through a modification of the computational routine.
On the other hand, the instability of the methods
using B<1 leads to occasional accelerations without
the mtroduction of any changes whatsoever in the
computing routine.

From the point of view of using the “almost
optimum’’ gradient method on alarge scale computer,
its self-acceleration property has more than theoreti-
cal interest. As is well known, the high-speed
memory capacity of the computers now in existence
is rather limited. Hence, the necessity of storing a
special acceleration routine might prove to be a
severe handicap indeed.

It is worth while to compare the values of «; with
the reciprocal eigenvalues of the matrices A and D).
For A these reciprocal eigenvalues have been found
to be approximately 2.0, 3.9, 5.7, 12.1, 63, and 372,
while for ) the finite reciprocal eigenvalues range
between approximately 8.35 and 0.189.* We will
pay particular attention to the points at which
acceleration took place. One sees that preceding
an acceleration there was a “‘smoothing run” during
which the a;'s were in the range of the small recip-
rocal eigenvalues. On the iteration immediately
before an acceleration, «; was almost equal to the
smallest reciprocal eigenvalue, while on the iteration

4 These values were furnished by R. M. Hayes.
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during which acceleration took place a, was between
the highest and next to highest reciprocal eigenvalues.
It was just this technique of choosing «; that the
present author helped develop in previous experi-
ments with a “fixed o gradient method, which were
conducted under the direction of M. R. Hestenes.
In this method the operator chooses the value of «
just before each iteration, and by judicious choices
he can successfully accelerate the method to a con-
siderable extent. However, this requires too many
judgments of the operator to be practical for a fast
machine or an inexperienced operator. Hence, it is
quite hopeful to note the existence of methods
suitable for high-speed machines that can duplicate
the fixed a acceleration procedures without any
intervention by the operator once the process has
started.

6. References

[1] A. Cauchy, Méthode générale pour la résolution des
systemes d’équations simultanées, Compt. rend.
L’Académie Sciences 25, 536 (1847).

{2] H. B. Curry, The method of steepest descent for non-
linear minimization problems, Quart. Applied Math.
2, 258 (1944).

3] G. E. Forsythe and T. S. Motzkin, Asymptotic proper-
ties of the optimum gradient method, Bul. Am. Math.
Soc. 57, 183 (1951).

[4] A. S. Householder, Notes on numerical methods (1949
51) (typescript available at Oak Ridge National
Laboratory).

[6] L. V. Kantorovitech, On an effective method of solving
extremal problems for quadratic functionals, Compt.
rend. (Doklady) de 1’Académie des Sciences de
I’URSS 48, 455 (1945).

G. Temple, The general theory of relaxation methods
applied to linear systems, Proc. Roy. Soc. (London)
169 [A] 476 (1938-39).

[7] M. R. Hestenes and M. L. Stein, The solution of linear

equations by minimization, in manuscript at the
National Bureau of Standards, Los Angeles, Calif.

[8] M. R. Hestenes and W. Karush, A method of gradients
for the calculation of the characteristic roots and vee-
tors of a real symmetric matrix, J. Research NBS 47,
45 (1951) RP2227.

[9] The problem of accelerating the optimum gradient
method has recently been considered by G. E. Forsythe
and T. S. Motzkin in a paper entitled, Acceleration of
the optimum gradient method, presented to the Ameri-
can Mathematical Society (Stanford meeting) (April
28, 1951).

[10] For a discussion of the effect of this type of transforma-
tion on the condition of a matrix, see G. I. Forsythe
and T. S. Motzkin, An extension of Gauss’s transfor-
mation for improving the condition of systems of
linear equations, typescript available at National
Bureau of Standards, Los Angeles, Calif.

(6

Los AnGeLEs, August 13, 1951.

413



	jresv48n6p_407
	jresv48n6p_408
	jresv48n6p_409
	jresv48n6p_410
	jresv48n6p_411
	jresv48n6p_412
	jresv48n6p_413

