A Note on the Bounds of the Real Parts of the Characteristic Roots of a Matrix¹

P. Stein ²

Two theorems are given for the bounds of the real parts of the characteristic roots of an $n \times n$ matrix, depending on the use of an arbitrary set of n positive numbers. The set is then specialized in several ways so as to lead to theorems for the bounds in terms of the elements of the matrix.

1. Fundamental Theorems

Let $A = (a_{ij})$ be an $n \times n$ matrix. Let M and m be the maximum and minimum real parts of its characteristic roots.

Let u_1, u_2, \ldots, u_n , be a set of positive numbers. In this note we prove the following two theorems: *Theorem A*.

(i)
$$M \leq \max_{r} \left\{ \frac{1}{2} (a_{rr} + \overline{a}_{rr}) + \frac{1}{2u_{r}} \sum_{\substack{s=1\\s \neq r}}^{n} |a_{rs} + \overline{a}_{sr}| u_{s} \right\}$$

(ii) $m \geq \min_{r} \left\{ \frac{1}{2} (a_{rr} + \overline{a}_{rr}) - \frac{1}{2u_{r}} \sum_{\substack{s=1\\s \neq r}}^{n} |a_{rs} + \overline{a}_{sr}| u_{s} \right\}$

Theorem B. If the elements $a_{\tau\tau}$ are real and the elements $a_{\tau s}$, $r \neq s$ are real and non-negative, then

$$\min_{r} \left(a_{\tau r} + \frac{1}{u_{\tau s=1}} \sum_{\substack{s\neq r \\ s\neq r}}^{n} a_{\tau s} u_{s} \right) \leq M \leq \max_{r} \left(a_{\tau r} + \frac{1}{u_{\tau s=1}} \sum_{\substack{s=r \\ s\neq r}}^{n} a_{\tau s} u_{s} \right).$$

Using these theorems and giving specific values to the set u_{τ} , we obtain some further inequalities for Mand m. These inequalities are numbered theorems 1 to 4. Theorem B is substantially a theorem of L. Collatz.³

To prove theorem A(i), we write A=H+iK, where H and K are Hermitian matrices whose elements $h_{\tau s}$ and $k_{\tau s}$ are given by

$$h_{\tau s} = \frac{a_{\tau s} + \bar{a}_{s\tau}}{2}, \quad k_{\tau s} = \frac{i}{2} (\bar{a}_{s\tau} - a_{\tau s}).$$
 (1)

It is known that the real parts of the characteristic roots of A are bounded above and below by the maximum and minimum characteristic roots (real) of H. Hence to prove A(i) it is sufficient to prove that the maximum characteristic root of H is less than the right-hand side of (i), and to prove A(ii) it is sufficient to prove that the minimum characteristic root is greater than the right-hand side of (ii).

Let λ and μ be the maximum and minimum characteristic roots of H. If x is a vector with n components, then $h_{\tau\tau}$ is one value of x^*H_x/x^*x for all values of r, where x^* is the transpose of the conjugate of x. Hence $\lambda \geq h_{\tau\tau}$, for all r, and $\mu \leq h_{\tau\tau}$ for all r.

Let U be the diagonal matrix with elements u_1 , u_2 , . . . , u_n . Let $B = U^{-1}HU$ and let its elements be b_{rs} . Then

$$b_{\tau s} = \frac{1}{u_{\tau}} h_{\tau s} u_{s}, \quad b_{\tau \tau} = h_{\tau \tau}.$$
 (2)

As B is a transform of H, B and H have the same characteristic roots, so that λ and μ are characteristic roots of B. If α is any characteristic root of B, then α lies in at least one circle with center $b_{\tau\tau}$ and radius

$$\sum_{\substack{s=1\\s\neq r}}^n |b_{rs}|.$$

Thus we have

$$|\alpha - b_{\tau \tau}| \leq \sum_{\substack{s=1\\s \neq r}}^{n} |b_{\tau s}|$$

for at least one value of r.

As $\lambda - b_{rr} \ge 0$, and $\mu - b_{rr} \le 0$, we have

$$\lambda \leq b_{\tau\tau} + \sum_{\substack{s=1\\s \neq r}}^{n} |b_{\tau s}|$$

for a least one value of r, and

$$\mu \geq b_{rr} - \sum_{\substack{s=1\\s \neq r}}^n |b_{rs}|$$

for at least one value of r. By (1) and (2), this completes the proof of theorem A.

Theorem B may be proved by a modification of the proof given by L. Collatz (see footnote 3), or alternatively, as follows.

Let C=A+NE, where E is the unit matrix, and N is a positive number so chosen that $a_{\tau\tau}+N>0$ for

¹ This work was performed under National Bureau of Standards contract with the University of California at Los Angeles, and was sponsored in part by the Office of Naval Research. ² University of Natal, South Africa, and University of California at Los Angeles

² University of Natal, South Africa, and University of California at Los Angeles. ³ Math. Zeit. **48**, 221 (1942).

all r. Let $D = U^{-1}CU$, where U is the diagonal matrix if with elements u_1, u_2, \ldots, u_n .

The characteristic roots of C and D are the same, whereas the characteristic roots of A are those of Cdiminished by N.

If $d_{\tau s}$ is an element of D, then $d_{\tau s} = (1/u_{\tau})a_{\tau s}u_{s}$. Again the maximum positive root of a matrix with nonnegative elements is bounded above and below by the maximum and minimum values of the sums of elements of a row. The maximum positive root of such a matrix is also a root of maximum modulus, and so greater than the real part of any other root.

The sum of the rth row of the matrix D is

$$a_{\tau\tau} + N + \frac{1}{u_{\tau}} \sum_{\substack{s=1\\s \neq r}}^{n} a_{\tau s} u_s$$

Hence theorem B follows by subtracting N from each row.

2. The Case of Real Elements

In this section we shall suppose all the elements of A to be real. Let

$$R_{\tau} = \sum_{\substack{s=1\\s\neq\tau}}^{n} a_{\tau s}, \quad C_{\tau} = \sum_{\substack{s=1\\s\neq\tau}}^{n} a_{s \tau}.$$

Theorem 1. (i) If $a_{rs} + a_{sr} \ge 0$, $r \ne s$, if $R_r + C_r > 0$, for all r, if $a_{ii} \ge a_{rr}$ for all r, and $a_{jj} \ge a_{rr}$, $r \ne i$, if $R_p + C_p \ge (R_r + C_r)$ for all r and $R_q + C_q \ge R_r + C_r$, $r \neq p$, then

$$M \leq \max\left(a_{ii} + \frac{R_q + C_q}{2}, \quad a_{jj} + \frac{R_p + C_p}{2}\right)$$

(ii) If $a_{mm} \leq a_{\tau\tau}$ for all r and $a_{nn} \leq a_{\tau\tau}$, $r \neq m$, then

$$m \ge \min\left(a_{mm} - \frac{R_q + C_q}{2}, \quad a_{nn} - \frac{R_p + C_q}{2}\right)$$

To prove (i), we may suppose i=1, and let

$$\sigma = \frac{R_p + C_p}{2}, \quad \sigma^1 = \frac{R_q + C_q}{2}.$$

We apply A(i), where we may leave out the modulus sign. We take $u_1 = \sigma$ and

> $u_r = \frac{R_r + C_r}{2}, \qquad r \neq 1$ $a_{11} \! + \! \frac{1}{\sigma} \! \sum_{s=2}^{n} \! \frac{a_{is} \! + \! a_{si}}{2} \, u_s \! \le \! a_{11} \! + \! \frac{R_1 \! + \! C_1}{2 \, \sigma} \! \max_{s \neq 1} \, u_s \! \cdot \!$ $\frac{R_1+C_1}{2}=\sigma,$

then

If

 $\max_{s\neq 1} u_s = \sigma';$

985694 - 52 - 2

then

and

Hence in either case

$$a_{11} + \frac{1}{\sigma} \sum_{s=2}^{n} \frac{a_{1s} + a_{s1}}{2} u_s \leq a_{11} + \sigma' \cdot$$
(3)

Again for $r \neq 1$, we have

$$\begin{aligned}
u_{\tau\tau} + \frac{1}{u_{\tau}} \sum_{\substack{s=1\\s \neq \tau}}^{n} \left(\frac{a_{\tau s} + a_{s\tau}}{2} \right) u_{s} &\leq a_{\tau\tau} + \max_{\substack{s \neq \tau}} u_{s} \cdot \frac{1}{u_{\tau}} \sum_{\substack{s=1\\s \neq \tau}}^{n} \left(\frac{a_{\tau s} + a_{s\tau}}{2} \right) \\
&\leq a_{\tau\tau} + \sigma. \end{aligned}$$
(4)

 $\frac{R_1+C_1}{2}\neq\sigma,$

 $\frac{R_1\!+\!C_1}{2}\!\leq\!\frac{R_q\!+\!C_q}{2}\!=\!\sigma'$

max $u_s = \sigma$.

From (3) and (4), part (i) of theorem 1 follows. Part (ii) of theorem 1 follows similarly from A(ii).

Theorem 2. Let $a_{\tau\tau}$ be real, $a_{\tau s} \ge 0$, $r \ne s$. (i) If $a_{ii} \ge a_{\tau\tau}$, for all r, $a_{jj} \ge a_{\tau\tau}$, $r \ne i$, and $R_p \ge R_\tau$ for all r, $R_q \ge R_\tau$, $r \ne p$, then $M \le \max(a_{ii}+R_q, a_{jj}+R_p)$. (ii) If $a_{mn} \le a_{\tau\tau}$ for all r, $a_{nn} \le a_{\tau\tau}$, $r \ne m$, and $R_p^1 \le R_\tau$, for all r, $R_q^1 \le R_\tau$, $r \ne p^1$, then $M \ge \min(a_{mm}+R_q^1, a_{mm}+R_q^1)$.

The proof of this is similar to the proof of theorem 1 using theorem B, and may be omitted.

Theorem 3. If $a_{\tau\tau}$ is real and $a_{\tau s} \ge 0$, $r \neq s$, then

$$M \leq \max_{r} \left(a_{rr} + \left\{ \sum_{\substack{ij\\i\neq j}}^{n} a_{ij}^{2} - \sum_{\substack{s=1\\s\neq r}}^{n} a_{rs}^{2} \right\}^{\frac{1}{2}} \right) \cdot$$

We apply theorem B and take

$$\iota_r = \left(\sum_{\substack{s=1\\s\neq r}}^n a_{rs}^2\right)^{\frac{1}{2}},$$

where we suppose $u_r \neq 0$. By the Hölder-Schwartz inequality

$$\frac{1}{u_{\tau}} \sum_{\substack{s=1\\s\neq\tau}}^{n} a_{\tau s} u_{s} \leq \frac{1}{u_{\tau}} \left(\sum_{\substack{s=1\\s\neq\tau}}^{n} a_{rs}^{2} \right)^{\frac{1}{2}} \left(\sum_{\substack{s=1\\s\neq\tau}}^{n} u_{s}^{2} \right)^{\frac{1}{2}} \\ = \left(\sum_{s=1}^{n} u_{s}^{2} - \sum_{\substack{s=1\\s\neq\tau}}^{n} a_{rs}^{2} \right)^{\frac{1}{2}} \cdot$$

The theorem follows from the definition of u_r . Theorem 4. If $a_{\tau\tau}$ is real and $a_{\tau s} \ge 0, r \ne s$, and if

$$L_r = \left(\sum_{\substack{s=1\\s\neq r}}^n a_{rs}^2\right)^{\frac{1}{2}} \neq 0.$$

then

$$M \leq \max_{rr} a_{rr}$$

$$+\min\left\{\left[\left(\sum_{s=1}^{n}L_{s}\right)^{2}-\max_{r}L_{r}^{2}\right]^{\frac{1}{2}}\left(\sum_{s=1}^{n}L_{s}\max_{r}L_{r}\right)^{\frac{1}{2}}\right\}$$

107

We take $u_r = L_r^{\frac{1}{2}}$ and apply the Hölder-Schwartz | If x, y > 0, x+y=a, we have inequality and obtain

r

$$\frac{1}{u_{\tau}} \sum_{\substack{s=1\\s \neq r}}^{n} a_{\tau s} u_{s} \leq L_{\tau}^{\frac{1}{2}} \left(\sum_{\substack{s=1\\s \neq r}}^{n} L_{s} \right)^{\frac{1}{2}} = \left\{ L_{\tau} \left(\sum_{s=1}^{n} L_{s} - L_{\tau} \right) \right\}^{\frac{1}{2}} \qquad (5)$$

$$< \max_{r} \left\{ L_{\tau} \sum_{s=1}^{n} L_{s} \right\}^{\frac{1}{2}} \qquad (6)$$

$$a^2 \!-\! y^2 \!\geq\! a^2 \!-\! (a \!-\! x)^2 \!=\! 2ax \!-\! x^2 \!\!>\! ax \!-\! x^2.$$

Applying this to (5) we get

$$\left\{ L_{\tau} \left(\sum_{s=1}^{n} L_{s} - L_{\tau} \right) \right\}^{\frac{1}{2}} \leq \left(\sum_{s=1}^{n} L_{s} \right)^{2} - \max_{t} L^{2}_{t} \right\}^{\frac{1}{2}}$$
(7)

From (6) and (7) and theorem B the theorem follows.

Los Angeles, October 23, 1951.