-----~.- ---

Some General Theorems on Iterants ¹

P. Stein²

If *B* is a square matrix, then it is known that a necessary and sufficient condition that $\lim_{n\to\infty} B^{n}=0$, is that the characteristic roots of *B* are all of modulus less than unity. An alterna-

tive condition is given in this paper, in terms of Hermitian matrices. Further, a generalization of the result is obtained that covers cases of matrices *B* whether *B*ⁿ does or does not converge to 0, except for very special matrices.

Introduction. If B is a square matrix with real or complex elements, it is well known that a necessary and sufficient condition that $\lim_{n \to \infty} B^n = 0$ is that the *characteristic roots of B* are all of modulus less than 1.

In this paper an alternative condition for the convergence of $Bⁿ$ to 0 will be given in terms of certain Hermitian and symmetric matrices. We also obtain a generalization of this result that covers matrices \bar{B} when $Bⁿ$ does or does not converge to 0, except for a special class of such matrices \tilde{B} .

My thanks are due to Olga Taussky Todd for the help and encouragement I received from her in the preparation of this paper. My thanks are also due to L. J. Paige for valuable suggestions toward the

 $\mathbf{\hat{W}}$ e will consider square matrices *B* whose elements are either real or complex. The conjugate transpose of *B* will be denoted by B^* .

THEOREM 1. A necessary and sufficient condition that lim $B^n = 0$ *is that there exist a positive*

*definite Hermitian matrix H jor which H - B*HB is positive definite.*

Oorollary 1. *Ij B is real, H may be ictken real and symmetric.*

Pro oj: Necessity: Let *P* be a nonsingular matrix such that

$$
PBP^{-1} = K_1 + K_2 + \ldots + K_r,
$$

where K_i is the Jordan normal form; i. e.

$$
K_i = \lambda_i I^{n_i \times n_i} + U^{n_i \times n_i},
$$

where $\sum_{i=1}^r n_i = n$, λ_i are the *not necessarily distinct*

characteristic roots of *B*, and $U^{n_i \times n_i}$ is a matrix with units in the superdiagonal and zero elsewhere.

Let $\delta_i = \delta(\epsilon_i)$ be the diagonal matrix $(\epsilon_i^{r_i-1}, \epsilon_i^{r_i-2}, \ldots, 1)$ for $i=1, 2, \ldots r$.

If
$$
Q = \delta_1 + \delta_2 + \ldots + \delta_r
$$
, then
\n $K = QPBP^{-1}Q^{-1} = N_1 + N_2 + \ldots + N_r$, where
\n $N_i = \delta_i K_i \delta_i^{-1} = \lambda_i I + \epsilon_i U;$

it being understood that *I* and *U* are of the correct order.

Note that

$$
I - K^*K = (I - N_1^*N_1) \dot{+} (I - N_2^*N_2) \dot{+} \dots \n\dot{+} (I - N_r^*N_r)
$$
\n(2)

is positive definite if and only if $(I - N_i * N_i)$ is positive definite for all i. Clearly

$$
I - N_i * N_i = (1 - \overline{\lambda}_i \lambda_i) I - \epsilon_i (\overline{\lambda}_i U + \lambda_i U^* + \epsilon_i U^* U)
$$
\n(3)

will be positive definite if

$$
1 - \overline{\lambda}_i \lambda_i > \epsilon_i \left[\frac{y^* (\overline{\lambda}_i U + \lambda_i U^*) y}{y^* y} + \frac{y^* U^* U y}{y^* y} \right]
$$

$$
\epsilon_i \frac{y^* U^* U y}{y^* y} \left] \text{for } y \neq 0.
$$
 (4)

If $M = \max |\lambda_i|$, we have

$$
\frac{y^*(\overline{\lambda}_i U + \lambda_i U^*)y}{y^*y} \le 2M, \text{ also } \frac{y^* U^* U y}{y^*y} \le 1 \text{ for all } y \ne 0;
$$

hence

$$
\epsilon_i \left[\frac{y^* (\bar{\lambda}_i U + \lambda_i U^*) y}{y^* y} + \epsilon_i \frac{y^* U^* U y}{y^* y} \right] \n\epsilon_i M + \epsilon_i^2 \text{ for all } y \neq 0. \quad (5)
$$

Since $\lim B^n=0, |\lambda_i|\leq 1$; hence, from (3), (4), and

 (5) , $I - N_i^*N_i$ is positive definite for sufficiently small values of ϵ_i ; and so from (2), $I - K^*K$ is positive definite for such values of ϵ_i . A change of variable $y=QPx$ gives

$$
y^*(I{-}K^*K)y{=}x^*(H{-}B^*HB)x\text{, where }H{=}P^*Q^*QP\text{.}
$$

Since H is clearly positive definite, the proof for the necessity part is complete.

*Sufficiency:*³ Let *H* be *any* positive definite Hermitian matrix for which $H - B^*HB$ is positive definite. Since *H* is positive definite, $H = \bar{D} D^* D$, and by making the change of variables $Dx=y$,

$$
x^*(H-B^*HB)x = y^*(I-K^*K)y > 0, \qquad (K=DBD^{-1}).
$$
\n(6)

 1 This work was performed under a National Bureau of Standards contract with the University of California at Los Angeles, and was sponsored in part by the Office of Naval Research. 2 University of Natal, Durban, Sou

³ This proof was suggested by L. J. Paige.

Now, if λ_i is any characteristic root of K (and hence of E), y_i an associated characteristic vector, we see that

 $y_i^*(I - K^*K)y_i = y_i^*y_i - \overline{\lambda}_i \lambda_i y_i^*y_i > 0.$

Thus, $|\lambda_i| \leq 1$ for all characteristic roots of *B*, and hence B^n will converge to 0.

To prove the corollary, we suppose the elements of *13* real. Let *H* be the matrix of the theorem, then $H = A + iS$, where A is a real symmetric matrix, and *S* is a real skew-symmetric matrix. If *H* is positive definite, then it is known that *A* is positive definite. **Again**

$$
H-B*HB=H-B'HB=A-B'AB+i\ (S-B'SB).
$$

 $A - B'AB$ is symmetric and $S - B'SB$ is skew-symmetric. If $H - B'HB$ is positive definite, then $A-B'AB$ is positive definite. Hence we may use A in place of H in the theorem.

We give a sufficiency test for the nonconvergence. of $Bⁿ$ to 0.

Theorem 2. J} *there exists a nonpositive-definite* $matrix H$ such that $H - B*HB$ is positive definite, then $\lim B^n \neq 0$. $n \rightarrow \infty$

For proof, we observe that if H is not positive definite, a vector *x* may be found such that $x^*Hx \leq 0$. Further, if $H - B^*HB$ is positive definite, the sequence $x^* B^{*n} H B^n x$ is decreasing. Hence $\lim_{n \to \infty} B^n x \neq 0$

 $n \rightarrow \infty$

and so $\lim B^n \neq 0$.

It may be observed that the condition that *H -R*Hfl* should be positive definite may be weakened to $H - B^* H \dot{B}$ at least positive-semidefinite, provided H is not positive-semi-definite.
Now we shall prove a generalization of the neces-

sity part of theorem 1.

Theorem 3. *Let 13 be a matrix whose characteristic roots of modulus* 1 *have multiplicity no greater than two.* Then there exists a nonzero Hermitian matrix H₁ *such that* $H_1 - B^*H_1B > 0$.

Corollary 2. J} *13 is real,* HI *may be taken real and symmetric. Proof.* Using the expression (2) for $(I - K^*K)$, we see that

$$
I - K^* \bar{K} - K^* (I - K^* K) K = [I - N_1^* N_1 - N_1^* (I - N_1^* N_1) N_1] + \dots + [I - N_r^* N_r - N_r^* (I - N_r^* N_r) N_r]
$$

and again, this will be positive semidefinite if

$$
(I - N_i * N_i) - N_i * (I - N_i * N_i)N_i = (1 - \overline{\lambda}_i \lambda_i)^2 I - 2\epsilon_i (1 - \overline{\lambda}_i \lambda_i)E + \epsilon_i^2 [\lambda_i U^* E + \overline{\lambda}_i EU + \epsilon_i U^* EU], \quad (8)
$$

 ${E = (\bar{\lambda}_i U + \lambda_i U^* + \epsilon_i U^* U)}$, is positive semidefinite.

Obviously, by a proper choice of ϵ_i , (8) can be made positive definite if B has no characteristic roots of modulus l.

If *B* has a characteristic root such that $\overline{\lambda}_i \lambda_i = 1$, the right, side of (8) vanishes for roots of multiplicity 1.

For roots of multiplicity two, (8) becomes $\begin{pmatrix} 0 & 0 \\ 0 & 2\epsilon_i^2 \end{pmatrix}$ and hence can be made positive semidefinite. Now a simple change of variables, $y=QPx$, as in

Theorem 1, yields

$$
\begin{split} y^*[(I-K^*K) - K^*(I-K^*K) \mathbf{K}]y \\ = & \ x^*[(H-B^*HB) - B^*(H-B^*HB)B]x \geqq 0, \end{split}
$$

where $H = P^*Q^*QP$. Thus the H_1 of our theorem is chosen as $H - B^*HB$.

If the multiplicity of a root of modulus 1 is three or greater, the right side of (8) is not positive semidefinite since it will always contain the principal

subminor
$$
\epsilon_i^2 \begin{pmatrix} 0 & \overline{\lambda}_r^2 \\ \lambda_r^2 & \epsilon_i^2 + 2\overline{\lambda}_i \lambda_i \end{pmatrix}
$$
.

Hence the method used in the proof of this theorem
does not vield an H_1 in these cases.

It may be observed that $\lim Bⁿ=0$, if and only if $H₁$ is positive definite. For, if B has no roots of modulus equal to 1, then from the proof of the theorem it follows that $H_1 - B^*H_1B$ is positive definite, and the results follow from the sufficiency part of Theorem 1 and from Theorem 2. If B has a root of modulus 1, then since $H_1 = H - B^* H B$, we may show, as in the proof of the sufficiency part of Theorem 1, that H_1 is at best positive semidefinite, and hence also not positive definite. In this case also $\lim_{n\to\infty} B^n \neq 0$.

Corollary 2 may be proved in the same way as corollary 1 of theorem l.

Los ANGELES, October 12, 1951.