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On the Estimation of an Eigenvalue by an Additive 
Functional of a Stochastic Process, With Special 
Reference to the Kac-Donsker Method l 

R. Fortet 

A " Monte Carlo" method is described for t he determinat ion of t he eigenvalues and t he 
F redholm determinant of cer tain Fredholm integral equat ions with positive kernel r et,T). 
The method is based on a t heorem by Kac and Siegert. An appropriate stochastic process 
is constructed from a Poisson process, for the case t hat r et,T) depends on t - T only. 

The second part of t he paper contains a discussion of t he various errors inherent in the 
method of Donsker and K ac for the determinat.ion of t he lowest eigenvalue of Schrodinger 's 
equation . 

1. Introduction 
Kac and Donsker [1 , 2] 2 have given a "Monte 

Carlo" method for estimating the smallest eigenvalue 
of a linear operator, when this operator is of a cer
tain type. The starting point of their method is to 
consider an additive functional of a Wiener-Levy 
process. In what follows we intend to give: 1°) a 
different method (but which also consists of con
sidering an additive functional of a random process) 
of estimating the smallest eigenvalues of some inte
gral equat ions with kernals of nonnegative type; 2°) 
some remarks on the Kac-Donsker method. 

2. Integral Equations With Positive Definite 
Kernel 

For this first part, the following theorem will be 
fundamental. Theorem: Let X(t ) be a real, Lapla
cian 3 rf ,4 defined for a < t< b (a and b finite) and the 
covariance r (t,T) of which is a continuous function 
of (t,T ) on the domain (a~t~b, a~T~b). Let us 
consider the rv: 4 

(1) 

and the integral equation: 

If D ('A ) is the Fredholm's determinant of the equation 
(2), the cf 6 cf> (v) of Y is equal to D (2iv) -t. 

This theorem was statcd by K ac and Siegert [3,4] 
(Kac gave only some weaker results, but the generali
zation is obvious; we gave a proof of the general 
theorem in [5]). It is easy to give assumptions under 
which the theorem is valid if a= - (X) , or b= + (X) , or 

I T he preparation o[ this paper was sponsored (in part) by the Office o[ Naval 
Researcb. 

, Figures in brackets indicate the literature refe rences at the end of this paper. 
3 rrhis is, Gaussian . 
.fo rf random function; rv, random variable. 
5 cf: characteristic function; fr, fWlction of repa.rtition (i. e., cumulative dis· 

tribution [unction). 
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a= - (X) and b= + co ; also it follows from a paper by 
Kac [4] that the theorem remains valid if, instead of 
(1) and (2) , we consider the rv: 

f: h (t)X2(t) dt, h (t) ~ 0 

and the integral equation: 

But for the principle of the method, it will be suffi 
cient to restrict ourselves to the above statement. 

P rinciple oj the method: We consider an integral equa
tion (2), with a continuous kernel of nonnegative t.ype 
r (t ,T), and we would like to estimate its smallest 
eigenvalues, and more generally its Fredholm's det er
minant D (>.. ). Now r(t,T), being of nonnegative ! 
type, may be considered as a covariance of a Lapla
cian process X (t), which is entirely determined (see 
[8]) by r (t,T). We assume that some random game 
has been se t up that implies a realization of X(t) and , 
consequen tly, of Y, as defined by (1). We make n 
independent trials, obtaining n values Yl, Y2, .. " 
Yn of Y; from these y/s, we can deduce the following 
fr 5 Gn(y): 

1 . 
Gn(Y)=-X[number of those y/s which are< y); 

n 
and it is well known that Gn(y) is an estimate of the 
fr G(y) of Y. H ence, we have an estimate cf>n(v) of 
c f cf>(v) of Y by: 

(3) 

(the integral is extended from 0 only to + (X) because 
Y is ~ 0); bu t (3) is equivalent to : 

(3)' 



~----------------~--------~--~------~--~----~--------~-----------------------------------------

> 

I 

Now fjJ (v) i tlte m e 6 of th e rv Z (v) = eiOY ; hence 
we obta.in an es tima te D nCA) of D (A) by the preceding 
t heorem , by put ting: 

D n (2iv)=+( ). 
fjJ" v 

(4 ) 

H owever , v being real in (3 ) , (4) gives an approxi
mation of D CA) only for the values of A that ar e 
p urely imaginary; and the roots of DCA), which are 
r eal and positive, are no t ob tained by this procedure. 
Bu t we can operate in the two following ways: 

CA) Under the preceding assumptions, D (A) is an 
ent ire fun ction of genus a t most 1; hence D (A) is 
representable by an en tire series: 

wher e t he at' s are the deri vatives of D (A) for A= O. 
The formula : 

fjJ(v) = D (2iv) -l 
s hows tha t fjJ (v) is ind efini tely differen t iable for v 
close to 0 and that t he a/s can be deduced from the 
derivatives of fjJ(v) for v= o. These deriva tives are 
equal to i IMI' i21112 , .. . , ikM k' ... , where the M k 
a m the moments of Y, and these moments may be 
es timated , by som e well-known statistical procedures, 
from t he y/s; hence we can ob tain estimates aZ of the 
at's and an approximate represen tation D n (A) of 
D (A) by : 

But it is well known by statisticians that, if n is not 
very large, it is diffi cul t to obtain good estimates of 
NIk for k> 8; i t will be n ecessary , in general, to adop t 
an approxim ate r epresen ta tion of D (A) by a poly
nomial of the following type: 

s an 
D~(A)= :B -f Ak 

k= 1 k . 
(6) 

with s ~ 8. Bu t t his seems to be sufficien t in som e 
cases.7 F or instan ce, in order to estimate the 2 or 3 
lowest roo ts AI, A2, A3, ... of D (A), we can ob tain 
numerically the lowest roo ts A7, A1, . . . of (6), 
and these Ai m ay be consid ered as good approxima
tions for AI, A2, . . . 
(B ) W e can also employ the following procedure: 
D (A) b eing an entire function of genus at m ost 1, 
t here are two posi tive numbers A and p such that: 

ID (A) I ~ Aep'I~1 

for every A and every p ' > p ; hence, the function 

f1 (s) = :B ~+\ 
k S 

6 rr c. lnathema .. ical expectation ; t ile lnathemai ical expectation oC a rv X is 
represented by ErA'). 

7 There is a good method for obta in ing es timates of the lowest roots of a Fred. 
bollll dctermin an t when its first coelli eients arC known. 
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·1 d .. 1 h . conSI( ere as a sen es III - , as a radiUS of convergence 
s 

1 
- > 0, and 
p 

f1(s) = J_+a>a>es~ D CA)dA 

if Sf! (s» p> O; hence for every A (and particularly 
for A real and > 0), we have: 

(7) 

for any fixed real a> p ; if A is real and < 0, the in te
gral : 

cp ( --i~)= i +a> e A2Y dG(y) (8) 

has a m eaning, and, as a consequen ce of the pre
ceding theorem , we have: 

( A)-2 
D (A)= fjJ --i "2 for A r eal and < 0 (9) 

H ence we can ob tain , by a sta tistical procedure, an 

estima te of fjJ ( -- i~) by (8), then an estimate of D (A) 

(A< O) by (9), then an estim a te of 6 (a+ifJ) by (6) , 
and finally a n estimate of D (A) for A> O (or for any A) 
by (7) . There are two numer ical in tegrations 
[(6) a nd (7) ] to be perform ed, and this procedure does 
n ot seem to be of practical in ter es t. 
Reali~ation of. the.game : Ano ther diffi culty lies in t he 
practlca} re~hzatlOn of X(t) . This question is also 
m terestmg from a theoretical poin t of view. I t may 
happen that ther e is an obvious procedure for this 
rea~iza ti on , with a ~uffi cien tly close approxima tion. 
Th] happens for mstance if a= O, b> O and if 
r et, T)=ml.n (t, '0 ; in this case, X(t ) is a Wiener-Levy 
process (wI th .. 1'(0)=0, O~ t<b) and on e can see in 
[2] how i t is possible to realize (approximately) X(t).8 

~n m any cases i t is possible to r educe X ( t ) to a 
W lCner-Levy process, as for instan ce if X(t) is a 
M arkoff process (see [5, p . 198]); that happens jf 
r(t ,T) =e-k!T-tJ, where k is any constan t . Bu t in 
gen~ral , for a given r (t ,T), we do no t know if X(t ) is 
or IS n ot a M arkoff process (to da te, there is no 
gener al theorem abou t this). On the other hand 
the reduction of XU) to a Wiener-Levy process need ~ 
som e compu tation which, al though easy to perform, 
may be lengthy . 

W e can look for a realization of X(t) in an other 
direction . First, we m ention that, X Ct) being a 
permanen t proce.ss, it cannot be r ealized rigorously: 
we c.an on~y ? btam a process X*(t ) t hat is an approxi
matIOn of J\ (t) . Then too , t he gam e con cerns, no t 
Y, bu t 

o X(t) is a Wiener·Levy process if the r. v. X(T)-X(t) [wi t h T>tl is independent 
of the r. v. X(u) for an y u;;;i t , and if it is a La placian r. v. with Ill . e. equal to 0 
and a stan dard deviation equal to..r;=t. By definition , r (t, T) is the Ill . e. of the 
product X(t) . X (T)=X(tltX(tl+IX(T)-:X(tlll, and if X(O) =0, O;;;it < ", the 
m. e. of thiS IS equal to t , that IS to say: lllm (t, T), sin ce T> t . 
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This substitution is valid only if we can prove that 
t he fr of y* is an approximation of that of Y. Bu t, 
because this is an intuitive feature (at least under 
some assumptions), we shall admit it. 

Let N(t) be a Poisson's process, homogeneo us and 
with densi ty m; let R(t ,r ) be an ordinary function 
defined over t he domain 0 1 : - CD < t , T< + CD, and 
uch tha t, for every t, 

(Lebesgue integral.) 

We put : 
N*(t) = N(t) - E [N(t)] =N(t) -mt 

and let X*(t) be the process defined by: 

X* (t) = lim mq {iac l ( fj R(t,T)dN*(T)}9 (10) 
a -+-oo, 8-++00 -/mJa 

(for the defini t ion of a Poisson process, see for in
stance [7 , p . 212]: for the precise meaning of (10), 
see [5]). In what follows, ,ye shall call such an X* (t ) 
a " Poisson 's rf". 

In general X*(t) may be simply represented by: 

X* (t)= ~(~ R(t,Tj)- mJ +oo R(t ,T)dT) (10)' 
,,1m J -'" 

where the T/S are the jumps of N(t) . It is possible, 
from a collection of random digits, to realize correctly 
a Poisson 's process: hence it is possible to realize a 
Poisson 's rf ; in fact, it is possible to think of a device 
(employing electrical noise, or emission of (l' - par
t icles, eLc .. . . ) giving X*(t) in a physical way. 

It has been proved (see, for instance [5]), that, if 
m-7+ rr, X*(t) tend s toward the Laplacian process, 
the covariance r(t,T) of which is given by: 

J+OO 
r (t, T)= _'" R (t,1[) R (T,U)du. (11) 

Hence, for a given r(t ,T), the problem of realizing 
approximately a L aplacian process X(t) with co
variance r(t ,T) is solved if we can determine an 
R(t,T) defined over 0 1, with 

for every t 

and such t hat (11) would be satisfied, at least over 
the following domain 0 : 

a~t, T ~ b. 

H ence, the first step is the theoretical study of the 
existence of solu tions R (t,T) for (11); but our prac
tical a im will be reached only if there is a solution 
which is easy to determine nLllllerically. We shall 
consider : first a particular case, and second , the 
general case . 

g mq ill quadratic rrean; 2.(' . alInost ce rtain (w ith vrobab ility 1); iac IT'('2ns : 
stochast ic integral with probab ili ty 1. For definition of these te rn s, see Ii]. 

(1 ) Let us assume that there exists a function 
r I (T-t) of (T-t) only, defin ed over OJ, symmetric and 
of the nonnegative type (over D I), and such that 
r(t,T)=r\(T - t) over D. W e shall pu t h= T- t , 
r\ (T- t ) = r(h); in this case, X(t) is, at least over t he 
interval (a, b), a stationary process, and r(h) is a 
positive definite function [see (8)]. I t is sufficien t 
to have a solution of 

J+'" 
r 1(T-t)= _ 00 R(t,u) R(T,U)du 

over D\. It is possible tha t every solu t ion R (t,T) of 
(11)1 depends on (T- t) only, bu t that is not sure. 
But it is sufficien t to look for thi s kind of solu tion ; 
that is to say, to look for (r eal) functions R (u) such 
that: 

J+oo 
. _'" RZ (u) du< + CD l'(h) = ,J: oo"' R (U) R (u+ h)du. 

(11)' 

The corresponding X*(t) will be stationary itself. 
We proved in [9] tha t (ll )' has solutions only if r(h) is 
continuous [h ence, 1'(11, ) is a cf] and if the spectral 
function F(w) of T(h) is absolu tely con tinuous, that is 
to say admits a derivativej(w); in this case, R(u) is a 
solu tion of (ll) ' if, and only if, 

[Fourier-Plancherel transform] (12) 

where 1/; (w) is any odd function.1o 'We can consider 
tha t this result and (12) give a convenien t answer to 
oUI·problem. 

(2) The general case is much more drfficult , and it 
seems that thc only resul t IS the followmg theorem, 
that we proved in [9]. If r (t,T), supposed to be 
defined over D I for instance, is continuous (as a 
function of the two variables t , T) over any bounded 
domain , there is at least one solu tion for (11 ), valid 
over DJ ; bu t we do no t know any easy way to com
pute numerically this solu tion , or any other solu tion 
(it is easy to see tha t, in general, (11) has many, and 
even infinitely many, solutions). Conclusion: The 
interest of the Monte-Carlo method under considera
tion here would be that i t can give simultaneously 
several eigenvalu es of (2); bu t i t seems possible to 
perform it only in the case where r(t,T) depends on 
(T-t ) only ; even in this case, the method is compli
cated, bu t it might be interesting to try i t. 

3. The Kac-Donsker Method 

Let us consider the equation: 

c[2\J1 . 
;6-Z 2-V(X)\JI (X)=- A'lt (X), (13) 

GX 

10 In this papcr, 1'(t,T) and R (t,"T) are always supposed to be real. On the other 
hand, it is well known that, if r(h ) is a c. f., th ere is a real non d ecrcasing function 
F(w)(-"'<w<+ oo), with : F (-oo)= O, F (+oo)= l, and such tbat : 

(Theorem of Bochn er). 
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where A is a cons tant; \ji( .l:) and V (x ) arc funct-: ons 
defined ove r (- 00 , + 00) ; 1'(x) is given and ~ 0: 

r(x) ~ 0 .1l (14) 

U nd er some gen eral assumptions on V, (13) has 
Donnull solutions only for some positive values AI, 
A2, ... , Aj, , , , of A (th ese A/s are th e eigenvalu es 
of (13); we assume the A/s ordered by increasing 
vfLlu es). Kac and Donsker (sec [2) ; we a dh ere to th e 
n otation of [2)) try to est imate Al (their method can 
b e extended to A2, A3, ... , and also to the compu ta
tion of th e corresponding eigenfunctions ; but for the 
disc ussion of the method , we shall r estrict ourselves 
to th e es timation of AI )' in tIle following way : 

L et 'Ii ix) b e the eigenfunction co rresponding to 
Aj ; that is Lo say the nonDull solution of (13) for 
A= Aj ; we sllppose that the 'Ii/s ar c normali zed. W e 
put 

L (1) = ltv [X (u)J clu, (t ~ 0) 

where X(t) is a Wien er-Levy process with ';'Y(O) = O; 
also we put 

Z (s ;t)= exp. [-,sL(t)J (s ~ 0). 

Kac proved that : 

E [Z(l ; t)J = i= e- Xjl \fr j (0) J-+oo'" \jI j (x) ell' . (1 5) 

If t is large , \\' e h ave: 

E [Z (l ; t)J ~ e-X,t \jI j (0) f _+",oo'li j (.1') dJ:. 

H ence: 

Al = lim _'!'t log E [Z (1; t)) 
t->+", ' 

or : 

Al ~ -+ log E [Z (1; OJ if t is large . 

, Ve call ('s timate Al by (16 )1 , bli! Kac a nd Donsker 
howed tha,t , in order to avo id th e usc of too large 

valu es of I, it is better to consider two different and 
s ufficiently large \'illues of t , tl and t2 , and to estimate 
Al by: 

(16) 

Now, if ,XI' '\'2, . . . , X k , . •. are mutually inde
pendent rv with the samc fl' , each with me equal 
to 0 find s tandard deviation eq ual to 1, we pu t: 

S k=X I + X 2 + ... + X k' 

L n (t) =.!. ~ v (S:-), 
n k<nt .yn 

r ,,(t) = exp. [- Ln(t)J. (17) 
11 IL is possible to replace (14) b y l -(x) ;?,k, where /, is a n y constant. In com

parison with !'om(' other papers 011 Y1:ontc-Carlo methods, for instance by 'Vasow 
[ll] (see a lso [121) , iL see ms t ha,t , in orde,' for the method LO be a ppli cable, some 
assumpt.ion on V is nC'c('ssa r~r , but a wC'ali:er onc than (t4) ought t.o be suffi cient. 
It wou ld be worLh while to sLud y this questio n. W e men Lion t hat (13) is a 
Schrod in gcl"s equation. 
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Kil C proved [l] that , under grncral assumpLions on 
\ ', if n -0>+ 00, the II' of Ln(t ) lend s toward the fr of 
L(t). I t follows that E [YI/(t )J tends toward E[Z(l ;t)) 
[bere, (14) is essentia l) ; hence, wc can estimate 
Al by: 

(16)' 

if n is sufficiently large. Hence thr ])roc('d u]'e is the 
following: t I , t2, n being properl~' chosen , we perform 
a large number m 'of ind ependent realizations y~ (II), 
Y; (tI ), ' . " Y;~(t I) and Y~ (t2 ) , Y~ (t2), . , ., Y;:' (t2 ) 

of Y n(tI) and Y n (t2); and we est imate E[Y,, (tI )J and 
E[Y,, (t2)J by lhe expl'rimental "illues: 

Um (t )=~ i:, y k (t ) 
2 m k=l Il 2· 

Ei'or furth er ck Lails on t he p l'Ocedllre, sec [2J. 
H en ce, we have to cO lls id er three errors : 
A. A statis t ical errol' , arisin~l' from Lhe fac t Ul at 

(,m(tI) and ( "m (t2) a rc not l'i go rJ usly equal Lo 
E [YI/(t I) J and E[Y,, (t2 )J; 

B. An erro l' ca ll sed b.l" the file t th at ElYI/(tI )J and 
E[YI/(t2)J a re not rigo ro ll sl~" eq llal to E[Z(1 ;tI)] and 
E[Z (l ;t 2 ) ] [replacement of ( 16) b~" (16)']; 

C. An erro l' causrd b.v th e fact that (16) is only 
an ap proxima tion . 

There is a fourth errol' , hecause th e random digits, 
whi ch we are ul t imately o bliged to U SL~ in the compu
tational proc::" dul'e, a rc ncver pC' l'fl' c t, random cI ig i ts; 
bu t this error seems to us ver.v small in co mparison 
to A, B, C. In fact, in all th e experiments pcrformecl 
to date , of which the allthor is aware, the results a rc 
in goo d ag reemen t with a hvpothesis of p erfect ntn
domness of the random digits ; consequently, we shall 
not consid er this r['mr in what fo llows. 

Discussion of the errors A, B , C: It will be (;on
veni ent for t he discussion to take a definite example, 
so we sha ll take l '(x) = .r2 , because in Lhis case t he 
A/s and the 1/;/ s arc known ; bu t wr shall sec that 
som e of the conclu sions may de pen d on 1 '. W e 
assume t2< 11_ 

C. E r rol' C is the easiest to discuss. It is not 
connected with probabili ty theOl·.", Vve can readily 
estimate the propel' order of magnitud e for tl and t2: 
if 1'(x) =x2, AI= O,707 , ... , Az= 2,121 ... , Aj= 

2J-;;/, .. . ; if t2 is about 3 or 4 , and (t[ - t2) abo ut 
-y2 

1 01' 2, th e absolute error is about 1/200 ; we need 
relatively large valu es, as : t2= 5, t1= 8, to hilve th e 
errol' a bout 1/1000. For further dctails, sec [2J. 
In what follows, we ass ume that tl and t2 are d efinitely 
chosen. 

B. vVe know almost nothing abou t error B; when 
tl and t2 are fixed, it depends on two clements : the 
[1' of the X k' s, and the value of n. Let us assume 
that the ,Xk's have the following fr: 

Pr(Xk = l )= Pr()(k= - 1 ) = ~. 



The function r ( . .c) = ~2 incrcases relatively qui ckly 
with x; and the expected order of magnitude of [Sk[, 
which is {k, also increases; hence we can admit that, 
in (17) only the Sk'S with k ~ n t/d , where d is some
thing like 3, are important; hence it will be necessary, 
in order that B be small, that the Sk'S, .for k ~ nt/3 
have a fr close to Laplace's fl'. From known results, 
see [7], p . 153- , it follows that we must take nt ~. 1000 
for a fair approximation, and nt ~ 2000 for a good 
approximation. We do not get a precise estimate 
of the error B by this argument but we see that, in 
order to be able to take an n which is not too lar~e, 
it is better to take for the Xk's a symmetric fr; 
because in this case there is a faster approach to 
Laplace 's law. It is clearly best to take the Xk's 
(und hence the Sk'S) directly with a Laplace's law: 
this is more complicated from a practical point of 
view; however it is possible to realize a Laplaciail 
1''1 with a good approximation. In this case , it is 
possible to obtain an estimate of t.he error . For we 
can su ppose that Ski in is X (k/n), and jf X,,(t) is the 
rf defined by: 

r(k) k k+1 X ,,(t) = X - for : - ;;;,t<--, 
n n n 

we have 

Ln(t)= ! L:V [x ('::)J= { l V[X,,(u)]du . 
n k n .1 o 

If V(x) =x2 , we can write: 

L(t)-Ln(t) = !al [X2(U)_X;' (u) ]du 

= .f [X(u)+ X n(u)][X(u)- X n(u)]du; 

E (iL(t)-Ln(t) !) ;;;, ( l E([X (u)+ X n(u) ![X(u)-Xn(u) [)du. .10 
By Schwarz's inequality, we have 

E ([X(u) + X n(u) [[ X (u) - X n(u) J) 

;;;, , ,'E { [X(u)+Xn(u)]2 } X E { [X(u)-Xn(uW } 

where kn is the largest integer such that : k,Jn;;;, u. 
It follows that: 

Hence; 

Z (1 it) - Y net) = - [L(t) - Ln(t)]. e - L(t ) +8L(t) - OLn (I) 

L(t) and Ln(t) b eing ~ 0, we have: 

H ence 

[Z ( I ;t)-Yn(t) [ ;;;, [L(t) - Ln(t)1 
/ 3/2 

[E[Z(I;t)]-E[Yn(t)] [ ;;;, 2/3 ----;= ' (18) 
, 'n 

An analogous result may be obtained for V(x) = [x[" 
with a equals to any nonnegative number ; and 
more generally for a large class of nonnegative 
functions Vel:). For V (x)= [x [" with - 1<a<O 
(see appendix) it seems more difficult to obtain a 
limitation like (18) . 

But (18) gives an upper bound for an absolute 
error, and we need rather a bound for a relative erro)' ; 
but it seems more difficult to obtain this. 
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On the other hand, we are no t sure that (18) is 
the least upper bound for the absolu te errol'; abou t 
this, we can say two things: 

(1) In (18) the orders of magnitude with respect 
to nand 'Kith r espect to t seem to be the right orders; 
hence the absolute errol' is in cl'easing when t is in
creasing for a given fixed n. VIe know that, fo], 
error C, we have to take t sufficiently large. With 
Vex) = x2 the following bad feature appears, which 
will be called the feature "Ft" in what follows. It 
is that 

E[Z(I;t)] = [ch (t{2)r i [see appendix (23)] 

is expon entially dec l'easing wh en t ---;.+ co; hence the 
relative error is quickly increasing. For instance, 
if we choose t = 5 (which is not a Yery large value), 
we have 

E[Z(1 ;5) ] "" 0,043 ... , 

and if we use (18), we find that we have to take 
n~3000 in order to have a rela tive error about 
1/100. 

Fl seems to be related to the fact tha t Vex) = x 2 

is not bounded as x---;.+ co. 
(2) From the experimen ts performed to date, the 

error B seems smaller than indica ted by (18); prob
ably, the coefficient % in (18) may be replaced by a ) 
smaller one; this does not eliminate F l , but it does "' 
perhaps indicate that Fl is no t very important 
prac tically . 

A. We shall now discuss the probable order of 
magnitude of the error A, as a function of m; this 
order, for the relative error, is u/J1. ,/m, where J.I. is 
the me of Yn (t) and u its standard deviation. We 
know neither J.I. nor u; but (18) shows that J.l. is close "'i 
to E[Z(1 ;t) ], if n is large (bu t that is necessary for 
B). It is easy to obtain an analogous inequality 
which shows that u is close to the standard deviation 
of Z (1 ;t); it is possible to avoid this in terference of 
two unknown quantities J.I. and fT, with a slight 
modification of our procedure, but it seems sufficien t 
fo), our purpose to identify J.I. with E (Z (1 ;t)] and u .\ 
with the standard deviation of Z (I ;t) . 



- ....... 

With V (X) =X2, wc know that 1l= [ch(t -y'2-)]-M, We known by [2] that: 
that is to say: 1l ",, 0,043 for t= 5; we have also [see 
append ix (21)]: E[Z(1 ;t)] =e(-X1+<I)t 

E[Z(l ;t?] = E[e- 2L(t) ] = E[Z(2 ; t)] =(ch 2t)-M 

that is to say, if t = 5: 

E[Z(l ;5)2] = 0,000953. 
,.c; Hence 

u 2= E[Z(1; W ] - [E[Z (l; 5)])2,,-, 10 - 4 .75 .8 

~"" 2. 
Il 

~. To have a negligible probability of a relative errol' 
of more than one percent, we have to take m = 4.104, 

which is a very large number. The reason is that we 
enco unter a second bad feature, the following feature 
" F 2" : 

> 

W'e have: 

Il = E[Z(l ;t)] = [ch (t · 2] -M 

u 2 = E[Z(1 ;t)2] - [E[Z (1 ; t)J)2 = (c h 2t)-M_(ch·/2 t)- I. 

Hcn ce if t is large (in fact, for t> 2): 

__ ,_ 1 , 

Jl "-' -y''i e -v"2 u "-' 2 4" e -"2 

u -+ + h /2- 1 ) 

- ,,-,2 e 
Jl 

which tends toward OJ when t + OJ • 

Another aspect of the same fact is the following: 
more generally , we take V(x)=lxla, with a> - 1 
(see appendix); let G(t;a) and G(a) be the fr's of 
L(t) and L(l); we can write: 

r+'" E[Z(1 ;t) ]= Jo e-a dG(t;a). 

But, if V= E[L(1)] and if 0 is the standard deviation 
of L (1) , we can deduce from a remark in the appenr dix, and an integration by parts, that: 

With a being any fixed positive number, we put: 

a 

( oat' +"2 
A(a; t)= Jo G({3)e-ada 

[ +- -~ 
B (a; t)= J+~ G({3)e-ada~ e-oa, 2 

• oat 2 

Hence 

E[Z(1 ;t)] = - G( -i) +A(a;t)+B (a ;t). 
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where EI 0 ift-l>+ OJ . H ence, if a> O, we have 

Al=- t~~ i lOg [ - G( - i)+A(a;t)] 

and this is valid for any a> O;-G(-v/o) + A (a; t ) 
is depending only on the values of G(Il) for:-v/o~ 
Il ~ - v/o+ a. H ence At is a local characteristic of 
G(a) , in the neighborhood (and to the right) of the 
value a= -vlo; hence a good estimation of Al is 
eqUIvalent IS a good local statistical estimation of 
G(a) [unplying, for instance, a good estimation of 
several derivatives of G(a ) for a= -viol . I t 1 

obvious and well known that such an estimation is 
very difficult. 

But this conclusion may bccom e wrong if a ~O ; 
that is to say, if a ~ 0, the feature F2 may disappear. 

Conclusion: W e can conclud e that the Kac
Donsker method givcs an asymptotic es timaLion of 
Ai; that i to say lhat we must take t sufficien tly 
large [we aw that values like 4 or 5 are scarcely 
suffi cient]; but when t is large, features Fi and F2 
imply that nand m have to be very large. The 
computation will thcrefore be a lengthy one if even 
only very nominal accuracy is to be achieved . This 
is valid for Vex) = x2 and for a large class of some 
increasing V of the same kind. 

Bu t we saw that F2 may disappear for r ex) = Ixla 

with a< O; perhaps Pi may also disappear in such a 
case, and consequ ently the method may be much 
better. Hence, it seems that we have two problems: 

(a) To examine if there is a class of 1"s such as 
features FI and F2 disappear for V belonging to this 
class. 

(b) To examine if the method can be improved, 
even when F I and F2 are present, eventually by 
some ehange in the melhod 01' in thc procedure. 

Concerning problem (b), we report the following 
remark by 11. Kac: if wc considcr, instead of 
E[7(1; t ) ], 

E { Z (1 ;t) lh [X(t)] }, 

then he has provcd that : 12 

(19) 
H ence 

(20) 

Now (20) is no longer an asymptotic result and we 
can choose t l and t2 as we like. H ence we have the 
following method : \\'c usr 7 (1; t) 1fl[X (t )] instead of 
7(1; t); and with tl and t2 sufficiently small, FI 
disappears , and also F 2 , at least in the case Vex) = x2• 

The difficulty is t hat we have to Imow 1f1 in 
advance. Bu t in practice we n eed only a rough 
approximation of 1f1 ; it may even be sufficien t, 

" M . Kac w ill soon publish the proof and some complementary ex planations. 



practically, to operate, instead of >/;1, with any 
function>/; such that 

is small . (In this case, (19) is not l'lgorous, bu t 
may be a sufficient approximation). Under these 
conditions, it seems possible to determine such a >/; 
by a preliminary rough experiment; it would be 
interesting to try it, but in any case the Kac-Donsker 
method became more complicated. 

It appears that in general [even if Vex) ~X2], this 
procedure will avoid FI; but in some interesting 
cases, F2 still remains. For instance, Kac ha s 
studied a three-dimensional case, where (13) is 
replaced by: 

wh ere 

1 1 
- 6.>/;-- >/;=- A>/; 
2 l' 

1 
V = - ' 

l' 

(13a) 

It is a compli cated case, because (l3a) has not only 
a discrete spectrum, but also a continuous one. 
However the method can be applied , with a 3-
dimensional Wiener-Levy process [X (t), Y(t), 7 (t) ], 
and putting 

It happens that, with the introduction of >/;1 as above, 
,ye can avoid FI, but not F 2 , in t he sense that the 
ratio (f l p. remains large even for small t. The reason 
is that for small t, [X2(t)+ P (t) +72(t) ]-% is very 
large. 

A useful device in manv Monte Carlo methods is 
" importance sampling" whi ch consists in playing 
th e game not with the natural distribu tion functions, 
but with some other distribution functions con
veniently chosen. Bu t here the game is played 
with the distribution function of the X k' s, and K ac 
has proved that this distribution function is practi
cally irrelevant. 

The greatest hope seems in the following direction . 
Considering the case V(x) = x2, for instance, we saw 
that the problem r educes to a good statistical deter
mination of G(ex) for ex close to ,,/0. Let m be the 
total number of samples; let N m be the number of 
the samples for which 

where a is a given positive small number. The 
determination of G(ex) , in the neighborhood of 
- ,,/0, may be considered good if N n is greater than a 
definite number N; we can stop the game for the 
first m such that 

and, by chance, this may happen for a relatively 
small m: in other words, we can follow a sequential 
Procedure. .. 

\ On the other hand, the fact that Al is a local 
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characteristic of G (ex) in the neighborhood of - "/ {) 
does mean that the knowledge of G (ex) for some other 
values of a cannot give information about AI' We 
can consider the general problem of the statistical 
analysis of the results with respect to the spectrum 
of (13); but in the present state of the statistics, 
th ere seems to be li ttle hope in this direction. 
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5 . Appendix 
X U) being a " Tie ner-Levy process, with X (O) = 0, we con

sider the following fun ctional: 

This stochast ic integral has a meaning when a> - ], in the '1 
following sense: X(t) being ac a continuous function , IX (I) I" 
is ac a co ntin uous function , and the integral 

exis ts, but may be infini te. But if a> - 1, it is ac fini te, 
because in the firs t place, 

where 
y 2 

1 f +a> --K = ---= Iy lae 2 dy , 
.y2rr - a> 

and [( is < + 00 if a> - 1. Therefore 



t he first member of t he equality fo ll owing from Fubini 's 
Theorem. In what follows we suppose a> - 1. Now L( t) 

1+'" 
has the ame law as t 2 L( J) does, because, if we put u = tv, 
we have 

and if we co nsider X(lv )/--/i , i t may be considered as a 
'Yic lle r-Levy process in respect to v only ; hence we have 

l+~ ( J 
L (I) = t 2 Jo [Y (v) [a dv 

where fo1[y (v) [a dv has the same law as L (1) does. 

As an application of t he preceding formula, the value of 
E[7, (s;t) ] for a = 2 will now be computed . 

We know, by t he theorem of Pa rt I , that the ef </>(v) of L( l ) 
1 

is eq ual to D (2iv) - 2, where D (X) is the Fredh olm 's determinant 
of the integral eq uat ion 

( 21 ) 

s in ce r(t,T) = mi n (t,T) for a Wie ner-Levy process; from (21) 
we deduce 

H ence f (O) = 0; the ll 

.f'(t) = X f f(T)dT 

D77170-5~ --7 7S 

hence f' (1) = 0 ; t hen 

!"( t ) = -X!(I). ( 22 ) 

H ence (21) is equivalent to (22), wi th the boun dary conditions 
f(O) = f'( l ) = 0. The solutions of (22) are 

f (t) = A cos ~ t + B sin ..,/~t. 

In order to have f( O) = f'(1) = O, we must have A = O and 
X= 7r2/4 (1+ 2k)2 (k = O, 1, 2, . . . ); hence, putting X= }l2, we 
have 

D ( X)= ~ [ 1 ~ ( 1 : 2k )2J = ~ [ 1- ~ ( 1: 2k ) J = 

cos }l = cos (..,!N. 
Therefore 

I 

</> (v) = cos (--/2iv) -2. 

No w </>(v) is equal to E [ei ,L(l)] ; hence, in t he notation of t he 
preceding pages 

1 

E[Z (s; l)] = B[e- ·L (1)] = </> (is) = (cosi ..,l2s) -2= (ch..,l2s) 2 

Now, from a n earlier remark, we have 

B [Z (s ; t)] = B [e- ·L(!)] = B [r · h (1)] = B [Z (st2; 1 )]. 

H ence 
1 

B [Z (s ;t)] = [eh (t ..,i2s) f :i 

Los ANGELES, J anuary 26, 1951. 

( 23 ) 
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