Journal of Research of the National Bureau of Standards

A Note on Bounds of Multiple Characteristic Roots of a Matrix

P. Stein²

If $A = (a_{is})$ is an $n \times n$ matrix, and if C_i are the circles, center a_{ii} and radii $\sum_{s=1}^{n} |a_{is}|$, and if

 λ is a characteristic root with *m* independent characteristic vectors, Olga Taussky proved the following two results:

(1) If λ lies outside all but one circle C_i , then *m* cannot be greater than 1.

(2) If m=n-1, then λ is an inner or boundary point of at least m circles C_i .

In this note the gap between these two results is closed, and it is shown that λ lies in at least m circles C_i , for all finite values of m and n, $m \leq n$.

If $A = (a_{ij})$ is an $n \times n$ matrix and if C_i are the

circles with centres
$$a_{ii}$$
 and radii $\sum_{\substack{s=1\\s\neq i}}^{n} |a_{is}|$, Olga Taussky

proves these two theorems.

Theorem A. A characteristic root λ , which is an inner or boundary point of only one C_i , cannot have two independent characteristic vectors corresponding to it.

Theorem B. If A has a characteristic root λ of multiplicity n-1, with n-1 independent characteristic vectors, the λ lies in at least n-1 circles C_i .

In this note it is proved that

Theorem C. If λ is a characteristic root of A with $m \leq n$ independent characteristic vectors corresponding to it, then λ lies in at least *m* circles C_i . Theorem C is a generalization of both Theorems

A and B and closes the gap between them.

Theorem C contains the following generalization of a well-known theorem about determinants (for definitions and references, see, O. Taussky, A recurring theorem on determinants, Am. Math. Monthly **56**, 672 (1949)).

Theorem D^4 Let A be a matrix that cannot be transformed to the form $\begin{pmatrix} P & U \\ O & Q \end{pmatrix}$ by the same permutation of the rows and columns, where O consists

of zeros, and P and Q are square matrices. Let

further
$$|a_{ii}| \neq \sum_{\substack{s=1\\s\neq i}} |a_{is}|$$
 for at least one value of *i*. If

the rank of the matrix A is n-m, where $0 \le m \le n$ then there must be at least m values of i for which the inequalities

$$|a_{ii}| < \sum_{\substack{s=1\\s\neq i}}^n |a_{is}|$$

hold.

¹ O. Taussky, Bounds for characteristic roots of matrices II, J. Research NBS 46, 124 (1951) RP2184.
⁴ This was pointed out by O. Taussky.

We require this lemma:

Lemma. If X_i , $i=1, 2, \ldots, m$, are m independent vectors with components x_{is} , $s=1, 2, \ldots, n, n \geq m$, we may construct a set of m independent vectors Y_i , with components y_{is} , which are linear combinations of the vectors X_i and which have the property that we may select components of maxima moduli corresponding to each Y_i , so that no two such selected components have the same subscripts.

We may suppose $m \ge 2$. We choose $Y_1 = X_1$. Let $y_{1s_1} = x_{1s_1}$ be a component of maximum modulus of Y_1 . Choose α_1 and α_2 so that

$$\alpha_1 y_{1s_1} + \alpha_2 x_{2s_1} = 0. \tag{1}$$

$$Y_2 = \alpha_1 Y_1 + \alpha_2 X_2. \tag{2}$$

Since $y_{i_{s_1}} \neq 0$, $\alpha_2 \neq 0$, and so since X_1 and X_2 are linearly independent, $Y_2 \neq 0$. Let y_{2s_2} be a component of maximum modulus of Y_2 . By (1) and (2) $y_{2s_1}=0$, hence $s_2 \neq s_1$. Further, Y_1 and Y_2 are linear combinations of the vectors X_1 and X_2 and are independent. The construction is thus complete for two independent vectors Y_i . If $m \ge 3$, we choose three numbers β_1 , β_2 , β_3 so that

$$\beta_1 y_{1s_1} + \beta_2 y_{2s_1} + \beta_3 x_{3s_1} = 0$$

$$\beta_1 y_{1s_2} + \beta_2 y_{2s_2} + \beta_3 x_{3s_2} = 0$$

Since

and

$$Y_3 = \beta_1 Y_1 + \beta_2 Y_2 + \beta_2 X_3.$$

$$\begin{vmatrix} y_{1s_1} & y_{2s_1} \\ y_{1s_2} & y_{2s_2} \end{vmatrix} = y_{1s_1} y_{2s_2} \neq 0,$$

 $\beta_3 \neq 0$, and $Y_3 \neq 0$. The argument used above may now be repeated to show that if y_{3s_3} is a component of maximum modulus of Y_3 , then $s_3 \neq s_1$, $s_3 \neq s_2$. Further, Y_3 has the other properties required of Y_i .

¹ This work was performed on a National Bureau of Standards contract with the University of California at Los Angeles and was sponsored (in part) by the Office of Naval Research. ² University of Natal, Durban, South Africa, and University of California at

Los Angeles.

This would complete the construction for three vectors X_i .

If $m \ge 4$, the other properties may be continued step by step till all the independent vectors Y_i are exhausted. This completes the proof of the Lemma. To complete the proof of Theorem C, given the set of *m* independent characteristic vectors X_i , corresponding to the characteristic root λ , we construct the set Y_i of the Lemma. Since Y_i are linear combinations of X_i , they are also characteristic vectors corresponding to the characteristic root λ . Hence we have the system of equations

$$\sum_{s=1}^{n} a_{ts} y_{is} = \lambda y_{it}, i = 1, 2, \dots, m; t = 1, 2, \dots, n.$$

In particular we have

63

and so

$$\sum_{s=1} a_{s_is} y_{is} = \lambda y_{is_i}$$

$$(\lambda - a_{s_is_i})y_{is_i} = \sum_{\substack{s=1\\s \neq s_i}}^n a_{s_is}y_{is}.$$

Dividing through by y_{is_i} , and taking the moduli of the two sides, since $|y_{is_i}| \ge |y_{is}|$, $s=1, 2, \ldots, n$ we get that λ lies in the circle C_{s_i} .

Since $s_i \neq s_j$, $i \neq j$, we conclude that λ lies in m different circles C_i . This concludes the proof of the theorem.

Los Angeles, October 18, 1951.