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Uniformly Best Constant Risk and Minimax 
Point Estimates l 

Ra ymond P. Peterson 

In t his paper several types of point estimates a re compared on t he bases of t heir corre
sponding expected r isk. It is shown t ha t constan t risk minimax estimates (which are always 
uniformly best constant risk estimates) exist, under certain conditions, for several frequently 
occurring types of parameters and general methods are obtained for constructing t hese 
minimax estimates. 

1. Introduction 

L et XI) .•. , X" denote n (not necessarily independ
ent) observed values of a random variable ~ , which 
is dis tributed over a space S according to a distribu
tion P~(x, 01, •.• , Os) . It is assumed that P~(x, 
01 , . • ., Os) is completely specified excep t for the 
s unknown parameters Ot, . . ., Os. These param
eters may be r epresented by a point 0= (01, ••• , 

Os) in th e s-dimensional Euclidean parameter space 
n. Also X = (x], ... , xn) is a point in th e n -dimen
sional Euclidean sample space, M. W e shall assume 
tha t P~(x , 0) is absolutely continuous, that is, ~ 
possesses an integrable pro babili ty densi ty function 
g~(x, 0). Let p(X, O) = ZJ (xJ, .. . , ,x"' 0) denote the 
joint probability density function of the observa
tions at XfM. 

A sta tistical poin t es timate of a parameter Oi. 
which ranges over a subset W i of one-dimensional 
Euclidean space, is a fun ction f iCA) of the sampl e 
values tha t takes on values in W i . L et Wff i (X) , 0] 
be a nonnegative m easurable function defined for all 
oen and Xd .. 1. TV[.f i(X ) , .8] is a weight function that 
represents th e relative seriousn ess of taking f i(X) as 
the value of Oi for any particular sample point X . 
The function 

rf(o) = j · W[fi(X ), O]p (X , O)dX 
, kI 

represen ts the risk or expected loss incurred by using 
f t(X ) to estimate Oi when 0 is the true parameter 
point. Thus rf/O) is d efined as th e risk function of 
f i(X) . The expected risk offi(X), relative to an a 
priori distribution A(O) of 0 is given by 

RrCA)= r J W Lf i (X), 0] p (X, 0) dX dA (0). , In kI 

VVe can now defin e th e following classes of point 
esLimates in terms of rf/O) and R fi(A). 

(1) A minimax estimate ofO iis onewhichminimizes 
up rfj(O). 
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(2) A constant risk (CR ) estimate f i of Oi is one 
such that rf/O) is constan t. 

(3) A Bayes estimate of Oi, rela tive to an a priori 
distribution X(O), is one that minimizes Rf/X). 

(4) A un~formly best (DB ) estimate of Oi is one 
that minimizes R fi( A) for all possible a priori dis-
tribu tions A (0). 

(5) A uniformly bestconstant1'islc (DBCR ) estimate 
of Oi is one that is a DB-es timate among all CR 
estimates . 

(6 ) A constant risk minimax (CRM ) estimate is 
an estimate that is bo th a CR and a minimax 
estimate. 

It is evident that a DB-estimate is preferable to· 
a ny other , provided tha t one can be obtained. We 
will show that in several importan t cases i t is reason
able to res trict Ollr choice to CRM-es timates, since 
they possess certain desirable proper ties and , in most 
cases, a re r elatively easy to obtain. The concepts 
of a risk fUfl ction, expected risk , and minimax 
estimates used h ere a re due to Wald [5 to 8]. 

Let 

<pf.(A) = r W [fi (X), 0] p (X , 0) dO. (1) , In 
Theorem 1.1 Let f i (X) be a OR est~mate of 0 i and 

suppose that for any other estimate f i(X) there exists 
a probabili ty measure X (0) over n such that 

r rf . (0) dx (0)::; r r"j . (0) dX. (0). In ' In ' (2) 

Then f i(X ) is a minimax estimate. 
Proof. L et ] i(X) be any other estimate and let 

X. (O) b e a probability measure such that (2) is sa tis
fied. 'fhen 

c - sup r"j t (0)::; r [c - r"j . (0)] dX. (0) 
e In' 

::; f nlrfi (0) - rli (0)] d}: (0) ::; 0 

where rfi(O)=C (c a constant). Therefore 

c=sup rfi(O) ::; sup r7i (O), 
e e 

and th e theorem follows. 

-- I 
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Oorollary 1.1 Any OR-esti mate which i s a Bayes 
esti mate relative to some probability m easure A' (0) i s 
a minimax estimate. 

Proof. This corollary follows immediately from 
theorem 1.1. 

Theorem 1.2. Any OR-estimate j t(X) that is a 
minimax estimate i s a UBOE-esti mate. 

Proof. Let J t(X) be any other CR-estimate. 
Then 

Hit (A)-R ft (A)= J.)r7t (8) - rft (0)] dA (8) 

= C- c= sup 1'7 . (0) -sup rd8) ~ 0, 
e' e' 

where A(8) is any probability measure over fl, 
r"it(O)=C, r f/O)=c, (c and c constants). Thus 
j t eX) is a UBCR-estimate. 

Theorem 1.3. Suppose that a OR-estimate j i(X ) 
m inimizes 1>f/ X ) jor all XfM and that at lea~t onp 
oj the jollowing conditions (A) and (B) is satisfied: 

(A ) fl is compact, 
(B ) 1'1/(0) and 1>ft(X) are uniformly convergent over 

.1vl and fl, respeci?"vely. Then j i (X) is both a m1'nimax 
and a UBOR-e8timate oj 8i . 

P7'oof. Let ] t(X) be any other estimate of Ot. 
Then 

(3) 

for all Xd,;[. Let M q and Q j be compact subsets 
·of positive measure of M and fl, respectively, such 
tha t 

q= I ,2 , ... 

j = l ,2, ... 

and 

q=c:o 

lim flj= fl . 
j= co 

Since W[ f t (X) ,8] is nonnegative and measurable, it 
follows from Fubini's Theorem (see, for example, [1] 
or [4]) that 

I M.In; W[ft(X) ,8]p(X, 8)d8dX 

= In; IMQ W[ft(X),8]p(X,O)dXd8 

for all j and q. By hypothesis, 

where c is a constant. 

(4) 

Suppose first that condition (A) is satisfied; that 
is, fl is compact. Then from (4), 
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J r W[ft(X) ,8]p(X,O)d8dX MJn 

= r f W[jt(X) ,8]p(X,O)dXd8. In M 

Since fl is compact, 

1M [1>7 / A) -cf>f/X )]dX= In h /0)-r f/ 0)]d8} 
(5) 

= r h. (8)-c]dO~[suP 1'7 (O)-c] r do. In ' e' I n 
But, it follows from (3) that the first integral in 
(5) is nonnegative and therefore 

sup r7/0)~c. (6) 

Now suppose that Q is not compact, but condition 
(B) is sa tisfied. From (3) it is seen that either 

(7) 

for all XEM or 

1>7/(..1\) - cf>ft(A) > E> ° (7a) 

over some set M' in lvI, where M' has finite positive 
measure m'. 

First, consider the.case where (7a) holds. Let M q 
always be taken so that M' < M q• Then, from (3), 
(4), and (7a), it follows that 

J~n;Jv.fn; {W[] t(X),O] - W[ft(X ), O] }p (X ,8) dOdX 

= J J' {W[j;(A),O] - liV[ft(X),0]}p(X ,0)d8dX 
M . n 

= J [1>7 .(X) - cf>ft(X)]dX> Em'. 
]vI. ' 

Let W t- liVt= W[}t (A),8] - liV [ft (X), 8] . Since, by 
hypothesis, 

is uniformly convergent over M , there exists a qo 
such that 

Also since, by hypothesis, 

J 
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is uniformly convergent over Q, there exists a Jo 
su ch that 

IJJj [Wi - TtVt]p(X, O)dO } 

- r [Wi- W i]P(X,O)dO / < 2~ml , j '2.jo, Jo m~ 

(9) 

where m oo is the measure of the set lvIqo' Then, from 
(7a) and (9) it follows that 

[ a [ ~ I , 

Therofore 

(13) 

then 0 is called a location parameter. An e timate 
I(XI' . . ., xu) will be called an L-estimate of the 
location parameter 0 provided 

for any real T. 

2 .2 . S -Estimates of a Scale Parameter 

If p (X , 0) can be expressed in the form 

n ( XI Xn) 0- p 0"' " 7i ' 0'2. 0 , (15) 

then 0 is called a scale parameter. An esLimato 
](xJ, . . . , xn) will b e called an S -estimate of tho 
scale parameter 0 provided 

](J.l.XI, ... , J.l.Xn ) = J.I.] (XI, .. . , xn), 
and 

(16) 

(17) 

2 .3 . L(S)-Estimates of a Location Parameter (Scale 
Parameter Unknown) 

J". J [I-Vi- W i]p(X,O)dXdO> ~;'. 
010 ~M~qo 

(10) Suppose p(X, 0) is of the form 

From (8) and (10) we have that 

and thus 

If sup 1'7 . (0) -c < 0, (11) is impossible since ~ is arb i-
o ' 

trarily small, and therefore 

SUP 1'7i(0) - c'2.0. (12) 
8 

The proof that (12) is true for the case in which 
(7) ho lds is immediate. Hence, since c ==sup 1'7 . (0), 

8 ' 
fi(X) is a minimax estimate and by Theorem 1.2 is also 
a DBCR-estimate. 

2. Classes of CR-Estimates 

In this section we shall find classes of CR-esti
maLes for several frequently occurring types of 
parameters. 

2.1. L-Estimates of a Location Parameter 

If p (X,O ) can be expressed in the form 
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O-n ( XI - 01 Xn - 01) 
2 P --, "', -- , 

O2 O2 
(18) 

where 01 and O2 are unknown. parameters. Then. an 
estimate ]1 (XI, .. . , Xn) will be called an L (S)
estimate of the location parameLee OJ (tho scalo 
parameter O2 unknown) provided that ] I(X ) is an 
L-tstimaie, that is, (14 ) is satisfied, and also 

]J (J.I. :t!, . .. , J.l.J,,)= JJ.]I \XI, . . . , xn) (19) 

for any real J.I. . 

2.4. seLl-Estimates of a Scale Parameter (Location 
Parameter Unknown) 

L et p(X, 0) be of the form 

(20) 

where 01 and O2 arc unknown parameters. Then an 
estimate ]2(XI, . . ., xn) is called an SeLl -estimate 
of the scale parameter (h (the location paramoter 01 

unknown ) provided that]2(x) is an S-estimate, that 
is, ]2(X) satisfies (16) and (17), and also 

]z(Xt+ T, . .. , Xn+ T) = ]2( Xt, . . " xn) 

for all real T. 

(21) 

2 .5 . D-Estimates of the Difference Between Two 
Location Parameters 

Let p(X, Y, 0, 0) b e the joint probability density 
function of Xlt . . ., x", and YI , . . . • Yn, where 

J 



X and Y a,re samples from two populations with 
unknown location parameters 8 and B+ o, r espec
t ively. Then p(X, Y , B, 0) is of the form 

p(xI - B, . .. , xm-B, YI - B- o, . .. , y,,- B-o). (22) 

An es timate j(X, Y ) will b e called a D-estimate of 
the difference 0 provided 

j(xI + J.l . .. . , xm + J.l , Yl + A, ... , Yn+ A) 

- j(XI, ... , Xm, Yl> ... , Yn)+ (A- J.l ) (23) 

for all real J.l and A. 

2 .6 . R-Estimates of the Ratio of Two Scale Parameters 

Let p (X, Y, B, p) b e of the form 

8_"'( B)-n ( Xl Xm Yl Yn) p p -, ... ,-,-, ... , - , 
B B pB pB B, p> O 

(24) 

where X and Yare samples from two populations 
with unknown scale parameters Band pB, respec
tively. An estimate f(X, Y ) is called an R-estimate 
of the ratio p provided 

J (J.lXl> . . . , J.lXm , AY1 , ... , >"Yn) 

>.. 
=- J(XI, ... , Xm , YI , ... , Yn) 

J.L 
(25) 

for all J.l , >"> 0 
W e now show that any es timate b elonging to one 

of the classes 2.1 to 2.6 is a CR-estimate provided 
that the weight function Wt is of propel' form . The 
following six theorems are sta ted as one. 

Theorems 2 .1 to 2 .6. L et the density junction p be 
oj the jorm given in classes 2.1 to 2.6 and let the 
weight juncti(ln W t be oj the form (1) W[f(X)-B]. 
(2) W[B-~f(X)]' (3) W[B21 (f1(X)-BI ) ], (4) W[B21 
j2(X) ], (5) W[j(X,Y)- o], (6) W[r1(X, Y)]. Then, 
~f j t is an (1) L, (2) S, (3) L (S), (4) S(L) , (5) D, 
(6) R -estimate, the risk function rli (B) is constant. 

Proof. W e shall prove only theorem 2.3 , as the 
others are proved in exactly the same maImer . 
Consider the risk function 

Let 
xi - Bl 

tt=-B-2- ' (i = 1, 2, ... ,n). (27) 

Since .ftCX) is an L (S) -estimate 

jl(X) - BI jl(XI," .,1;n)-B I =j ( XI - B1 Xn- B1) 

B2 B2 I 82 ' ••• , B2 

(28) 

Thus, making the transformation (27) and using 
(28) in (26), we have 
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which is completely independent of B and therefore 
I'll (B) is constant. 

3 . CR-Minimax Estimates 

As a direct consequence of Theorem 1.3 and Theo
rems 2.1 to 2.6 we have the following six theorems 
which are sta ted as one. 

Theorems 3.1 to 3.6. IJ at least one oj condition 
(A) and (B ) in Theorem 1.3 is satisfied and ij the 
weight junction W i is oj the Jorm (1)W[j (X)-B], 
(2) W[B- 1(X)], (3) W[B2 i (jl(X)-BI)],(4) W[8212(X)], 
(5) W[j (X, Y ) - 0], (6) W[p- 1(X,Y)], then any (1) L , 
(2) S, (3) L (S ), (4) S(L), (5) D, (6) R-estimate which 
minimizes (<PltX) [as defined by formula (1)] for all X, 
(X , Y )d11 is a minimax (and also a UB CR ) estimate 
oj Bt • 

Conversely, it has been shown by Kallianpur [3] 
that, " under mild r es trictions", the minimax es ti
mate in the above cases minimizes </>'1 anfl also 
belongs to the corresponding class of CR-estimates . 
For example, in case 3.3, the minimax estimate of B, 
minimizes <Pli(X) given in Theorem 3.3 and is an 
US) estimate. 

4. Determination of General Classes of 
CR-Estimates 

Suppose the joint probability density function 
p(X, B) is of the form 

where ", (Xt, B) possesses thenfirst partial deri,"ati,"es 
o", (Xt, IJ )/ox! continuous in Xt, (i= 1, 2, ... , n). 
Let M be an n-dimensional interval (at ~Xi ~ b i) such 
that 

(i = 1,2, ... , n) } (29) 

where the ai, bi, Ct and dt are constants (possibly 
infinite) which. are indep~ndent of B. L et t(x,y) 
and 1/; (B) be arbItrary functlOns such that the weight 
function V[t(JI(X), 1/; (B») ] is non-negative and 
measurable over the product space MXn. Then 
we define the risk function of an estimate j t(X) of 
Bi to be 

1'1/B) = fM V[t(f;(.A), 1/;(B»)]p(X, B)dX 

= r V[t(fi(X), 1/;(B»)] h(." (XI, B), . . " .JM (30) 



The following tbeorem yields a method fo], deter
mining general classes of CR-est imates, that is, 
es timates that possess constan t risk functions. 

Theorem 4.1. IJ j t(X )=j i(XI, . . . ,x71 ) i s such 
that 

j i(7J (X l , e), .. . ,7J (X a, e» = t(Ji(X) , 1/;(e» (31) 

then the Tiskjuncti on tri(e) is constant . 

Pl'ooj. Letfi(X) be any estimate satisfying (31) 
andleL 

(i = l , 2, ... , n ) . (32) 

Th en , from (31) and (32) \\-e have 

Let Tdenote the n -dimensiona.l in terval (Ci -::;ti -::;di ) . 
Applying th e transformation (32) and using (29) 
and (33) in (30) \-e have 

\"ll ere C is a cons ta nt. 

5. Examples 

As an example to illustra te th e usefulness of 
th eor em 4.1 , let 

and choose V = (i- e)2. In this case we choose 

'1 (X;, e) =Xt- fJ, if; (fJ) =fJ, t (J().), 1/; (e» = j ().)-e. 

Then (31) becomes 

j (XI - fJ , . .. ,:t' ,,- fJ) = j (XI , . ,X,,)- fJ. (34) 

Thus, [or example, any weighted mean 
n 
~aiXi' 
;= 1 

n 
~ a j= 1 is a CR-estimate of fJ . 
i=1 

If we taJ-:e 

p (X ,fJ) 

and choose 

th en we can take 
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1/;(e) = fJ , 

and (:31) beco mes 

j( XI Xn ) 
fJI / 2' •• • , fJl / 2 

t(J(X), 1/;(fJ» =~ 

j (Xl' .. . , :1' ,,) 
fJ 

(35) 

On the other hand, if we are estimating fJl /2 by j (A), 
we tak:e 1/; (e) = fJ l/ 2 and (31) becomes 

j ( XI Xn ) 
8lI~' ... , fJ l /2 

f (Xl, . .. , xn) 
fJl /2 

(36) 

In these exam pIes, conditions (34) , (35), and (36) 
show the r easonableness and generality of the re
spective classes of CR-estimates. 

Theorem 4.1 together with Theorem 1.3 can be 
used to obtain many results similar to Theorem 
3.1 to 3.6, that is, to co nstruct CR-minimax esti
mates and to throw light on their general desira
bili ty. The lower bound for Nr/A), wh e]'e i, is ~ny 
CR-estimate, is r eadily seen to be Tit (fJ ) , where f i i 
a CR-minimax estimale . This lower bound IS 

where c is a cons tant . 
In a recent paper , [2], Hodge and L ehmann ha'-e 

illustra ted some properties of mllllmax est imates. 
They mention, for example, that it has no t been 
possible to obta in a gen eral comparison between 
minimax est imates and unbiased est imates with uni
formly smallest varian ce , if such exist. ' Vc can , 
imposing certa in restrictions on th e form of th e 
probability density function p (X,fJ), obtain the CR
minimax estimate wi th Lmiformly minimum vari
ance a nd show that these est imates ar e unbiased . 
Also , a relationship exis ts between CR-minimax and 
maximum likelihood estimates. 
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