Heat Capacity of Gaseous Carbon Dioxide ${ }^{1}$

Joseph F. Masi and Benjamin Petkof

Abstract

The hat cepracity (C_{7}) of geseous carbon dioxide has been messured at $-30^{\circ}, 0^{\circ}{ }_{+}+60^{\circ}$, and $+90^{\circ} \mathrm{C}$ and at 0.5 - 1,0 -, and $1.5-a t m o s p h e r e$ pressure, with an aceuracy of 0.1 percent, The flow calorimeter used was a modification of thie one previously denerlbed by Scott and Mellors [1] : and Wacker, Cheney, and Scett [2]. In order to teat the acciracy of the calorimeter, the hest ospacity of oxygen was messured at 1 atmosphers at $-30^{\circ}, 0^{\circ}$, and $+50^{\circ} \mathrm{C}$. The measured values of C_{p} for oxygen were oombined with an equation of state to give C_{p}; these differed from the statiatically calculated values by $+0.03,-0.06$ and -0.01 percent at the three tomperatures.

The experimental velues of C_{p} for carbon dioxide have been used to celculate new valuea of C_{s}^{∞} and values of the preasure coetficiont of heat capscity at the four temperaturea of measurement. The theoreticsl values of $C_{\text {, }}^{*}$ ealculated in 1949 [8] were found to be too low by 0.2 to 0.3 percent; the repults of a new calculation are in substantial agreement with the experiments. The pressure coefficiente are in agreement with those obtained from the recent pressure-volume-temperature work of MacCormack and Schneider [7].

1. Introduction

The large number of experimental valucs of the specific heat of carbon dioxide reported in the literature are in serious disagreement with each other. Leduc, for the Intermational Critical Tables [3], attempted to evaluate and correlate all of the work, both experimental and theoretical, up to 1929. It is now thought that these ICT values are in considerable error. There have been two calorimetric measurements of the heat capacity since that time [4, 5]. There have also been at least two good sets of pressure-volume-temperature measurements [6,7$]$ and two calculations of the ideal gas heat capacity from spectroscopic data $[8,9]$. There have been several compilations, based almost entirely on the combination of equations of state with spectroscopic values of C_{p}° [10 to 13]. Values from several sources of the heat capacity in dimensionless units, C_{p} / R, st 1 atmosphere and $0^{\circ} \mathrm{C}$, are given here.

$$
\begin{aligned}
& \text { Partington and fchilling, } 1224 \text { [14]......n-...- 4. } 40
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sweigert. Weber and Allen, } 1946 \text { (10]- }
\end{aligned}
$$

The present investigation was undertaken because of the impossibility of deciding which values to choose and because of the reluctance, on the pert of some users of thermodynamic tables, to accept statistically calculated values without supporting experimental evidence.

Oxygen was chosen as a substance to test the securacy of the apparatus, becense its heat capacity is well known and because a pure sample is rather easily prepared.

[^0]
2. Materials

The oxygen was prepared by heating potassium permankanate as described by Scott [15] and by Hoge [16]. This is a method that has been shown to produce very pure oxygen. The vapor pressure of the sample at the temperature of boiling nitrogen was found to agree with the value calculated from Hoge's data [16]. During the course of the last series of measurcments (those at $-30^{\circ} \mathrm{C}$), a small air leak in the apparatus was suspected. As moon as the measurements were completed, a portion of the sample was dissolved in alkaline pyrogalloI to determine the purity; the amount of residual gas was 0.2 percent, and it was assumed to be nitrogen from air that had leaked in.

Carbon dioxide was purified from commercial gas that had been made from limestone. A large cylinder containing 20 lb of carbon dioxide was opened and the gas allowed to escape until less than half of the contents remained. Several hundred grams were then transferred to a small evacuated cylinder, which was then attached to a purification train. The sample was slowly sublimed from the cylinder and condensed in a glass trap at liquid N_{z} temperature, while a high vacuum was majntained by pumping on the trap. Transfer to the final receiver was also accomplished by sublimation and condensation. About 600 g were prepared in this way. The sample was tested several times for permanent geses by dissolving portions in concentrated potassium hydroxide and observing the volumes of residual gas. These were always less than 0.01 percent of the volume of the sample. A test performed by E. R. Weaver showed less than 0.001 percent of moisture.

3. Apparatus

The adiabatic flow calorimeter used in this work was a modification of one that was shown by Wacker, Cheney, and Scott [2] to give heat capacities reliable to better than 0.1 percent. The principal modif-
cation was the substitution of two resistance thermometers of nickel wire for the thermocouple previously used for measuring the rise in temperature of the heated gas. The main advantage of this substitution was that the thermometers could be calibrated in place at any time. A further advantage was that it could be demonstrated by the readings of the lower thermometer that the gas entering the calorimeter always reached the temperature of the bath, and that there was negligible heat leak "upstreatn" from the bot calorimeter to the incoming cold gas.

The flow calorimeter, as it was used, is shown in figure 1. Most of the essential features are as described by Scott, et al. [1, 2], but so many changes have been introduced that a brief description of the entire apparatis appears desirable.

Figuty 1. Scale tiratuing of fiote calorimeter.
A, Liquid nitrogeni B, eongtant-temperature bath; E , protecting eplither;

 M_{4} mica spacar; MAN, manometer tubea; N_{L} and N_{1}, nickel thermonueters;

3.1. Congtant-Temperature Bath

The calorimeter is immersed in the bath, B_{1} the temperature of which was controlled by supplying electric power to the heater, H_{∂}. The stirring propeller, $P_{\text {, }}$ foreed liquid down the brass tube, T_{1}, and over the copper resistance thermometer, R, which consisted of about 140 ohms of No. 37 AWG wire and which formed one arm of a Wheatstone bridge. An umbalance in the bridge circuit of $1 \mu \mathrm{v}$ corre sponded approximately to 0.001 deg K . The circuit was ordinarily attached to the galvanometer in a Rubicon phototube amplifier, the output of which was fed to a proportionating heat-control amplifier developed by the Electronic Instrumentation Section of the Bureau. This arrangement gave automatic control of the bath temperature within 0.002 deg, provided there were no large disturbances. The copper thermometer bridge could be switched from the controlling galvanometer to a sensitive wall galvanometer for manual control, or the two galvanometors could be placed in series for momentary observation of the efficiency of control.

When controlling the bath below room temperature, refrigeration was required, and this was provided by the apparatus shown at the left of figure 1 , A solid copper rod, $C R$, with copper vanes, X; at one end and a copper cylinder at the other was immersed in liquid nitrogen, A. The metal tube, C, closed at the bottom end made the rate of heat transfer ilmost independent of the depth of the nitrogen in the dewar.

The bath liquid was a special light machine oil for temperatures above that of the room and an equivolume mixture of chloroform and carbon tetrachloride for temperatures below that of the room.

3.2 Flow Control

The source of gas flowing into the calorimeter is not shown in figure 1. For oxygen, this was a cylindrical brass boiler with heavy-copper vanes, wound with a heater and immersed in a cold dewar. The rate of flow was controlled by the power supplicd to the heater on the boiler for evaporating the liquid oxygen. For carbon dioxide the boiler was replaced by a high-pressure system in which the carbon dioxide was contained in a steel cylinder immersed in melting ice. The pressure (34.38 atm) remsined sufficiently constant for good flow control. The gas was admitted to the calorimeter, and its flow rate was controlled, by a very sensitive diaphragm valve. This valve was previously used by Osborne, Stimson, and Ginnings [17] for control of flow of highpressure water. A slver seat moving down against a stainless steel crater-rim cone with a very small opening provided the closing action.

Both the rate of flow and the mean pressure during an experiment were adjusted, controlled, and measured by following the readings of a three-column manometer, two columns of which were connected to the calorimeter as shown in figure 1 , whereas the third was open to the atmosphere.

3.3 Calorimeter and Shield

The gas being investigated entered at Y and passed through the helical tube, T_{2}, where it was brought to the temperature of the bath. This tube passes into the vacuum jacket through the bellows joint, J, which was intended to prevent stresses caused by differential expansion.

The calorimeter, considered as the vertical tube between points J and O through which the gas flowed, was constructed of thin-walled seamless Monel tubing. The warious pieces were soldered together as nearly coaxially as possible, and the whole length was supported only at the two ends, and at M by a mica spacer. The copper thimble, $T h$, was used to provide a surface of higher temperature to protect the incoming cold gas from radiation; it was thermally a part of the calorimeter. The latter, with the exception of the necesbary lead wires, was completely isolated from contact with surroundings from points M to 0 . The thimble was gold-plated and polished; the Monel tubing was covered with thin aluminum foil, except for a short length that was highly polished The copper radiation shield, $S_{\text {, was gold-plated and }}$ polished on the inside, and covered with aluminum foil on the outside. It was supported and centered by string spacers.

The temperature of the gas entering the calorimeter was measured by the nickel resistance thermometer, N_{1} the gas passed over a system of baffles and went twice past the glass-silicone-insulated No. 36 AWG constantan heater, H_{r}. The direction of flow was again roversed, and another system of baffles was encountered in the region where the exit temperature was melisured with the nickel resistance thermometer, N_{2}. Heat leak to the upper tube was opposed by supplying beat to a tubeheater, H_{r}, so that zero temperature gradient was maintained as indicated by a null reading of the copper-constantan thermocouple, $T O_{1}$. Radiation to or from the outer surface of the calorimeter was reduced almost to zero by heating the shieid with the heaters, H_{s}, which were so arranged that any desired proportion of the heat could be supplied to the top half of the shield. The three junctions of the chromel-constantan thermocouple, $T C_{2}$, could be read in summation or individually, and the attempt was made to keep nll of the readings near zero. Heat transfer from the bath by gas conduction was eliminated by evacuating the brass jacket.

Leads were brought in through the wax seal, W, and were tempered nearly to bath tomperature on the brass cylinder, F_{1}. Leads from the thermometer, $N_{\text {It }}$ were taken directly to the brass ring, F_{2}, and further tempered; all other leads were wound twice around the shield. All leads were of AWG No. 34 copper wire, silk-and-enamel insulated. All wires, whether heaters, thermometors, thermal junctions, or leads, were cemented to the metal surfaces with glyptad lacguer and afterward baked.

Each nickel thermometer consists of about 55 ohms of AWG No. 40 enameled nickel wire with four copper leads. The thermometers were calibrated by comparing with one or more platinum resistance
thermometers suspended in the bath when helium was in the calorimeter jacket. It was found that the resistance of the nickel thermometers in use fuetuated slowly over a range corresponding to 3 or 4 mdeg during a period of 3 months. Consequently, spot checks of the calibration were made ench day of beat-capacity measurements.

After leaving the calorimeter through the throttle yalve, V, the gas went to one or the other of two reccivers through a snap-throw valve, capable of changing the flow from one receiver to the other in less than 0.1 second. This valve in one of the two positions closed the clutch circuit of an interval timer that was driven by a special conetant-íequency 60 -cycle current, accurate to 0.02 second. This valve was the same one described by Wacker, Cheney, and Scott [2]. The receivers were kept at the temperature of liquid nitrogen.

A Leeds \& Northrup G-2 Mueller bridge was used to measure resistances. The potential and current in the calorimeter heater were measured with a precision potentiometer, in conjunction with a calibrated standard resistor and à calibrated volt box. The circuite were essentially the same as those described by Scott, Meyers, Rands, Brickwedde, and Bekkedshl [18].

4. Method

The selection of the temperatures and pressures at which to measure the heat capacity of carbon dioxide was made to cover the working range of the calorimeter and obtain as many points as necessary. The usual assumption was made, that the error in an apparent heat capacity caused by heat leak would be inversely proportional to the flow rate. Consequently, at each temperature and pressure, a number of determinations were made over as wide a range of flow rates as was consistent with a reasonable time for measurement, with the size of sample, or with the capacity of the calorimeter.

The determinations of the heat capacity included the measurements necessary to obtain the three fundamental quantities: the mass rate of flow, F, of the gas through the calorimetor; the electric power, W, to the calorimeter heater; and the rise in temperature of the gas, ΔT.

A heat-capacity experiment was begun by adjusting both the valve, V, and the flow of gas to the calorimeter until the selected values for the mean pressute and pressure drop were obtained. Meanwhile, power was supplied to the beater and adjusted, Neither valve V nor the power supply were changed after the initial adjustment, all control being at the source of gas. Heat was also supplied to the shields. Aftor a length of time that was inversely proportifonal to the rate of flow, a steady state was reached in which the beated portion of the calorimeter and the shield were at a constant temperature that was approximately 10 deg higher than the constant bath temperature. At this time the gas was directed by means of the snap-throw valve to the other (weighed) receiver, thus starting the measurement. Contin-
uous measurements of the exit temperature $\left(\mathrm{N}_{2}\right)$ of the gas were made, and slight adjustments of the flow were made to keep that temperature constant within 0.03 deg. In addition to the measurements of the resistance of the thermometer, N_{2}, readings of current and potential of the heater, resistance of N_{r} and the bath thermometer, and heights of the three mercury columns were recorded as often as possible in connection with each run. When about the desired weight of sample had been collected and the temperature was nearly constant and the same an that at the start of the run, the experiment was terminated and the ges was redirected to the other container. The barometric pressure was also recorded, as well as the reading of the interval timer. The receiver was weighed on a large analytical balance, and the weight of sample was correctexl for buoyaney.
"Blank" experiments were required in which the temperature drop, δT, in the calorimeter was measured when no beat was applied. This temperature drop je chiefly due to Joule-Tbomson cooling, but heat leaks and responsiveness of the nickel thermometers to the gas temperature usually contribute. The blank experiments were made witb the bath temperature approximately at the mean temperature of the corresponding heat-capacity measucements, and they were made at the same mean pressures and over the same range of pressure drops as the heat-capacity experiments. The values of $\delta T / \Delta p$ were plotted as a function of Δp for each pressure
and temperature for each gas. These graphs were used to obtein the quantity $\hat{\delta} T$ for each heat-capacity experiment. The value of δT varied from 0.005° to 0.4° in the extreme cases.

The apparent specific heat of the gas, C, at the mean temperature and pressure of the experiment was computed by the relation

$$
\begin{equation*}
C=\frac{W F^{-1}}{(A T+\delta T)} \tag{1}
\end{equation*}
$$

The mean temperature, T_{m}, of the experiment wras calculated as the bath temperature plus $\Delta T{ }^{2}$. The average pressure, p_{m}, in the region of the calorimeter between the thermometers N_{1} and N_{2} was calculated, from the corrected manometer and barometer readings, as cqual to the pressure at the entrance to the calorimeter minus three-eighths of the measured pressure drop, Δp. A consideration of the geometry of the calorimeter had led the authors to the opinion that the factor three-eighths is near the truth and that any uncertainty in this factor will not affect the result by a significant amount.

5. Results

5.1 Tests with Oxygen

All the heat-capacity data on oxygen from this investigation are given in table 1. The experiments

Table I. Data on oxygen

Reclprocal or rbte, $F-$	Mass of sorniple, in	Fower, W	Prossure diop Δp	Temperraturf	$\begin{aligned} & \text { Blank comse } \\ & t \text { lon, } d T \end{aligned}$	Heat capactis.	Corroctlon for Tond p_{n}. $4 C$	Heat caparnlty, C_{p} (observol)
$-30.100^{\circ} \mathrm{C}=243.10^{6} \mathrm{~K}: 100 \mathrm{~atm}$								
*8. 20. 1028 3 4.7501							 -0.00006 - 00004 $=-00002$	
$0.00^{\circ} \mathrm{C}=2 \mathrm{~T} .18^{\circ} \mathrm{K}=1.00 \mathrm{~atm}$								
			s5, 380.4 300.9 300.0 125.0		0.1292 .1117 .117 -1115 -0.015		-0.00008 $=-0008$ $=-00011$ -.000010 -.00013	
		(4189888			.0182 .6811 .0177 .0173 .0168			
Extrspolated valus								0.9182
$50.00^{\circ} \mathrm{C}=583.16^{\circ} \mathrm{K}: \mathrm{LD0}$ atm								
			297.8 889.7 78.1 49, 89.0			(1028		
								0.82385

are listed in the order of decreasing flow rate at each temperature. The values of 0 , given in column 7 , are calculated by means of eq 1. These are adjusted by the amounts given in column 8 , to correct for the differctico between T_{m} and the nominal temperature and between p_{m} and $1-\mathrm{atm}$ pressure, and there are obtained the values of C_{p} (observed) in columts 9 . The values of C_{y} (observed) are plotted as a function of F^{-1}. The straight line drawn through the points was determined by the method of least squares, and the value of O_{z} is obtained as the intercept. One of these plots is shown in figure 2, to illustrate the precision obtained. The values of C_{p} obtained by this process are labeled "Extrupolated value" in column 9 of table 1. These values, converted to dimensionless form, C_{p} / R, are listed again in table 3 (a), There are also given the corrections to ideality calculated by the Beattie-Bridgeman equation [19], and the resulting values of $O_{s} / / R$. These values are then compared with the values calculated by Woolley $[20,21]$ from the spectroseopic and molecular data.

S.2 Heat Capacity of Carbon Diozide

All of the heat-capacity data on carbon dioxide in this reaearch are given in table 2. In addition, plots of all the experimental results at -30° and $+50^{\circ} \mathrm{C}$ are furnished in figures 3 and 4 to show the typical appearance of these plots and to indicate the precision. The value of C_{p} (observed) for each point (col. 9), after adjusting for the differences between T_{m} and p_{m} and the nominal temperature and pressure (col. 8), is plotted against the reciprocal of flow rate (col. 1). The slopes and intercepts of the lines were first obtained by the method of least squares. As the heat leak, of which the slopes of these lines is a measure, would be expected to be independent of pressure, the three lines at each of the temperatures except $90^{\circ} \mathrm{C}$ were adjusted slightly to a constant average slope. A small but regular change of slope with pressure was noted at $90^{\circ} \mathrm{C}$, and these lines were therefore umchanged from the least-square values. The intercepts of these lines are the desired values of $C_{\text {, }}$ and are listed in column 9 of table 2 as the "Extrapolated value." In order to furnish an estimate of the precision of these values of C_{p}, they are followed in table 2 by values of a, where σ is defined as $\sqrt{\sum d^{2} /(n-1)}$, and d is the deviation from the extrapolated value of C_{p}, of each C_{p} (observed), after correcting for beat leak by use of the slope of the straight line previously found.

The values of C_{p} have been converted to dimensionless form and are given as C_{p} / R in table 3 (b). Although there are a number of experimental measurements at atmospheric pressure recorded in the literature, there is no interest other than historical in making comparisons with the very old work. Partington and Shilling [14], Leduc [3], and Quinn and Jones [22] have made studies that may be referred to. The most recent thermal measurements are those made by Kistiakowsky and Rice [5] by the isentropic expatision tnethod. The values

Fiovine 2. Heat eapacity of oxygen af - $80^{\circ} \mathrm{C}$ and 1 almosphere.

Figure 3. Heat apacity of carbon diortaie at $-80^{\circ} \mathrm{C}$ and three pressurer.

Figure 4. Heat capacity of carbom diaxide at $00^{\circ} \mathrm{C}$ and dhree prestures.

Table 2. Data on carbon dioxide.

Table 2. Dala an carbon dioxide-Continued

Ree[procal of rator, F^{-1}	Mass of sempla, Ti	Fower, W	Pressure drap, $\Delta \mathcal{F}$	Temperstant rise, ΔT	Hlent correio. t[inn, fT	Epat mapanty.	Correctida for 	Hest capecity, C_{n} (ohserved)
$80.00^{\circ} \mathrm{C}-388.10^{\circ} \mathrm{K} ; 1.50 \mathrm{~atm}$								
		Wott Q. EBSTIS -440285 -20359 . 188508	$\begin{gathered} \text { mim. } \mathbf{H z} \\ 20.7 \\ 49.0 \\ 23.4 \\ 12.5 \end{gathered}$		a K 0.1046 .0280 .064 .0047			$\begin{gathered} 50-1 . \operatorname{defo}^{-1} \\ 0.8719 \\ .97850 \\ -.87617 \\ .97581 \end{gathered}$
Extrapolstod raluê..... ${ }^{\boldsymbol{\pi}}$								$\begin{array}{r} 0.87779 \\ \pm 0.00010 \end{array}$
1.10 stm								
			-			Extral	ted value	$\begin{array}{r} 0.87518 \\ +0.00030 \end{array}$
0.80 atom								
	33.9082 27.8684 34.2596 3.4858 28.2888		232.6 131.4 125.3 69.0 35.7	10. 0338 10. 1132 11.3464 9.3780 10. 21818	0.1835 .0948 .0001 .0085 .0200	0.87184 .87169 .87220 .87044 .870188	-0.00014 $=.00023$ $=.000683$ $=.00001$ $=.00060$	0.87160 .67138 .871787 .87083 .88498
						Entrap	od value.......	$\begin{array}{r} 0.87251 \\ \pm 0.00012 \end{array}$
10. 8379 10. 871 21.8110 22.1306 $31.92 c k i$ 4. 368	89. 9140 64. 2250 21. 040 24.2164		198.0 109.7 46.0 47.0 23.6 12.6	10, 015 10. 0.538 9. 3786 0.6176 9. 8.573 9.7692		0.91224 .9124 .91192 .91090 .81043 .80981	(-0.00006 $=-000610$ +.00028 +.00018 +.00009 +.00012	$\begin{gathered} \text { 0. } \mathrm{pl215} \\ .91250 \\ .91150 \\ .91178 \\ .01082 \\ .00268 \end{gathered}$
Eytrapolated value \qquad f....-.								0. 0.1310 ± 0. 10008
1.00 aters								
$\begin{aligned} & 11.1544 \\ & 72.3919 \\ & 3.8817 \\ & 30.5500 \\ & 31.8170 \\ & 8.818 \\ & 38.3154 \\ & 49.0074 \end{aligned}$		0.8808 gr 8 .39004 . 3 \$6651 - 28×14 . 27980 , 20.2314 $\cdot \frac{220087}{219105}$ $.21910:$	$\begin{gathered} 277.7 \\ 62.8 \\ 68.7 \\ 37.8 \\ 38.8 \\ 2 \pm \\ 24 \\ 28.4 \end{gathered}$		0. 1892 0201 .0186 0150 D10] 01089			
						Extra	ted value \qquad \%......	$\begin{array}{r} 0.81102 \\ \pm 0.00009 \end{array}$
$\begin{aligned} & 17.6983 \\ & 17.8500 \\ & 2.6972 \\ & 31.5108 \\ & 4.7981 \\ & 44.8580 \end{aligned}$		0. 529 BFI . 82475 .401379 . 579808 - 21974 $.219+44$	$\begin{aligned} & 302.8 \\ & \text { 3iv.0 } \\ & 125.3 \\ & 7.4 \\ & 78.9 \\ & 36.1 \end{aligned}$	$\begin{aligned} & 10.0869 \\ & 10.1916 \\ & 10.3676 \\ & 2.8612 \\ & 1 ., 8154 \\ & 10.8265 \end{aligned}$	$\begin{aligned} & 0.1171 \\ & .1144 \\ & .0691 \\ & .0690 \\ & .0188 \\ & .0182 \end{aligned}$		$\begin{aligned} & -0.00006 \\ & =.00012 \\ & -.00022 \\ & +.00011 \\ & =.000057 \\ & -.00077 \end{aligned}$	$\begin{gathered} 0.90674 \\ .90619 \\ .006010 \\ .907 \$ 5 \\ .90658 \\ .90081 \end{gathered}$
Extrapolated valura......								$\begin{gathered} 0.90048 \\ \pm 000018 \end{gathered}$

Table 3. Summary of resulte

$\begin{aligned} & C_{\pi}^{\prime} \cdot R, 1,00 \text { atman } \\ & \left(C_{p}=\mathrm{I}-C_{p}^{2}\right) /(R . \end{aligned}$	Tempersture, ${ }^{\circ} \mathrm{C}$			
	-30.00	0.00	+ 60.00	+00.00
	(8) Oxymen			
	3. 56.83	4. 52 cm	3. 6549	--....
	120100	900078	0.0005
ColR, niseryod.	\$. 615	3. 5185	3. 5498	---...
C_{0}^{*} / R, spectrascopic............. Fefteutaps alfertanc, oblervedapectrosooplo.	-3. 5112	2.5207	3. 5499-
	+0.03	-D.08	-0,06
	(b) Carborn diasjuc			
	$\begin{aligned} & 4.7538 \\ & 4.2080 \\ & 4.1820 \\ & \text { 4.148 } \end{aligned}$			4.83824.8824.8144.804
$C y / R$, spectroecople: Benedict [zt. Pementase diftertace, otbervedapentrasooplic $\Delta\left(C_{0} /(i) / \Delta \mathrm{p}, \mathrm{atm}-1\right.$	4,145	4. 325	4.600 4.600	$\begin{aligned} & \text { 4. } 800 \\ & \text { 4. } 780 \end{aligned}$
	$\begin{gathered} 0.00 \\ .0837 \end{gathered}$	-0.02	$+0.09$	$\begin{aligned} +0.06 \\ \hline 0192 \end{aligned}$

- Correated fig presence of 0.2多, of nitroben.
of C_{p} / R at 1 atm obtained by those authors were 0.13 , 0.04 , and 0.08 percent higher than values obtaitued by interpolation in the present experimental results, at the three temperstures of their experiments: $26.9^{\circ}, 58.7^{\circ}$, and $94.56^{\circ} \mathrm{C}$.

The results at each temperature were extrapolated linearly to zero pressure to obtain the values of ($O_{\mathrm{p}}^{\circ} / R_{\text {r }}$ observed) listed in table 3 (b). These values were first compared with the most recently published theoretical ones [8,23] and found to be 0.2 to 0.3 percent higher. Recaleulation of the theoretical values was made by W.S. Benedict and independentally checked by H.W. Woolley [24]. The reaults are shown in table 2 on the line labeled "Benedict". Two values interpolated in the National Buresu of Standards tables of "Selected values of chemical thermodynamic properties" [25], which were recalculated by Wagman from the older calculations of Kassel [9], are also given.

A consideratiot of the possible errors of the various messurements involved in these heat-capacity determinations, as well as the precision of the rosults, and the agreement of the observed and calculated heat eapacities of oxygen, leads to the conclusion that the error in the final values of C_{p} / R at each pressure should not exceed 0.1 percent. The extrapolated values of $\mathrm{C}_{p}^{\circ} / R$ should therefore be reliable to 0.15 percent.

5.3. Equation of State of Carbon Dioxide

It is assumed here that in the low-pressure region covered by these experiments the equation of state of carbon dioxide is of the form

$$
\begin{equation*}
p V=R T+B p_{p} \tag{2}
\end{equation*}
$$

where B is a function of the temperature. The thermodynamic relation

$$
\begin{equation*}
\left(\frac{\partial \frac{C_{P}}{R}}{\partial p}\right)_{T}=-\frac{T}{R}\left(\frac{\partial^{2} V}{\partial T^{2}}\right)_{,}=-\frac{T}{R}\left(\frac{\partial^{2} B}{\partial T^{2}}\right) \tag{3}
\end{equation*}
$$

must be antisfied by the second derivative of the second virial coefficient, B. The values of the change in heat capacity with pressure, obtained in this research, are given in the last line of table 3 and plotted as circles in figure 5. Also in figure 5 are shown curves representing the right-hand side of eq $3 \mathrm{ob}-$ tained from (1) the recent pVT isotherms of MacCormack and Schneider [13]; (2) the Berthelot equation, using the critical constants of Meyers and Van Dusca J 26$]$; and (3) the Lennard-Jones potentiol function $[27,28]$. The dashed curve affords a comparison with other experimental work through the equation

$$
\begin{equation*}
\left(\frac{\partial \frac{C_{p}}{R}}{\partial p}\right)_{p}=-\mu\left(\frac{\partial \frac{C_{p}}{R}}{\partial T^{\prime}}\right)_{p}-\frac{\sigma_{p}}{R}\left(\frac{\partial \mu}{\partial T}\right)_{p} \tag{4}
\end{equation*}
$$

where the values of the Joule-Thomson coefficient μ, and its derivative were obtained by interpolation in the tables of Roebuck, Murrell, and Miller [29].

A simple calculation shows that the quantity given by eq 3 is approximately 1 percent of the heat capacity and also 1 percent of the valucs of tho second virial coefficient, in the region covered by this investigation. Therefore, if second virial coefficients could be determined to the same percentage accuracy as the heat capacities, the values of $\partial\left(C_{p} / R\right) / \partial p$ calculated from the right-hand side of eq 3 would be sbout half as accurate (because of two differentiations) as those obtained from direct heat-capacity

Figure 5, Change of heat eapacity of carbon dioxide teith pressure an a function of temperalure.

 Iones 6-12 potentin function.
measurements. However, the limit of error generally to be expected from good pVT measurements, and that given by MacCormack and Schneider for their work [7], is about 0.5 percent of the value of B in this region. As the heat-capacity measurements are thought to be good to 0.1 percent, the values of $\partial\left(C_{p} / R\right) / \partial p$ obtained in this research are about an order of magnitude more accurate than those calculated from second virial coefficients.

The comparisons made in figure 5 show that the Lennard-Jones function cannot be used successfully to calculate the equation of state of carbon dioxide. An attempt was made to fit new LennardJones constants to the resulta of this research, but unreasonable values ($b_{0}=25 \mathrm{~cm}^{3} \mathrm{mnole}^{-1}$ and $\epsilon / k=550^{\circ} \mathrm{K}$) were obtained. The difficulties presented by ellipsoidal molecules such as carbon dioxide haxe been mentioned by others [28].

The data of state of MacCormack and Sohneider are evidently adequate to give good second derivatives of the second virial, as shown by figure 5 . Other empirical equations, such as van der Waals' and tho Beattie-Bridgeman cquation, give curves similar to the Berthelot equation.

The authors are grateful for the valuable help and encouragement freely given by Russell B. Scott. For assisting at various times with the experimental work, we wish to thank William L. Cross, Jr., Dino Zei, and Richard J. Sherman.

6. References

[1] R. B. Scott and Jane W. Mellors, J. Research NBS 34, 243 (1945) RP1640.
[2] P. F. Wacker Ruth K. Chener, and R. B. Scott, J. Research NBS 83, 851 (1947) RP1804.
[3] A. Ledue, Int. crit. tables F, 83 (MeGraw-Hill Book Co., Ine., New York, N. Y., 1929).
[4] A. Eucken and K. Y. Lode, Z. physik. Chem. [B] 5, 413 (1929).
[5] G. B. Kistiakownky and W. W. Rfee, J, Chem. Phys. 7, 281 (1939).
[6] A. Miehelo and. C. Miphels, Proc. Roy. Soc. London [A] 183, 201 (1935).
[7] K. E. MacCormaek and W. G. Schneider; J. Chem. Phyb. 18, 1269 (1950).
[B] Serge Grateh, Trans. Am. Noc. Mech. Engrs. 71, 897 (1949).
[9] L. S. Kassel, J. Am. Chem. Sloe. 58, 1838 (1934).
[i0] R. L. Swigert, P. Weber, and R. L. Allen, Ind. Eng. Chem. 38, 185 (1046).
[11] A. Michels and S. De Groot, Appled Scientific Research AI, 94 and 103 (1048).
[12] NBS.NACA tables of therme] properties of gases. Table 13.24, Carbon dioxide, specific heat (1949)
[13] K. F. MacCormack and W. G. Schneider, J. Chem, Phys. 18, 1273 (1950).
[14] J. R. Partington End W. G. Shitling, The specific heats of gases, p. 204 (Ernest Benn London, 1924).
[15] 12. B. Scott, J. luscerch NBA 25, 459 (1940) RP1339.
[16] H. J. Howe, J. Resesreh NBS 44, 321 (1950) RP2081.
[17] N, S. Opborme, H. F. Stimaon, and D. C. Ginninge, J. Resestch NBS 18, a89 (19a7) RP983.
[18] R. B. Scott, C. HI, Meyers, R. D. Randa, Jr. F. G. Brickwedde, snd N. Bekkedahl, J. Researol NBS 35, 39 (1945) RP1661.
[IG] J. A. Beattie and O. C. Bridgeman, J. Am. Chem, Boo. s0, 3133 (1928).
[20] H. W. Woolfey, J. Research NBS 40, 163 (1948) RP18et.
[21] NBS-NACA tables of thermal properties of gases. Table 1.10-Molecular oxygen (ideal gas state), specific heat, enthalpy, entropy.
[22] E. I. (quinn and C. L. Jones, Carbon dioxide (Reinhold Pub, (\%)., Inc, New York, N. Y, 1936).
[23] NBS-NACA tablen of thermal properties of gasen. Table $13.10-$ Carbon dioxide (ideal ges state), specific heat, enthalpy, entropy.
[24] W. S. Benedict and H. W. Woolley, Private commanications.
[25] Solceted ve[ucs of chemical thermodynamic properties, NBS Circular 500 (in press).
[26] C. H. Meyers and M. S. Van Dusen, Bs J. Research 10, 381 (1933) RP538.
[27] NBS-NACA tablen of thermal properties of gases. Tables of corrections of thermodyusmic properties for gas imperfection, uring the Lennard-lones 6-12 potential (1950).
[28] R. B. Bird, Ellen I, Spotz, and J. O. Hirtehfelder, J. Chem. Phys. 18, 1395 (1950),
[29] T. R. Hoebuck, T. A. Murcell, and E. F. Miller, J. Am. Chem. Soe. 64, 400 (1942).

Wabhington, October 15, 1951.

[^0]: 1 This work was innaced in pert by the National Adpisory Committee for Agronsultict

 1 Fisured in brictects indicite the litenitiri references at the end of thig

