Binding Energies for Electrons of Different Types

Charlotte E. Moore and Henry Norris Russell ${ }^{1}$

Abstract

The binding energy of an electron of given type in any siate of a nertral or ionized atom may be defined as that required to remove it slong successive terms of a spectral series to its limit, The data regratding electron configirations and limits collected in Atomic Energy Lavels, Volumes I and II, permit the calculation of theso In a great number of casea.

The present tables give the maximum energy resulting from the addition of an electron of given type (auch as 4p) to the ground states of singly or doubly jonized atoms of the elements H through Nb; and, when desirable, to one other low state (two in the cages of Be and Y). These increme smonthly with stomic number except for a remarkable break after a shell of ten d-electrons hay been half filled.

1. Introduction

The first extensive table of the binding energy with which an electron of a given type is attached to a neutral or ionized atom in a epecified energy level was given by one of us 22 years ago $[1] .^{2}$ It is striking evidence of the extraordinarily rapid advance of spectroscopic theory and analybis during the 5 preceding years that more than 80 percent of the date now available for the same spectra were then included, and that very little clange would be required even in the descriptive text. A thorough revision of the data made in connection with the compilation of Bureau Circular 467, Atomic Energy Lavels [2], has led as a byproduct to the tables given below.

2. Definition and Types of Binding Energy

This binding energy may be defined as that required to remove the electron under consideration from the atom in the specified state without changing any quantized relations except the total quantum number of this electron-thus passing to the limit of the spectral series to which the given energy level belonge.

In ihe simplest spectra all the serics have the some limit. The energy level $L^{\prime}\left(\mathrm{in} \mathrm{cm}^{-1}\right.$) corresponding to this limit is given in Cireular 467 at the end of the table containing the levels l^{\prime} for the individual gtates. The binding ezergy (in cm^{-1}) is $L^{\prime}-l^{\prime}$. In electron-volts it is $0.00012395\left(L^{\prime}-l^{\prime}\right)$ [3].

In the case of a spectrosoopic term with asveral components the smadlest value of l^{\prime} should be taken, thus giving the maximum binding energy.

In spectra in whieh terms of two multiplieities arise from the same "runking" electron and have the same limit, the smallest value of l^{\prime} tebulated for either of the two should be adopted for l^{\prime}, for the same reason.

Thus in Mg i [4] the lowest value of b^{\prime} for a $3 p$ electron is 21850 for $3 p{ }^{2}{ }^{2}{ }^{\circ}$ o, that for $3 d$ is 46403 for $3 d^{1} \mathrm{D}_{9}$ while the limit 3_{8} 誌 2 in Mg in is 81669. The binding energy is therefore $39819 \mathrm{~cm}^{-1}$, or 4.94 volts, for $3 p$ and $15266 \mathrm{~cm}^{-1}$ or 1.89 volts for $3 d$, as gived in table 1.

[^0]
3. Binding Energy in Complex Spectra

In the more complex spectra a given electron configuration gives rise to a number of different terms, most of which have three or more components; and the addition of a p or d electron to one of these terms usually produces, in the spectrum of next lower ionization, two triads or pentads of terms of different multiplicity. To reduce the tables to reasonable bulk, only the lowest term belonging to a given configuration in the spectrum of higher ionization is included; and the tabulated binding energy is taken as the difference between the lowest componont of this limit and the lowest component (regardless of the multipliety) of any member of triads or pentads of terms arising from it. It thus represents the maximum value for an electrod of the given type. The designation of each term that is included in the tables is given as it appears in Volume I or $I I$ of Circular 467 [2].

4. Cases With Two Different Limits

In cartain important spectra, bowever, two or occasionally thrce, electron configurations give terms at nearly the same level, as in the classical example of the group Ca nito CuII where the lowest configuration comes sometimes from $3 d^{*-1}$ and in other casee from $3 d^{7-2} 4 s$. In such cases the loweat term arising from each of these configurations is adopted as a tabular limit, and the binding energies from Ca to Cu I corresponding to the addition of an electron of given type to cach of them are given in table 1 . Those with limit $3 d^{n-1}$ are distinguished by " A " at the head of the column, and the others by "B." Only terms of group A appear in K I and of type B in $2 n \mathrm{I}$. A similar situation, involving $4 d$ and $5 s$ electrons appears from Rbi to Cd I . A dash in the tubble indicatea that no such term existo.

For doubly jonized atoms a similar situation rately arises. From Ca IIr to Cu III, for example, the lowest level always comes from $3 d^{n-2}$. The addition of $3 d$ or $4 a$ to this level gives the terms in Ca II to Cu ir thus designated in table 2, which serve as the limits for groupe A and B from Ca 1 to Cu I.

The further addition of 48 or $3 d$, respectively, gives the same term in each arc spectrum-namely,

Table 1．－Matimum binding energy of an dectron－netivat atoms

	13	28	23	33	3 p	3 at			4		
H 1	1418.1515 .50				392 Pb 45	$33^{5} \mathrm{D}_{14}$	1．5L		$4{ }^{4} \mathrm{Sm}$	0.85	
HeI				$3{ }^{31} 481.87$	3pspt 1.58	$34^{3} \mathrm{D}$	1.51		$4 \mathrm{t} \mathrm{E}_{1}$	0．9	
LI	\therefore			$37^{7} 202$	ap ${ }^{2+0} \quad 1.50$	$3 s^{2} \mathrm{D}_{15}$	1.51			1.15	
Be $\mathbf{r a}^{\text {－}}$		2，918，9，32	is IPt 乐的		8pars 200		1．83		46 哆	1，37	
Br				34.88483		345	1.61			1． 48	
Ct					$3 \mathrm{PJP1} 2.73$	3415	1．61		$4{ }_{4} \mathrm{P}_{0}$	1． 88	
Ni	－－＇，－－－－－－1－－－	－			8p Prlor 2.25	36 ${ }^{1514}$	1．58		$4{ }^{18} \mathrm{P}_{6}$	1.70	
01	－－－．－－－－－－－－A			3r 昭 4.47		3 Sa	1．54			1．78	
F 1＂				3r Pim 4．72	$\mathbf{3 p}+\mathrm{Pl}_{46} \quad 3.0 .5$	\＄4＋ L_{251}	1．54		$458{ }^{49}$	1.85	
Ner	－－－－－－－－－－－－－－		20018，21．5日		\＄p［0，21， 3.18	34 （01／2）	L54		4）［159］	13．00	
NaI					Sparis 3.04	$38 \pm \mathrm{D}_{54}$	1． 52		$4)^{2} \mathrm{Bogc}$	1．186	
MgI				2．179，7．6S	$3 \mathrm{pr} \mathrm{C} \boldsymbol{4}$ 4．96	$8 d^{\text {d }}$ ：	I． 80		48×81	2． 51	
4） 5						$80^{1} \mathrm{D}_{15}$	1.06			2.81	
B1 1^{4}						$84 . \mathrm{Dq}$	2.28		$4 \pm$ P1	3． 23	
P^{1}	－－．－．．．．．．．．．．．				Spatigly［10．55］	84 TFis	1.85		4）${ }^{\text {Prmin }}$	868	
Br	－－－－－－．．．．．．．．	．．．．．．．．．－．．．．．．．－			3prich 10.38	2d ${ }^{\text {d }}$	1．64		4r 48 FI	3．88	
Cl				．．．	3pr $=$［15 13.01	－－－－			4）${ }^{\text {Presm }}$	4.04	
A 1				－	$3 \mathrm{y}+1 \mathrm{I}_{0} \quad 16.78$	3 d j01／24	1.91		4）［1582	4.21	
						A	E	\boldsymbol{A}		B	
K ${ }^{\text {＋}}$						效 ${ }^{\text {D }} 351.89$	－	$4 \mathrm{IB}_{415}$	4，34	－	－
Cat						38t ${ }^{\text {a }} \mathrm{F}$ ， 2.41	$3 d 2 \mathrm{D}_{1} \quad 3.59$	$4 \mathrm{D}_{1}$	5． 28	－${ }^{+18080}$	6.11
日c I				．－		－4Fus 2．97	$\mathrm{A}^{4} \mathrm{~F}_{54} \quad 5.15$		5， 73		6， 56
Ti I						$4^{4} \mathrm{D}_{1} \quad 3.88$	$\square_{4} \mathrm{FF}_{1} \quad 6.02$	${ }_{\sim}{ }^{1} \mathrm{~F}_{1}$	f， 13	a $\mathbf{7 F}_{5}$	5，80
V^{1}				－－－			$6^{1} D_{\text {＊5 }} 6.86$	$\square^{1} \mathrm{D} 44$	6． 49		7，08
$\mathrm{Cr}{ }^{\text {＊}}$						c 1D， 2.38	＊＇6，B． 35	\square^{-184}	＊． 78	a＋ $\mathrm{D}_{\text {b }}$	7.99
Mn F			－．．．－				${ }_{6} \mathrm{D}_{4} \mathrm{D}_{6} 6.37$	$4{ }^{10} 5$	7.017	0^{43}	7.43
Fe I						$c^{2} \mathrm{~F}_{4} \quad 4.05$	$4 \mathrm{CF}_{5} 7.04$	${ }^{-1}{ }^{-1}$	T． 7 T	［ FD_{4}	7.80
Cos							$6^{6} \mathrm{~F}_{4 / 1} 7.85$	$b+\mathrm{F}_{2}$	7．483		8． 29
Ni 1	．－．．．．．．．．．．．．．					－150 0．87	${ }_{5}^{3} \mathrm{D}_{1} 8.8 .65$	${ }_{8} \pm{ }^{\text {［17 }}$	7． $\boldsymbol{\sigma}^{\text {a }}$	$0_{0} \mathrm{Pr}_{1}$	8． 67
Cn	－－－－－－－－．．．．．－		．．．．－			$\rightarrow \quad-$	4 P 8ios 10.14	5 4 2506	7.72	46 $\mathrm{F}^{\text {D }}$ \％	8．06
Z口						－－	－－	－	－	49418，	9．88
Gin 1	．－－						．．．－．．．．．．．．．．	－－－－－－	－．．－	－	－
G 1	－										
A） 1	－．．．－．		－－－－－－－－－－－－－－－				．．．．．．．．．．．．．	．．．－	\ldots	－－－－－－－	．．．
B6 I	－．－．－．．．．．．．．．．－						．${ }^{\text {．}}$ ．		．．．		．
Bt I^{*}	－						－－．．．．．．．．．．．－	．．－－－		＇．．．．	\cdots
Kr 1								．．．．．			
Hb I＂											
$\mathrm{Er} \mathrm{I}^{\prime \prime}$											－
Y 1											
2 t											
Nb 1											

[^1]Table 1.-Maximum binding energy of an electron-meutral atomem-Continued

Table 2. Maximum bording energy of an electron-ringly ionized atoms

[^2]Table 2.-Maximutn binding entegy of an electron-aingry ionized dome-Cortinued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 48 \& 4p \& \multicolumn{2}{|l|}{$4 d$} \& \multicolumn{2}{|l|}{5s} \& \multicolumn{2}{|l|}{\%p} \& \multicolumn{2}{|l|}{$5 d$}

\hline $4{ }^{15} 40$ \& 45

464 \& $4 d^{ \pm} \mathrm{D}_{16}$ \& 3. 40 \& \& 2. 18 \& $5 p^{2} \mathrm{P}_{3}$ \& 2. 18 \& $60^{2}{ }^{2}{ }^{1 / 5}$ \& 2. 18

\hline $48 \mathrm{Mg}_{6} \quad 3.73$ \& $4 p{ }^{\text {P }}{ }^{*} \quad 3.49$ \& $4 d^{15}$ \& 3. 40 \& 58.81 \& 2. 34 \& $5 \mathrm{~F}{ }^{3}{ }^{\circ}$ \& 2. 22 \& $5 d^{2} \mathrm{D}$ \& 2. 18

\hline $45{ }^{5} 8049$ \& ${ }^{4 p}{ }^{2} \mathrm{P}_{\text {ty }} \quad 3.40$ \& $4 d^{2} \mathrm{D}$ \& 8. 40 \& $5 \mathrm{SF}^{28} \mathrm{~S}_{0 / 8}$ \& 2. 42 \& \& 2. 22 \& 5d 2 D \& 2. 18

\hline $40 g_{4} \quad 4.53$ \& 4p ${ }^{\text {P }}{ }^{\circ} \quad 8.89$ \& $4 d^{2} \mathrm{D}$ \& 3. 57 \& \& 2. 73 \& \& \& $5{ }^{5}{ }^{\prime} \mathrm{D}$ \& 2. 26

\hline $43^{18} 9$ 4, \%9 \& ${ }_{4 p}{ }^{2} \mathrm{~Pb}_{6} / 4.23$ \& $40^{2} \mathrm{D}_{15}$ \& 3.54 \& 58 SN \& 2. 89 \& $5 \mathrm{p} \mathrm{P}^{3} \mathrm{l}$ \& 2. 65 \& $5 d^{2} \mathrm{D}_{2 / 4}$ \& 2. 25

\hline $45{ }^{3} \mathrm{P}_{6}{ }^{\text {c }}$ 5. 24 \& $4 \mathrm{p} \mathrm{IP}_{1} \quad 4,55$ \& $4{ }^{4}{ }^{5} \mathrm{~F} 2$ \& 3. 62 \& $55^{81} \mathrm{P}_{6}$ \& a. 0.5 \& \& \& \& 2.25

\hline $484{ }^{4} \mathrm{P}_{0 / 5} \quad 5.37$ \& ${ }^{4 p}{ }^{4} \mathrm{D}_{45} \quad 4.68$ \& \& 3.60 \& $584{ }^{4} \mathrm{P}_{05}$ \& 3.20 \& 5p ${ }^{\text {d }}$ [1/, \& 2. 80 \& $5 d^{4} \mathrm{D}$ \& 2. 27

\hline \& $4 \mathrm{p} \mathrm{IP}_{0} \quad$ 4. 40 \& $4 d^{5} \mathrm{D} ;$ \& 3. 49 \& \& \& \& \& \&

\hline 44. ${ }^{4} \mathrm{P}_{35} \quad$ 6. 12 \& \& $4^{2}{ }^{2} \mathrm{D}_{246}$ \& 8. 60% \& \& \& \& \& \&

\hline $4 s$ [1/25 6 6. 20 \& \& 4d [1/2] \& 3.47 \& 5 s [1/619 \& 3. 50 \& \& \& \&

\hline $48.180 \% 6$ \& \& $4 d^{2} \mathrm{D}$ \& 3.47 \& $50{ }^{1805}$ \& 3. 53 \& $5 p^{2} \mathrm{P}_{64}$ \& 2. 85 \& $5{ }^{51} 5$ \& 2. 21

\hline \& $4 \mathrm{~F}{ }^{\text {² }} \mathrm{P}_{6} \quad$ 5.76 \& $4 d^{ \pm} \mathrm{B}_{4}$ \& 3. 77 \& $58{ }^{518}$ \& 3. 94 \& ${ }_{5 p}{ }^{3}{ }^{\text {P }}{ }^{\text {\% }}$ \& 8.24 \& $5 d^{4}{ }^{5} \mathrm{D}_{3}$ \& 236

\hline \& $4 p^{2} \mathrm{P}_{6 / 4} 6.28$ \& $4 d^{3} \mathrm{D}_{13}$ \& 3. 82 \& $5{ }_{5}{ }^{15065}$ \& 4. 20 \& $5 p^{2} \mathrm{P}_{4}$ \& 3. 47 \& $5{ }^{1}{ }^{2}$ \& 2. 41

\hline 4: $\mathrm{P}_{6} 802$ \& \& $4^{4}{ }^{\prime} \mathrm{F}_{5}$ \& 4. 16 \& 55 ${ }^{4} \mathrm{P} 5$ \& 4. 34 \& \& \& ${ }_{5 d}{ }^{3} \mathrm{P}$ \& 2. 4.

\hline \& \& $4{ }^{4}{ }^{4} \mathrm{~F}_{16}$ \& 4. 57 \& 54 $\mathbf{4}_{46}$ \& 4.78 \& $5 p^{4} \mathrm{D}_{3}{ }^{6} \times$ \& 8. 06 \& \&

\hline 48450 \& $4 p{ }^{5} \mathrm{P}_{1} \quad 7.86$ \& ${ }^{4}{ }^{5}{ }^{5} \mathrm{D}_{0}$ \& 4. 63 \& 5* $\mathrm{E}_{5} \mathrm{~S}$ \& 4.33 \& \& \& $6 d^{5} \mathrm{D} 4$ \& 2. 75

\hline $454{ }^{46} 10.98$ \& \& 4d ${ }^{4} \mathrm{D}_{51}$ \& 4.85 \& $58{ }^{1} \mathrm{P}_{5 \%}$ \& 5.11 \& ${ }_{5 p}{ }^{\text {a }} \mathbf{P}_{\text {t/s }}$ \& 4. 05 \& $\mathrm{Ed}^{2} \mathrm{P}_{19}$ \& 2. 28

\hline $48 \quad[11 / 21211.67$ \& $4 p[0 / 2]_{1} \quad 9.10$ \& $4 d[0 \% 1 / 2$ \& 5.11 \& 5.t [1], $]^{5}$ \& 5. 48 \& \& \& \&

\hline \& $4 p^{2} \mathrm{Pu} / \mathrm{s} \quad 8.75$ \& $4 d^{2} \mathrm{D}_{14}$ \& 4. 82 \& 5. $\mathrm{4g}_{4 \mathrm{cs}}$ \& 5. 40 \& $57^{2} \mathrm{P} 3_{1}$ \& 4. 36 \& $5 d^{2} \mathrm{D}_{191}$ \& 2. B5

\hline $a^{1} \mathrm{D}_{1} 1280$ \& * 'Di 9.56 \& $e^{1 F_{2}}$ \& 5.42 \& $e^{3} \mathrm{D}$, \& 5. B $^{\text {c }}$ \& \& \& \&

\hline ${ }_{4}{ }^{4} \mathrm{~F}_{1 / 4}$ 18.57 \& * ${ }^{4} \mathbf{G} 14.49 .91$ \& $\varepsilon^{4} \mathrm{G}_{2 \mathrm{~K}}$ \& 5. 53 \& ${ }^{\text {[}} \mathrm{F}_{15}$ \& 6. 87 \& \& \& \&

\hline a HF_{1} 14.33 \& z 'Gp 10.36 \& $\pm{ }^{9} \mathrm{H}_{4}$ \& 5. 67 \& \& \& \& \& \&

\hline a ${ }^{4} \mathrm{D}_{\text {ch }} 15.01$ \& $z{ }^{6} \mathrm{~F}_{4}{ }_{4} 10.69$ \& $e{ }^{4} \mathrm{G}_{\text {LS }}$ \& 5. 76 \& $6^{6} \mathrm{D}_{059}$ \& 6. 24 \& \& \& \&

\hline $4{ }^{4}$ 吅 15.64 \& z TY 10.88 \& $\varepsilon{ }^{7} \mathrm{D}_{1}$ \& 5. 78 \& $\varepsilon^{\text {J }} \mathrm{S}_{3}$ \& 6. 39 \& ${ }^{\text {c }}{ }^{\text {P }}{ }^{1}$ \& 4. 99, \& $f^{\text {' }} \mathrm{D}_{4}$ \& 3. 25

\hline $\cdots{ }^{+1} \mathrm{D}_{46}$ 16. 18 \& $z \mathrm{PDig}_{4} 11.41$ \& $0^{4} \mathrm{~F}_{51}$ \& 5.9] \& ${ }^{6} \mathrm{D}_{43}$ \& 6. 53 \& $y^{\text {c }} \mathrm{F}_{\mathrm{j} \mathbf{2}}$ \& 535 \& \&

\hline $a{ }^{4} \mathrm{~F}_{5} \quad 18.64$ \& $z+$ Fi 11.45 \& \& \& $\varepsilon^{5}{ }^{5} \mathrm{~F}_{6}$ \& 6. 64 \& \& \& \&

\hline \& $z{ }^{4}$ Dryss 11.76 \& \& \& ${ }^{+4} \mathrm{~F}_{4} / 5$ \& 6. 77 \& \& \& \&

\hline $4{ }^{4} \mathrm{D}_{3} 17.57$ \& $4 \mathrm{p}^{\mathbf{2}} \mathrm{Pa} \quad 12.05$ \& 4d ${ }^{\text {², }}$ \& 6. 09 \& $55^{3} \mathrm{D}_{4}$ \& B. 90 \& $5 p^{\text {² }}$ \% \& 5. 40 \& 5d ${ }^{3} \mathrm{~S}_{1}$ \& 3.39

\hline $45{ }^{150 \%} 17.98$ \& \& $4^{4}{ }^{2} \mathrm{D}_{1!5}$ \& 5. 95 \& $588 \mathrm{ES}_{4}$ \& 7.00 \& $5{ }^{5}{ }^{1} \mathrm{P}_{5}$ \& 5. 89 \& $5 d^{*} \mathrm{D}_{1 / 6}$ \& 3. 34

\hline $48^{3} 1 \mathrm{~S}_{6} \quad 20.51$ \& $4 \boldsymbol{p}^{\text {E }} \mathrm{P} 814.64$ \& $4{ }^{1} \mathrm{D}_{ \pm}$ \& 7. 16 \& 58.18 \& 7. 75 \& $5{ }^{2}{ }^{2}{ }^{\text {P }}$ \& 5. 83 \& $5{ }^{2} \mathrm{D}_{1}$ \& 3. 51

\hline \& $4 \mathrm{p}=\mathrm{P}_{546} \quad 15.98$ \& 4d ${ }^{\left(\mathrm{D}_{146}\right.}$ \& 5. 91 \& \& 820 \& $5 p^{2}{ }^{\text {Pr }}$ \& (2. 14 \& $5 \mathrm{~d}^{2} \mathrm{D}_{14}$ \& 9. 52

\hline \& \& 4diFs \& 9. 2 \& 5. ${ }^{2} \mathrm{P}$ \& 10.4 \& $5 p{ }^{\prime} \mathrm{P}_{1}$ \& B. 4 \& \&

\hline \& $47^{4}{ }^{4} \mathrm{~S}_{13} \quad 21.5$ \& \& \& 58.4 \& 9.70 \& \& 7.50 \& $5 d^{1} \mathrm{~F}_{1 / 4}$ \& 4.36

\hline \& $4 p^{4} \mathrm{P}_{7} \quad 21.6$ \& $4{ }^{\mathbf{s}}{ }^{\text {D }}$ \& 7. 65 ? \& $5.8{ }_{5}{ }^{5}$ \& 0.94 \& $5_{59}{ }^{5} \mathrm{P}_{1}$ \& 7. 37 \& $5 d *{ }^{*} \mathrm{D}$ \& 432

\hline \& $4 p^{5}{ }^{9}{ }^{19} 624.36$ \& $4^{4}{ }^{4} \mathrm{D}_{3 / 4}$ \& 4. 68 \& 5. ${ }^{4} \mathrm{P}_{21}$ \& 10. 58 \& $5 \mathrm{p} \mathrm{CP}_{3}$ \& 7. 9 R \& $5{ }^{\text {d }}$ P4s \& 4.63

\hline \& 49818, 27. 50 \& \& \& 50 [1\%) \& 10.97 \& 5 p [$0 \% / 2]$ \& 8.38 \& 5d [0] ${ }^{\text {¢ }}$ \& 4 fm

\hline \& \& $4{ }^{1}{ }^{2}{ }^{3}$ \& 9.22 \& 585 \& 11. 03 \& $5{ }^{2}{ }^{2} \mathrm{P}_{4}{ }_{3}$ \& 8.09 \& $5 d{ }^{2} \mathrm{D}_{19}$ \& 4.42

\hline \& \& ${ }_{\text {a }}{ }^{1} \mathrm{~F}_{2}$ \& 11. 40 \& $a^{5} \mathrm{D}_{1}$ \& 12. 29 \& - D_{2} \& 9.15 \& $e^{1} \mathrm{~F}_{3}$ \& 5. 14

\hline \& \& $b{ }^{\text {c }} \mathrm{F}_{1 / 3}$ \& 13.71 \& $\mathrm{a}^{4} \mathrm{~F}_{1 / 5}$ \& 14. 03 \& $z^{4} \mathrm{GF}_{\mathrm{jk}}$ \& 10. 56 \& $f{ }^{\text {Pr }}$ \& 4.87

\hline
\end{tabular}

the lowest belonging to the configuration $3 d^{x-1} 4 s$. The differences in the binding energies given for $3 d$ and 48 in table 2 and for $3 d$ (B) and 48 (A) in table 1 ste therefore identical, barring occasional effects of rounding off the separate values.

5. Numerical Example

As an example of calculation in this case, take V_{1} [5]. Here the linit of group A is $3 d^{4} a{ }^{6} D_{0}$ in $V_{\text {in }}$ at a level of $54361 \mathrm{~cm}^{-1}$ above the ground level of $V I$, while that of group B is $3 d^{d} 4 a^{a}{ }^{\circ} \mathrm{F}_{1}$, which lies higher by $2605 \mathrm{~cm}^{-1}$, or at 56966 . We then find for each added electron the configuration, term, and lowest level given below:

V1

Adicd anetron	Group 4				Group B			
	Cunftrs	T-10	Latrt	$\left\lvert\, \begin{gathered} \text { Biodins } \\ \text { poeng } \end{gathered}\right.$	Confa.	Term	Laval	Binding 6ITHRY
3	314	A 4 80\%	2mata	4.7	$3{ }^{3} 114$		tut	8680
4	348	$4^{4}{ }^{\text {b }}$	2119	64	3014	54814	0	7.06
45	817 4	18	24029	定为	2074 4	F401\%	18378	5.06

The configuration for each case is first worked out; the lowest term and level for this is found by inspection of the tables in Circular 467. The difference between this level and the appropriate limit multiplied by $1,2395 \times 10^{-6}$ then gives the binding energy.

It is worth noting that, in this case, none of the binding energles given ebove corresponds to the principal ionization potential of the atom. This is given by the transition $3 s^{3} 4 s^{2} a{ }^{\prime} \mathrm{F}_{1 \text { s }}$ to $3 d^{4} a{ }^{5} \mathrm{D}_{0}$ and involves a double electron jump. Such cases are rare, the only others in the present work occur in Cor where the transition is from $3 d^{7} 4 s^{2} a^{4} F_{4 s}$ to $3 d^{8} a^{3} F_{4}$, and in Nir where it is from $3 d^{8} 4 x^{2} a^{5} \mathrm{~F}_{4}$ to $3 d^{8} a{ }^{2} \mathrm{D}_{25}$.

6. Case of Scandium and Ytrium

Theoretically, the spectre of singly ionized atoms from Sc if to Zn II should contain many terms with limits in the third spectra arising from configurations $3 d^{*-3} 4 s$ which should be related to those with limits from $3 d^{n-2}$ exactly as group B in the first spectra is related to group A. The correaponding linits sre, however, so high thet scarcely any such terms have been observed except in scandium, and in yttrium in the next long period. It, therefore, appears admissible to give the data for the fow known terms of this type separately in table 3.

In this table the first four columns (which have no counterparts in tables 1 and 2) give data regarding the limits here involved - the "level" being measured from that in which one d electron is substituted for an 8 -that is, the limit adopted in table 1 , group B, for first spectra and in table 2 for second spectra.

The remaining part of the table is arranged exactly as in tables 1 and 2. The entries for $3 d$ in Se I and $4 d$ in Y 1 exceed those for 48 (B) and $5 s(B)$ by the level difference in the fourth columan. The remaining energy fevels appear only in table 3.

The new limiting configuration in Y_{n} is the lowest in the epectrum, and the transition from this to the lowest level in $\mathbf{Y}_{1} 5 s^{4} 4 d^{2} D$, givee the principal ionization potential 6.53 volts, which does not appear in table 1 , though it corresponds to a single junp of a $4 d$ electron.

7. Description of the Tables

Table 1 gives the binding energies of $n s, n p$, and ad electrons for neatral atoms of the slements H to Nb , and for values of 8 from 1 to 5 , excluding those belonging to complete shells. Table 2 gives similar data for singly ionized atoms from He m to Nb \quad. Full explanations of their significances, of the groups A and B given for first spectra, and of the way in which they have been calcolated, are given in cections 2 to 5 . Table 3 contains certain additionad values that need be recorded only for scandium and yttrium. (See section 6.)

Most of the vacant apaces in the tables correspond to energy levels that are so situated that the strongest lines corresponding to transitions involving them lie in the infrared or far in the ultraviolet and have not yet been obseryed.

In a number of cases some tarms belonging to the electron configurations in question are known, but there is no doubt that the lowest level of the configuration has not yet bean found (usually for the reason just mentioned). Here again the entry is left blank (or an estimated value is occasionally given in brackets).

These, and various other instances in which comments are required are discussed in the notes following the tables. Full discussions are also given of a very few cases in which it now appears that the ejectron configurations sssigned in AEL shouid be changed.

The order in which the electron types sare presented in tables 1 and 2 is that in which they form "complete shells" and enter the inner part of the atomic structure-as is shown by the termination of the verticel column for each.

Until the given electron is involved in the produetion of such a shell, the increase of its binding energy with atomic number is slow, with ocessional irregularities arising from the choice of the lowest level in each configuration rather than the mean. During the formation of the shell involving the given electron, the increase in binding energy is much faster. The remarkable reversal of this increase at the point where s shell of d electrons is half filled may be tentativaly explained as an effect of the revergal of the spin of the sixth added electron demanded by Pauli's principle.

8. References

[1] H. N. Russell, Agtroph. J. 74, 11 (1929).
12] C. E. Moore, NBS Circular 467 I , (1849); II (1952).
[3] R. T. Birge, Rey. Mod. Phys. 13, No. 4,233 (1041).
[4] Atomic Energy Levels, NBA Circular 467 I, IOf (1040).
[5] Atmic Energy Levels, NBS Circular 467 I, 292 to 298 (1049).
[6] K. Lidén, Ark. Fysik. 1, No. 9, 259 (1099).

Table 3. Additional binding energites for Se and \mathbf{Y}

"An asteritif refers to apecta] molea on [indyidual apeotrs.

Binding Enbroies-Notra to Tableb 1, 2, and 3

[An asterisk (*) in the tables appliea to the following spectrs]
Be 1 Intersyatem mombinations betwpen the sirglet and triplet terms have not been observed. The relative positions of the two sets of terms are excellently determined by long acies, the relative untertainty being about $\pm 2 \mathrm{~cm}^{-1}$.
The tarme $4,5 p{ }^{3} P^{\circ}$ hive bean calculated from the geries formula but not confirmed by obeervation. They are entered in brackets in the table.
Fi See raferenca [8]. Only one level is known far 5pt perhaps not the loweat.
Si 1 The general run of binding anergies for the $3 d$ electron indieates that the configurationa of the two lowest ${ }^{3} D^{\circ}$ terma as given in Atomic Energy Levels, 1, p. 145 , should be interchingged to read as follows:

Configuration	Desipartion	Level
$383 p^{4}$	$3 p^{\text {a }}$ at	45\%7e. 20 ete.
$30^{2} 3 p\left({ }^{3}{ }^{9}\right) 3 d$	$3 d^{3} \mathrm{D} ;$	48599. 15 ete.

If this change is made, the binding energy for $3 d$ is then determined from the level $3 d^{1} \mathrm{D} g=47951, \delta 0$, as has been done here. Thas clange should bp confirmed by further observations.

P 1 The ionization potential estimated by W, Finkelnburg and F. Starn, (Phys. Rev. 78, 303 L (1950)), from the regularities in the run of the soreening constants is preferable to that given in [2 , page 163]. The corresponding lirait $85115 \mathrm{~cm}^{-1}$ has been used in calculating the binding energies.
The term fs ' \mathbf{P} should be rejected.
$\mathrm{K} 1-\mathrm{Zn} 1$ Group A : The limit, is the lowest level of the configuration $\mathbf{a d}^{n-1}$ in the singly ionized atom $[n=1(K)$ to $11(\mathrm{Cu})]$.
Group B; The limit is the loweat level of the configuration $3 d^{n=1} 4 a$ in the singly ionized atorn $[\mathrm{r}=2$ (Ca) to $12(\mathrm{Zn})]$.
Ca 1 The following term las recently been reported by C. J. Humphreys (J. Rescerch NHS 47, 262 (1951) RF2252).

Desigrastion		J	Level	Interval
$38^{3} \mathrm{~F}$		2	4347487	
		8	49489.19	
		4	49508. 10	18. 31

It has been used to calculate the binding energy for $3 d_{1}$ group A in the table.

Sci Table 3. Racah has auggeated that the conflguration of $x^{2} p^{\circ}$ should be correctrati in "AEL" to read $4 s^{2}(a$ IS $) 4 p$ instend of $3 d^{2}(a 1 /\{) 4 p$. Assumfng this correction, the binding energy for $4 p$ comes from this term.

Cr 1 The binding energy for 5p, group B, is omitted because the general run of values in this colvmn indianter that the loweat known level (a F^{Fy}) in not the lowegt in the trisds to be expeoted, and does not, therefore, give the maximumb binding eqergy.
MaI The lowest level for $3 d$, group A, is not known in Mn i. The level c 'Pek 51688.17 is not the lowest, and has, therefore, not been used.
Br 1 The magritudes of the binding enengies indioate that the terme from the $4 d$ and bid edectrons have not bean found, and thet the known id terme are from fod and $7 d$.

Rb I-Nb I Group A: The limit is the Ip west level of the configuration $4 d^{*-1}$ in the singly ionized atom $[n=1(\mathbf{P b})$ to $5(\mathrm{Nb})]$
Group B: The limit fe the lowest level of the ponfiguration $4 d^{\prime-2} 58$ in the singly honised stolu $[n=2(\mathrm{Sr})$ to $5(\mathrm{Nb})]$.

Sr I The known tarm $4 d^{y}$? ${ }^{2}$ from this configuration is undoubtedly higher than the unknown $4 d^{d}+F$ term, Congequently no entry is given in table 1 for $4 d$, group A
B if No intersystem combinations connecting the singlet and triplet systems of terms have been observed. Bince the relative poritions of the two gets of terms have been eatimated, all entrlea in the table eroppt that for $2 t$ are aubject to an uneertainty that probably doea not exceed ± 0.03 volt.

Fin The quintet serms are not connected with the rest by observed intersystem combinations. Stnce their relative pooitions has ze bean extimated, the tabular entries for $3 \mathrm{~s}, 3 \mathrm{p}, 3 d_{1}$, and 4 s are subject to an uncerttainty probably not exgeeding ± 0.03 volt.

Waghingron, August 30, 1951.

[^0]: I Princeton Unifersilty Obserfatory, PTincelon, N. J.

[^1]: ＊An asterdsk refers to the specith motes on Individual epectrah

[^2]:

