
T ABLE 2. V alues of k and corres ponding val1les of r 

k T k T k T k T 

----- ----- ----- ------

~ 1 55 1 109 2 165 2 
4 1 56 1 111 1 167 1 
5 2 56- 2 113 2 168 2 
7 1 57 2 ]]5 4 J68- 2 
8 2 59 1 116 1 172 2 

8- 1 60 2 Jl9 1 177 2 
11 I 61 2 120 1 179 2 
12 2 65 2 120- 2 181 2 
13 2 68 I 124 2 J83 1 
15 1 69 2 127 2 184 2 

17 2 71 1 129 2 184- 2 
19 2 n 2 1~ 1 1 185 2 
20 1 76 2 132 1 191 1 
21 2 77 7 133 2 193 2 
23 1 79 1 136 2 195 2 

24 1 83 1 136- 1 199 1 
24- 2 84 1 1~7 2 201 2 
28 2 85 2 139 2 203 2 
29 2 87 1 140 2 204 2 
31 1 88- 2 HI 2 205 2 

33 2 89 2 l H 1 209 2 
35 1 91 3 145 2 211 3 
37 2 92 2 149 2 212 1 
39 1 9:) 2 151 1 213 6 
40 2 95 1 152 1 215 1 

40- 1 97 2 1.>2- 9 217 2 
41 2 101 2 155 2 219 2 
44 2 103 1 156 2 220 2 
47 I 104 2 1.>7 2 221 2 
51 2 104- 1 159 1 221 2 
52 2 105 2 161 2 227 2 
53 3 I O? 2 164 1 
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T A B L E 3. l ' alues of k and c01Tesponding combinations and 
values of r 

k Combination T 

-
43 (H2- ' ) (H3-' )L(s,x) 2 
67 (1+2-') (i+3-') (1+5- ') L (s , x ) 3 
88 (1+3-') L( •• ,x) 4 

123 (1+2-') (l +5-·)L ( .• ,x) 2 
148 (1+3-') (H5-') (1+7-·)L (s.x ) 3 
173 (J +2--) (1 +3- ') (1 +5- ·)L(s.x) 4 
187 (1+2-' ) (1 +3-') (1 +'\- ')L(s,x ) 3 
188 (1+3-') L (s ,x) 3 
197 (1+ 2- ·)L(s.x) 2 
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Forced Oscillations in Nonlinear Systems 1 

By Mary 1. Cartwright 

This paper shows how the approximate form of the solutions of a certain llonlinear 
differential equation occurring in radio work may be obtained from certa in general res ul ts 
and gives the proof of t he general r esults in d etail. The proof of the ge neral statem ent 
depends on a type of method t hat can be applied with minor modifications t o any equation 
of t he type 

i + k f (x ) :t+g(x ) = kp(I), 

where p(t) has period 27r/ A, and Sot p(t)dt is bounded for all t, f(x)~1 for Ix l ~a, and 

g(x) /x~ 1 for Ix l ~a. 

For some years Professor J. E. Littlewood and I 
have been working on nonlinear differential equa­
tions 2 of a type which occur in radio work and 
elsewher e. One of the most interesting of these 
equations is 

i= lc(1 - x2)x+ x- bkf.. cos (At+ a) , (1) 

especially for k large and 0< b< 2/3. Our attention 
was drawn to it by a remark of van del' Pol,3 which 

1 This pa per con tains material presented in lecture form to the staff of the 
Institute for Numerica l AnalysiS of the National Bureau of Standards on J anuary 
28, 1949. Miss Cartwr ight was a consultant at the I N A at the ti me this lecture 
was delivered . 

, See M. L. Cartwright and J . E. Littlewood , J. London Math. Soc. 20, 180-
189 (1945), and Ann. Math. 48, 472-494 (1947) ; a lso M. L. Cartwright, J . lnst. 
Elec. En~ . (Radio Section) 95 (III) , 88- 96 (1948, and Proe. Cambridge Phil. Soc. 
~5, 495 (1949) . 

3 B . van der ]>01 , Proc. Inst . Uadio Eng. 22.1051- 1086 (1934). 

suggested that it corresponded to a physical system 
investigated by him and van del' Mark.4 For 
certain values of the parameters the physical system 
had two possible stable oscillations, one of period 
4n'll'/A and one of period (2n + l )27r/ A. As a matter 
of fact in the case of (1), owing to the strictly 
symmetrical nonlinear fun ction I - x 2, the period 
4n7r/A does not occur, but for certain values of b there 
are two stable oscillations of periods (2n ± 1)27r/A. 

It would take too long to give a complete proof 
of this statement here, but I propose to show how 
the approximate form of the solutions may be 
obtained from certain very general r esults, and give 
the proof of the general results in detail. The proof 

• B . van der Pol and J . van der lVlark, N ature 120.353-364 (1927) 
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of the general staLoment depends on the type of 
m ethod which we use t hroughou t. I t ean b e 
applied with minor mod i fi cations to any equat ion 
of t he form 

i+ lej(x)x + g(x) = lep (t) , (2) 

wher e pet) has period 27TI~, and i t p(t)dt is bounded 

for all t, j(x)"2 1 for Ixl"2a, and g(x) /x"2 1 for Ixl"2a, 
provided of course t hat j , g, p satisfy the usual con­
ditions required for the existence and uniqueness of 
solut ions, and are eit her independen t of Ie or satisfy 
certain simple inequalit ies independent of Ie . 

W e assume throughout that 1e"21 , and usually 
that it is large. W e first obser ve that th e a in (1) 
is merely inserted for convenience. It enables us to 
choose the orig in of t as we wish . vVe shall wri te 
xo,xo for t h e values of x and x at t= O. 

There are two m ain weapons of attack besides the 
equ ation (1) itself . The first i the integrated equation 

_X-XO+ Ie(~3 -x- ~g+xo)+ i t xdt 

= blc [sin (At + a)- sin a]; (3) 

t he second is the energy equation whieh is ob tained 
by multiplying (1) by 2x and in tegrating, 

:i:2- x~+ 2lc J~t (x2- 1)x2dt+x2-x~ 

= 2blcAit:i: ('os (At+ a)dt . (4) 

In some ways t he integraLed equation IS more 
fundamental than (1), and t hat is why th e A is 
inserted on th e righthand ide of (1) . The energy 
equation may be rewrit ten with :i: = y , xo=Yo in the 
form 

'X2+ y2-(X~+ y~) 

= 2lc{ J~t bA X cos (At+ a)-(x2- 1):i:2}dt. (4') 

The right hand s ide of (4') will be dominated by the 
term X2X2 when x is large un les x is then very sm all, 
and it seems improbable t hat x can b e small for 
most of t h e time that x is large . This suggests t hat 
X2 + y2 decreases rapidly over any ar c for which x is 
large, and therefore that x is bounded for sufficiently 
large t. The general result whi ch I propose to prove 
later is the following: 

Theorem 1: Ij x = x(t, xo, :i:o) is any solution oj (1) 
jor which X= Xo, x=xo when t= O, then 

Ixl<B,lxl< Blc, (5) 

where B is a constant independent oj Ie and t , for Ie "21, 
t> to(xo,xo). 

~ -- I 
A suming for the moment the result of th eorem 1, 

we may argue as follows: eq 3 can be r earranged in 
th e form 

x3 . X lit - -x= b SIll (At+ a)-I-- O- - - - xdt 
3 . Ie Ie 0 ' 

(3 ' ) 

where 0 is a constant depending on xo,xo, b and a, 
and in virtu e of (5) the last term is O(l /Ie ) for large 
values of Ie and 0 50 t502 7r/A. Hence there are two 
extreme possibilities : either x is comparable with Ie 
in magnitude, or x is given approximately by the 
equation x= X, where 

X 3 
F (X )= T- X = b sin (At+ a) + O. (6) 

Both t hese possibilities may occur for arbi trarily 
large values of t, and also of course th ere are transi­
tions from one to the oth er. For fixed t and band 
Osu ch that (- 2/3) < b sin (At+ a) + 0 < 2/3, eq 6 has 
three roots, 

Xl < - 1 < X 2< 1 < X 3= X 3(t, 0), 

as m ay be seen from fi gure 1. If b> 2/3 , 
b sin (At+ a)+O runs outside t he interval [- 2/3, 2/3] 
for some t in each period ; we suppose that 0< b< 2/3 
because this is t he most interesting range. I t may 
b e observed from figure 1 that if Xl and X a increase 
with t, X 2 decreases and v ice-versa, so t he solu tions 
over 050t 50 27r/A are approximately as shown in 
figure 2, provided t hat Ix l50 B. 

If we integrate over a second period 27r/A 50 t 50 47r/ 
A, we have (3 ') with 0' in place of 0 where 

11:4". / ).. 11:4". / ).. (1) 0' = 0 - -Ie xdt = O - -k X s(t,(')dt+ 0 le 2 ' 
2". / )" 2". / ).. 

s= l , 2 , 3. 

H ence if Ixl < B, the solution is given approximately 
by X s(t,C' ) over the next period. The differCl:lCe 
0 ' - C is actually of the sam e order as x/Ie , WhICh 
occurs in t he error term in (3'), but i t can be shown 
t hat in t h e circumstances considered x is of t h e form 
xs(t,O) + o (Ie-Ji) . Putting t his and x= X s(t,C) +q(le ~l) 
in (3'), and remembering that X s an d Xs are pen odl c, 
we see than the nonperiodic error is 

-I 

I 
F 

FIG U RE 1. 

b sin(At + a) 

x-
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and so the second wave will certainly be lower than 
the first in the case of X3 by an amount of order I jk, 
and the solution will perform descending waves as 
shown in figure 3. The second wave will be higher 
than the first in the case of Xl, and higher or lower 
for X 2, unless 

(so that Gf = G approximately). This can only 
occur for ('= 0, and then we have a solu tion with 
period 27rj'A approximately. There is in fact a 
strictly periodic solut ion with period 27r/'A which is, 
for reasons which we shall give presently, unstable. 

R eturning to the case in which Ixl is comparable 
with k in magnitude, we suppose first that x>5k, 
where 5>0 for a time of length D jk. Then x changes 
by at least Do, and this is excluded by (5) if Do> 2B. 
Simihrly x is not less than - ok for an interval of 
time greater than D jk, for if it is :I; runs outside the 
strip Ixl<B. 

As regards the transitions, if 11-x21>o>0 and Ix l 
is large, the second term in (1) is much more im­
pOl'tant than x or b k'A cos(M+ a), and so x has 
the same sign as x in Ixl < 1- 5 and the opposite if 
Ix l>l + o, (provided that Ixl is large and k is large). 
H ence any small but significant deviation from Xl 
or X 3 is at once corrected, whereas a small but signi­
cant deviation from X 2 causes Ixl to increase rapidly. 
In the latter case Ixl cannot decrease again until x ap­
proaches either the XI or X3 curve which corresponds. 

Finally near:l; = ± 1 the term bk'A cos ('At + a) dom­
inates except when 'At + a is near n7r + 1/27r. The dips 
of X 3 towards x = 1 and crests of Xl toward x = - 1 
do in fact occur in these intervals, and a complete 
th eory of the behavior of solutions near these points 
is very compli cated. However, in spite of that we 

can now form a fairly good general picture of the 
behavior of solutions. They settle above X= 1 into 
a long descent in waves of the form x=X3 (t ,G) ap­
proximately, dipping a little lower each time until 
they reach the neighborhood of x= 1. There they 
have till'ee alternatives: (1) another wave X= X 1 
just above X= 1, (2) an unstable wave X= X 2 just 
below X= 1, or (3) a rush down to t he corresponding 
Xl which, as may be seen from figure 1, is near 
x=-2. The stable oscillations naturally follow 
the first or thu'd alternative, and have period 
(2n + 1) 27r-j 'A or (2n - 1)27r/ 'A according as they have 
n + 1/2 or n-l j2 waves above X= 1. Separating 
them there are many types of unstable motion fol­
lowing an X 2 curve which begins and ends on X= 1 for 
part or the whole of the way (or a similar X 2 curve 
after a long ascent neal' X= -1). From an X 2 curve 
they may pull up sharply to Xl or rush down to X3 
at any stage. All types starting near X= 1 finally 
plunge down to t,he Xl curve, and perform a cor­
r esponding long ascent to X= - 1, the whole pheno­
menon for x< O corresponding to that for x> O. All 
t his can be rigorously established, and moreover the 
relative positions of solutions approximating to 
X 3 (t,Gl ) and X 3 (t, G2 ) remain the same till'oughout a 
long descen t unless Ot and G2 differ by something 
which is extremely small for large k, such as e- k % . 

We now return to the proof of theorem 1. The 
preceding analysis depended to a large extent on the 
fact that 1- x2 changes sign twice; in th e work which 
follows the significant point is that the coefficient 
of x is positive for large x and t hat the function g(x) 
in (2) has t he sign of x. Physicists may consider 
it intuitive that a system 'with a restoring force and 
positive damping for large x should have bounded 
solutions, and I hope to show that this is also intui­
tive by mathematical commonsense. Incidentally 
the lemmas give a good deal of other information 
about the solutions. I shall as usual refer to t as 
the time, and say that tt is before or after t2 according 
as tt< t2 or tl >t2 • The constants B are independent 
of k and t, and are not necessarily the same in each 
place unless a suffix is attached, and, as we aid 
earlier k> 1. 

We first ensure that all solutions eventually come 
fairly near x= O. 

Lemma 1. A solution oj (1) cannot have absolute 
value greater than 3" jor all large t . 

Suppose that this is not so, and that x2': 3% fort 2': tt. 
Integrating from tt where X= Xt, x= x l , we have 

x-xl+k(~-x-~+Xt)+ S :Xdt= bk[sin ('A t+ a) - sina], 

and so 

3" (t - tl) ~ S >dt= - x+ kx (1-~)+ 0 (1) 

as t ----7 co , where the constant implied depends on k. 
The lefthand side tends to co, and so X----7- co, but 
this implies that X----7- co, which contradicts x2': 3" . 
Hence x~ 3" for arbitrarily large t, and similarly 
x2': - 3" for some large t. 
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We next e tablish th at a long as Ixl is not too large 
the value of Ixl cannot increase too much. 

Lemma 2. If Ixl'::;3 ;> on an arc PQ, then 

and. if the arc lasts a time longer than 4/k'::;4, lxQ I'::;2. 
}.;[ore generally if I xl'::; bo on an arc PQ, then 

If Ixi.::; 34 and ;i; > k on an arc, it can only last a 
time at most 2.3 'A /k < 4/k. For if it lasts longer, the 
solution travels a distance more than 2.3 ;> and there­
fore cannot remain in the strip. The same is true if 
x< - k on an arc inlxl'::; 34 . 

Let PI be the last point before Q at which Ixl'::; k, 
or P itself, whichever is the latest. Suppose first 
that xPI > O, then ;i; > O on t he arc PIQ. For, if not, 
x= o at some point of P,Q and PI is not the last point 
at which Ixl'::; k. By t he integrated equation, since 
IXQ I < 3" ,i:l:P! 1<3;> , 

where Bl"?l depends on b, which gives the result. 
Similarlyifj;P I <0, we have xp1 - xQ .::; Blk. If the time 
is greater than 4k ,lxPII'::; k , and we have the second 
form of the result. The result for Ixl'::;b o follows by 
the same method. 

The next two lemmas show t hat the height of an 
arc QR outside t he strip Ixl'::; 3" , and the t ime taken 
to describe it are bounded by numbers depending on 
xQ; in other words the veloeity with which it emerges 
from the strip. 

Lemma 3. Ij the arc QR lies above x = S" and 
begins at Q on x = 3", the greatest height h satisfies 

h < XQ B 
2k + 2· 

When x = h= 3 Y,+ h"x~ O. Integrating from the 
point Q to the point H at which x = h, we have 

(3~+hl 
O= xQ-k J3~ (x 2-l)dx 

-Sat xdt+ bk[sin (At+ a)-sin aJ. 

Since x2- 1"? 2 on QR, 

and the result follows for hI and so for h. 
Lemma 4. Ij QR is an arc above x= S ;> beginning 

at Q on x=S" , then the time t taken to describe QR is 
less than B 3XQ' provided that xQ> k . 

Suppose that xQ>k, and that R is on x = S y, so 
that xQ=xn= 3 4 . On QR it is easy to see that 

because xQ> k. Also 

and so t< B3xQ. 
The Teduction in energy over any sufficiently high 

arc is established in lemma 5 which gives effect to 
the remarks we made about (4'). It is much the 
most difficult part of the proof. 

Lemma 5. Ij QR is an arc above x = 3Y, beginning 
at Q on x= 3Y, and ending at R on x =:= 3Y" jar a given 
Bl"?l there exists a B 4"? BI"?1 such that if xQ> B 4k , 

~<dfa - 4BlkXQ. 

The energy eq 4 for the arc QR is 

X;1-dfa=- 2kJ~t (x 2- 1)i;2dt + 2bkA i t x sin (At+ a)dt . 

Let 

Then 

x;1- dfa'::; - 2J+ 2bkA .r Ixldt 

'::; - 2J+Bkt~ (it I:W dty~ 

by Cauchy's inequality. So by lemma 4 and (8) 

X~l-dfa'::; - 2J + B5k Y, xii J Y, 

<-J <-BikXQ, 

(8) 

provided that J "?mkXQ, where B5 depends on B3 and 
xQ"?k. We may obviously choose m > 4B1, and we 
have the result except for the case in which 
J < BikXQ. 

Suppose now that J <B~ lcXQ, and integrate from 

Q until x=~ xQ or x = 2B~+ 3 Y" whichever comes 

first . Then x"? ~XQ> O . Hence x is increasing on 

this arc and 

( t sin (At + a)xdt= rx sin (At+ a)dx< ( X dx'::;2B~. Jo Jay, Jay, 
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Hence 

j;2_~= - 2k J~t (x 2-1)x2dt-kb'A fox sin ('At+ a)dx-B 

~ -2J-kBB~-B 

~ -2kB~xQ-kB~ -ix~, 

provided that xQ> kB4• It follows that X2> ix~ and 

therefore x> ~XQ' so that x reaches 2B~+3)j first. 

Now since x2- 1 ~ 2 on the arc, 

12B~+3 )j 
J~ 2k 3)j Ixldx ~ kXQ· 2B~, 

and we have a contradiction. Hence the result of 
the lemma is true. 

It remains to combine the results of lemmas 2 
and 5. 

L emma 6. If Q is a point on x= 3)j such that 
xQ>B 4k> O, then the solution returns to the strip 
Ixl'::::3}i at R and emerges again at S with I Xs 1<1 xQ I 
- Blk. 
By lemma 2 with Rand S in place of P and Q 

IxsI2<lxRI2+ 2Blk lxRI + B~k2. 

2r-------------------------------------

t O~------------------+_~--+r----~­x t-

-Ir---------------------~~--_H--------

-2L-__________________________________ __ 

FIGURE 3. 

Using lemma 5 in the form stated and also III the 
weaker form !xR !,:::: IXQ !, we have 

IxsI 2<lxQ I2_ 4B l k lxQ I + 2Blk lxRI + Bik 

= (lxc) l- B l k)2, 

From which the result follows. For XQ>B4k~Blk . 
We now have the result stated in theorem 1. For 

by lemma 1 the solution must enter the strip 
Ixl':::: 3}i, and by the second part of lemma 2 Ixl':::: Blk , 
if it stays there. If on th e other hand it emerges 
at Q with IXQ I.::::B4k, the heigh t (or depth) of the 
subsequent arc outside the strip is less than B4 + B2• 

For by symmetry all the lemmas for x-~3 )j have 
strictly corresponding forms for x':::: - 3 )j. Bu t by 
lemma 6 if IXQ I> B4k, the solution emerges the next 
time at S with IXsl<l xQ I- Btk, so that it must either 
stay in the strip or emerge eventually with IXQI':::: B4k , 
and then by the second part of lemma 2, Ix .:::: B4 + B2 
for all subsequent t. 

I 
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