
made only after the accumulation of such a large 
amount of data as this. The small peaks at the 
right of figure 3 indicate a slight tendency for the 
observed counts to be influenced by effects other 
th an statistical fluctua tions. However, it must be 
remembered that the data include instances where 
either counters or scaling circui ts have gone bad 
and h ave evidenced a need for repair or replacement, 
so that this slight excess is to be expected. It is 
believed that this is the first time that such a large 
collection of Chi square values has been obtained 
from the ratio of th e error variance of Latin squares 
to the expected (Poisson) variance. 

It is well known that individual measurements of 
radioactive disintegrations follow a Poisson law, 
but the close agreement between the experimental 
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and theoretical curves illustrates one fur ther point: 
that the Latin square arrangement has been com
pletely successful in eliminating extraneous, non
Poisson fluctuations from the measurements. 

The author thanks W . J. Youden and J. M . 
Cameron, of the Statistical Engineering Section, for 
their suggestions as to the use of the Latin squares 
and for many valuable hours of discussion ; and 
Margaret Selgin and Lucy Cavallo, of the R adio
activity Section, who performed the calculations 
summarized in figure 3. 

W ASHING'l'ON, July 26, 1950. 
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A Problem in Precision Cam Design 
By Joseph Blum 

This paper proposes an anal ytic meth od for determining t he profile of a cam required in 
a device t hat demands high precision. The method is applicable whenever the equation for 
t he profile can be obtained by making a less stringent assumption, namely, t hat t he follower 
makes contact at a fixed p oin t of its extremity. The t rue profile can t hen be determined 
n umerically by considering it as the envelope of a family of curves. 

The design of an X-ray spectrograph often requires 
th at a constant rate of oscillat ion be maintained in 
th e crystal holder. The crystal rotates through an 
angle {3 (the angle of travel), reverses its direction 
and then proceeds with t he same angular velocity. 
This type of motion may be obtained from a cam 
rotating with constant angular velocity, w. An 
analytic m ethod for computing the profile of the 
cam is presented in this paper which extends, in a 
certain sense, the application of a paper written by 
J. B . Friauf ; 1 the notation therein will be preserved 
to a considerable extent. 

1 J. B. Friauf, 'rho design of a cam for an X·ray spectrograph , J . Opt. Soc. Am' 
Rev. Sci . Instr. 11, 289 to 296 (1925). 

In figure 1, a , 0 represents the axis about which 
the cam rotates, A the axis about which the crystal 
holder rotates, and B the center of th e ball at th e 
end of th e follower. The follower ACB makes 
contact with the cam and serves to rotate the crystal 
holder. The distan ces AO and AB are equal ; denote 
this common length by R. Let 1'1 and 1'2 be, respec
t ively, the least and greatest radii measured from 
o to the point B; let l' be the variable radius, OB 
corresponding to the angle (x, which l' makes with the 
least radius 1'1. 

D enote the time by t and let t= O represent th e 
time when the least radius coincides with the line 
segment extending from 0 to A. Then the angle 

b 

FIGURE 1. 
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between 1' \ and OA is given by wt. Let f} denote 
angle OAB and e/> the angle AOE. Unless otherwise 
indicated, all angles are in radians. 

From figure 1, a, it is clear that 

(1) 

from which it follows that the smallest angle f}\ 
occurs when 1'=1'1 and the largest angle f}2 when 

(2) 

and 
. f}2 1'2 sin -=-. 

2 2R 
(3) 

It is also clear that {3 = f}2 - f}! . Differentiating eq 1 
yield s 

~ . da de/> 
::;111ce a= wt - e/> , ([i= w- ([i' 

Substituting this into eq 4 yield 

cos ~ df} =l d1' (w - d¢) . 
2 dt R da dt 

(4) 

(5) 

Again, since e/>=~(7r- f}), (el¢/dt= -%(df}/dt), and sub

stitu ting this into cq 5 results in 

(6) 

-- - -- ----------- -

When a = O, 1' = 1'\; solving for 0\ results in 0\ = 2 
sin - 11'1/2R = f}j. Equation 9 can be expressed in the 
form 

(10) 

The greatest radius, 1'2, occurs when a = 7r + {3/2, 
which may be vertified by substituting into eq 10. 

If the ball that makes contact with the cam were 
sufficiently small , then eq 10 would give one part of 
the cam's contour, and a similar equation would give 
the remaining part. Frequently, however, this con
dition is not met, and the method given in the r ef
erence in footnote 1 must be extended to secure a 
high level of precision. Consider then the family of 
circles of radius p , whose centers lie on the curve 
given by eq 10. The envelope of this family con
sists of two distinct curves; the one that lies nearer 
the center of curvature of eq 10 coincid es with the 
contour of the cam. This envelope can be obtained 
by a numerical determination of the 0 -discriminant .2 

Let the curve of eq 10 be given in Cartesian co
ordinates by 

y = f( x) . (11) 

Let (x,y ) be an arbitrary point on this curve. The 
equa tion of th e circle with radius p and centel' (x ,y ) 
is given by 

(12) 

Substituting y j(x ) into eq ]2 , there is obtained a 
one-parameter family of circle 

{X -x F+ {Y - j (x)J2= p2. (13) 

The follower rotates tlwough th e angle {3 during the Differentiating eq 13 with respect to x yields 
same time interval that it takes the cam to rotate 
through 7r radians. Therefore, as the respective {X - x } + .f'(x) {Y - f(x) } =: 0. (14) 
angular velocities are constant, 

df} 
elt {3 . df} {3w 
- = - ,or - =-' 

W 7r dt 7r 

Substituting this into eq 6 gives 

cos %=~ ~: (~+~} 
From eq 1 cos (f}/2) = (1/2R) 4R2-r2. 
this into eq 7 and simplifying yields 

2 ell' ela 
.,J4R2_ r2 {3\ ' 

where {31 = 7r/{3 + %. 

(7) 

Substituting 

(8) 

The O-discriminant is obtained by solving eq 13 and 
14 simultaneously for a discrete set of values of the 
parameter x. The method outlined below yields the 
numerical solution: 

1. For a selected set of values a i; determine the 
values of l'i by using eq 10. Denote these points 
by P i. . 

2. Let Ti b e the angle of inclination of the tangent 
line at Pi; let f i be the angle between the radius 1' t 

and the tangent line. Then, since Tj= ai+ f i, 

f ' (x) = tanT i= tanai+ tanfi . 
I - tan ai tan f i 

After integrating tills equation there is obtained 

ow tan f i= 1'dr;, where 1': is the d erivative dr/da 
evaluated at Pi' This leads to 

2 sin- 1 21~= ;\ +0\ 

where 0 1 is the constant of integration. 

(9) 

' E. L . Inee, Ordinary differential equations, p . 85 to 86 (Longrnans, Green 
& 00., New York, N . Y ., 1944) . 
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These relations enable one to compute the value of 

J'(x). . ·1 b . d 
3. The solution of eq 13 and 14 IS easl y 0 tame 

in the form 

The points (Xi, Yi) are on the envelope, as required . 

To obtain the other part of the cam, consider that 
phase of the motion in which the angle 0 decreases 
(fig . 1, b ). For this phase, 

do {3w 
d t = --:;· 

Substituting this into eq 6 results in 

(16) 

where "1 denotes the angle that l' makes with th e 
greatest radius 1'2 (see fig 1, b). Substituting cos (0/2 ) = 
(l / 2R) ..J4R 2_ 1'2 into eq (16) and simplifying gives 

2d1' d'Y 
/ {3 2' , 4R2_ 1'2 

(17) 

where {3 2= 1/ 2 -- 7r/ {3. 

When eq 17 is integrated there results 

. - 1 l' _ "1 + G 
2 sm 2R- {3 2 2, (18) 

where C2 is the constant of integration. When "1 = 0, 
1' = 1'2; solving for C2 yields C2= 2 sin- 11'2/2R= Oz. 
Equation 18 can b e expressed in the form 

(19) 

As a check, when 'Y = 7r - {3 /2 , 1' = 2R sin 7~ (02 - {3 )= 
2R sin Yz 01 = 1'1 . The envelope of the family of 

./ 
/' 

F' 
~ c-- --F 
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circles with cen ters on the curve (19) and radius p 
leads to the remainder of the contour of the cam . 

To complete the analysis, consider figure 2. The 
arc ABC is the locus of eq 10, and arc A 'RB'C' is 
its envelope. Similarly, the arc DEF is the locus of 
eq 19 ; arc D' RE' F' is its envelope and may be found 
numerically by following the procedure outlined 
above for eq 10. The high point of th e cam is 
located numerically by solving for the intersection 
of the two envelopes. The low portion of the cam 
does no t coincide with the envelope, as is eviden t 
from the figure. Let T be the point of intersection 
of the curves 10 aMl19. The circular arc, PQ, with 
center at T and radius p constitu tes the low portion 
of the cam. These considerations enable one to 
complete the numerical solution of the cam design. 

In summary, it should be noted that the essential 
idea in this approach is to first find the equation of 
the contour, assuming that the follower makes con
tact at a fixed point of its extremity; then, by using 
the true form of the follower , obtain the actual cam 
contour by determining the envelope of a family of 
curves. It is evident tha t the analytic method ap
plied in this particular case may be used in other 
problems of precise cam design . 

WASHING'l'ON, August 4, 1950. 
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