
few ionic strengths at the seven temperatures at 
which m easurements were made. 

There are little data in the literature on activity 
coefficient terms of weak bases at low ionic streng ths. 
However, if the terms at high ionic strengths are 
extrapolated to lower strengths, the results of 
Randall and Failey [4], Hamed and Robinson [5] , 
and Harned and Mannweiler [6] obtained by electro­
motive-force methods and Weil and Morris [7], who 
used spectrophotometric methods, are in agreement 
with our results . 

3 . Heat of Dissocia tion 

1£ one ~ow plots the - log K a values for each 
temperature as a function of l / T, a practically 
straigh t line is obtained as shown in figure 7. Thus 
the heat of dissociation can be assumed to be prac­
tically constant, and L'lH may be calculated according 
to eq 8 

d log K /dT= L'lH/2.3 RT2, (8) 

in which L'lH represents the molar changcs of heat 
content for the dissociation, R is the gas constant 
8.3144 joules deg- I mole- I, and T is the temper­
ature in degrees K elvin (degrees Celsius+ 273.16 ). 
L'lH is found to be 19,000 joules deg- l mole- I. 

4. Basic Ionization C onstant, Kb 

One may derive the basic ionization constant, K b, 

from the usual relationship 

in which K w is the activity product for water. For 
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example, at 25° C Kb is equal to 10- 14/(6.6X lO- 3), 

which yields a value of 1.6 X 10- 11 • pKb is then 
approximately 11.8. 
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A New Method of Radioactive Standard Calibration 
By Howa.rd H. Seliger 

By proper arrangement of experimental observations and statistical a nalysis i t has 
been possible to make Geiger-counter measurements of differe nt a ctivity samples inde­
pendent of interm ittent disturbing effects. The results of 5,328 individual meas urements, 
involving more than 1.4 X 108 counts made by using a Latin square arrangement, are shown 
to have an error distribution identical with that expected from t he statistical nature of the 
disintegration process. A completely worked out example of a calibration procedure is 
given, in which it has been poss ible to achieve a higher degree of accuracy in only 30 percent 
of the original counting time. 

1. Introduction 

Anyone who has had occasion to make Geiger­
counter measurements on radioactive isotopes has 
found at times t ha t his results were not self-con­
sis tent; or more precisely, that readings taken at 
time A could no t be duplicated within the expected 
Poisson deviation at time B. Sometimes upon fur­
ther investigation it was found that these variations 
were due to fluctuations in the electronic voltage 
supply, slight changes in sensitivity of the Geiger 

counter itself, or other transient effe cts . Most 
often, if it were not too time-consuming, the original 
data were discarded and the measurements repeated, 
this time with the fmgers crossed. In this paper a 
procedure for arranging and analyzing a series of 
measurements is described tha t eliminates inter­
mittent disturbing effects and tha t permits a deter­
mination to be made as to whether the variance of 
the set of readings is a reasonable one to expect 
on the basis of a Poisson distribution of counts. 
The end resul t is that aU readin/!5 of a set are treated 
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as though the:v WCL'e taken at the same time with 
the same equipmenL. 

II. Part 1 of the Solution- the Chi Square 
Test 

If ~ve know that radioactive disintcgrations follow 
a POJsson law, we can predict the varia tion within 
~vhich indiv~dual values should lie. Our problem 
IS to determllle the probability that the variation of 
an observed set of readings is a reasonable one to 
expect if the variations are due only to the random­
n~ss .of t~e disintegrat.ion process. This probabili ty 
dIstnbutIOn of the TatlO of the observed variation to 
the expected variation has been calculated and is 
known as the Chi square distribution.l Th e Chi 
sqUaIe statistic is defined as the sum of squares of 
the deviations divided by the m ean , or 

• ~ (Xi -" XY 
i 

x (1) 

where Xi is Lhe observed coun ts p er 1 eading, X is 
the expected, or average, counts per reading and 
~ denotes thc summation over all the readings. 
I 

Then ~ (Xi - ..:\.)2 is the sum of the squares of the , 
deviations from the m ean count, and therefore an 
estimate of n(J2 calculated from the individual counts. 
"When the measurements do follow a Poisson law, the 
average count is known to be an es timate of (J 2 for 
the m easurements. Thus the expected value of this 
ratio (eq 1) when the data follow Poisson's law is n. 
This is, however, subj ect to statistical variation . 
Tables arc available showing for various n the 
probability limits for this ratio (see footnote 1). 

Let us now apply this simple test to a set of con-
ecutive readings taken with a Geiger counter and 

scaler , with a constant activity source. All readings 
are taken for a cons tan t t ime interval, which does 
not enter into the calculations. 

R eading 

I 
number 

1 ___________ 
2 ___________ 
3 ___ ________ 
4 ____ __ _____ 
5 ____ _______ 

T otal R eading 
counts number 

14, 805 6 _____________ 
15, 378 7 _____________ 
15, 021 8 ____________ 
15, 040 9 _____________ 
15, 335 10 ____________ 

10 _ 
2; (Xi - X)2 = 435,622, 
I 

X = 15, 185, 

I 
Total 
counts 

15, 292 
15, 287 
15, 398 
15, 384 
14, 908 

I Peters and VanVoorhies, Statistical proced ures and their mathemaLical 
base~, p. 404 (M cGraw H ill Book Co., Inc., New York, N. Y ., 1940) ; Fisher, 
StatistIcal methods for research workers, 1).58 (Oli ver alld Boyd, Lon don, 1944): 
K . A. Bromllee, Industn al cxpcnmentat lon, 3d cd., p. 39 (British Mill istry of 
Supply, DIrectorate of Royal Ordn ance Factories, 1948). 

As we have 10 r eadings, there are 9 degrees of freedom. 
If we look up a table of x2 for n= g, we find that the' 
probability of getting a ratio of 28.7 is Ie s than one 
chance in a thousanc1. 2 Therefore, we conclude that 
the above set of readings do not follow a Poi son 
distribution, and that data taken with the counter 
and scaler arc not reliable. Conversely, if this ratio 
came out within the values 14.68 and 4.17 , which arc 
the 10:-percent and gO-percent probability limi ts, 
respectIvely, we could conclude satisfactory operation 
on the part of our equipment and continue with our 
m easurements . Thus even this simple application of 
the Chi square test is an extremely useful one for 
checking equipment, and in the followin g sections 
we shall show how it and th e method of Latin squares 
are used together for more complicated data analysis . 

III. Part 2 of the Solution- the Latin Square 

The Latin square was originally developed for agri­
cultural field trials. If J{ different s trains of corn 
are Lo be compared, tho experimental area is sub­
divided in to a eheckerboard of J{ rows and J{ col­
umns, making available 1{2 plots. The plantings arc 
applied so that each strai11 appears on ce in each row 
and in each column of th e J{2 plots. This req uires 
that th ere be J{ plots ass igned to each strain of corn. 
Every row and every column of the area contains a 
?omplete et of the J{ s train lmder test. Intuitively 
It may be seen that such an arrangement will be ef­
fective in reducing the error of comparisons among 
the strains since if anyone of Lh o columns or rows is 
more ferLile than the othors, all J{ strains obtain this 
advantage and the relative p erformance of th e sev­
eral s trains is unaffected. If there exis t fertility 
gr:adients in the area that would ordinarily interfere 
WIth the accuracy of th o comparisons, the Latin 
squ are method of alloca ting th e plantings to the 
plots has ensurcd a more nearly equal opportunity 
for all strains. .. 
. A typical 4 by 4 Latin sq uare arrangemen t is shown 
III figure 1, a. The four plants of any given strain 
appear in the four rows and four columns. The four 
plots of anyone strain may in consequence show 
considerable variation among themselves, and should 
not be used directly as an estimate of the errol' in the 
comparison of the different strains. However , the 
comparison of the averages for the strains has been 
made more accurate by insuring that all strains 
sample the various strips of fertility . Thus differ­
ences among rows and columns no longer contribute 
to the . error of the comparison . I t is necessary then 
to find another way of estimating the error of the 
average for each strain, as the customary method of 
calculating the dispersion from plots receiving the 
same strain is no longer applicable. However, be­
fore we proceed to outline the new method for cal­
culating the dispersion, let us carryon with the 
development of the Latin square arrangement. In 
figure 1, b, is a Latin squar c arrangement for the 
Greek letters a, {3, 7, O. Now let us superpose figure 
1, b , upon figure 1, a to obtain figure 1, e. If the 

' K. A. Brown!ee, Industrial experimentation, 3d cd., p. 161 (British Ministry 
of Sup ply, Directorate of Royal Ordnance Factories. 1948). 
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A B C 0 a f3 Y 8 

C 0 A B 8 Y f3 a 

0 C B A f3 a 8 Y 

B A 0 C Y 8 a f3 

(0 ) ( b) 

Aa Bf3 CY 08 

C8 o r Af3 Ba 

0f3 Ca B8 AY 

BY AS oa Cf3 

(c) 

FIGURE l. General Latin square arrangement. 

a, Latin square for strains A, B, C, D ; b, Latin square with Gl·eek let ters; c, superposition of b upon a, subject to tbe same restricting conditions. 

four alpha plots in figure 1, c, are examined, it will 
be seen that these four plots contain a representative 
plot from every row and every column and every strain, 
the strains still being the roman letters A, B, C, D. 
The same is true for the beta, gamma and delta 
plots. The averages for these Greek sets therefore 
should show good agreement, and the variation 
among these four averages does in fact provide the 
estimate of error relevant to the comparison of the 
averages for the four strains. In the same manner, 
Arabic numerals can be assigned to the plots, so that 
the four plots mark:ed 1 in figure 2 contain represent­
atives from every row, column, strain, and Greek 
letter. This is also true for the plots marked 2, 3, 
and 4. These four sets also should agree and can be 
used as a further estimate of the experimen tal error. 
The Latin square shown in figure 2 is now unique, or 
completely orthogonal, in that this is the only way 
in which the individual simple Latin squares composed 
of Latin letters, Greek letters, and Arabic numerals, 
as shown in figure 1, can be superposed subj ect to 
the restricting conditions above. We would expect, 
therefore, that there should be associated with these 
classification s as many degrees of freedom as there 
would be if only one number or letter appeared in 
each of the 16 squares. 

It is customary to summarize the statistical compu­
tations for experimental arrangements of this type in 

a tabulation of the analysis of variance of the five 
classifications that have been enumerated. They are 

Degrees of 
freedom 

Variation among the four row averages- __ 3 
Variation among the four column averages_ 3 
Variation among the fO llr strain (Latin 

letter) averages __ __ _______ ___________ 3 
Variation among the fOllr Greek letter 

averages __ ___ ________ _______________ 3 
Variation among the fOllr Arabic number 

averages ____________________________ 3 

As seen with each of these is associated three degrees 
of freedom (corresponding to the usual (n - l ) 
divisor in computing standard deviations) . The 
total of 15 degrees of freedom is that properly as­
signed to 16 observations if a standard deviation 
were computed for the 16 results ignoring all classi­
fications among the plots. N ow, not only do the 
degrees of freedom add up to the correct total, but the 
sum of the squares of the deviations within each 
classification, when added up over the 5 classifica­
t ions will be found equal to one-fourth of the sum of 
the squares of the deviations of the 16 observations 
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I 5 9 13 
A,a 82,8 C3 Y 048 

2 6 10 14 
84 Y A38 02 a CI,8 

3 7 " 15 
C28 D,Y A4,8 83 a 

4 8 12 16 
03,8 C4 a 818 A2Y 

FIGURE 2. Arrangement of Latin squal'e to indicate sequence 
of readings. 

about the grand average. (The factor one-fourth 
arises because the five components have been com­
puted from averages of four, in contrast to the use of 
individual observations). It is therefore possible to 
partition the over-all variance in to these fi ve por­
tion. Two of these are the rows and the columns 
which by experimental arrangement, have bee~ 
removed from participation in the experimental com­
parison~. One portion (Latin Jetters) directly re­
flects differences among the strains and the remain­
ing two portions (Greek letters and Arabic numbers) 
yield independent estimates of the experimentai 
error. Completely worked out examples of this 
form of Latin square will be fowld in Brownlee (see 
footnote 1). The n et result is that the computation 
leads to determining the ratio of the mean sum of 
squares for each classification to the mean sum of 
squares for error, as defined by Brownlee (sec foot­
n<;>te ~). :rhis ratio, called F, has the expected value 
of umty m all cases where the classification under 
examination contributes nothing to the varia tion of 
the results, as would have been the case for instance 
if only one strain of corn had been sown in all 16 
plo ts. The computed value of F will in such a case 
be expected to fall in the neighborhood of unity, the 
reasonable limits of variation being determined by 
the number of degrees of freedom attached to the 
numerator and denominator of the ratio . The 
theoretical distribution of the F ratio has been 
tabulated (see footnote 1) and is an indispensable 
guide in passing judgment on a pai·ticular value of F. 
These tabulations are listed as Tables of Variance 
Ra tio for various significance levels, corresponding 
to the probability levels in the x2 test in section II. 

IV. Chi Squa re Test Modified for the Latin 
Squa re 

In section II the principle of the Chi square dis­
tribution was demonstrated, and in section III the 
use of th e Latin square for the separation of dis­
turbing factors from the error calculations and for 
the calculation of variance ratios was outlined. The 
next steps in our sequ ence are: (1) To apply the 
Latin square to our particular problem of calibrating 

unknown sources of different actlvltlOS against a 
known standard source; (2) to modify the calcula­
tion of th e Chi square test to fit th e data take n in 
our Latin square arrangement. . 

Perhaps the application of the L aLin square to our 
par ticular problem will be easier to follow if we start 
with the end resul t and Lhen discu s the logic of the 
arrangement as given. Consider again the Latin 
square in figure 2. The 16 subdivisions of the large 
square are numbered consecutively from 1 to 16 in 
columnar order in the upper lef t-hand corners. 
These numbers represent the sequ ence of the readings 
taken. The Latin letters A, B , C, and D represent 
a primary standard source and three unknown 
sources, respectively. "Ve shall consider the stand­
ard so urce and the three unknown sources as our 
"strains". As the observed counting rates due to 
the sources A, B, C, and D are in general different, 
(due to the fact that the absolute disintegration 
rates of the so urces are different) a variance among 
th e four so urce averages (Latin letters) is to be ex­
pected and therefore should not be included in any 
error calculations. However, the sums of sets of 
four readings as for instance the sum of the a's, 
mclucle only one reading each of A, B , C, and D , 
and therefore the sum of the a's theoretically should 
be equal to the sum of the {3 's, '¥'s, and B's. This 
being the case, we can perform our Chi square cal­
culation on the sums of fo ur readings instead of on 
the individual readings. Again, from section III, 
we have the following sets of sums of four readings: 
Rows; columns; like Latin letters (sources); like 
Greek letters; like Arabic numbers. 

The variation among th e sources (Latin let ters) is 
immediately ruled out for the r eason already given. 
From the seq uence of the measurements as given by 
the numbers in the upper left-hand corners of th e 
squares in figure 2, it is seen that the sums of the 
columns will be especially sensitive to shor t-term 
intermittent distur bing factors of all kinds. Thus 
the variance among the four column averages should 
not be included in any error calculation. More­
over, these intermittent fluctuations, if th ey occur, 
are analogous to the fer tility differences in our agri­
cul tural example, so that the relative performance 
of our four sources should be unaffected (if we con­
sider sums and not individuals). 

N ow we have remaining three sets of four sums 
each for the calculation of error . These are the rows, 
the Greek letters and the Arabic numbers . The 
next step is to modify our Chi square calculation to 
fit these data. 

We know that in our particular case of radioactive 
disintegrations cr2, the standard deviation squared of 
our Poisson distribution, is equal to N, where N is the 
total counts involved. The estimate of ncr2 can be cal­
culated from the three sets of four sums. In this case 
there are 3 degrees offreedom from each set, making 
a total of 9 degrees of freedom. 

Table 1 shows a complete set of data taken in the 
calibration of tlu'ee unknown sources B, C, and D 
against a laboratory standard source, A. In order 
to indicate clearly the sequence of the readings' and 
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TABLE 1. Data as taken in an actual calibration of sources. 

READ SAMPLE TOTAL TOTAL COUNTS/SEC 
NO. COUNTS SEC GROSS NET 

I A 34480 1277 27.00 26.46 

2 8 27364 973.1 28.12 27.58 

3 C 25650 864 29.69 29.15 

4 0 25774 856.8 30.08 29.54 

5 8 27060 947.1 28.57 28.03 

6 A 30540 1109 27.54 27.00 

7 D 27478 914 30.06 29.52 

8 C 25628 850 30.15 29.61 

9 C 25614 858 29.85 29.31 

10 D 26404 878. 1 30.07 29.53 

II A 26082 965.4 27.02 26.48 

12 8 25612 903.2 2B36 27.82 

13 D 25650 864 29.69 29.15 

14 C 25696 866.2 29.67 29.13 

15 8 25654 902.1 28.44 27.90 

16 A 26510 980 27.05 26.51 

the method of summation, these data have been 
arranged in the form of a Latin square in table 2. 

Th e analysis is performed in the following manner: 
1. Calculate t he average row sum of the four sets 

of row sums. Notice here that in order to do this, 
all 16 readings are included, and this grand sum is . 
divided by 4. Therefore the average row sum is 
equal to the average Greek letter sum and also to 
the average Arabic number sum. Let us call this 
value 

~(4)= 1l3 . 18 . 

2. Calculate the sum of squares of the deviations 
of the individual row sums from the average sum of 
four. 

3. Calculate the sum of squares of the deviations 
of the individual Greek letter sums from the average 
sum of four. 

4 . Calculate the sum of squares of the deviations 
of the individual Arabic numbers sums from the 
average sum of four. 

TABLE 2. Data from table 1 arranged in a Latin square- to 
make the summation procedul'e easier to follow . 

ROW 
TOTALS 

I 5 9 13 
26.46 28.03 29.31 29.15 112.95 

Ala Rz8 C3Y D4 0 
2 6 10 14 

27.58 27.00 29.53 29.13 113.24 

84Y A38 D2a CI8 
3 7 II 15 

29.15 29.52 26.48 27.90 113.05 

C2~ DIY A48 B3Q 
4 8 12 16 

29.54 29.61 27.82 26.51 113.48 

D38 C4 a Blo A2Y 

COLUMN 112.73 114.16 113.14 112.69 TOTALS 

ARABIC 1+7+12+14 3+5+10+16 4+6+9+15 2+8+11+13 

TOTALS 112.93 113.22 113.75 112.82 

GREEK 1+8+10+15 4+5+1 1+14 2+7+9+16 3+6+12+i 

1DTALS 113.50 113.1 8 112.92 113.12 

LATIN A B C D 
OR 

~AMPLE 
TOTALS 106.45 111 .33 117.20 117.74 

5. Sum these three sums of squares. 

(0.1634+0.5186 + 0.1736 = 0.8556). 

6. I'Ve must digress for a moment and consider 
now the basis for this calculation. The expected 
standard deviation squared of a number of events 
that follow a Poisson law is N , when N is the total 
number of events. However, as is seen in table 1, 
our sample deviations are calculated from observed 
counting rates. In order that our ratio of observed 
to expected deviations be a unitless quantity, we 
must express the sum of squares of the deviations as 
total counts. This can be done in the following 
manner: 

In each individual measurement we observe at 
least 25 ,600 counts, which is 200 message register 
counts on a scale of 128. Therefore, we can, with 
negligible error, assume that for a set of four read­
ings the total number of counts involved is 
4X 25,600 = 102,400. If we divide this value by 
the average counting rate for a sum of four read­
ings, we get a value with the units of seconds, 
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correspond ing to the average time per r eading. 
This value quared will, when multiplied by the sum 
of squares of the deviations that has the units of 
[(count )/(seconds)]2, give units of (counts) 2, the 
arne as our denominator . 

Our calculated ratio is now 

o 8556 X [102,400J 2 

. 113.18 
102,400 

6.84 

In our table of x2 we find , for 9 degrees of freedom 

x~70= 6 . 39 , 

x~50 = 8 .34 . 

Thus our ratio has greater than a 50-percen t prob­
ability of occurence on the basis of a Poisson law, 
and we conclude that the resulting calibra tions are 
perfectly acceptable. 

As an illustration of the cfficiency of this mcthod 
in eliminating transient disturbances from thc meas­
urements, lct us perform an F test on the column 
totals. The mean square column deviations arc 
1.4046/3, as h ere we have 3 degrees of freedom. 
The mean-square-error deviations are 0.8556/9, 
sin ce there we used 9 degrees of freedom . Thus the 
ratio 4.92, as we can sec from tables of Variance 
R atio has reached the 5-percent significance level. 
Evidently in this case the Latin square al'l'angement 
was successful in l'ClllO\Ting this effect from the vari­
ance of the sample averages. It is the elimination 
of these disturbances that accounts for the increased 
accuracy over the old direct-comparison method 
and the subsequent 70 percent shor ter counting 
time. This reduction in counting time is due to 
two factors. First, the number of runs used was 
reduced . 'Where previously a standard source and 
three unlmown sources were run alternately, so that 
for 4 runs on each of th e three unknowns the stand­
ard would be run 13 Limes, making a to tal of 25 runs 
for th e entire set of read ings, we now have only 16 
runs in which the sLandard is measured as many 
times as the unknowns. Second, as the extraneo us 
(nonPoisson) variation was present in th e former 
method, a much larger counting t ime was necessary 
than that based on a Poisson distribution in order to 
ob tain the precision called for . The Latin square 
arrangemen t pcrmits the counting time to be cut in 
half, and the precision of the measurements is still 
gr eater than in the old method . 

The standard deviation of any of the sums of four 
]s 

The standard deviation of any individual count­
ing rate is 

=rO.8556J~ = 01 54 
s L 4X 9 . . 

For example, the average counting rates of sources 
A, B, C, and D , which are the obj ectives of this 
entire procedure, are, respectively, 26.61 , 27.83 , 
29.30, and 29.44 ±.15 cis . These resul ts can also 
be calculated as shown in Brownlee ( ce footnoLe 1). 
However , the method a demonstrated is more 
dir ect and easier to calculate. 

V. Summary 

In this paper two thin gs have been accomplished . 
First, by the arrangement of the experimental data 
in the form of the orthogonal Latin square, thereby 
eliminating intermittent effects, the accuracy has 
been increased to such an extent that only 30 percent 
of the original counting time is required. Second, 
it is now possible to determine the actual experi­
mental standard deviation of any particular average 
reading, and ill the process of obtaining this standard 
deviation it is also possible to determine whether 
or not the readings follow a Poisson law, which is 
the case when the equ ipment is operating satis­
factorily. 

As can be seen , the use of Latin squares for the 
statistical arrangement of m easuremen ts is an 
extremely powerful tool, by means of which a 
number of eparate effccts may be determined 01' 
eliminated . It has proved to be extremely efficient 
in the laboratory, not only in the actual calibration 
of standards, but in obtaining useful information 
relative to the long-range opcratin g characteristics 
of the Geiger co un ters and associated electronic 
equipment. The general method as outlined should 
be applicable to a large variety of other types of 
measuremen ts, especially where time effects or 
other disturbing factors are a SOLlrce of trouble. 

The resul ts of 333 such sets of data as shown in 
tables 1 and 2 have been Labulated and arc presented 
in figure 3, together wi th their theoretical distribu­
tion. As can b e een from the figure , the experi­
mental distribution closely approximates the theo­
retical one. There is one more point that can be 
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FIGUlm 3. Frequency distribution of 333 sets oj Chi square 
data (broken line) compaTed with theoretical distribution 
(solid line) . 
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made only after the accumulation of such a large 
amount of data as this. The small peaks at the 
right of figure 3 indicate a slight tendency for the 
observed counts to be influenced by effects other 
th an statistical fluctua tions. However, it must be 
remembered that the data include instances where 
either counters or scaling circui ts have gone bad 
and h ave evidenced a need for repair or replacement, 
so that this slight excess is to be expected. It is 
believed that this is the first time that such a large 
collection of Chi square values has been obtained 
from the ratio of th e error variance of Latin squares 
to the expected (Poisson) variance. 

It is well known that individual measurements of 
radioactive disintegrations follow a Poisson law, 
but the close agreement between the experimental 
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and theoretical curves illustrates one fur ther point: 
that the Latin square arrangement has been com­
pletely successful in eliminating extraneous, non­
Poisson fluctuations from the measurements. 

The author thanks W . J. Youden and J. M . 
Cameron, of the Statistical Engineering Section, for 
their suggestions as to the use of the Latin squares 
and for many valuable hours of discussion ; and 
Margaret Selgin and Lucy Cavallo, of the R adio­
activity Section, who performed the calculations 
summarized in figure 3. 
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A Problem in Precision Cam Design 
By Joseph Blum 

This paper proposes an anal ytic meth od for determining t he profile of a cam required in 
a device t hat demands high precision. The method is applicable whenever the equation for 
t he profile can be obtained by making a less stringent assumption, namely, t hat t he follower 
makes contact at a fixed p oin t of its extremity. The t rue profile can t hen be determined 
n umerically by considering it as the envelope of a family of curves. 

The design of an X-ray spectrograph often requires 
th at a constant rate of oscillat ion be maintained in 
th e crystal holder. The crystal rotates through an 
angle {3 (the angle of travel), reverses its direction 
and then proceeds with t he same angular velocity. 
This type of motion may be obtained from a cam 
rotating with constant angular velocity, w. An 
analytic m ethod for computing the profile of the 
cam is presented in this paper which extends, in a 
certain sense, the application of a paper written by 
J. B . Friauf ; 1 the notation therein will be preserved 
to a considerable extent. 

1 J. B. Friauf, 'rho design of a cam for an X·ray spectrograph , J . Opt. Soc. Am' 
Rev. Sci . Instr. 11, 289 to 296 (1925). 

In figure 1, a , 0 represents the axis about which 
the cam rotates, A the axis about which the crystal 
holder rotates, and B the center of th e ball at th e 
end of th e follower. The follower ACB makes 
contact with the cam and serves to rotate the crystal 
holder. The distan ces AO and AB are equal ; denote 
this common length by R. Let 1'1 and 1'2 be, respec­
t ively, the least and greatest radii measured from 
o to the point B; let l' be the variable radius, OB 
corresponding to the angle (x, which l' makes with the 
least radius 1'1. 

D enote the time by t and let t= O represent th e 
time when the least radius coincides with the line 
segment extending from 0 to A. Then the angle 
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FIGURE 1. 
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