few ionic strengths at the seven temperatures at
which measurements were made.

There are little data in the literature on activity
coeflicient terms of weak bases at low ionic strengths.
However, if the terms at high ionic strengths are
extrapolated to lower strengths, the results of
Randall and Failey [4], Harned and Robinson [5],
and Harned and Mannweiler |6] obtained by electro-
motive-force methods and Weil and Morris [7], who
used spectrophotometric methods, are in agreement
with our results.

3. Heat of Dissociation

1f one now plots the —log K, values for each
temperature as a function of 1/7, a practically
straight line is obtained as shown in figure 7. Thus
the heat of dissociation can be assumed to be prac-
tically constant, and AH may be calculated according

to eq 8
dlog K/dT=AH/2.3 RT?, (8)

in which AH represents the molar changes of heat
content for the dissociation, R is the gas constant
8.3144 joules deg™' mole™, and 7 is the temper-
ature in degrees Kelvin (degrees Celsius+273.16).
AH is found to be 19,000 joules deg™' mole™'.

4. Basic Ionization Constant, K,

One may derive the basic ionization constant, K,
from the usual relationship

Kb:Kw/Kar

in which K, is the activity product for water. For
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Ficure 7. pK, values at temperatures from 10° to 4,0° C

plotted as a function of 1/T.

example, at 25° C K, is equal to 107*/(6.6<107%),
which yields a value of 1.6<X107'. pK, is then
approximately 11.8.
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A New Method of Radioactive Standard Calibration
By Howard H. Seliger

By proper arrangement of experimental observations and statistical analysis it has
been possible to make Geiger-counter measurements of different activity samples inde-

pendent, of intermittent disturbing effects.

The results of 5,328 individual measurements,

involving more than 1.4 X 108 counts made by using a Latin square arrangement, are shown
to have an error distribution identical with that expected from the statistical nature of the
disintegration process. A completely worked out example of a calibration procedure is
given, in which it has been possible to achieve a higher degree of accuracy in only 30 percent

of the original counting time.

I. Introduction

Anyone who has had occasion to make Geiger-
counter measurements on radioactive isotopes has
found at times that his results were not self-con-
sistent; or more precisely, that readings taken at
time A could not be duplicated within the expected
Poisson deviation at time B. Sometimes upon fur-
ther investigation it was found that these variations
were due to fluctuations in the electronic voltage
supply, slight changes in sensitivity of the Geiger

counter itself, or other transient effects. Most
often, if it were not, too time-consuming, the original
data were discarded and the measurements repeated,
this time with the fingers crossed. In this paper a
procedure for arranging and analyzing a series of
measurements is described that eliminates inter-
mittent disturbing effects and that permits a deter-
mination to be made as to whether the variance of
the set of readings is a reasonable one to expect
on the basis of a Poisson distribution of counts.
The end result 1s that all readings of a set are treated

496



as though they were taken at the same time with
the same equipment.

II. Part 1 of the Solution—the Chi Square
Test

If we know that radioactive disintegrations follow
a Poisson law, we can predict the variation within
which individual values should lie. Our problem
is to determine the probability that the variation of
an observed set of readings 1s a reasonable one to
expect if the variations are due only to the random-
ness of the disintegration process. This probability
distribution of the ratio of the observed variation to
the expected variation has been calculated and is
known as the Chi square distribution.! The Chi
squate statistic is defined as the sum of squares of
the deviations divided by the mean, or

o=t M

where X, is the observed counts per reading, X is
the expected, or average, counts per reading and
Y denotes the summation over all the readings.
i

Then = (X,—X)? is the sum of the squares of the

(3

deviations from the mean count, and therefore an
estimate of ng? calculated from the individual counts.
When the measurements do follow a Poisson law, the
average count is known to be an estimate of ¢ for
the measurements. Thus the expected value of this
ratio (eq 1) when the data follow Poisson’s law is n.
This is, however, subject to statistical variations.
Tables are available showing for various = the
probability limits for this ratio (see footnote 1).

Let us now apply this simple test to a set of con-
secutive readings taken with a Geiger counter and
scaler, with a constant activity source. All readings
are taken for a constant time interval, which does
not enter into the calculations.

|
Reading Total | Reading Total
number counts | number counts
|
i o 14,805 || 6.__.__ S o | T
e 15, 378 oo D || sy, P
St 15, 021 e 1 5% 308
4 REA 15, 040 9_ —eeo--| 15,384
R | 15,335 " 10 = ’ 14, 908
b o e e T o Sl . 3
10
i

X =15,185,
x2=28.7.

1 Peters and VanVoorhies, Statistical procedures and their mathematical
bases, p. 404 (McGraw Hill Book Co., Inc., New York, N. Y., 1940); Fisher,
Statistical methods for research workers, p. 58 (Oliver and Boyd, London, 1944);
K. A. Brownlee, Industrial experimentation, 3d ed., p. 39 (British Ministry of
Supply, Directorate of Royal Ordnance Factories, 1948).

As we have 10 readings, there are 9 degrees of freedom.
If we look up a table of x* for n=9, we find that the
probability of getting a ratio of 28.7 is less than one
chance in a thousand.? Therefore, we conclude that
the above set of readings do not follow a Poisson
distribution, and that data taken with the counter
and scaler are not reliable. Conversely, if this ratio
came out within the values 14.68 and 4.17, which are
the 10-percent and 90-percent probability limits,
respectively, we could conclude satisfactory operation
on the part of our equipment and continue with our
measurements. Thus even this simple application of
the Chi square test is an extremely useful one for
checking equipment, and in the following sections
we shall show how it and the method of Latin squares
are used together for more complicated data analysis.

ITII. Part 2 of the Solution—the Latin Square

The Latin square was originally developed for agri-
cultural field trials. If K& different strains of corn
are to be compared, the experimental area is sub-
divided into a checkerboard of K rows and K col-
umns, making available K plots. The plantings are
applied so that each strain appears once in each row
and in each column of the K? plots. This requires
that there be K plots assigned to each strain of corn.
Every row and every column of the area contains a
complete set of the A strains under test. Intuitively
it may be seen that such an arrangement will be ef-
fective in reducing the error of comparisons among
the strains since if any one of the columns or rows is
more fertile than the others, all K strains obtain this
advantage and the relative performance of the sev-
eral strains is unaffected. If there exist fertility
gradients in the area that would ordinarily interfere
with the accuracy of the comparisons, the Latin
square method of allocating the plantings to the
plots has ensured a more nearly equal opportunity
for all strains.

A typical 4 by 4 Latin square arrangement is shown
i figure 1, a. The four plants of any given strain
appear in the four rows and four columns. The four
plots of any one strain may in consequence show
considerable variation among themselves, and should
not be used directly as an estimate of the error in the
comparison of the different strains. However, the
comparison of the averages for the strains has been
made more accurate by insuring that all strains
sample the various strips of fertility. Thus differ-
ences among rows and columns no longer contribute
to the error of the comparison. It is necessary then
to find another way of estimating the error of the
average for each strain, as the customary method of
calculating the dispersion from plots receiving the
same strain is no longer applicable. However, be-
fore we proceed to outline the new method for cal-
culating the dispersion, let us carry on with the
development of the Latin square arrangement. In
figure 1, b, is a Latin square arrangement for the
Greek letters a, 8, v, .  Now let us superpose figure
1, b, upon figure 1, a to obtain figure 1, c¢. If the

2 K. A. Brownlee, Industrial experimentation, 3d ed., p. 161 (British Ministry
of Supply, Directorate of Royal Ordnance Factories, 1948).
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(a)
Aa | BB
C3|Dr
DB| Ce
BY | AS

(b)
Cry | D3
AB | Ba
B [AY
De [ CB

Ficure 1.

(c)

General Latin square arrangement.

a, Latin square for strains A, B, C, D; b, Latin square with Greek letters; ¢, superposition of b upon a, subject to the same restricting conditions.

four alpha plots in figure 1, ¢, are examined, it will
be seen that these four plots contain a representative
plot from every row and every column and every strain,
the strains still being the roman letters A, B, C, D.
The same is true for the beta, gamma and delta
plots. The averages for these Greek sets therefore
should show good agreement, and the variation
among these four averages does in fact provide the
estimate of error relevant to the comparison of the
averages for the four strains. In the same manner,
Arabic numerals can be assigned to the plots, so that
the four plots marked 1 in figure 2 contain represent-
atives from every row, column, strain, and Greek
letter. This is also true for the plots marked 2, 3,
and 4. These four sets also should agree and can be
used as a further estimate of the experimental error.
The Latin square shown in figure 2 1s now unique, or
completely orthogonal, in that this is the only way
in which the individual simple Latin squares composed
of Latin letters, Greek letters, and Arabic numerals,
as shown in figure 1, can be superposed subject to
the restricting conditions above. We would expect,
therefore, that there should be associated with these
classifications as many degrees of freedom as there
would be if only one number or letter appeared in
each of the 16 squares.

It is customary to summarize the statistical compu-
tations for experimental arrangements of this type in

a tabulation of the analysis of variance of the five
classifications that have been enumerated. They are

Degrees of
freedom
Variation among the four row averages_ _ _ 3
Variation among the four column averages_ 3
| Variation among the four strain (Latin |
‘ letter) averages_ .- . ______________ 3
| Variation among the four Greek letter
| AVerages. . .- - - ___ i OB 3
Variation among the four Arabic number
AVEragess = L i T e e 3
l SR _

As seen with each of these is associated three degrees
of freedom (corresponding to the usual (n—1)
divisor in computing standard deviations). The
total of 15 degrees of freedom is that properly as-
signed to 16 observations if a standard deviation
were computed for the 16 results ignoring all classi-
fications among the plots. Now, not only do the
degrees of freedom add up to the correct total, but the
sum of the squares of the deviations within each
classification, when added up over the 5 classifica-
tions will be found equal to one-fourth of the sum of
the squares of the deviations of the 16 observations

498



1 5 ) 3
Ara | B2B| C3ry | Dad
2 6 ) 14
BaY | A3 | D2a | Ci8
3 7 T 15
Ce8 | Divy | A4aB | B3a
4 8 2 16
D3B| Caa | BIS | A2Y

Fraure 2.  Arrangement of Latin square to indicate sequence

of readings.

about the grand average. (The factor one-fourth
arises because the five components have been com-
puted from averages of four, in contrast to the use of
mdividual observations). It is therefore possible to
partition the over-all variance into these five por-
tions. Two of these are the rows and the columns,
which by experimental arrangement, have been
removed from participation in the experimental com-
parisons. One portion (Latin letters) directly re-
flects differences among the strains and the remain-
ing two portions (Greek letters and Arabic numbers),
yield independent estimates of the experimental
error. Completely worked out examples of this
form of Latin square will be found in Brownlee (see
footnote 1). The net result is that the computation
leads to determining the ratio of the mean sum of
squares for each classification to the mean sum of
squares for error, as defined by Brownlee (see foot-
note 1). This ratio, called F, has the expected value
of unity in all cases where the classification under
examination contributes nothing to the variation of
the results, as would have been the case for instance
if only one strain of corn had been sown in all 16
plots. The computed value of / will in such a case
be expected to fall in the neighborhood of unity, the
reasonable limits of variation being determined by
the number of degrees of freedom attached to the
numerator and denominator of the ratio. The
theoretical distribution of the F ratio has been
tabulated (see footnote 1) and i1s an indispensable
guide in passing judgment on a particular value of £
These tabulations are listed as Tables of Variance
Ratio for various significance levels, corresponding
to the probability levels in the x? test in section II.

IV. Chi Square Test Modified for the Latin
Square

In section II the principle of the Chi square dis-
tribution was demonstrated, and in section III the
use of the Latin square for the separation of dis-
turbing factors from the error calculations and for
the calculation of variance ratios was outlined. The
next steps in our sequence are: (1) To apply the
Latin square to our particular problem of calibrating

unknown sources of different activities against a
known standard source; (2) to modify the calcula-
tion of the Chi square test to fit the data taken in
our Latin square arrangement. '

Perhaps the application of the Latin square to our
particular problem will be easier to follow if we start
with the end result and then discuss the logic of the
arrangement as given. Consider again the Latin
square in figure 2. The 16 subdivisions of the large
square are numbered consecutively from 1 to 16 in
columnar order in the upper left-hand corners.
These numbers represent the sequence of the readings
taken. The Latin letters A, B, C, and D represent
a primary standard source and three unknown
sources, respectively. We shall consider the stand-
ard source and the three unknown sources as our
“strains”. As the observed counting rates due to
the sources A, B, C, and D are in general different,
(due to the fact that the absolute disintegration
rates of the sources are different) a variance among
the four source averages (Latin letters) is to be ex-
pected and therefore should not be included in any
error calculations. However, the sums of sets of
four readings as for instance the sum of the o's,
include only one reading each of A, B, C, and D,
and therefore the sum of the «'s theoretically should
be equal to the sum of the B’s, v’s, and &’s. This
being the case, we can perform our Chi square cal-
culation on the sums of four readings instead of on
the individual readings. Again, from section III,
we have the following sets of sums of four readings:
Rows; columns; like Latin letters (sources); like
Greek letters; like Arabic numbers.

The variation among the sources (Latin letters) is
immediately ruled out for the reason already given.
From the sequence of the measurements as given by
the numbers in the upper left-hand corners of the
squares in figure 2, it is seen that the sums of the
columns will be especially sensitive to short-term
intermittent disturbing factors of all kinds. Thus
the variance among the four column averages should
not be included in any error calculation. More-
over, these intermittent fluctuations, if they occur,
are analogous to the fertility differences in our agri-
cultural example, so that the relative performance
of our four sources should be unaffected (if we con-
sider sums and not individuals).

Now we have remaining three sets of four sums
each for the calculation of error. These are the rows,
the Greek letters and the Arabic numbers. The
next step is to modify our Chi square calculation to
fit these data.

We know that in our particular case of radioactive
disintegrations ¢, the standard deviation squared of
our Poisson distribution, is equal to N, where /N is the
total counts involved. The estimate of no* can be cal-
culated from the three sets of four sums. In this case
there are 3 degrees of -freedom from each set, making
a total of 9 degrees of freedom.

Table 1 shows a complete set of data taken in the
calibration of three unknown sources B, C, and D
against a laboratory standard source, A. In order
to indicate clearly the sequence of the readings and
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Tasre 1. Data as taken in an actual calibration of sources.

"0 [SAVPLE TS | 'Ste [GROSS ] NET
| A 34480 | 1277 | 2700 | 2646
2 B 27364 | 973l | 2812 | 2758
5 C 25650 | 864 | 2969 | 29.I15
4 D 25774 | 8568 | 30.08 | 2954
S B 27060 | 947.1 | 2857 | 2803
6 A 30540 1109 | 2754 | 2700
7 D 27478 | 914 | 3006 | 2952
8 C 25628 | 850 | 30.15 | 296l
9 C 25614 [ 858 | 2985 | 293
10 D 26404 | 878.1 | 3007 | 2953
I A 26082 | 9654 | 2702 | 2648
12 B 25612 | 9032 | 2836 | 2782
13 D 25650 | 864 | 2969 | 29.15
14 G 25696 | 866.2 | 2967 | 2913
15 B 25654 | 902.1 | 2844 | 27S0
16 A 26510 | 980 | 2705 | 265l

the method of summation, these data have been
arranged in the form of a Latin square in table 2.

The analysis is performed in the following manner:

1. Calculate the average row sum of the four sets
of row sums. Notice here that in order to do this,
all 16 readings are included, and this grand sum is
divided by 4. Therefore the average row sum is
equal to the average Greek letter sum and also to
the average Arabic number sum. Let us call this
value

S(@)=113.18.

2. Calculate the sum of squares of the deviations
of the individual row sums from the average sum of
four.

(0.23240.06240.132+0.30°=0.1634).
3. Calculate the sum of squares of the deviations

of the individual Greek letter sums from the average
sum of four.

(0.25240.0424-0.572+0.36>=0.5186).
4. Calculate the sum of squares of the deviations
of the individual Arabic numbers sums from the

average sum of four.

(0.32°40%4-0.264-0.06>=0.1736).

TaBLE 2. Data from table 1 arranged in a Latin square to
make the summation procedure easier to follow.

ROW
TOTALS
| 5 9 13
26.46 | 2803 | 2931 | 2915 | 11295
Ala | B23 | c3y | Dad
2 6 10 14
2758 | 2700 | 2953 | 29.13 | 11324
Bay | A38 | D2a | CIB
3 it 1 15
2915 | 2952 | 2648 | 2790 | 11305
Cc2d DIy | A4B | B3a
4 8 12 16
2954 | 2961 | 2782 | 2651 | 11348
D3B3 | Caa BIS A2Y
COLUMN
TOTALS| 1273 | 406 | 11314 | 11269

ARABIC [I1+7+12+14|3+5+|0+I6[4+6+9+I5 |2+8+1+3

TOTALS| 11293 | 113.22 | 11375 | lI2.82
GREEK |1+8+I0+I5 |4+5+|1+|4[2+7+9+16|3+6+[2+H3
TOTALS| 11350 | 113.18 | 11292 | 113.12
LATIN

OR A B C D
ISAMPLE
TOTALS | 10645 | 111.33 | 11720 | 17.74

5. Sum these three sums of squares.
(0.1634+0.5186+0.1736=0.8556).

6. We must digress for a moment and consider
now the basis for this calculation. The expected
standard deviation squared of a number of events
that follow a Poisson law is N, when N is the total
number of events. However, as is seen in table 1,
our sample deviations are calculated from observed
counting rates. In order that our ratio of observed
to expected deviations be a unitless quantity, we
must express the sum of squares of the deviations as
total counts. This can be done in the following
manner:

In each individual measurement we observe at
least 25,600 counts, which is 200 message register
counts on a scale of 128. Therefore, we can, with
negligible error, assume that for a set of four read-
ings the total number of counts involved is
4% 25,600=102,400. If we divide this value by
the average counting rate for a sum of four read-
ings, we get a value with the units of seconds,
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corresponding to the average time per reading.
This value squared will, when multiplied by the sum
of squares of the deviations that has the units of
[(counts)/(seconds)]?, give units of (counts)?, the
same as our denominator.

Our calculated ratio is now

102,4007]
= )

9 0'85O6><[113.18:|
:; 102,400

=6.84

In our table of x* we find, for 9 degrees of freedom
X’70="6.39,
Xo=8.34.

Thus our ratio has greater than a 50-percent prob-
ability of occurence on the basis of a Poisson law,
and we conclude that the resulting calibrations are
perfectly acceptable.

As an illustration of the efficiency of this method
in eliminating transient disturbances from the meas-
urements, let us perform an /' test on the column
totals. The mean square column deviations are
1.4046/3, as here we have 3 degrees of freedom.
The mean-square-error deviations are 0.8556/9,
since there we used 9 degrees of freedom. Thus the
ratio 4.92, as we can see from tables of Variance
Ratio has reached the 5-percent significance level.
Evidently in this case the Latin square arrangement
was successful in removing this effect from the vari-
ance of the sample averages. It is the elimination
of these disturbances that accounts for the increased
accuracy over the old direct-comparison method
and the subsequent 70 percent shorter counting
time. This reduction in counting time is due to
two factors. First, the number of runs used was
reduced. Where previously a standard source and
three unknown sources were run alternately, so that
for 4 runs on each of the three unknowns the stand-
ard would be run 13 times, making a total of 25 runs
for the entire set of readings, we now have only 16
runs in which the standard is measured as many
times as the unknowns. Second, as the extraneous
(nonPoisson) variation was present in the former
method, a much larger counting time was necessary
than that based on a Poisson distribution in order to
obtain the precision called for. The Latin square
arrangement permits the counting time to be cut in
half, and the precision of the measurements is still
greater than in the old method.

The standard deviation of any of the sums of four
is
0.8556 7]

9 =.308.

Sy=

The standard deviation of any individual count-
ng rate is

For example, the average counting rates of sources
A, B, C, and D, which are the objectives of this
entire procedure, are, respectively, 26.61, 27.83,
29.30, and 29.444.15 ¢/s. These results can also
be calculated as shown in Brownlee (see footnote 1).
However, the method as demonstrated is more
direct and easier to calculate.

V. Summary

In this paper two things have been accomplished.
First, by the arrangement of the experimental data
in the form of the orthogonal Latin square, thereby
eliminating intermittent effects, the accuracy has
been increased to such an extent that only 30 percent
of the original counting time is required. Second,
it 18 now possible to determine the actual experi-
mental standard deviation of any particular average
reading, and in the process of obtaining this standard
deviation it 1s also possible to determine whether
or not the readings follow a Poisson law, which is
the case when the equipment is operating satis-
factorily.

As can be seen, the use of Latin squares for the
statistical arrangement of measurements is an
extremely powerful tool, by means of which a
number of separate effects may be determined or
eliminated. It has proved to be extremely efficient
in the laboratory, not only in the actual calibration
of standards, but in obtaining useful information
relative to the long-range operating characteristics
of the Geiger counters and associated electronic
equipment. The general method as outlined should
be applicable to a large variety of other types of
measurements, especially where time effects or
other disturbing factors are a source of trouble.

The results of 333 such sets of data as shown in
tables 1 and 2 have been tabulated and are presented
in figure 3, together with their theoretical distribu-
tion. As can be seen from the figure, the experi-
mental distribution closely approximates the theo-
retical one. There is one more point that can be
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Frcure 3. Frequency distribution of 333 sets of Chi square
data (broken line) compared with theoretical distribution
(solid line).
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made only after the accumulation of such a large
amount of data as this. The small peaks at the
right of figure 3 indicate a slight tendency for the
observed counts to be influenced by effects other
than statistical fluctuations. However, it must be
remembered that the data include instances where
either counters or scaling circuits have gone bad
and have evidenced a need for repair or replacement,
so that this slight excess is to be expected. It is
believed that this is the first time that such a large
collection of Chi square values has been obtained
from the ratio of the error variance of Latin squares
to the expected (Poisson) variance.

It is well known that individual measurements of
radioactive disintegrations follow a Poisson law,
but the close agreement between the experimental

and theoretical curves illustrates one further point:
that the Latin square arrangement has been com-
pletely successful in eliminating extraneous, non-
Poisson fluctuations from the measurements.

The author thanks W. J. Youden and J. M.
Cameron, of the Statistical Engineering Section, for
their suggestions as to the use of the Latin squares
and for many wvaluable hours of discussion; and
Margaret Selgin and Lucy Cavallo, of the Radio-
activity Section, who performed the calculations
summarized in figure 3.

WasnainaTON, July 26, 1950.
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A Problem in Precision Cam Design
By Joseph Blum

This paper proposes an analytic method for determining the profile of a cam required in

a device that demands high precision.

The method is applicable whenever the equation for

the profile can be obtained by making a less stringent assumption, namely, that the follower

makes contact at a fixed point of its extremity.

The true profile can then be determined

numerically by considering it as the envelope of a family of curves.

The design of an X-ray spectrograph often requires
that a constant rate of oscillation be maintained in
the crystal holder. The crystal rotates through an
angle B8 (the angle of travel), reverses its direction
and then proceeds with the same angular velocity.
This type of motion may be obtained from a cam
rotating with constant angular velocity, ». An
analytic method for computing the profile of the
cam is presented in this paper which extends, in a
certain sense, the application of a paper written by
J. B. Friauf;! the notation therein will be preserved
to a considerable extent.

1 J, B. Friauf, The design of a cam for an X-ray spectrograph, J. Opt. Soc. Am"*
Rev. Sci. Instr. 11, 289 to 296 (1925).

In figure 1, a, O represents the axis about which
the cam rotates, A the axis about which the crystal
holder rotates, and B the center of the ball at the
end of the follower. The follower ACB makes
contact with the cam and serves to rotate the crystal
holder. The distances AO and AB are equal; denote
this common length by R. Let r; and 7, be, respec-
tively, the least and greatest radii measured from
0 to the point B; let » be the variable radius, OB
corresponding to the angle o, which » makes with the
least radius 7.

Denote the time by ¢ and let =0 represent the
time when the least radius coincides with the line
segment extending from O to A. Then the angle

Fiaure 1.
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