
2. Monobarium aluminate dissolves in barium 
hydroxide solutions with precipitation first of 
7BaO.6AbOa.3 6H20, subsequently of BaO .A120v 
7H20 in the less basic and BaO.AlzOa.4HzO in the 
more basic solutions . 

3. Tribarium aluminate is rapidly hydrolyzed by 
water, with precipitation of Ba(OH)2.8H zO, BaO.­
AlzOa.7H20 , and, subsequently, 2BaO .A120 a.5H20 . 

4. All the hydrated barium aluminates dissolve in 
water and are hydrolyzed, with precipitation of 
hydrated alumina. 

5. The hydrated barium aluminates dissolve in 
barium hydroxide solutions with eventual precipita­
tion of the equilibrium solid phases, but frequently 
with preliminary separation of metastable inter­
mediate solid phases. 

6. The stable solid phases in the system BaO-AlzOa-
H 20 at 30° C are: (a) gibbsite (AI20 a.3H20) over a 
range from approximately zero concentration to 
about 52 g of BaO and 2.8 g of Al20 a perliteI'; (b) 
Ba(OH)2.8H 20 from 52.9 g of BaO and zero Al20 a 
to about 55 .5 g of BaO and 2.7 g of Al20 a perliteI' ; 
(c) probably 2BaO.AI20 a.5H 20 (but possibly BaO.­
A120 a.4H20 or gibbsite) over the short range from 
52 BaO and 2.8 A120 3 to 55.5 BaO and 2.7 A120 a. 

7. 7BaO.6AlzOa.36H 20 is a metastable phase, not 
sufficiently stable to permit an accurate determina­
tion of its solubili ty. 

8. BaO.Alz0 3.7H20 is also metastable, but it may 
exist in contact with solution for several months. 

9. BaO.AlzOa.4H20 is likewise m etastable over the 
greater part, if not all , of its range, but its stability 
is greater than tha t of the higher hydrates. 
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10. 2BaO.AlzOa.5H20 resembles BaO.AlzOa.4H20 
in its degree of stability in the metastable range. 

11. No hydrate more basic than 2BaO.AI20 3 .5H20 
was found. 
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Permeability of Glass Wool and Other Highly Porous 
Media l 

By Arthur S. Iberall 
An elementary t reatm ent is developed fo r the permeabilit~,. of fib rous materials of 

h igh porosit ies, based on the drag of t he individual filaments. It is believed that the same 
treatment is valid for other highly porous media. A bri ef historical review is given of 
theories r elating t he permeab ili ty to t he structure of porous media. The applicabili ty of 
the currently accepted permeabili ty theory, based on the hydrauli c radius, only to media 
of low porosities is di scussed. Both approaches may be extended to permit approximate 
correlation for in termediate porosities. For fibrous materia ls of high porosity, it is shown 
that the effect of flu id inert ia results in a permeabili ty t hat var ies with flow even at low 
Reynolds number. The permeability to gaseous flow is also shown to vary with the abso­
lute gas press ure. This vari ation is appreciable when the mole cular mean free path is of 
the same order of magnitude as the separation between fil aments or particles in t he medium. 
Data suitable for the design of linear flowmeters utilizing fibrous materials of high porosity 
are given, including data on t he useful porosity range of fibrous media. 

I. Introduction 
During t he war ther e arose a need in the Bureau of 

Aeronautics, Department of th e Navy, for rapid 
procurement of equipment suitable for field tests of 
diluter-demand oxygen regulators , which are used 

t This pape r is a theoretical abstract of a report to the Bureau of Aeronautic s, 
Navy Department [lJ. Figures in brackets indicate the literature references at 
the end of this paper. 
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by flight personnel at high altitudes. Due to diffi­
culties in procurement , and certain disadvantages 
in the convenient usc of commercially available 
f10wmeters for the measurement of gaseous flow, th e 
development of a suitable flowmeter was undertaken. 
After some preliminary consideration , effor ts were 
centered on the development of a constant-resistance 
flowmeter utilizing a porous medium as the f1ow-



resistance element. The major advantage of the 
constant -resistance (Ol" constant-permeability) flow­
meter is that its pressure drop is an indication of and 
proportional to the volume rate of flow, so th at an 
instrument with linear response can be obtained. 

Glass wool appeared to be a suitabl e porous 
medium because it is relatively inactive chemically, 
relatively nonhygroscopic, its fibers are strong and 
elastic, making in bulk a r esilient mass that will' 
retain its characteristics; and the fib ers can be made 
in an almost unlimi ted range of sizes. A wide range 
of permeability is therefore obtainable that is 
absolutely essential for latitude in the design of flow­
meters. In addition , t he wool is inexpensive and 
easy to procure. 

The development of these flowmeters included an 
investigation in to th e general flow characteristics 
of porous media, with particular reference to a 
medium consisting of randomly arrayed filaments. 
The primary concern in t his paper is with the theo­
retical aspects of th e permeability of highly porous 
media of this type. 

II. Permeability of Porous Media 

1. Historical Review 

The characterist ic law of fluid flow through a porous 
medium, for suffi.ciently lo\v flows, is given by 

(1) 

where 
A = cross-sectiona.l area of a cylindrical plug 

of a porous medium. 
L = length of th e plug. 
Q = volumetric Tate of flow of fluid through 

the plug. 
j.L = absolute viscosity of th e fluid. 

.Ap = pressure drop between the ends of the plug. 
e= a constant (used indiscriminately through ­

out t his paper) . In eq 1 it is a factor 
characteristic of each particular medium. 
It is approximately a constant, increas­
ing at high flows, and for gases, de­
creasing at low absolute pressures. 

It is the elucidation of the principal dependence of 
the factor e on the structure of the medium and its 
incidental dependence on the properties of the fiuid 
tha t is the principal object in this paper. It will be . 
useful to define the quantity A Ap/LQ as the resist­
ivity of the medi.wn for a given fluid, and its recipro­
cal LQ/AAp as the permeability. The quantity c 
may then be referred to as the eoeffieient of resisti vi ty 
of the porous medium, or its reciprocal l /e as the 
coefficient of permeability. 

D' Arcy's experiments (in 1856) on the flow of 
water through sands led him to establish eq 1, and 
it is commonly referred to as D'Arcy's equation. 

Dupuit (in 1863) extended it to partially inelude 
depend ence on the po rosity of the medium. The 
porosity e is den ned as Lhe raLio of th e volume occu-

pied by voids available to the fluid in a porous 
medium to the total volume. He argued that the 
apparent velocity Q/A in a porous medium was less 
than the actual average velocity in the pore spaces, 
His expression was thus equivalent to 

Ap A J.L 
L Q= e-;' (2) 

Slichter (in 1897) considered a granular bed as an 
eq uivalent system of capillary tubes. On this basis 
he derived the equation 

where 

t::..p A j.L 

L Q= c d2F( E)' (3) 

d= dimension characteristic of the structure 
of the medium. In this instance, it is 
the diameter of the granule. 

F( e) = empirical function of the porosity. 
Many investigators have subsequently attempted 

to obtain a generally applicable form of the porosiLy 
fun ction. 

The valuable methods of Stanton and Pannell (in 
1914) of correlating data on flow through smooth 
circular pipes on the basis of th e R eynold s number 
and other dimensionless groups, were followed by 
th e concept of Schiller (in 1923) of a mean hydrauli c 
radius th at permitted co rrelating flow data on non­
circular p ipes. The mean hydraulic radius r may 
be defined as the ratio of the volume of a med ium 
filled with a fluid to th e surface within the medium 
in contact with the fluid . Blake (in 1922) utilized 
the idea of a mean hydraulic radiu s in graphically 
correlating data on fl ow through granular beds in 
terms of a Rcynolds n umber and other dimensionless 
gro ups. The r esults of Blakc's work and the theo­
rct ical exposition of Kozeny (in 1927) on granular 
beds may be summarized in the formula 

(4) 

in which is the surface pcr uni t volume of a porous 
mcdium in con tact with the fluid (8 = E/r). 

The Kozeny, or hydraulic radius , theory (eq 4) is 
intended to have general appli cability to all porous 
media, beeause the only properties of the medi urn 
that remain buried in th e constan t e involve the 
detailed structure of the medium, such as factors 
that take in to account the shape and configuration 
of the fI uid path or the shape and orientation of the 
materi al particles. In fact, experiments wh ere this 
theory is definitely applicable s how only moderate 
variation of this constant for a variety of shapes. 

An extcnsive list of references, complete up to 
1938, and more complete exposition of the problem 
can be fou ncl in reference [2]. 

In 1938 ancl1939 [3], eq 4 was modified by Carman 
to the form 

(5) 
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in which So is the "specific" surface exposed to the 
fluid (surface exposed to the fluid per unit volume 
of solid material) . 

The value of e in eq 5 was found to b e about 5 
for granular materials of low porosities. 

Equation 5 was applied to fibrous materials by 
Wiggins, Campbell, and Maass [4], and by Fowler 
and H er tel [5]. A clear exposition of th e hydraulic 
radius theory leading to eq 5 may b e also found in 
refercncc [4] . 

The latest modification of the hydraulic radius 
theory [6] involves the introduction of an orientation 
factor 0 , which is defined as th e averaged value 
of the square of the sine of the angle b etween a 
normal to the particle, fiber, or wall forming th e 
microscopic flow channel and the macroscopic 
direction of flow. The r esulting formula is 

(6) 

K o is a shape factor that should b e the sam e for all 
channels of th e sam e geometri c shape and that should 
not vary markedly from shape to shape. 

The l{ozeny, or hydraulic radius, theory (from eq 
4 onwfird) has thus been carried to a high degree 
of r efinem en t. M any investigators, however , have 
not felt justified in using any relationship more 
complica ted than th e D 'Arcy formula (eq 1) , in 
which an empirical constant l ie (th e coefficicnt of 
permeabili ty ) is obtained experimentally for each 
m edium investigated. 

A theory dcveloped from a differen t point of 
view- whi ch may b e referred to as the drag thcory­
has existed for some time without attracting much 
recognition or support. Emersleb en (in 1925) 
attempted a mathematical solution of th e hydro­
dynamic problem of the viscous drag of a fluid on a 
special array of parallel fibers. Burke and Plummer 
(in 1928) used the drag on spheres to obtain a law 
for the dependence of permeabili ty of a porous 
m edium on its porosity. The drag theory lcads to 
a different expression for the dependence of resis­
tivity on porosity than that given by the hydraulic 
radius th eory. As existing data at that time and 
later , particularly on flow through sands, appeared 
to b e consistent wi th the hydraulic radius theory, 
li t tle attention has b een given to the drag theory. 

Actually, it appears that neither the hydraulic 
radius th eory nor the drag theory can be entirely 
correct, but that each will have a range of application. 
This con cep t is implicit in Emersleb en 's solution. 
Indeed, da ta on fibrous matcrials obtaincd by 
Sullivan in 1942 indicated that the hydra ulic radius 
th eory broke down at high porositi es, wh ere one 
may expect an elementary viscous drag th eory to 
apply most satisfactorily. 

It can be easily undcrstood why there is a scparate 
range of applicability of these two theories by con­
sidering the extreme cases . For an array of fibers 
01' particles of large separation, the resistance to 
flow can be computcd as the sum of the fluid drags 
on each element . As the elements are brought closer 

together, adjacen t elements will modify the flow 
pattern surrounding a particular element. In prin­
ciple, if account could be taken of the effect of the 
mutual interference between particles, th e drag 
theory should be applicable to all porosities. How­
ever , in practice, t his is beset by m athematical 
difficulties. Thus an dementary drag theory should 
fail when applied to low porosities. 

In the hydraulic radius theory, the estimate of t he 
resistance offered by a connected network of flow 
channels is based on the product of the area of solid 
surface in con tact with fluid and an "equivalent" 
sh earing stress acting on this area. The equivalen t 
sh earing stress is assumed to be that obtained from 
the normal velocity gradient that would exist at the 
walls of an equivalent channel formed between two 
parallel plates r4]. When the separation between 
the drag surfaces is small (more exactly, when the 
separation is small compared to the radius of curva­
t.ure of a surface), a valid estimate is obtained . 
However, as the separation increases (higher porosi­
ties), thc velocity gradient normal to the surface 
depends more and more on the rat io of the r adius 
of curvature at t he surface to the separation rather 
than on the distance to an adjacent wall . This is 
readily seen in the case of two con centric tubes with 
axial flow between t hem. With small separation , 
the hydraulic radius theory gives a true account of 
the flow resistance in the annulus. As the inner 
t ube is shrunk, this is no longer true. Thus it turns 
out that the hydraulic radius theory is best applicable 
at low porosities and the drag theory at high porosi­
t ies. 

I n the present investigation, expressions for the 
resistivity of fibrous materials have been derived 
from elementary consideration of the viscous drag 
of individual elements and were found to be 
moderately successful experimentally. This might 
be expected, as, in general , fibrous matcrials under 
moderate packing will still have rather high porosity. 
It is thus proposed that the same method of attack 
is suitable for all materials of high porosity. 

The problcm of intermediate porosities will be left 
untouched. It is possible, by semiempirical methods, 
to find expressions that may be expected to fit ap­
proximately the entire range of porosities, or, by 
perturbation methods, to extend the range of appli­
cability of each theory individually, or finally, it 
may be possible by great effort, to find one single 
mathematical solution that is applicable at all 
porosi tics . 

2 . Drag Theory of Permeability 

We will undertake to account for the permeability 
of a random distribution of circular cylindrical fibers 
of the same diametel' on the basis of the drag on 
individual elements. 

It will be assumed that the flow resistivity of all 
random distributions of the same fibers per unit 
volume will not differ, and that it will be the same 
as that obtained with an equipartition of fibers in 
three perpendicular directions, one of which is alon 
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Lbe direction of macroscopic flow. It will be further 
assumed that the separation between fibers , and the 
length of individual fi bel's are both large compared 
to the fiber diameter (high porosities), and that the 
disturbance due to adjacent fibers on the flow around 
any particular fiber is negligible . 

If it be assumed that fluid inertial forces are 
negligible (low local Reynolds number) an equation 
can be derived by equating the pressure at two 
planes perpendicular to the direction of macroscopic 
flow to the viscous drag force on all elements between 
the planes. It is assumed that the pressure chop 
necessary to overcome the viscous drag is linearly 
additive for the various fibers, whether parallel or 
pe'pendicular to the flow. 

It was es timated from Emersleben's paper [7] that 
the drag force per unit length of a single fiber sur­
rounded by similar fibers all orien ted along the 
direction of flow and with mod erate separations is 
approximately given by 

(7) 

where 

./= drag force per unit length of fiber. 
v= velocity of the fluid stream distant from the 

filament. 

If it be assumed that there are n filaments per unit 
volume, and that n /3 filaments are arrayed in eacb of 
the three perpendicular directions, the total drag 
force in a unit volume due to the n /3 filaments 
parallel to the flow can be equated to the pressure 
drop pel' unit length, so that 

(8) 

It is estimated from Oseen 's solution for a cylinder 
perpendicular to a s tream that partially takes into 
account fluid inertia (see Lamb's "Hydrodynamics") 
that the drag force for such filaments is given by 

./ 2- ln R p. v. (9) 

in which 

In R = natural logarithm of the local Reynolds 
number. 

R = Reynolds number, defined as dvp /p. . 
d = fib er diameter. 
p = fluid density. 

The drag force on each of the two sets of n /3 fila­
ments per unit volume, arrayed perpendicular to the 
fluid How, can be equated to the pressure drop pel' 
unit length. , giving 

!;;.p 47l'n 

- ~-----~~~ ~---~------. 

Lineal' superposition or simple addition of the three 
sets of pressure drops necessary to overcome the drag 
of the three sets of filaments results in the total 
pressure gradient of 

!;;.p 47l'n 4 - ln R 
Y =-3- 2- ln R p. v. (11) 

The number of fib ers n per unit volume, which is 
also equal to the total fiber length per unit volume, 
may be eliminated, as the apparent density of a 
fibrous pack in vacuum (J p is equal to the product of 
the fiber volume and the fiber density 0'1, or 

7l' d2 O' P="4 nO'I' 

Eliminating n, eq 11 reduces to 

!;;.p 16/l v (Jl) 4 - ln R 
Y =-3- 0'Id2 2 - ln J{ 

(12) 

(13) 

The velocity profile between flbersis assumed to 
be sufficien tly flat for high porosities so that the 
velocity may be tak:en as constant. The velocity v is 
therefore related to the volumetric rate of How Q and 
the macroscopic cross sect ional area of a plug A by 
the relation 

v=!{ (14) 
~A 

It follows from the definition of the porosity € that 

(15) 

With the use of these two relations, eq 13 may be 
put in the form 

!;;.p A 16p.l - ~4 -lnR 
y; Q=-3- ----;J2 2- ln R' 

16p. O' p 4 - ln R 
- 3- (0'/ - O'p)d 2 2 - ln JT," (16) 

Although the derivation, as given, assumed an 
incompressible fluid, it can be readily shown that 
the derived equations are unchanged for a compres­
sible fluid , flowing isothermally, if the volumetric 
Howat the arithmetic mean pressure 0", is used in 
eq 16. It is therefore applieable to both liquids and 
gases. However, it will be shown later, that an 
additional correction must be made to eq 16 for gases 
at low absolute prcssures. 

If eq 6 is compared with eq 16 and their ratio is 
interpreted in terms of the shape factor of the hy­
draulic radius theory, it is possible to predict the 
general variation of the shape factor Iio at high 
porosity. At low porosities, [1." 0 is constant, but 
at high porosities it should become asymptotic to 

c 
Ko=--

1-€ 
(17 ) 

L 3(2 - 1n R) MV. (10) 
where c is a constant. 
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This prediction is qualitatively compatible with 
the data given in reference [61. 

Another significant implication in eq 16 is that the 
resistivity (or permeability) is not a constant but 
varies slowly with Reynold s number . The th eo­
retical variation of th e r esistivity is shown in table 1. 

T ABLE 1. Theoretical vari ation of resistivity with Reynolds 
number for a pOI· OUS plug of randomly an·ayed fib ers 

Reynold s 
Dumber, 

dQp 
~A, 

Factor pro­
portional to 
resistiv ity , 

164-1n R 
32- 10 R 

0_____________ 5. 3 
10-'. _ _______ _ 6.1 
10- · __________ 6.3 
10- 3 __________ 0.5 
10- 2 _________ _ 6.9 
10- 1__ ________ 7.8 
L ____________ 10.7 

This slow variation of resistivity with flow is 
quite characteristic of many elements in which the 
flow is nominally viscous and was immediately 
found experimentally in the first glass wool flow­
meters that were studied. While in general it is 
reasonable to assume that this effect is associated 
with fluid inertia, it is often difficult to account for 
it precisely. In fact, a common m ethod of separat­
ing the resistance into two additive components, one 
proportional to the viscous resistance, and the other 
proportional to a kinetic energy loss, often fails in 
securing added precision in describing experimental 
results with linear flow elements. 

In eq 16, it is noteworthy that the effect has been 
associated with an intrinsic variation of drag with 
Reynolds number . An extremely interesting mathe­
matical interpretation of eq 16 is possible. The 
slow variation of a logarithmic expression, as that 
give in eq 16, ean be closely approximated by an 
exponential form. 

(18) 

This type of relation is often successfully used for 
linear flow elements without apparent theoretical 
justification. At least in the case of highly porous 
fibrous m edia it has been shown to h ave theoretical 
validi ty. 

The quant ity Ox r epresents to a high degree the 
point variation of R eynolds number , where the best 
value of x depends on the R eynolds number. 

For the resistance law given by eq 16, the best 
value of x is 

2 
x (2- ln R) (4 - 1n R) 

(19 ) 

In reference [1], eq 16 was used for comparison with 
experimental data on glass wool and fair agreement 
found, so that its essential validity appears estab-

Ii shed . While it is apparen t that eq 16 was derived 
from elementary considerations , to which many 
r efinemen ts are possible, particularly as to th e sta­
tistical distribution function for drag and second­
order effects of porosity, lack of extensive experi­
mental data make these refinements dubious. As 
an illustration of the possible accnracy of eq 16, 
some selected data of fair accuracy obtained subse­
quent to the issue of reference [1] permitted close 
fitting by th e formula 

!::"p A = 9 411 O" p 2.4 - ln R 
L Q . (0"/ - O" p)d 2 2 - ln R 

(20) 

Although at first sight, the change in numerical 
constants appears drastic, it can be shown to repre­
sent moderately reasonable changes in the amount 
and relative weighting of the parallel and perpen­
dicular fiber drags . 

The main conclusion from all the experimental 
data obtained is that the coefficient of the resistivity 
function always fell in the approximate range of 
5 to 10, and that the variation of resistivity with 
Reynolds number is less than given by eq 16, but 
not as small as given by eq 20. 

3. Limits of Linearity 

I t is well known tha t a laminar flow regime does not 
persist around elements producing drag in a fluid 
stream at R eynold s numbers much greater than 1. 
Even at R eynolds numbers less than 1, the drag 
force will not r emain strictly proportional to the 
v elocity. Furthermore, even when drag is almost 
proportional to veloci ty for an indivd ual element, 
this may not necessarily hold true for an array of 
similar elements, even though widely spaced. 

The value of the r esistivity given by eq 16 may 
therefore not be expected to apply for R eynolds 
numb ers much greater th an 1. However, experi­
m ental data indica ted no inconsistencies up to a 
value of R eynolds numb er even as great as 1.2 . 
Therefore, as a round m easure of the limit of flow 
linearity, a R eynolds numb er of 1 may b e assumed . 

The resistance of a given porous plug used as a 
flowm eter may therefore b e expressed as 

!::"p (!::"P) (4 - ln Rm,, - ln Q/Qmax) (2 - ln R max) 
7[= 7[ max 2- ln Rmax- ln Q/Qmax 4- ln Rmax ' 

(2 1) 

where the subscrip t max r efer s to th e values of 
quanti ties at the maximum or full scale flow. 

4. Pressure Variation of Resistivity at Low Pressure 
for Gases 

At low absolute pressures, the flow of gas along a 
tube does not ob ey Poiseuille's law, the flow b eing 
somewha t larger for a given pressure drop than 
predicted by this law. A t low gas pressures the 
resistance to flow in a tube may be derived by the 
methods of statistical mechanics [8] . 
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The essential idea is that at low pressures, where 
the separation between walls is of the order of the 
m ean free path, moleeules will suffer few collisions 
with each other, and therefore should be capable of 
being urged to drift, or "flow", by an infinitesimal 
pressure gradien t. However, there will be a loss of 
momentum suffered by molecules that collide with a 
stationary boundary (the tube wall). This loss of 
momentum is computed by assuming that, with a 
finite pressure gradient, the velocity of a molecul e 
consists of its drift, or flow, velocity, superimposed 
on its Maxwellian th ermal velocity; and that as a 
result of collisions w'ith a wall, the molecule will be 
diffusely reflected, that is, it will give up its drift 
velocity and be reflected with some random Max­
wellian velocity. The average velocity profile for 
gas flowing at low absolute pressmes in a tube will 
therefore consist of a flat portion between the walls 
of constant velocity equal to the drift velocity, and 
a portion ncar the walls that falls very rapidly to 
zero , so that the velocity profile looks essentially 
flat-topped. This represents the model for molec­
ular "drift" flow in a tube. At high pressures, 
viscosity is used to account for the flow resistance. 

Knudsen found that, for a given press me gradient 
at any absolute pressure, a large fraction of the drift 
veloci ty can be added to the "viscous" velocity to 
obtain a composite velocity in good agreement with 
experiment. The fraction of the computed drift 
velocity was semiempirically determined to range 
from 0.81 to 1, depending on the ratio of mean free 
path to wall separation. The effect of this super­
position leads to a result that encompasses the en­
t ire pressme range. One term, the Knudsen term , 
b ecomes predominan t at low pressures, while the 
other term, the Poiseuille term, becomes predominant 
at high pressures. In the intermediate pressure 
range (above 1 mm H g absolute pressure), al though 
small , the Knudsen term is not negligible. 

Applieation of the same theory to porous media of 
a random filamen t nature leads to the r esult that the 
molecular drift flow at low pressure n.:., is approxi­
mately given by 

Q:n =(~)1 / 2 A ilp d(l - U 1' /U 1)2U I (72.)1/2 (~)~, (22) 
9 71" L U p P 0 po P'" 

where subscript m refers to conditions at the mean 
pressure, and 
p o= arbitrary reference pressure, chosen as 1 atmos­

phere. 
(p/ p)o= pressure to density ratio for the gas at 

the mean plug temperature. 

Following Knudsen , 0.81 of the drift flow is simply 
added to the viscous How of eq 16, so that the total 
:fiow at mean conditions is 

Q",=~ 2- ln R (u1 - u p)d2 Ail~ 
5.3 4 - ln R U p JJ. ", L 

[ 1+ (.8 1)(10) (~)1 /2 UI- UP(72.)112 JJ. m Po] . 
971" ul d p m po pm 

(23) 

The approximate value 10 was chosen for Lhe 
resistivity fun ction in the Knudsen term in the 
bracket. 

The form of eq 23 is thus 

(2 4) 

where b is the coefficient of the Knudsen term. 
Experimentally, a linear variation of permeability 

()m /ilp with the reciprocal mean pressure ratio 
Po/Pm was always obtained. In fact, fair agreement 
was found with the theoretically computed cofficient 
b in practically all cases, although this result may 
have been purely fortuitou s. 

III. Range of Useful Porosities of Fibrous 
Materials 

The following section, largely based on speculative 
considerations, is irrelevant to the development of 
the theory of permeability of porous media. How­
ever , it is of u tility in the design of Howmeters. In 
a flowmeter , it is desirable to pack the fibrous 
material to such a density that it will r emain rela­
tively rigid und er vibration, shock, or differential 
pressure overload. 

The following theoretical and experimental con­
clusions, while tentative, furnish a rough guide in 
determining usable porosity limits for design purposes: 

l. The upper limit to the porosity of a fibrou s 
material is obtained with a free pack and is ap­
proximately 0.98 . The minimum ratio of frce pack 
to fiber density ( 1)/UI is thus approxim!1tely 0.02 . 
The usable upper limit of porosity is set by other 
design considera tions. 

2. The lower limit to the porosity of a fibroLls 
materi al is approximately 0. 50. 

3. To a CHide approximation, the compressibili ty 
of all flbroll s materials is the same, and equals 
0.0021 Ib/in .3 of pack per pounds per square inch of 
pressure load. 

4. Fibrou materials have fa irly reproducible and 
constant compressibility charactcr istics on increasing 
load bu t show erratic hysteresis with decreasing 
load. Ther efore all packing adjustments on flbrou s 
plugs should be made wi th increasing load. 

The approximate constancy of the free-pack den­
sity, it is believed , is related to th e geometric-mech­
anical problem of the minimum number of filaments 
that must be in tr oduced into a given volume to bind 
and form a stable pack. 

The lower limi t to the porosity of fibrous materials 
may be estimated by considering a elose packed array 
of fibers perpendicular to each other in three direc­
tions. Thc porosity for such an array was computed 
to be 0.41. Experimen tally, porosities as low as 0.5 
were obtaincd. While lower porosities can be ob­
tained, it is believed that serious compression of the 
material rather than fib er bending would take place. 

The approximate constancy of compressibility of 
vario us materials is probably related to the similar 
small variation in the ratio of elastic modulus to 
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density for many elastic materials. Various models 
for the compressibility of a fibrous pack demonstrate 
the dependence of pack compressibility on this pa­
rameter. 

In lieu of any other iuformation, the variation of 
pack density with pressure loading for increasing 
load may be taken as 

(25) 
where 

O"v = pack density. 
O"f = density of the fiber (in the same units). 
P = pressure loading. The constant 0.0021 has 

the units Ib/in.3/psi. 
The theoretical range of pack density ratio is ap­

proximately 0.02 to 0.50. The practical range of 
pack density ratio for flowmeter design is probably 
0.1 to 0.3. 

IV. Design of Linear Flowmeters 

A convenient procedure is outlined in this section 
for designing a linear flowmeter on the basis of the 
theory developed in section II. It is assumed that 
the basic problem is to design a linear flowmeter 
that will possess a desired resistance !:lp/O, which is 
constant within given limits over a desired flow 
range 0 - Omax for a given fluid. To meet these re­
quirements , compromise choices must be made of 
fiber diameter, cross-sectional area of the flow­
metering plug, plug density, and plug length. 

A scheme, involving the use of a simple chart, has 
been evolved for design purposes. In the interests 
of clarity, the theory by which the design chart was 
devised will be sketched. 

Equation 23 sets forth the law of isothermal gas 
flow for a fibrous plug as 

(.81) (10) ( - O" f- O"p l!.. J.1. m l!.!... . / 8 )1/2 ( )1/2 ] 
\971" O"fd P m po pm 

(23) 

The same equation holds for liquids, except that the 
bracketed expression bas the value unity. 

As it is assumed that this law holds only for high 
porosities, the small correction term in the bracket 
may be evaluated for a porosity of unity so that eq 23, 
for gases, becomes 

Q __ 1_ 2- ln R O", - O"p d2 ~ 
m- 5.3 4 - ln R O" v J.1. mL 

[1 + 4.3 (l!..)1/2 J.1.m l!.!...] !:lp . (26) 
d P m Po Pm 

It will be convenient, in this section, to drop the 
subscript m, which denotes mean isothermal condi­
tions , leaving it understood. 

From the definition, the Reynolds number is 

R = d pQO"f 
J.1.A( O" f - O"p) 

(27) 

These equations may be regrouped by the following 
defini tions; 

(28) 

where 

L = actual plug length. 
Lo= fictitious plug length (length of plug if 

compressed to a porosity of 0.50) . 

in which 

M = mass flow (M= pQ ). 
Mmax=maximum mass flow for which the 

flowmeter is to be used. 
Rmax= corresponding maximum Reynolds num­

ber. 
M o=fictitious flow (mass flow at which the 

R ey:nolds number is unity if the medi­
um had unit porosity) . 

The quantity (QL o/!:lp) a is a fictitious value for the 
flow per unit press ure gradient (the value for a 
Reynolds number of zero) . It is closely related to 
the true value by the relation 

QLo= 2-ln R (R L o) [1 +(4.3) (l!..)1 /2(!!..) Po] . 
!:lp 4 - ln R!:lp a Po pdp 

(3 1) 

The definitions, eq 27 through 30, and eq 31 contain 
the desired solution. 

Equation 30 may be plotted as a generalized chart 
applicable to all fluids, or, by choice of fluid param­
eters, as a design chart suitable for a specific fluid. 
It is presented in generalized form in figure 1 as a 
logarithmic plot of (Q/!:lp )L o against J.1.Mo for 
constant values of J.1.A and d/ J.1. respectively. The use 
of figure 1 or eq 30 leads to values of A, L, and d for a 
porous plug that nominally will have the desired 
resistance !:lp /Q. The best choice of these parameters 
depends upon the deviations from constant resistance 
that may be tolerated. 

As the permeabili ty theory developed has only 
nominal certainty, it is not to be expected that a 
desired resistance will be experimentally obtained 
with any great accuracy, so that in general, a moder­
ate amount of resistance adjustment will be found 
necessary. (Illustratively, this may be accom­
plished by variation of the weight of glass wool used.) 
Therefore little distinction need be made as to the 
nominal design value of !:lp /Q. The value (!:lp /Q) 0 

may thus be regarded as the resistance at full scale, 
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FIG URE 1. Design chart for linear jlowmelers 
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establishing a nominal straight line calibration for 
the flowmeter. The variation of (2 - 1nR)j (4- 1nR) 
with flow may be regarded as determilling the ex­
pected deviation from linearity , which may be 
characterized by its maximum value as either a 
quadratic deviation , or, more accurately, as an 
exponential deviation. The maximum deviation 
from a s traight line fitted to the maximum flow and 
pressure drop is given in table 2, computed on the 
basis of eq 16. Any desired degree of linearity 
therefore determines a maximum value of R eynolds 
number to use for design purposes. 

T A R],E 2. Theoretical maximum deviation from linem'itll for a 
fibT01lS plug flowm eter 

1\1axilllUTTI dif­
Rrynolcl s num- INonce beLW(,f'1l 
bcr at fu ll sca lc tru e flow ancl 

flow, R max lineal' approxi-
ma tion 

Location of 
max imum 

----- -----1-----1 

L .......... . 
10- 1 ••••••••• 

10-' ......... . 
10-' ........• 
.\0- •.....•.•. 
10-' ... _ ..... 
10--< • •.•••••. 

Percentage of 
full scale flow 

6.5 
2.2 
1. 1 
0.7 
.5 
.3 
.3 

Perce1ltage of 
full scate flow 

48 
43 
41 
40 
40 
40 
39 

For gases, eq 31 indicates a change in resistance 
with absolute pressure, which depends on the fiber 
diameter d. An y desired degree of uniformity in 
the resis tance over a range of absoluLe pressures can 
be secured by propel' selection of d. 

Finally, practical consideraLion of size and the 
usable porosity range of 0.7 to 0.9 determine the 
length L and cross-sectional area A. 

For purposes of clarity, a design procedure is given 
in some detail below: 

1. D eterminE' the following constants of lhe fluid 
to be metered: }J., p , pj p (for gases). 

2. Decide upon the maximum How Omax to be 
metered, the desired resistance iJ.p jO, the maximum 
amount of nonlinear deviation that may be tolerated, 
and in the case of gases, the absolute pressure range 
in which the flowmeter is to be used, and the cor­
responding range of resistance iJ.p jQ that may be 
to lerated. 

3. D ecide upon the maximum practical range that 
may be used for A, L , and d. 

4. From table 2, choose the maximum value of 
R max that will give the desired linearity~ Smaller 
values of Rm nx \d l give bet ter linearity but may 
require such large plug areas as to be Impractical. 
A rough empirical criterion is to consider a design 
band 1 decade wide. Compute minimum and maxi-
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mum values of M o (eq 29) assuming minimum and 
maximum values for both R max and~. The range of 
,~ may be taken as 0.7 to 0.9. Compute the cor­
l'esponding values for J.I. M o and mark out the vertical 
band corresponding to these limits in figure 1. 

5. For the maximum and minimum limits assumed 
for both L and ~, compute the corresponding limits 
for Lo (eq 28 ). Compute the corresponding values 
·of QLo/t:.p and mark out the horizontal band C01'­

l'esponding to these limits in figure 1. Steps (4) and 
(5) result in a design rectangle on figure 1 within 
which a solution is possihle. 

6. Further limit this design rectangle by excluding 
regions of figure 1 representing greater and lesser 
area A (really J.l.A ) than desired. 

7. For gas flow, compute the maximum tolerable 
value of the coefficient of the Knudsen term band 
the corresponding minimum val ue of fiber diameter 
d. Exclude regions of figure 1 representing smaller 
values of d (really d! p,). One may then choose 
design parameters corresponding to any point in 
the design region that has not been excluded. 

8. When the flowmeter is built and tested, adjust­
ment of the resistivity can then be made by the 
principal techniqueiof changing the weight of glass 
wool used. 
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Vo!' 45, No.5, November 1950 Research Paper 2151 

Density, Refractive Index, Boiling Point, and Vapor 
Pressure of Eight Monoolefin (I-Alkene), Six Pentadiene, 

and Two Cyclomonoolefin Hydrocarbons 1 

By Alphonse F. ForziatV David L. Camin/ and Frederick D. Rossini 3 

Density (at 20°, 25°, and 30° C), refractive index (at seven wav elengths at 20°, 25°, 
and 30° C), vapor pressure, and boiling point (from 48 to 778 mm Hg) of 16 h~ghly purifi ed 
samp les of hydrocarbons of the API- N BS series were measured for 8 monoolefin (l-a lkene), 
6 pentadiene, and 2 cyclomonoolefin hydrocarbons. 

The data on r efractive index were adjusted by means of modified Cau chy and Hart­
mann equations, and values of t he constants are given for each compound. 

The data on vapor pressure were adjusted by mea ns of the method of lea st squares 
and the three-constant Antoine equation. The values of th e constants are given for each 
compound. 

Values were calcula ted for the specfic dispersions, (np - nc) /d and (ng-nD) /d. 

r As a cooperative investigation of the National 
Bureau 'of Standards, the U. S. Office of Rubber 
R eserve, and the American Petroleum Institute 
R esearch Project 6, measurements of density, re­
fractive index, vapor pressure, and boiling point 
were made on highly purified samples of eight 
monoolefin (I-alkene), six pentadiene, and two 
cyclomonoolefin hydrocarbons of the API- NBS 
series. 

The compounds m easured were mad e available 
1 This investigation was performed at the National Bureau of Standards as 

part of the work of the American Pet roleum Institute Research Project 6 on the 
" Analysis, purification, and propertjes of hydrocarbons." 

, Formerly Research Associate on the American Petroleum Institute Research 
Project 6. 

3 Present address: Carnegie Institute of Technology, Pittsburgh 13. Pa. 
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through the American Petroleum Institute R esearch 
Proj ect 44 on the "Collection, calculation, and 
compilation of data on the properties of hydrocar­
bons. " The samples were purified by the American 
Petroleum Institute Research Project 6 on the 
"Analysis , purification, and properties of hydro­
carbons," from material supplied by the following 
laboratories: 

1-Pentene, by the Phillips P etroleum Co., Bartles­
ville, Okla. 

1-Hexene, I-heptene, 1-nonene, 1-undecene, and 
1,4-pentadiene, by the American Petroleum Institute 
R esearch Project 45, at the Ohio State University, 
Columbus, Ohio . 
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