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Berliner and Riiter also used a resonance method . 
Astin developed and u sed a method employingyoltage 
resonance tha t was subsequen tly adopted by Akel'li:i f. 
The values repor ted by H arrington were obtained by 
means of a bridge metbod a t 1 me, and it is uncertain 
what method Kistler used at 2.1 me. The measure­
ments of Furth (400 me) and others [19 to 27] were 
made at very high frequencies, so tb e low values re­
ported are undoubtedly a ttributable to anomalous 
dispersion and are no t comparable to static values. 

Consideration of the da ta available on sta tic 
values sugges ts that th e major descrepancies in th e 
values reported are in large par t due to high con­
du ctivity as, in general, it appears tha t precautions 
h ave not b een tak:en to obtain and maintain low 
conductivi ties for these solutions. To a lesser 
exten t it is also probabl e that frequ ency-dependen t 
errors ar e associa ted wi th many of th ese values. 
The exten t to whi ch th ese fac tors may modify the 
suitability of a m ethod of m easurem ent is exemplified 
by Kniekamp 's [9] tudy and H a rtshol'll 's analysis 
[30] of resonance methods. 
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Response of Accelerometers to Transient Accelerations 
By Samuel Levy and Wilhelmina D. Kroll 

Cur ves an d tables a re shown for the response of acce lerometers to t l'ans ient exc it ing 
accele rations. Three t .vpes of accelerat ion- t im e re la t ions a re co nsid ered . \ \Then plotted , 
t hey have square, t ria ngu la r, a nd half-sin e-wave shapes. The natura l pe riods of t he accel­
e rometers f OI' which t he co mpu ta t ions were made were approx im ately one, o ne-t hird , and 
one-fi fth of t he durat ion of t he accelerat ion pulse. The da mpin g coeffi cients of t he acce l­
e rometers were 0, 0.4, 0.7, and 1.0 t imes t he cri t ical valu es. It is indicated t hat, to obtain 
a n acc uracy of bet ter t ha n 5 pe rcent of the peak accelerat ion in measurin g accelerat ion pulses 
hav ing t he genera l cha racteristics of t he t riangula r or s inuso idal pulses, a n accele romete r 
must have a na t ural period of about one-third t he durat ion of t he a cce le rat io n pulse, a nd a 
da mpin g constant of a bou t 0.4 to 0.7 of t he critical valu e. 

I. Introduction 

Accelerometers are widely used to measure os­
cilla tory and transien t vibrations. 

The fideli ty with which th ese instrumen ts respond 
in the case of oscilla to ry stimuli has been thoroughly 
studied [1 , pp . 61 to 70] . It is found that , when the 
damping is between 0. 6 and 0.7 of the critical value 
and th e natural pcriod of the accelerometer is less 
than about half of th e period of. the applied accelera­
t ion, the accuracy is satisfactory. 

In th e case of exciLation of th e accelerom eter by a 
transien t vibration, only scattered information is 
available regarding th e reliabili ty of Lh e response 
ob tained . IV eiss [2] gives th e response to a tri-

angular pulse of accelera, tion for an accelerometer 
whose natural period is 0.3 th e duration of th e pulse 
and whose damping is 0, 0.3, and 0.7 of th e cri tical 
value. H e also gives the response to a suddenly 
applied constan t acceleration for accelerometers 
wi th a damping ra tio of 0, 0.3, 0.7, and 1.0 times 
the cri tical value. IV elch [3] has d etermined , on th e 
VV' es tinghouse transien t analyzer , th e response to 
several kinds of impulses of a 50 cis single-degr ee-of­
freedom shock m easuring instrumen t h aving various 
amounts of damping. On th e basis of these scat tered 
data, and information for undamp ed accelerometer 
derived by Franldand [4], Bio t and Bisplingboff [5], 
and oth ers, i t has b een common practice to assume 
that an accelerometer will be acceptable in a given 
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applicatio~ i~ its damping i.s O.? to 0.7 of the critical 
value and If Its natural penod IS less than about half 
of the duration of the acceleration pulse. 

The curves presented in this report were computed 
to obtain more systematic information !'egarding ~he 
accuracy of damped accelerometers m measurmg 
transient phenomena. 

II. Theory 

The usual accelerometer is a single-degree-of-free­
dom mechanical system. Such a system is shown in 
figure 1. Means are provided to indicate the relative 
motion x of the internal mass with respect to the 
frame. This relative motion is taken as a measure 
of the acceleration, d2y/dt2, of the frame. 
. The equation of motion for the mass m, figure 1, 
IS 

d2z (d z d y ) m dt2 +c Tt - dt +k(z- y) = O. (1) 

With 
(2) 

eq 1 becomes 

We wish to k no w hOlY faithfully the response x of 
the accelerometer reproduces the time history of the 
applied acceleration d2y/dt2 for pulses of accel~ration 
of finite duration and arbitrary shape. To gIve the 
analysis a wider range of useflflness, eq 4 is. written 
in dimensionless form by makmg the followmg sub­
stitutions: 

where 

=(d 2Y)j(d 2y ) a dt2 dt2 
ma x 

r = t/T 

( d2y ) ~=-kx/m -2 
dt ma x 

D= c/2..jmk= c/cc 

R = 21T'..jm/k/T 

(5) 

cc= 2 mk, critical value of damping co­
efficient, 

T = duration of acceleration pulse to be 
measured, 

2--;;'..jm/k= "undamped" period of accelerometer , 

(dd2~) = peak value of acceleration. 
t max 

Substituting eq 5 into eq 4 gives 

(6) 

For a relatively high frequency accelerometer, R 
is a small number. Under these circumstances, th0 
first two terms in eq 6 become negligible, and the 
dimensionless response ~ is equal to the dimension­
less acceleration a. As R becomes larger, the first 
and second terms start to have an effect. The 
primary effect of the second term is to introduc~ a 
time lag between the response ~ and the acceleratlOn 
a. The primary effect of the first term is to tend 
to make the response ~ oscillate in value above 
and below the value of the acceleration a. 

III. Results 

Equation 6, giving the relation between the di·· 
mensionless r esponses ~ and the dimensionless ac­
celeration a" was integrated numerically for three 
values of the natural period ratio having approxi­
mately the values, R = l , 1/3, 1/5; for four values 
of the damping ratio, D = O, 0.4, 0.7, 1.0 ; and for 
the tlu'ee time-histories of acceleration pulse shown 
in figure 2. Numerical integra tion, instead of 
direct integration, was used to give results that 
could be plotted directly. Small variations f!'om t~e 
nominal values of R were used for convernence m 
computing. These values of R are given in table l. 
A spot check of the results was made using the 
analytical solution of eq 6. 

The numerical integration was carried out using a 
time increment of 1/ (2 01T') times the natural period 
of the accelerometer. Eight decimal figures were 
used in the computation . 

The results are plo t ted in figures 3 to 11. Figures 
3 4 and 5 give the r esponse to a sinusoidal pulse of 
a~c~leration. Figure 3 gives the r esponse when the 
natural period is about equal to the duration of the 
acceleration pulse. Figures 4 and 5 give similar 
resul ts with the natmal period about one-third and 
one-fifth , respectively, of the dur~tion <;Jf the accele~'a­
tion pulse. In each figure , the dnnenslOnless applied 
acceleration, a, is shown by a do tted line; the r e­
sponse, ~, with the damping .ra tio D = 0 by curve 1; 
with D = 0.4 by curve 2; WIth D= 0.7 by cw've 3; 
and with D= 1.0 by curve 4. 

Figures 6, 7, and 8 show the r esponse to a tri­
angular pulse of acceleration, and figw'es 9, 10, and 
11 show the response to a r ectangular pulse. In each 
figure the set of curves brings out the effect of vary­
ing o~ly the damping ratio D . 

IV. Discussion 

It is eviden t from an inspection of the figures that 
for non e of the accelerometers considered does the 
time history of the dimensionless response ~ coincide 
with the time history of the dimensionless accelera-
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TABLE 1. -Error rOT accelerometers and acceleration pulses considered 

(1) (2) (3) I (4) I (5) (6) (7) I (8) 

-- - - --
EITor Plottcd 

R D 

~m,,-a""' 1 
{;.T 

I€-al .. u I After shift Fig. / Cur ve 
I€-al"", ure 

IlALF·SlNE· \V A VE PULSE 

1. 014 0 0.74 1.36 1. 36 0. 17 3 1 
1. 014 0.4 .15 0.62 0.24 .22 3 2 
1.014 .7 -.05 .67 . 18 .25 3 3 
1. 014 1.0 -. 18 .65 .24 .29 3 4 
0.338 0 .17 .35 .35 .07 4 1 

.338 0.4 .02 .20 . 06 .05 4 2 

.338 .7 .00 .24 .06 .07 4 3 

.338 1.0 -.03 .32 . 10 . 11 4 4 

.203 0 . 10 .20 .20 . 01 5 1 

.203 0. 4 . 07 .12 .05 .02 5 2 

.203 .7 .00 . 15 . 03 . 04 5 3 

.203 1.0 -.01 .20 . 06 .06 5 4 

T RrA NGULAR PULSE 

1.014 0 0.51 1. 29 1.29 0.15 6 1 
1. 014 0. 4 .00 0.56 0.21 .21 6 2 
1.014 .7 -.20 .51 .20 .22 6 3 
1. 014 1.0 -.32 .. 57 .32 .25 6 4 
0.338 0 . 17 .43 .43 .04 7 1 

.338 0.4 .00 .18 .06 .07 7 2 

.338 . 7 - .06 . 17 .06 .08 7 3 

.338 1.0 -. 11 .22 . 12 .08 7 4 

.203 0 .10 .25 .25 .01 8 1 

.203 0.4 .00 . 11 .03 .04 8 2 

.203 .7 -.04 . 10 . 04 .05 8 3 

.203 1.0 -.07 .13 . 07 .07 8 4 

SQUARE P ULS E 

1.014 0 1.00 1.00 1. 00 0.04 9 1 
1.014 0.4 0.25 1. 00 0. 49 . 19 9 2 
1. 014 .7 .05 1. 00 .53 .22 9 3 
1. 014 1.0 -.01 1. 00 .50 .28 9 4 
0.334 0 1. 00 I. 00 I. 00 . 01 10 1 
.334 0.4 0.25 1. 00 0.50 . 06 10 2 
.334 .7 . 05 1.00 .50 . 08 10 3 
.334 1.0 .00 1. 00 .50 . 10 ]0 4 
. 203 0 1.00 1. 00 1. 00 . 02 11 1 
. 203 0.4 0. 25 1. 00 0.50 . 03 11 2 
. 203 . 7 .05 1. 00 .50 . O~ 11 3 
. 203 1.0 .00 1. 00 .50 . 06 11 4 

j tion a. In Inany ea CS , h.o\vcvel' , tIle coincidence can 
be markedly improvcd by considcring the responsc 
CUl'ves to be shifted a small d istance to the left. 
They can also be improved, in those cascs where 
oscillatory response is presen t, by fairing a line 
t hrough the oscillatory response. Both of these 

l, methods of record improvemcnt are commonly em­
( ployed. 

The errors of the various accelerometcrs for the 
acceleration pulses considered are given in table 1. 
In COlUIilllS 1 and 2, respectively , are given th e 
accelerometer characteris tics: H, ratio of na tural 
period to pulse dura tion ; and D, mtio of damping 
constant to cri tical value. 

In column 3, table 1, is given the difference be­
tween th e maximum value of dimensionless response, 
~, and the maximum value of the dimensionless ap­
plied acceleraLion , a. The en ol' varies from 0 to 100 
percent. 

In column 4, table 1, is given the largest absolu to 
value of the difference ~-a where ~ and a are evalu­
aLed at the same dimens ionless time. The erro l' 
vn,ri cs from a minimum of 10 percent to a maximum 
of 136 percent. 

In column 5, table 1, is given the largest absolute 
value of the difference ~- a after shifting the ~ CLl1've 
to the left by the amolm t t:.T given in column 6. 
The crror in this case is typical of the usual way of 
interpreting accelerometer records. This error varies 
from a minimum of 3 perccnt to a maximum of 136 
percent. If only accelerometers with damping are 
considered (D > O), the largest error is 32 pCl'cenL 
when the accelerometer is subjected to accelerat on 
pulses of tr iangular or sinusoidal time his t01·ies. 

On the basis of the few cases investigated, an 
optimum value of damping is indicated to be between 
0.4 and 0.7 of the cri tical value. It is also indicated 
that, to obtain an accmacy of better than 5 percen t 
of the peak acceleration in m casming acceleration 
pulses having the general characteristics of the tri­
angular or sinusoidal pulses, an accelerometer must 
have a natUl'al period of les than abo ut one-third 
the duration of the acceleration pulse. 

Acknowledgment is due to the BUl'eftu of Aero­
nautics, Navy Department, whose research pro­
jects on vibration pickups have provided the impeLu 
for the work presented in this paper. The au thors 
also extend thanks to L. W. Roberson and I. Smith 
for assis tance in computing the many response curves 
and preparing the figure and table. 

c 

FIG URE: 1. Single-degl'ee-of-freedom system representing 
accelerometel·. 

Displacement o[ frame is y, displacement of internal mass is z, relative displace. 
ment of internal mass with ['espect to frame is X= z- y. 
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F I CUUE 5. Response to a halJ-sine-wave p1dse of acceleration, 
dashed CUI've, oj an accelerometer whose natural period is 
about equal to one-fifth oj the duration oj the pulse, ] = 0.203. 

Curve (1) , damping coemeicnt zero, D =O; curve (2), damping cocflicicnt 0.4 
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curve (4), d amping coe rneien! equal to the critical, D =l.O. 
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FrcuuE 6. Response to a triangular p1dse of acceleration, 
dashed CUTve, of an accelerometer whose natural period is 
about equal to the duration oj the pulse, R=1 .014. 

Ourve (I), dam ping coe rn cient zero, D =O; curvc (2), damping cocmcient 0.4 
of the critical, D = O.4 ; curve (~), dampi ng coeiflcient 0.7 of the critical, D =0.7; 
curvc (4), dampin g coc rncicnt equal to tllc critical, D =l.O. 
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FIa uRE 8. Response to a triangular pulse of acceleration, 
dash curve, of an accelerorneter whose natural period is about 
equal to one-fifth of the duration of the pulse, R = 0.203. 

, Curve (I), damping coe fficient zero, D =O; curve (2), damping coefficient 0.4 
of tbe criti cal, D =O.4; cur ve (3), dampi ng coofficient 0.7 of the critical, D =0.7; 
curve (4), damping coefficieut equal to the critical, D = l .0. 

curve (4), damping coefficient equal to tbe critical, D =l.O. 
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