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Attenuation of Oscillatory Pressures in Instrument Lines l 

By Arthur S. Iberall 

A theoretical investigation has been made of the attenuation and lag of an oscillatory 
pressure variat ion applied to one end of a tube, when the other end is connected to a pressure
sensitive element. 

An elementary theory based on incompressible viscous-fluid flow is first developed. 
The elementary solution is t hen modified to take into account compressibili ty; finite pressure 
amplitudes; appreciable fluid acceleration; and finite length of tubing (end effects). Account 
is taken of heat t ran sfer into the tube. 

The complete theory is derived in an appendix. The results are summarized in eight 
graphs in a form convenient for use in computing the lag and attenuation of a sinusoidal 
oscillation in a transmission tube. 

1. Introduction 

In many industrial processes, it is n ecessary to 
know ' or to utilize the pressure at one or more 
points in a fluid conduit. It is not alway possible 
to connect an instrument directly into the conduit 
at tho e points. Instead, r ecourse must be had to 
remote indication or control. In th e case that a 
fluid is u sed for transmitting the pressure, it is 
often of interest to the designer or user of such 
systems to know their response to variations in 
pressure. At the present time, the only solution 
easily available to th e engineer is gen erally based 
on an elem entary theory that considers the system 
as equivalent to an R- C electrical network. (See, 
for example, NACA T echnical Note 593, Pressure 
drop in tubing in aircraft instrument installations, 
by W . A. Wildhack .) The main defect of the 
theory is that it does not provide criteria for the 
limits of its applicability. 

In the present paper , a relatively complete treat
m ent is given for the transmission of oscillatory 
pressures in tubing. Primary consideration is 
given to simplifying the design of high-quality 
transmission systems for relatively low frequencies. 

The elementary solution is derived and then 
extended to apply for oscillatory pressures that are 
an appreciable fraction of the absolu te m ean 
pressure, for appreciable frequen cies of oscillation, 
and for tubing short enough to require end cor-

I This work was supported by the Office of Naval Research wlder a project 
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rections. The effect of heat transfer in modifying 
the oscillatory response of the tube is also dis
cussed. 

The chief u tility of lmowing th ese corrections is 
that it permits th e designer to choose th e size of 
tubing for specific applications with greater con· 
fidence than can otherwise be done. 

In the next section, the elementary theory of 
transmission lags is developed, and th e corrections 
are discussed. The complete th eory is presented 
in graphical form for th e convenience of the de
signer. A number of examples of the use of the 
design charts are also given. This section is then 
followed by a mathematical appendix in which 
th e more exact results ar e derived. All math
ematical symbols used in this paper are defined in 
section II and also when they are first used. 

II. List of Mathematical Symbols 

A=tube area. 
C=velocity of sound. 
D = inside diameter of.tube. 
E =elastic modulus of tube. 
F =correction functions. 
J{= thermal conductivity of fluid . 
L = tube length . 

M = mass flow. 
N=dimensionles param eter of fluid r egim e. 
Q=volumetric flow. 
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R = a volume ratio. 
R.=Reynolds number. 
T= absolute temperature. 
V = instrument volume. 
b= compressibility factor for liquid. 
c= any arbitrary constant. 

cp = specific heat of fluid. 
f = any arbitrary function. 
g= a Bessel function argument. 
h= a Bessel function argument. 
k= compressibility of a liquid. 
l= entrance length. 

m= exponent of "polytropic" expansion in in-
strument volume. 

n = exponent of "polytropic" expansion in tube. 
p = pressure. 
8= tube wall thickness. 
t= time. 

u = axial velocity. 
x= axial distance along tube. 
y = a dimensionless axial distance variable. 
z= dimensionless parameter of fluid regime . 
,), = ratio of specific heats. 
o= phase angle. 
17 = density ratio . 
A= time constant. 
J.I = fluid viscosity. 
v= kinematic viscosity. 
~=fractional pressure excess. 
p= fluid density. 
<T = Prandtl number. 
¢ = velocity potential. 
x = attenuation factor. 
1/t = attenuation parameter. 
w= angular frequency . 

III. Elementary Theory 

Figure 1 is a schematic drawing of the system 
that will be discussed throughout the paper. A 
tube transmits fluid pressure from a conduit to 
a pressure-sensitive instrument. The conduiL 
applies an oscillatory (sinusoidal) pressure to the 
entrance of the transmission tube. The tube, 
which transmits the pressure, is characterized by 
a constant cross-sectional area and its length. 
The pressure-sensitive instrument, which receives 
the pressure, is characterized by its enclosed 
volume. It is assumed that if the walls enclosing 
the instrument volume are flexible (either elastic 
or piston-like), the enclosed volume can be re-

86 

placed by a larger equivalent rigid volume that 
will store the same mass of fluid per unit pressure 
change. It is further assumed that the pressure
sensitive instrument will be so chosen that its 
indication is independent of the frequency of 
expected pressure oscillations. 

In deriving the elementary theory, it is assumed 
that Poiseuille's law of viscous resistance holds aL 
each point in the tube; that the fluid is incom
pressible in the tube; that the sinusoidal pressure 
oscillations at the beginning of the tube are of 
small amplitude compared to the mean absoluLe 
pressure; and that, if the fluid is a gas, it expands 
and contracts isothermally in the instrument 
volume. 

o v~ 

P L------------~ 

2 3 

F IGURE l. Schematic diagram of a fluid transmission 
system (i-conduit , 2-transmission tube, 3-pressure instru
ment) . 

p= po+l>.p cos wt. 

The same assumptions applied to an incom
pressible fluid (e. g., a liquid) lead to the conclusion 
that there is no loss in amplitude or lag in a liquid
filled system as a liquid would not expand or 
contract in the instrument volume. 

We may write 

for Poiseuille's law, and 

oM=_A op 
ox at 

(1) 

(2) 

for the equation of continuity. Here 
p = instantaneous pressure at any point in 

the tube 
x= distance along the tube measured from 

its entrance 
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J.to= mean fluid viscosity 
D= tube diameter 
Q= volumetric flow at any point in the tube 
p= instantaneou density at any point in the 

tube 
.111= mass flow at any point in the tube 
A = cros -sectional area of the tube 
t= time. 

"'IVe infer from the equation of continuity and 
the assumption that the fluid is incompressible in 
the tube (i. e., op/ot= O) that the mass flow, and 
therefore the volumetric flow, does not vary along 
the tube, but at most varies only with time (the 
fluid motion is piston-like). . 

By differentiating eq 1, we then obtain 

(3) 

along the tube. 
Our boundary conditions are that at x= O 

(4) 

a sinusoidal pres ure variation about the mean 
pressure, and that at x= L 

(5) 

The first line of eq 5 expresses the rate at which 
a compressible fluid en tering a rigid volume builds 
up pressure, whereas the second line of eq 5 states 
that the flow into the volume is limited by the 
pressure gradient at the end of the tube. H ere 

po= mean pressure at the entrance 
f:.p = amplitude of the pressure oscillation at 

the conduit 
V= instrument volume 
w= angular frequency of the pressure oscil

lation 
L = length of the tube. 

It is convenient to introduce a new variable ~, 
the fractional pressure excess, defined as 

P- Po 
~=--, 

Po 
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(6) 

so that eq 3, 4, and 5 become, respectively, 

a2 ~ 
ax2 = 0 (7) 

at x= O 

~= ~oejwt, ( ) 

and at x= L , 

"'~ _ 128 1'<> V " } ox 7r Po D4 at 
(9) 

AO o~ 
-y; ot 

where 

, ~ 128 Po _1- V } o 7r Po D4 
(10) 

= 32 JLo (fy s... 
Po D AL 

Here 

~ = fractional pressure excess 
~o = amplitude of the fractional pressure ex

cess at the origin (= f:.p /Po) 
Ao= a time constant of the system. 

It is of further convenience to separate the 
pressure excess into a part that varies with x and 
one that varies with t. 

Let 

(11) 

where ~ is the maximum amplitude of the pressure 
excess at any point of the tube. 

Our equations then become 

(12) 

at x= O, 

(13) 

and at x= L 

(14) 
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The solution of eq 12, which satisfies eq 13 and 
14, is 

(15) 

The ratio of the amplitude of the pressure excess 
at the end of the tube to that at the beginning of 
the tube is then given by 

~L I} 
~~H:""V 

I + Xo] 

(16) 

where 
Xo = AoCIJ. (17) 

Here o 

IV. Discussion of Corrections 

The assumptions made in the elementary theory 
are restrictive, and in the appendix we shall modify 
them, one at a time, until finally we arrive at a 
complete solution that accurately takes into ac
count all first-order phenomena, and partially 
takes into account second-order phenomena. 
Complete results are presented in convenient 
graphical form in figures 2 to 9. 
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The real part of eq 16 is the attenuation in 
amplitude of the pressure excess, whereas the 
imaginary part is the phase lag, or 

FIGURE 2. Amplitude ratio of the fundamental l~o L/~olo in 

(18) 

where 00 is the lagging phase angle. 
We will regard eq 18 as the elementary solution 

100 
of our problem. It indicates that a transmission 
system is characterized by a time constant Ao, 80 
which can be computed from a knowledge of the if) 

dimensions of the tube, the internal volume of ~ 60 

the end device, and the average conditi,'ns of the ~ 
gas in the tube; and an attenuation factor Xo, for ..§ 40 
each angular frequency, from which one can ~ 
compute the attenuation and phase lag in a tube. 2 

The tube dimensions and the instrument volume 
0 

a volume terminated tube as a function of a parameter 
proportional to frequency (XTO) for various ratios of instru 
ment volume to tube volume (xloixTO) with large damping 
(z ~ 1) . 

r- V V 
1/ / 

Xlo V 3) I/o 
XTo= 49 9 

V / / V 
/ / 

V L / / 

:.-- V /' 
---furnish the analog to the resistance and capacitance 

of an electrical network. 
-o 

.001 

~ --
.01 10 

In principle, although difficult in practice, from 
a knowledge of the response to a sine wave, one 
can obtain the response to square waves, step 
function, etc., by Fourier analysis . 
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FIG U RE 3. Phase lag of the fundamental (00)0 in a volume 
terminated tube as a functIOn of a parameter proportional 
to frequency (XTO) for various ratios of instrument volume 
to tube volume (X IO /XTO) with large damping (z ~ 1). 
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FIG U RE 4. Amplitude ratio of the fundamental I ~od~ol in 
a volume terminated tube as a f unction of a parameter 
proportional to frequency (XTO) for various ratios of instru
ment volume to tube volume (XlOI XTO) and for two values of 
speC'tjic heat ratio ('Y) with intermediate damping (z= 
6.25). 
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F IGURE 6. Amplitude ratio of the fundamental l ~o L/~ol in 
a volume terminated tube as a function of a parameter 
proportional to frequency (w L /C) for various ratios of 
instrument volume to tube volume (XliX T) with little damping 
(z2: 100). 
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FIGURE 5. Phase lag of the fundamental (00) in a volume 
terminated tube as a function of a parameter proportional 
to frequency (XTO) for various ratios of instrument volume 
to tube volume (Xlol XTO) and f or two values of specijic 
heat ratio ('Y) with intel'medwte damping (z= 6.25). 
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FIGURE 7. Phase lag of the fundamental (00) in a volume 
terminated tube as a function of a parameter proportional 
to frequency (w L / C) for various ratios of instrument 
volume to lube volume (XlIXT) indicati ng the dijJerence 
between no damping (hxTo/16] ii = 0) and small damping 
(hxTo/16]ii= 1) for two values of speNjic heat ratio ('Y) 
with small damping (z2: 100). 
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FIGURE 8. R elalive amplitude of the dO~tble harmonic di s
tortion (l~l d~olo/~o) in a volume terminated tube as a func
tion of a parameter pro portional to frequency (XTO ) for 
vari ous ratios of instrument volume to tube volume (XIOIXTO) 
with large damping (z:::; 1). 
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FIGURE 9. Phase lead (as measured on the fundamental time 
scale) of the double harmonic distortion (0')0 in a volume 
terminated tube as a function of a pammeter proportional 
to frequency (x TO) for various ratios of instrument volume 
In tube volume (XlOIXTO) with large damping (z ':::; 1). 

The factors that must be taken into account 
are: 

1. Compressible flow in the tube. The effect of 
fluid compressibility is to introduce a time con
stant and corresponding attenuation factor (AT, XT) 
depending on the tube volume in addition to the 
ones depending on the instrument volume. (The 
time constant and attenuation factor depending 
on the instrument volume will be referred to as 
AI and XI henceforth instead of Ao and xo). In 
terms of the electrical analog, the tube volume 
represents a distributed capacitance in addition 
to the equivalent capacitance of the instrument 
volume. 

2. Finite pressure excess. The effect of the ap
plication of a finite pressure excess to a compress
ible fluid in a transmission tube is to introduce 
harmonic distortion and to modify the mean pres
sure. However, the attenuation of the funda
mental is essentially independent of the magnitude 
of the pressure excess. The percentage of distor
tion is approximately proportional to the applied 
pressure excess. 

3. Fluid acceleration. The effect of fluid inertia 
is to modify the time constants of the system. 
Both the attenuation of the fundamental and the 
magnitude of harmonic distortion are affected. A 
dimensionless parameter z analagous to the "Q" 
of an electrical system characterizes the fluid 
regime and determines whether fluid inertia may 
or may not be neglected. 

'When fluid inertia is negligible, a transmission 
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tube acts like a highly damped system; when fluid 
inertia is large a transmission tube acts like an 
undamped system, and elementary acoustic theory 
is applicable. 

4. Finite length oj tubing. The effect of fluid 
acceleration at the ends of the tube results in 
further distortion of wave form, which must be 
taken into account in short tubes. 

5. Heat conduction. If there were no heat trans
fer from outside the tube to inside, the oscillatory 
processes would take place adiabatically; if there 
were perfect heat transfer into and through the 
tube, the processes would take place isothermally. 
The effect of finite heat conduction is to make the 
real process occur in between these extremes, 
although in a rather complicated fashion. At low 
frequencies the process may be regarded as 
isothermal. 

Although an exact result is given in the appen
dix, it is advantageous to utilize the thermody
namic equation of condition, discussed in the 
following section, for elucidating the problem of 
attenuation in tubing. 

V. Thermodynamic Equation of Condition 

In the case of an oscillatory variation of fluid 
flow, the equation relating the thermodynamic 
parameters of the fluid lie between the adiabatic 
and the isothermal equations of condition. For 
high frequencies, as in sound waves, it is well 
known that the adiabatic equation holds. How
ever, for viscously damped motion, the adiabatic 
relation is not, in general, attained. 

For a gas, we assume and justify in the appendix 
the processes can be described flS " polytropic", 
that is, characterized by a constant exponent n, 
in the expression 

(19) 

with 

where 
n = exponent of the "polytropic" expansion in 

the tube 
,), = ratio of specific heats 
1]= density ratio (pi Po) 

po= average density in the tube. 
c is used to indicate any constant. 

The viscosity of gases is independent of the 
pressure, and, as an approximation, proportional to 
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the absolute temperature. (The more rigorous 
approximation is that the viscosity is proportional 
to [TJI /2/[1 +c/TJ but over a small range this can 
be approximated by the temperature to a power 
close to one. For example, for air at room tempera
ture, a power of 0.8 fits experimental data quite 
well. The difference from nnity is unimportant 
for our purpose.) 

Therefore, 
J.L =cT, 

n-l 

E. = (1 + ~r", 
J.Lo 

J.L _ n-l - - 7J , 
J.Lo 

(20) 

follows from the gas laws and eq 19. H ere J.L is the 
instantaneous fluid viscosity. and T is the absolute 
temperature. 

Equations 19 and 20 thus express the variation 
of viscosity, density, and pressure in a polytropic 
process in a gas. At low frequencies, the poly
tropic exponent may be taken as equal to unity. 

For liquid , we assume that the equation of 
condition in a polyt,ropic process is given by 

(2 1) 
where 

1 ~ Inl ~'Y. 
For liquids, however , 'Y lies so close to uni ty 

that we may satisfactorily assume n= 1. 
Equation 21 can then be wl'itten in the form 

7J = l + b~, (22) 

where b=a compressibility factor (= koPo) 
ko= liquid compressibility at average condi

tions in the tube. 
The variation in viscosity of a liquid over a small 

range of temperature cun be neglected, so that in a 
polytropic process 

J.L = J.Lo· (23) 

Actually the implication in eq 22 and 23 is that 
in a liquid-filled transmission line, the effect of 
conditions appreciably different from isothermal 
is negligible. 

It is also necessary to take into account heat 
exchange at the pressure element. 

For an isothermal process with a gas in the 
instrument volume, we previously assumed that 

Q= Vap (5) 
Po at 
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represents the influx of fluid . If, instead, a 
polytropic process in the instrument is assumed, 
characterized by an exponent, m (the heat ex
change may differ in the tube and in trument 
volume so that m is not necessarily equal to n), 
then eq. 5 should be modified to 

Vap 
Q= mp at 

Q=n y ap 
m p at 

in the case of gases; or to 

for liquids. . 

(24) 

(25) 

If the fluid is regarded a a spring, the exponent 
of the polytropic process for a gas, or the com
pressibility of a liquid may be viewed as quanti
ties that make the flu id spring stiffer in the case 
of gases, or almo t infinitely stiff in the case of 
liquids. It .is shown in the appendix that these 
polytropic exponents modify the time constants of 
the tube and volume. 

VI. General Procedure, with Examples, 
for Computing Transmitted Pressure 

The computation of the attenuation and phase 
lag at one end of a transmission tube of a sinusoidal 
pressure variation inlposed at the other end can be 
carried out with the aid of figures 2 to 9, These 
figures are based upon the theory largely developed 
in the appendix. The computations are made 
primarily for the attenuation at the fundamental 
frequency. An estimate of the distortion arising 
from finite input amplitudes with high damping 
is made in the appendix. The computation for 
the first harmonic in the distorted output can be 
made with the aid of figures 8 and 9. A..n outline 
of procedure for making computations follows. 

1. Compute 

D2 w z=--, 
4 Vo 

(26) 

a dimensionless parameter of the fluid regime that 
characterizes the amount of damping present. 
When this parameter is less than 1 (large damp
ing), use figures 2 and 3; when greater than 100 
(small clamping), use figures 6 and 7. For inter-
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mediate values of this parameter, use figures 4 and 
5 as an aid to interpolation. 

2. Compute the attenuation factors 

for a gas, or 

_ 32Jlow (L)2 
XTO - ----p;- D ' 

Xlo 1 ( V) 
XTo = m AL ' 

XT = 32JlJcow (f)2 (1 +Po-Pa _1_ !}), 
o D Po koE S 

Xlo V 1 

XTo= AL (1 +Po-Pa _1_ 12)' 
Po koE s 

(27) 

(28) 

(29) 

(30) 

for a liquid. These quantities, XTO and XIo, are 
factors based on the tube volume and instrument 
volume, respectively. The zero subscript means 
that they are values for the case of large damping. 

3. Compute the input pressure excess 

f1p 
~o=- · 

Po 
(3 1) 

4a. For values of z less than 1, enter figure 2 
with XTO and XIol xTO to find the amplitude ratio 
I~OL/~o l o and enter figure 3 to find the lagging phase 
angle (00)0 ' 

4b. The output pressure excess is then com
puted from 

(32) 

5a. For values of z greater than 100, compute 

w5= [ z;;oJ !' (33) 

XI = 'Y(XIO). 
XT XTO 

(34) 

For liquids, assume 'Y= 1. 
The quantities XI and XT are the attenuation 

factors for the case of low damping. With low 
damping, it is convenient to use the dimensionless 
parameter wLIO, which is proportional to fre
quency, as the independent variable. 

5b. Enter figure 6 with wLIO and XI/XT to find 
the amplitude ratio I kod~o l and enter figure 7 to 
find the lagging phase angle 00' It is necessary 
to estimate the phase angle by interpolation. For 
very small values of XTO compared to 1, the lagging 
phase angle is zero up to the first resonance. In 
figure 7, curves have been presented to indicate 
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the phase angle for ['YXTo/16]l/2= 0 and hXTo/16]l/2= 1 
One may linearly interpolate between these curves 
on the basis of hXTo/16]' /2 for values lying between 
o and 1. 

6a. For values of z lying between 1 and 100, 
one may interpolate between the values of ampli
tude ratio and lagging phase angle obtained in 
step 4a and those obtained in step 5b by the use 
of figures 4 and 5. Enter figures 4 and 5 with XTO 
and XIO/XTO to find the amplitude ratio I ~od~o l and 
lagging phase angle 00' These are the values for 
z= 6.25 . In order to interpolate, plot a logarithmic 
graph with z as abscissa and the amplitude ratio 
or phase angle as ordinate. Plo t the values from 
step 4a at z= 1, from step 6a at z= 6.25 , and from 
step 5b at z= 100, draw a curve through these 
three points, and interpolate on this curve for the 
intermediate value of z. 

1. Computation of Double Frequency Distortion 

1. This computation represents only an esti
mate of the douhle frequenr.y distortion and is 
strictly valid only for values of z less than 1. 

Compute XTO and XIO /XTO' Enter figures 8 and 
9 to obtain the relative amplitude ratio I €td~o lo/~o 
and leading phase angle (01)0 for the double fre
quency wave. The leading phase angle is meas
ured on the time scale of the fundamental, where 
both the fundamental and double frequency waves 
are cosine terms. 

2. Compute the pressure excess of the double 
frequency I ~lL l o from 

1 - I _(l j€IL j) 2 ~lL 0 - t; To 0 ~O' (35) 

The various quantities in the above section are 
defined below: 

Jlo= mean fluid viscosity. 
1I0=mean kinematic viscosity. 
po= mean fluid pressure. 
Pa= ambient pressure external to the tube. 

f1p = amplitude of the applied sinusoidal pressure. 
~o= applied fractional pressure excess. 

~OL= pressure excess of the fundamental at the 
instrument volume. 

~lL=pressure excess of the double frequency at 
the instrument volume. 

oo= lagging phase angle of the fundamental at 
the instrument volume. 

o! = leading phase angle of the double frequ ency 
at the instrument volume. 
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ko= mean fluid compressibility. 
V = equivalen t rigid intern al volume of the 

instrument. 
A = internal cross section of the tube. 
D = internal diameter of the tube. 
s= "Vall thickness of the tube (assumed small 

compared to the diameter) . 
E = elastic modulus of the tube material. 
L = length of the tube. 
C= velocity of sound in the fluid . 
,),= r atio of specific heats of the fluid (assumed 

to be one for liquids). 
m= coefficient of the polytropic process in the 

instrument volume. (In lieu of other 
information, it may be assumed to be 
one.) 

z= dimensionless par ameter characterizing the 
fluid regime. 

w= angular frequency applied . 
XT= at tenuation fador based on the tube 

volume. 
XI = attenuation factor based on the instrument 

volume. 
Subscrip t T refers to parameters based on tube 

volume; subscrip t I refers to parameters 
based on end volume; 0 or 1 following a 
T or I denotes the fundamental or first 
harmonic ; an end subscrip t of 0 denotes a 
value for the case of large damping. 

The attenuation of the fundamen tal may be 
validly computed from the formulas developed in 
this paper when 

(36) 

The second harmonic dis tortion, which was onlv 
es timated approximately, may be validly co~
puted from the formulas developed when 

WD 2 

z=-4 < 1, 
1'0 

(37) 

and when the applied pressure amplitude is suffi
ciently small at the applied frequency to permit 
laminar flow. 3. Compute the mean pres ure in 
the instrument volume, which is larger than the 
mean pressure a t the tube en trance by 

~ot.p[ l -1 ~od ~o 1W4 
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2. Examples of Computations 

The calculation of attenuation by the gcncral 
procedure outlined above will be illustra ted by a 
number of examples. 

(a) What is the longest length of ~i6-in.-insid e
diameter tubing that can be used to transmit air 
pressure to a Bourdon pressure gage (equivalent 
internal volume assumed negligible) up to a fre
quenry of }~ cis with a loss in amplitude no t 
greater than 25 percent? What will be the double 
frequency distortion? For air assume J.Lo= 2 X 10- 4 

poise, po = 1/6 stokes, m = l , ,),= 1.4, Po= 106 

dynes/em2 (atmospheric pressure), angular fre
quency W = 7r. 

Using eq 26, z= 1.1 (computed in consisten t 
units). This value is sufficiently close to unity to 
permit_ the use of figures 2 and 3. E nter figure 2 
with I ~OL/~o l o= 0 . 75 and XIol x TO = O, since the in
strument volume is negligible, to find x To = 2.1. 
Compute L in eq 27 to be 160 feet. 

Entering figure 3 with XTo = 2.1, to find that the 
m aximum phase lag will be 53 degrees. 

Entering figure to find tha t the relative ampli
tude of the double frequency I ~Id~o l ono= 0 .35. 
For initial pressure excesses of 0.1, 0.3, and 1, 
r~spectively, the double frequency amplitude, r ela
t Ive to the input amplit.ud e, will be 3H, 10 7~ , and 
35 percent , while the mean pressure will incr ease 
0:0010, 0.010 , and 0.11 of an a tmosphere, r espec
tively . 

(b) What lengths of O.l-in.-insid e-di ameter tub
ing (nominally ~i 6-in . -outside-d iame ter tubing) can 
be used for qu ali ty transmission of air pressure for 
frequ encies up to 1, 10, 100, 1,000 cis into pres ure 
instrumen ts with equivalen t rigid volumes of 0.1 
and 1 in.3? 

We will define quali ty transmission as that in 
~vhich ther e is no more than ± 5-percent ch ange 
m fundamental amplitude or more than ± 30° 
phase shift (whichever is more stringent). 

Assume that J.Lo= 2 X 10- 4 poise, Po= 1/6 stokes, 
m = l , ,), = 1.4, D = O.1 in. , A = 0.0079 in.2, Po= 106 

dynes/cm2, Po= 0.0012 g/cms. 

W e will calculate for each frequency separately. 
b (1) . } = 1 cis: 

Using eq 26, z= 0 .61 ; ther efore, use figures 2 
and 3. 

Assume AL= ex> , therefore, byeq 28, xlo/ x To = O. 

Enter figure 2 for I €OL/~o l o= 0.95 to find XTO = 
0.80 . 
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Enter figure 3 for (50 )0= 30° to find XTO = 1.1; 
use 0.80 since it is more stringent. 

Calculate L from eq 27 to be 450 in. 
Calculate AL to be 3.5 in.3 

Compute XIo/xTofrom eq 28 to be 0.029 for V = O.l 
in.3 ; 0.29 for V = l in.3 

On figure 2, XTO is modified negligibly fdr V = 
0.1 in.3 

Therefore, L = 450 in.= 37 ft for V = O.l in.3 

Reenter figure 2 for l€od~0 1 0= 0.95, Xro/XTo = 
0.29 to find xTo= 0.5 

Calculate L to be 350 in. = 29 ft for V = l in.3 

b(2) . j = 1,000c/s: 
Using eq 26, z= 610; therefore, use figures 6 

and 7. 
Assume Xr/ XT = 49 (the line volume will probably 

be small). 
Enter figure 6 for I €od~ol= 1.05 to find wL/ O= 

0.031. 
Calculate L from eq 33, 26, and 27 to be 0.066 in. 
Calculate AL to be 0.00052 in.3 
Using eq 34, it is seen that XIO/XTO is greater than 

assumed, so that wL/O, and therefore L, is less 
than the previous estimate. One may note that 
the estimated length will be so small that the 
theory essentially predicts that no transmission 
tubing at all may be used. In fact, the acoustic 
impedance of the entrance orifice into the pressure 
instrument or the mechanical impedance of the 
pressure instrument itself will probably govern the 
response at this high frequency. 

b(3) . j = 10 cis: 
Using eq 26, z= 6.1; therefore, use figures 4 

and 5. 
Assume AL= 00, therefore, XIO/ XTO = O. 
Enter figure 4 with l~od~01= 1.05 and 1'= 1.4 to 

find XTo = 0.12. 
Compute L from eq 27 to be 58 in. 
Compute AL to be 0.45 in.3• 

Compute XIO/ XTO from eq 28 to be 0.22 for 
V=O.l in.a, = 2.2 for V=l in.s 

In figure 4, XTO is modified to about 0.07 for 
V = O.l in.s 

Therefore, L is reduced to about 4 ft for V = O.l 
in.3 

Enter figure 4 for l ~od~01= 1.05, and XIO/ XTO=2 
to find xTo= 0.018. 

Compute L to be 22 in. for V = l in.s 
Compute AL to be 0.17 in.3 

Compute XIO/xTO= 6. 
Enter figure 4 to find xTo= 0.007. 
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Compute L to be 14 in. 
Compute AL to be 0.11 in.3 

Compute Xro/xTo= 9. 
Enter figure 4 to find xTo= 0.004. 
Compute L to be 11 in. 
Compute AL to be 0.09 in.3 

Compute XIO/ XTO = 11. 
In figure 4, XTO is modified negligibly. 
Therefore L = about 1 ft for V = l in.a 
To check the phase angle, enter figure 5 with 

XIo/XTo = l1, and xTo= 0.005, to find 4°. 
b(4). j = 100 cis. 
z=61 (interpolation is necessary) . 

First estimate from figure 6 and 7. 
Assume XI/XT = 9. 
Enter figure 6 to find wL/O= 0.068 
As in b (2) , compute L to be 1.5 in. 
Compute AL to be 0.011 in. 
Compute XI/ xT= 9.1 for V = O.l in.3 ; = 91 for V = l 
in.3 

By figure 6, wL/C is negligibly modified for 
V = O.l in.3 ; 

Therefore L = 1.5 in. for V = O.l in.3 is our first 
estimate. 
For V = 1 in.3, we find again that an extremely 
small tube is predicted, so that the impedance of 
the entrance orifice will probably govern . 
For V = O.l in.3 andL= 1.5 in., estimate hXTO/16]1/2 
to be .01. 
From figure 7 we find that the phase lag IS 

negligible. 
Compute xTo= 0.0009, from (8.2) for w= 2001l'. 
Enter figure 4 for XIO/ XTO = 9 to find I~OL/~ol= 1.00. 
Interpolating between l ~od~ol= l at z= 6.25 and 
I ~OL/~ol= 1.05 at z= 100 for z= 61 , we find I~OL/ ~o l 
is negligibly affected. 
Therefore L = 1.5 in. for V = O.l in.3 

VII . Appendix. Development of the Theory 

1. Introduction 

The difficulties of deriving, elucidating, and 
comprehending the mathematical results of trans
mission in tubing from a rigorous point of view, 
have led the author to treat the problem in a series 
of somewhat artificial steps. Thus in the previ
ous sections, the elementary solution was pre
sented, to give the reader a general view of the 
problem, even though many of the details of the 
solution were slurred over. Here steps are taken, 
one at a time, to remove the restrictive assump-
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tions made in deriving the elementary solution. 
Nevertheless, a complete solu tion to the problem 
is not obtained. All first-order effects are treated 
to the point where the solu tion is correct to 
frequencies well in to the sonic region. However, 
only an elementary treatment is given for the 
second-order di tortion efrects. It is felt that 
when these second-order effects become appreci
able, the solution presented is of no quantitative 
utility to the instrument system designer or user, 
but is only indicative as to order of magnitude. 

2 . Theory Corrected for Compressibility 

(Infinitesimal Oscillatory Pressures) 

In this approximation, the assumptions are 
Poiseuille's law of viscous resistance; mall frac
tional pre ure exce s; and tha t density, pressure, 
and viscosi ty are related by the equation of 
condition. 

For gases one can then write 

or 

for PoiseuiUe's law, and 

oM=_A Op 
Ox ot 

for the equation of continuity. 

(1) 

(2) 

One cl;tn eliminate the mass flow .111, to obtain 

o (p Op) 32 op 
Ox ~ Ox = IJ2 ot' (38) 

By virtue of the ass umption of small pre sW'e 
excess, and the equations of condition (eq 19 and 
20), we can disregard the differentiation of p/ /J. in 
eq. 38, and replace i t by its mean value. Equa
tion 38 then becomes 

or 

02p 32J.Lo OP} ox2 = npoD2 ot ' 

02 ~ 32 J.Lo o~ 
c:x2= npoD2 0 t" 

(39) 

Utilizing the previou definition of Ao (eq 10), 
eq 39 becomes 

Attenuation of Pressure in Tubes 
633~- - 7 

or 

where 

02~=(AL ~)~ o~} 
Ox2 V n L2 ot 

02 ~ A7'o O~ 
ox2= L2 e>t 

(40) 

(41) 

The significance of the new time constant A TO 

can be understood by inspection of the definition 
of Ao (eq 10). One may note that A TO is a time 
constant based on the tube volume, AL, instead 
of the instrument volume, V; and that it gives 
weight to the exponent of the polytropic process 
in th e tube. It is thus related to the equivalent 
distributed electrical capacitance of the tube. 
The weighting by th e exponent, n, arises from the 
fact that it repre ents th e addi tional "stifrness" 
of the air column in th e tube as a polytropic 
prmg. 

If, a in the elemen tary solution, we separate 
our pressure variable in to a space and time part 

(11) 

eq 40 becomes 

or (42) 

where 
XTO = ATOW (43) 

The quantity XTO is an attenuation factor based 
on the tube volume. 

Equation 42 may be compared with the corre
sponding equation of th e elementary solu tion, eq 12. 
It may be noted that it is necessary that XTO be 
small in order for th e elemen tary solu tion to be 
valid. 

R eferring now to eq 42 , th e boundary conditions 
are 
at x= O 

(13) 
and at x=L 

d~= _ (AOW)j 1, 
dx m L (44) 

(see eq 5, 9, and 24). 
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We may redefine a time constant and attenua
tion factor for the instrument volume, which takes 
into account the polytropic process as 

(45) 

At x= L, eq 44 therefore becomes 

d~=_XIO j€ 
dx L (46) 

The solution to eq 42, which satisfies boundary 
conditions Ceq 13 and 46) is 

~ _ e- "'To(ifiTO- ifiIO)/TO Y + .e"'To(ifiTO + ifiIO)e - "'TOY 
ro- e"'TO(ifiTO+ ifiIO)+e- "'TO(ifiTO- ifiIO) , 

(47) 
where 

[ X J1/2 } ifiTO= . ;0 (l + j ) 

ifiIO = JXIO 

(48) 

The new ifi/s, which shall be referred to as 
attenuation parameters, are 

"'TO an attenuation parameter depending on 
tube volume; 

"'10 an attenuation parameter depending on the 
instrument volume. 

The ratio of the fractional pressure excess at 
the end of the tube ~L to that at the beginning 
of the tube ~o is then 

€L ifiTO 
~o ifiTO cosh ifiTO+ifiIO sinh "'TO 

(49) 

It is instructive to examine the limiting values 
of this equation. For small ifiTO, the attenuation 
approaches 

(50) 

the same result as in the elementary theory 
(seeeq 16) . 

For small values of ifiIO, the attenuation ap
proaches 

(51) 
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which for small ifiTO becomes 

€L 1 1 

~o = 1+ ifi;o I+X;Oj (52) 

The form of eq 50 and 52 is similar. In fact, 
for small values of both "'TO and ifiIO it is possible 
to define a composite attenuation factor X by the 
relation 

or (53) 

such that the real magnitude of the attenuation 
is approximately 

(18) 

which preserves the form of the elementary 
solution . 

Equation 18 can be interpreted as meaning that 
the "proper" time constant of the system can be 
obtained by adding to the n weighted volume of 
the instrument, 1/ [6jV. of the m weighted volume 
of the tube, and substituting this in the elementary 
formula for the time constant of the system. 

In principle, for larger . values of ifiTO or ifiIO, a 
coupling coefficient (of approximately unity) could 
be introduced as an addition to the coefficient 
1/[6]1 /2 , which would vary somewhat with the rela
tive magnitude of ifiTO and ifiIO, to permit strict 
preservation of the elementary form. It is, how
ever, simpler to compute attenuation from eq 49. 

For liquids, we start from eq 38. 

(38) 

As before, with the aid of eq 22 and 23, we 
obtain the result 

or 

a2~ 32,uob a~ 
ax2 = PoD 2 at 
a2~ ATO a~ 
ax2 =-L2 at (54) 
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where 

AL } Aro=V bAo 

Xro = AroW. 

55) 

The boundary condition at x= O is 

~ = ~o (13) 
and at x= L 

or (5 6) 

where 

Aro = Aob } 

Xlo = AroW 
(57) 

(see eq 5, 9, and 25). 

The form of eq 54 and 56 is identical with eq 42 
and 46, with the difference that the coefficient in 
the A's is th e very small compressibili ty factor 
rather than the reciprocal of the exponent of the 
polytropic process . Physically, this simply means 
that the liquid is a spring of almost infinite stiff
ness compared to the gas. 

Because of the formal identity of the equations, 
the previous solution holds in toto, with the modi
fied value of Aro. The following interpretation is 
now possible for the elementary rcsult that there 
is no attenuation with liquids. The Ao time con
stant of elementary theory did not take into 
account the effect of liquid compressibility, which 
is small. If, however, Ao is weighted by b (i . e., 
A= bAo) then the same attenuation curve holds 
for both liquids and gases, but with liquids we 
operate on the very beginning portion of the atten
uation curve for gases. 

There is one complication that should be con
sidered in liquid tube attenuation. Because of the 
small compressibility of liquids, it is often possible 
t.hat the fiexibility of the tube gives rise to a com
pressibility compaTable to that of the liquid. The 
simplest ,yay of taking into account the fiexibility 
of the tube is to define and replace the compressi
bility factor of the liquid by an effective value 
band k. 
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where 

b = b+ Po - Pa !2} E s 

k=k+Po-P~ !2 
PoE s 

po = mean liquid pressure; 

, (5 ) 

Pa = ambient external pressure (usuallyatmo.s
pheric) ; 

E=elastic modulus of the tube material; 
s= wall thickness of the tube. 

In the derivation of eq 58, the assumption has 
been made that the thickness of the tube wall is 
small compared to the tube diameter. 

3. Theory Corrected for Finite O scillatory 
Pressures 

In this section, we will determine the effect of 
finite fractional pressure excess on the attenua
tion in a tubc. We assume only that the 
Poiseuille velocity distribution holds. We will 
show that the effect of finite pressure excesses is 
to excite higher harmonics, rcsulting in a distor
tion of wave form, and to rai e the mean pressure 
along the tube. The higher harmonics are excited 
because of the nonlinearity of the equations. 

The method of solution selected will be that of 
expansion in harmonic series in which the excita
tion of sum frequencies only are considered and 
the difference frequencies are neglected, so that 
the solutions obtained are only valid for the lead
ing term of each harmonic. The second order 
term in the variation of the mean pressure will be 
estimated separately. ,Ve will assume open func
tions of the distance coordinate for the coefficients 
of each harmonic term of the series and show that 
the expansion is valid for moderate values of the 
initial pressure excess. It is obvious' that these 
distance dependent coefficients must be the 
solutions of second-order differential equations 
in order to provide two sets of adjustable con
stants to satisfy the boundary conditions at the 
two ends of the tube. However, by considering 
the solution for an infinite tube (for which only 
one set of boundary conditions is required) we 
shall be able to discuss the question of convergence 
of the solutions. 

For the purposes in view, it will turn out to be 
convenient to derive the equations on a density 
basis. Density and pressure are, of course, re
la ted through the equation of condition. 
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For gases, we start from 

;x (~~;)=t; ~:. (38) 

By algebraic manipulation, in which eq 19 and 
20 are used to eliminate viscosity and pressure, we 
obtain 

or 

o ( (77 ) A TO 077 } ox 77 ox = V ot ' 

0 277 2 n TO 0'Y] 
ox2 = L~ ot ' 

(59) 

a nonlinear partial differential equation. 
Assume as solution for the density ratio 

77 = I + 771eiwl+ 772e2iwt+ 773e3iwt+ .. ; , (60) 

where 1/ i is the fractional density ampli tude ratio 
of each harmonic (functions of x). 

At the moment assume tbat the applied pressure 
wave has all the mathematical properties necessary 
to make the Fourier expansion of eq 60 valid. We 
will discuss this point again. 

When eq 60 is substituted in eq 59 and the 
coefficients of like terms in the r espective har
monics equated, the following system of differential 
equations result for the coefficients 77 /. 

(61 ) 

77177 /-1 + 77077 /) 

The coefficient 770( = 1) has been added for COlTl-

pleteness. 
From eq 61 it can be shown that the coefficients 

771 for an infinite tube are equal to 

The solution of t hese equations consists of a 
complementary part that introduces two new con
stants for each coefficient ''Ii, and a particular 
solution that depends upon the solutions for co
efficients with lower values of i. The latter part 
represents the excitation of higher sum frequency 
modes. 

D etailed investigation of the convergence of the 
solutions for the various coefficients leads to the 
following conclusions: 

The differential equations of eq 61 will admit 
physically admissible and convergent solutions for 
any bounded periodic pressure or density wave 
at the origin because (1) either the wave at the 
origin has a derivative that is of limited variation, 
in which case the solution of eq 59 in series (eq 60) 
is always valid; or (2) if it does no t, spatial 
attenuation of viscous waves occurs so rapidly 
for higher harmonics that the wave will have a 
derivative of limited variation at a shor t distance 
beyond the origin, so that as far as effects doWll
stream are concerned , the given input wave can 
be replaced at the origin by a similar looking 
function (i. e., a finite polynomial instead of an 
infinite Fourier series) whose derivative is of 
limited variation. As illustrations, we can replace 
a square wave by its first few harmonics, or a 
Weierstrass function by a smooth integrable 
function. In simpler language this means that 
in a viscous transmission tube, detailed or sharp 
wiggles in the initial disturbance (high harmonics) 
are no t transmitted. 

The more practical question as to the rapidity 
of convergence of the series solution for the 
attenuation of a given entrance disturbance can 
be answered approximately by recourse to tbe 
solution for an infinite tube, for which only one 
set of boundary conditions must be satisfied . 

1i/_ liiJe-(I+ [t- lJ ''')v l 
77 1= iiie-(O+ [I] "')v (I X O+ I X 2[i-lP /2) + 

ii i_ 2iiie- (H [i-2J ''')Y 
(62) (I X 0+ l X 2 [i-2P/2) (2 X 1 + 2X 2 [i-2P/2) 

- - 3 - (3+ [i-3J '/')y J . 1/ i-31/ ,e + 
(1 X O+ l X 2[i-3P/2) (2X 1+ 2X 2[i-3P/2) (3 X 2+ 3 X 2[i - 3P/2) .. . 
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where 

(63) 

H ere ii i is the constant of integration for the com
plemen tary solution of each 7] i, and y is a dimen
sionless distance variable. 

Substituting the value of the coefficients from 
eq 62 into eq 60, we obtain the result that, if at the 
origin (y = O), the density is written in the form 

7] = 1 + 7it ei "" + 

( - 7il11L ) e2i"" + 112- 1 X 0 + 1 X 2[1)1 /2 

( - 7i2111 + 
7]3- 1 X 0 + 1 X 2[2)1 /2 

7]17], 3i",1 --2 ) 

(l X O+ 1 X 2[1[1 /2)(2X 1 + 2X 2[1]) 1/2 e + . 

at any other point y , the density wave will be 

7] = 1 + 7il e-(O+ [1] ''')Ve i",' + 
( 1/2) 7]l7]l e 2iW1+ ( 

- - -(1+ [1] 112)y ) 
7i2e- 0+ [2] y 1 X O+ 1X 2[l)1 /2 e 

1·,1 e3i",' 
-7];;2e-(a (I] I{2)1I ) 

(1 X O+ 1 X 2[1] 1/2) (2X 1 + 2 X 2[1]1 /2) 

+ ... 

(64) 

Our previous conclusion permits us to assume 
that expression 64 is manageable (i. e., of limited 
variation with a time derivative of limited varia
tion) so that it must converge. We may therefore 
infer the following relations: 

For large enough i 

O<ll1~~l l< l 

(66) 
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The last line in eq 66 contains our desired con
clusion. vVe can infer from it the maximum num·· 
bel' of terms that must be carried along in order to 
know the distortion to within any de ired ac
curacy. If we assume, for example, that we are 
interested in only those harmonics whose con tent 
at the end of the tube is greater than 1 percent of 
the applied first harmonic, we can neglect all 
harmonics greater than the one for which 

'*' e- 'h o[il'''= O.Ol , 

or (67) 

[ X iJ'" ,~ , e - ~o = 0.01. 

For most practical problems, it can be hown 
that adcquate information can be obtained from 
a knowledge of the first and second harmonic, and 
rarely, thc third harmonic. 

To compute the harmonic di tortion for a 
volume terminated tube, we go back to cq 6l. 
The solution for the density wave becomes 

7] = 1+ (i)1+ev+7Jl_e-Y)eiwt+ 

(7Ja e[21"'Y _7j~+e2V + 7i2_e- (2)I 12y-

7j~_e-2Y)e2iwt+ ( 773+e[31" 'V-

- - ( 3 + 2[2] "') ([2)"'+1)Y + 
7]a 7]1+ 2[2]''' e 

7j3 (~\ e3V + 7j e-(3),"v_ 
1+ 2) 3-

- - ( 3 + 2[2]" ') _([2)1"+l)V+ 
7]2-7]1_ 2[2] '" e 

:;;3 (~) e-3Y+77 7j ( 3- 2[2]" ') e(l- [2) '!2)V+ 
",- 2 1+ 2- 2[2]'" 

- - ( 3-2[2]" ') (-H[2),:')y 
7]2+ 7]1 _ 2[2]'" e -

Til +7J~- G) e-V-7J13~+ G) eV) e3iWI+ . .. 

(68) 

H ere 7i/+ , 11 / - represent the two sets of integra
tion constants necessary to take care of an out
going and reflected wave in the tube. They are 
fractional density excesses. 

We will consider thc boundary conditions to be, 
for the moment, at x= O (y = O) 

7] = 1 + ~lei"'I+ ~2ei"'I+ ~3ei""+ • . . (69) 
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where i7i is the amplitude of each input harmonic 
in the density wave (it differs from Ti i , which 
represents both the input harmonic and the excita
tion amplitudes of that harmonic) , and at 

[
_ [2J1 /2lf TO 
1/2 [2J1/2lfTO cosh [2PI2lfTO+ 2lfIO sinh [2J1 /2lf TO + 

(70) 

(see eq 1, 19,20, and 24). 
The application of these two boundary condi

tions leads to the result that at the end of the tube 

(71) 

[2]1I2lfT03 (cosh 2lfTo-cosh [2J1 /2lfTO) + 2lfT02lfIO([2j1 ' 2 sinh 2lfTo - sinh [2]I /2lfTO) + ] 
- 2 [2j1 / 2lfTOlfI02 (cosh 2lfTo - cosh [2]lfTO) 2jwt + 
1/1 2 ([2j112lfTO cosh [2j1/2lfTO+ 2lfro sinh [2j1/2lfTO) (lfTO cosh lfTO+lfIO sinh lfTO) 2 e 

This result is for a given input density wave. 
It will be shown later that the results shown in 
eq 71 are only valid when the equation of condi
tion is isothermal (i. e. the" polytropic" coefficient 
is unity). It therefore follows that if the input 

For liquids, we can start from eq 38 

~(E- OP)_ 32 oP. 
ox J.I. ox - D2 0t 

By the use of eq 22 and 23, we obtain 

021/2 2ATO 01/ 
ox2 = -£2- ot' 

where 

(38) 

(59) 

(55) 

The equation is exactly the same as before with 
the single modification that l ib is substitu ted for 
nand m, so that our previous result (eq 73) holds. 

The change in mean density along the tube can 
be estimated from eq 59 and 70. The equation 
of motion (eq 59) requires that the second deriva
tive of the mean square density vanishes, or that 
the first derivative is constant. However, the 
end boundary condition (eq 70) requires that the 
first derivative of the mean square density van
ishes at the end of the tube, and therefore along 
the entire tube, so that the mean square density 
and therefore the mean square pressure must 
remain constant along the tube. The leading 
part of the second order change in mean pressure 
arises, therefore, from the steady state portion 
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pressure wave is given by 

(72) 

the wave at the end of the tube is 

of the square of the amplitude of the fundamental· 
It can be simply shown that the increase in mean 
pressure at the instrument is given by 

~ollp[l + I fOL I ~o I2] /4 
4. Theory Corrected for Acceleration 

In this section, we will remove the main re
strictive assumption- the assumed Poiseuille ve
locity distribution. In order to do this, it is 
necessary to go back to the equations of hydro
dynamics. Since the complete theory is too ex
tensive to be treated in this paper, we will simply 
state the results. 

It is possible to take the N avier-Stokes equa
tions of hydrodynamics (the equations of mo
tion), combine them with the equation of conti
nuity, and with the energy equation, whichrepre
sents a detailed energy balance among thermal 
and kinetic energies, to arrive at the Kirchoff 
equations of sound. (See Rayleigh, Theory of 
sound, volume 2, article 348.) These equations 
are valid to first order. This procedure was fol
lowed, making no assumption as to the form of 
equation of state for the fluid, and the following 
results were obtained for the attenuation param
eter, and the velocity in an infinite tube: 
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where 

and 

where 

(74) 

. D = (1- .) 12 [ W<T0J 1/2 
g 2 J 2 21'0 

D . D [w J1/2 h - = (l-J) - -
2 2 21'0 

o is the Laplacian velocity of sound in the 
fluid ; 

g and hare argumen ts of the Bessel functions for 
unit tube radius; 

Jo and J ] are the zeroth and fll·st order Bessel func
tions; 

<To is the mean Prandtl number of the fluid 

( = cIto°} 
Ko is the mean thermal conductivity of the 

fluid; 
Cpo is the mean specific heat at constant pres

sure of the fluid; 
1'0 is the kinematic viscosity of the fluid 

( =~:} 

We may regard eq 78 as an extended definition 
of the attenuation parameter Y;T, and as the 
modified velocity that replaces Poiseuilles law. 
It is therefore used without the zero subscript, 
which is used to denote the Poiseuille regime. 

If we now bring in the end boundary condition , 
namely 

Attenuation of Pressure in Tubes 

The attenuation paramcter in eq 74 is to be 
interpreted as before (sec eq 47) as the exponent 

±.pT!. · 
in the form e L 

Equal 64 and 65 arc of doubtful value for 

(76) 

or 
VOW> l 0 2 • 

These restrictions are violated at high vacuum 
or very high frequencies. 

It is instructive to evaluate eq 74 and 75 for 
small values of the Bessel function arguments. 
They become 

(77) 

which are precisely the results assumed in eq 1 
and 42 under the condition in eq 42 that the 
"polytropic" coefficient is unity. This arises 
because the value 0 2j-y in eq 77 i the square of 
the Newtonian velocity of sound, which for gases 
is Po/Po. Eq 74 and 75. which take into account 
the heat conduction, thus demonstrate that, when 
the previou results are valid, the equation of 
condition is the isothermal. At higher frequen
cies the modifying term in eq 74 may be regarded 
as the "polytropic" coefficient. To bring this 
out explicitly, eq 74 and 75 may be written as 

for a gas, or 

Q= Vb ap 
Po at 

1 

(78) 

(24) 

(25) 
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for a liquid, we obtain 

(79) 

for a gas, or 

(80) 

for a liquid. 
Let 

(81) 

for a gas, or 

(82) 

for a liquid. 
We have thus corresponding extensions of our 

definition of XI to cover all frequencies. The 
limiting value of XI for small arguments obviously 
becomes the previous value for XIo. 

Since the only modification has been to extend 
the definitions of 1fT and 1fI without changing the 
form of the equations to be solved (namely eq 
42 and 46), the previous result (eq 49) is strictly 
valid. The results however are now correct for 
frequencies well into the audio range. 

It is not possible to use the results of this section 
to extend the range of validity of the calculated 
distortion for finite pressure amplitudes. To do 
this rigorously would require going back to the 
second-order terms neglected in Kirchoff's equa
tions, which is an extremely arduous procedure. 

lO2 

It must therefore be concluded that the distortion 
calculated in section (3) is valid whenever the 
Poiseuille regime holds, which also means that 
the" polytropic" coefficient in the distortion must 
be taken as unity. The distortion may be validly 
calculated from eq 73 when 

WD2 < 1 (83) 
4vo ' 

and when the applied pressure amplitude is 
sufficiently small at the applied frequency (suf
ficiently small enough Reynolds number) to per
mit laminar flow. 

5 . Theory Corrected for Finite Length-End Effects 

There is one additional factor that must be con
sidered for completeness- the end effect. An 
estimate of its magnitude will be made for the 
Poiseuille regime. It arises from the fact that it 
takes an appreciable length of tubing to set up 
the Poiseuille velocity distribution in the trans
mission tube. The character of the entrance flow 
is that the axial velocity is flat at the entrance, 
gradually developing an approximately parabolic 
(laminar) boundary with a core of uniform veloc
ity, until the approximately parabolic distribution 
fills the tube. It is evident that boundary layer 
theory may be used, and for our purposes an ex
tremely crude boundary layer theory. 

We go back to the equations of hydrodynamics 
and make the following assumptions: (1) that the 
entrance flow is incompressible, (2) that the varia
tion of pressure in the radial direction is negligible 
in the entrance portion, (3) that quadratic terms 
in velocity are negligible in the boundary layer, 
(4) that the core of the velocity distribution is 
potential. 

For our purposes we need only write the equa
tions of motion for the potential core as 

oUv+u oup=_! op, (84) ot p ox Po ox 
where U v is the axial velocity in the potential core. 

Let 
oct> uV=ox 

where ct> is the velocity potential 
then 

~(oct»+l ou; +! op =0 ox ot 2 ox Po ox 
or 

(85) 

(86) 
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whereJ(t) is an arbitrary function of time. 
Eq (86) represents the Bernoulli integral. It 

can be written in the form 

( )+ 1 2 J(t) ac!> (x,t) 
px,t 2 Poup= - at . (87) 

The boundary conditions are a prescribed pres
sure variation at x= O, the entrance, with a flat 
velocity profile (up= u where u is the average 
velocity across the section) and a parabolic dis
tribution of velocity at some point x= l down-

stream (u2'-=u)- The assumption of incompres-

ible flow makes u the same at both sections. 
these conditions lead to the result that 

p(O, t) = p(l, t) +~ Pou2+ ~~ (l , t) _ ac!>~~, t). (88) 

If we now refer to the arguments given in Gold
stein "Modern Developments in Fluid Mechanics," 
vol. 1, pp 299 to 308 for the static case, we find 
on p. 302 that 

p(O) = p (l) +~ Pou2+ l~poU2 (l -.0575 ~ R e} (89) 

2 Re 

where R. is the Reynolds number. 
It follows from these two equations that the 

leading term for the entrance loss in the oscillatory 
case is the usual Pou2 10 s. 

We may therefore adopt the exact static result 
(see p. 308 of Goldstein) that 

where 

(94) 

N is a dimensionless parameter. 

The second term in eq 93 gives the second 
harmonic distortion. 
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( (l ) ( 1 -2)+ 16x - 2 p 0, t) = p ,t + 2.41 "2 PoU n-- PoU , 

'I R e 

(90) 

where the last term represents the Poiseuille vi -
cous resistance. 

Therefore the effect of the entrance is to cause 
a pressure drop given by 

(9 1) 

the exact coefficient 1.2 being unimportant for 
our purposes. We will regard eq 91, not as being 
exact, but as indicating the order of magnitude 
of the entrance correction. 

If we substitute the Poiseuille velocity into eq 
(91) and evaluate the pressure gradient of the 
Poiseuille distribution from cq (47), we arrive at 
the result that the pressure excess just inside the . 
tube ~l i approximately given by 

Equation 92 is the desired result . It shows 
that the approximate effect of the entrance is to 
distort each input harmonic. It can be inter 
preted as meaning that the effect of the entrance is 
the same as if it did not exist, but with the funda
mental harmonic generator replaced by a funda
mental and a second harmonic generator. The first
order terms are thus left unaffected, and the only 
equation requiring modification is the attenuated 
econd harmonic. 
If eq 92 is used as the input pre sure for a pure 

sinusoidal input in the fluid condui t, eq 73 becomes 

Actually from the condition under which eq 93 
is valid (namely eq 83), the value of N2 must be 
small, so that it is a matter of indifference whether 
it is used in eq 93 or not , and we will therefore 
neglect it. 

6 . Summary 

There only-remains the task of recapitulating 
the pertinent results and presenting them for 
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computational convenience. To accomplish this 
some minor notational changes will be made. 

In eq 49, it was shown that the complex attenu
ation of the fundamental is given by 

€OL__ if;T . 
~o - if;T cosh if;T+ if;L sinh if;T 

(95) 

where bL is the complex amplitude of the frac-

where ~1L is the complex amplitude of the frac
tional pressure excess of the second harmonic at 
the end of the tube; if;TO and if;ro are the values of 
the attenuation parameter computed on the basis 
of the Poiseuille velocity distribution. 

In eq 76, it was shown that eq 95 is valid if 

(97) 

In eq 83, it was shown that eq 96 is valid if 

(98) 

In eq 48, the attenuation parameters were de
fined as 

if;T2- :XT} 

if;r= JXr 
(99) 

In eq 78, 81, and 82, with slight modifications 
for generality, the attenuation factors were deter
mined to be most generally 

104 

tional pressure excess of the fundamental at the 
end of the tube, and the subscript 0 refers to the 
fundamental. 

In eq 93, it was shown that the complex ampli
tude of the second harmonic distortion due to a 
pure sinusoidal pressure input is given in the form 
of its ratio to the input amplitude of the funda
mental by 

2Jl ( h~) (100) 
1 

h~ J c (h~) 

r (h~y l 
32vow (L)2 V -8-

Xl = 0; D AL l 2Jl ( h~) J 
h~Jo (h~) 1 

while the attenuation factors for Poiseuille flow 
are 

(101) 
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From eq 75 

Herc OT is the velocity of sound appropriate to the 
tube; 

OI is the velocity of sound appropriate to the 
instrument volume. 

For computational purposes, the attenuation 
factors can be made less complicated by the 
introduction of two new functions. 
Let 

and 

where Fl and F2 are correction functions to the 
Poiseuille attenuation factors. 

The attenuation factors then become 

(104) 

In order to obtain consistency with our previous 
results, we introduce the following definitions: 
For a gas: 

It can be shown both from kinetic theory and 
from experimental data that the value of the 
Prandtl number for a gas is approximately unity. 
Differences from unity are unimportant for our 
purposes Therefore g and h in eq (102) may be 
regarded as equal. We may therefore define 
Fl and F2 as 
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These functions therefore depend only on two 
variables, instead of t]nee as in eq (103). 

Equation 78 shows that the velocity of sound 
appropriatc to the tube for eq 104 is the Newtonian 
velocity, which for a gas is [Po/Pol ~ . Equation 81 
indicates that the velocity of sound appropriate 
to the instrument volume for eq 104 is the "poly
tropic" velocity or [mpo/ Pol ~ . Therefore for a gas, 
the attenuation factors may be computed from 

D 
where F l, F2, and h 2" may be computed from 

eq 102 and 105. 

It is convenient to utili.ze one more variable, 
the ratio XI/ XT, which from eq 106 has the value 

XI 1V CD) - = -- F2 h - ''Y 
XT mAL 2 

(107) 

For a liquid: 
It has been stated that 'Y can be satisfactorily 

taken as unity for a liquid. This similarly makes 
the functions Fl and F2 (see eq. 103) independent 
of g (or really of the Prandtl number). In that 
case, the definition of F l and F2 for a gas (eq. 
105) holds for a liquid, if 'Y is taken as unity. 
Continuity of definition is thus provided for both 
liquid and gas attenuation. 

Equation 78 shows that the velocity of sound 
appropriate to the tube for eq 104 is the Newtonian 
velocity of sounel. However, consistent with eq. 

105 



55 and 58, the Newtonian velocity must be based 
on the effective compressibility of the liquid and 
tube. From eq 82 it is seen that the velocity of 
sound appropriate to the instrument volume, 
however, is based on the real compressibility of 
the fluid (the difference between adiabatic, 
"polytropic," and isothermal compressibilities is 
assumed negligible). It has been assumed that 
the compressibility of the instrument volume is 
included in the definition of the effective instru
ment volume. It follows therefore that the 
attenuation factors for a liquid can be computed 
from 

(108) 

The zero subscript means that these are the 
values for the Poiseuille flow r egime. Graphs of 
these equations are quite useful for computing 
attenuation. Since XTO is proportional to fre
quency (see eq 101), while XIO/ XTO is proportional 
to the ratio of instrument volume to line volume 
(see eq 107), a family of curves of attenuation or 
phase angle plotted against XTO for different values 
of XIO/ XTO are frequency response curves for 
different volume ratios. These curves are pre
sented as figures 2 and 3. 

At higher frequencies, where the functions Fl 
and F2 take on values appreciably different from 
unity, the expressions become extremely com
plicated. It is therefore of utility to examme 
their high frequency behavior. 

At high frequency, we will use the apprOXI
mation 

106 

and 

It is now possible to compute the real attenua
tion and lagging phase angle for the first and 
second harmonics. If the attenuation parameters 
in eq 95 are regarded as the low frequency param
eters based on the Poiseuille distribution (i. e. the 
ones with zero subscripts), then the real attenua
tion and lagging phase angle can be computed 
from 

2J1 (y) 1 2j 
yJo (Y) = y2- y (111) 

If we defin e a new paTameter z (related to h~} 

which characterizes the fluid regime, as 

D2w z=-, 
4110 

a frequency parameter wL/C, where 

w5=[x~~ r2, 

and a volume ratio R defined as 

R XIo = -y - , 
XTO 

it can be shown that at high frequency 

(112) 

(113) 

(114) 
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- [ 2 JI12 
I ~OL I = 2wL (2wL) . 2wL R2 (2wL)2 ( 2wL) 
~o l + cos C- R 0 sm 0 +4 C I -cos ( T 

[ JI'2 (I + R 2- 1') tan wCL +R wCL 
"YX7'O I I' 

tan 00= 16 wL wL 
1- R e tan e 

(11 5) 

This is the solution for the undamped acoustic 
resonance of a tube and instrument. 

In computing these quantiti es in eq 115, it is 
assumed that XTO is smaller than XTO Za , or that 
XTO is small compared to wLjC. In the solution for 
the undamped case, the phase angle lag is usually 
regarded as zero up to the first resonance. How
ever, the given expression permits first-order com
putation of the phase angle lag valid for values of 
XTO small compared to wL jC, even though the 
overshoot is given as undamped. Practically, this 

means for values of [ "Ytt J 1/2 of the order of one 

or less. 
These quantities arc presented in figures 6 and 

7. It can be shown that they are valid for values 

of z:2: 100, whereas the low frequency curves (figs. 
2 and 3) arc valid for z::; 1 (see eq 98) . We will 
state without proof that the parameter z, which 
characterizes the flow regime, is closely related to 
a damping coefficien t . Figures 2 and 3 will 
therefore be referred to as the large damping 
curves, and figures 6 and 7 will be referred to as 
the undamped curves. 

Unfortunately, in many instances, a knowledge 
of the highly damped behavior (figs. 2 and 3) and 
the undamped behavior i not sufficien t . Curves 
have therefore been drawn for a value of Z about 
" half-way" between 1 and 100, namely z= 6.25 
(see figs. 4 and 5). In order to preserve a scale 
proportional to frequency, the quanLity XTO is 
used as abscissa. 

These curves were computed from the formulas 

I ~OL I [ 2 J1
/
2 

-ra- = cosh 2cI + COS_2c2 + 2c3 sinh 2CI - 2c4 sin 2C2+(C~+C;) (cosh 2cl - cos 2C 2) 

where 

tan 00 

F,=i l+gd 

F2=i 2+g2j 

i , 
cos CS= IFI I 
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tanh CI tan C2+C3 tan C2+C4 tanh C1 

1 + C3 tanh C1-C4 tan C2 (116) 

107 

1 



j2 
cos C6= -[F I 

2, 

Equation 116 is valid at all frequencies, and is 
presented without fmther explanation for com
pleteness and the use of those with great compu
tational fortitude. 

distortion at low frequencies (neglecting the end 
effect) are presented in figmes 8 and 9. The for
mula used in their computation was 

The amplitude ratio and leading phase angle 
(angle of lead on the time scale of the fundamental 
where both the fundamental and double frequency 
waves are cosine terms) of the double frequency where 

[2F /2 cosh [2XTOF /2 sin [2xTop/2- sinh [xToF /2 cos [xToF /2+ cosh [xToF /2 sin [XTOP /2) + 

( XIO)2 XTO( -sinh [2X TOP /2 sin [2xToF /2+ sinh [xToF /2 sin [x ToF /2) 
XTO 

[2F /2 cosh [2XTOF/2 sin [2xTol l/2 - sinh [xloF /2 cos [xloll /2-cosh [XIOP /2 sin [xloF /2 ) + 

( XIO)2 XTO (cosh [2XTOF /2 cos [2xToF /2- cosh [XToP /2 cos [XTO]l /2) 
XTO 

The author expresses his appreciation to D . P. Johnson for his assistance III the mathematical 
development. 

WASHINGTON, August 2, 1949. 
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