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The use of the constant-deviation prism for producing monochromatic light introduces 

the problem of image shifts that result from rotating the prism when changing from one 

spectral line to another. The magnitudes of both the lateral and the axial components of 

th is shift, for a given rotation of t he prism, depend upon the position of t he axis about which 

the prism rotates. A position for the axis is known that yields zero lateral shift. The 

axial shift, however, depends also upon the convergence of the beam and tge shape and 

optical properties of the prism. In this paper a method is presented for locating t he posi

tions of the axis of rota tion for minimum axial and for minimum total shif ts of t he foci for 

both the sagitta I and meridian fans of rays. 

I. Introduction 

The constant-deviation prism, as uRed in a 
parallel beam of li t?;h t emerging from the collimator 
of a spectroscope or monocbr·omator. has been 
discussed by Uhler [1 , 2],' Forsythe [3], and 
Block [4] . These authors were in terested only 
in the la teral movement of the beam that occurs 
when the prism is rotated, as in changing from one 
spectral line to another. They gave no consid era
tion to the case of convergen t 01' divergent light 
and, therefore, ignored the possibility of axial or 
lateral changes in the position of the image. 
Such displacements did not t:'nLer their problem, 
because there is no change in the position of the 
image if the rays of light wit-hiD the prism remain 
parallel. As a result of theu' studies for the case 
of collimated light, a unique position of the axis 
of rotation for which no lateral shift of the beam 
occurs is known. In this paper it is shown that 
the same axis serves for non collimated light as 
well. 

The magnitude of the lateral shift of a converg
ing or diverging beam of ligh t is a meaSlU'e of the 
lateral shift of the image. Consequently, the 
lateral position of the beam and the axial positions 
of t he primary and secondary images, as functions 

1 Figures in brackets indicate the literature references at the end of th is pa· 
per. 
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of the angular position of the prism, determine the 
movement of the image point when t he prism is 
rotated. A simultaneous treatmen t of these 
three functions shows that any two of the shifts 
may be practically eliminated by a proper selection 
of the axis of rotation. 

In most applications of the cons tan t deviation 
prism a slit-like source (01' its equivalent) is used, 
and one of the astigmatic images either becomes of 
secondary importan ce, or its axial movements may 
be ignored. In tttis paper a particular application 
of the constant deviation prism is considered il1 
which one 01' the other of these images may be 
ignored. The treutmen t applies to the recently 
designed in terferograph [5], an instrument for 
photographing the movements of interference 
fringes. A constant deviation prism and a single 
achromatic lens are used to form a monochromatic 
image of the interference pattern on a photo
graphic film at a fixed distance. The derived 
equations apply to any triangular constant devia
tion prism, and particular properties are assigned 
for an illusljration of results. 

II. Statement of the Problem 

An investigation of the axial image shifts caused 
by rotating the prism is facilitated by treating the 
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meridian (Southall's terminology 2 used) and 
sagittal rays separately. The primary and sec
ondary images of a plane that are produc~d by 
these two beams usually do not coincide, nor is 
the shift of the two images equal for a given rota
tion of the prism abou t a specified axis. The 
shape and orientation' of the source that illumi
nates the object plane may, and usually do, con
tribute differently to the astigmatic effect. As
suming the object to be a point on an interfero
meter plate that is illuminated by collimated light 
from a slit-like source in the focal plane of the 
collimator, a cross section of the beam reflected 
from this point will approximate a line. When
ever such a beam passes through a prism and a 
single lens to produce a real image of the point, 
the astigmatic effect caused by the prism depends 
upon its orientation wi~h respect to the slit-like 
source. If the slit-like source is parallel to the 
refracting edge of the prism, the sagittal rays are 
more divergent than the meridian rays. The 
difference in divergence is reversed if the refracting 
edge is perpendicular to the source. In either 
case, the less divergent beam produces an image 
with a comparatively large depth of focus, whereas 
the depth of focus for the more divergent beam is 
relatively small. Consequently, the beam that 
has the greater divergence requires more con
sideration. 

A detailed treatment of this problem of the 
lateral and axial shifts is too extensive to be given 
here. However, a presentation of the fundamental 
equations and their application to a typical, but 
particular, case furnished the necessary basis for 
their application to other particular cases. The 
equations of condition form a system of simulta
neous equations, the solution of which gives all 
the information necessary for a solution in any 
special application. Either of two slightly differ
ent methods of attacking the problem may be 
followed. One is to require the differential of the 
shifts with respect to the angle of rotation of the 
prism to be zero at some specified wavelength of 
light. Usually this wavelength should be chosen 
near the micldle of the ·visible spectrum. The 
second method requires the equality of the image 
distances for two wavelengths, one near each end 
of the visible 'spectrum. The second of these 

2 The "meridian rays" are those refracted rays of an infinitely narrow homo~ 
centric bundle of incident rays that lie in a principal plane of the prism. The 
" sagittal rays" are those that lie , in a plane containing the chief refracted ray 
and perpendicnlar to the principal plane. 
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procedures was chosen because it seemed somewhat 
simpler for this particular presentation. 

The following is a sufficient statement of the 
general problem for i ts analytical treatment. A 
source 3 of light is located on the axis and in the 
left focal plane of the achromatic lens shown in 
figure 1. The point at which the axial ray emerges 
from the lens is chosen as the origin of a plane 
oblique coordinate system with the x-axis coincid
ing with the axis of the lens. A constant deviation 
prism is placed with the center of its entrance face 
initially at the point (0,0) and with its refracting 
edge norma] to the plane of the coordinate axes. 
Collimated light, from the lens, falls on the first or 
entrance face of the prism, is internally reflected 
at the second face, and emerges from the third or 
exit face at various angles, depending upon the 
angle of incidence and the geometrica l and optical 
properties of the prism. This discussion is limited 
to those rays whose angle of emergence, 0, equals 
the angle of incidence, a condition corresponding 
to minimum deviation. The total deviation of 
the rays that emerge under this condition is con
stant regardless of their wavelengths, and is equal 
to the angle of the prism as sho",rn in figure l. 

For the initial conditions of the analytical trea t- ' 
ment, it is assumed that the angular position, O2, 

of the prism corresponds to the known refractive 
index for wavelength, A2, near the middle of the 
visible spectrum. The indices for two other wave
lengths, Al and A3, one near each end of the visible 
spectrum, must also be known. After the prism 
has been placed in the above initial position, Oz , 
all further movements are limited to rotation 
about some specified axis that is normal to the 
plane of coordinates. The position ot"the prism 
shown in figure 1 is the resul t of an arbitrary rota
tion from the initial position. The angle between 
the positive x- and y-axes is chosen equal to the 
internal angle, w, of the prism tha t lies opposite 
the reflecting face so that the emergent ray will be 
parallel to the y-axis. 

The principal emergent ray is intercepted nor
mally by a stationary interferometer plate. This 
point of interception and reflection (X5' Y s) is 
considered the object point. The principal ray 
returns from the interferometer along its previous 
path and continues along the axis of the lens to 
the conj ugate plane of the interferometer. The 

3 Such a source can be v irtual and formed by a plane, half·silvered mirror 
that is so orientated that it reflects the light from a real source to the lens. 
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image point, ther efore, r emains on the axis of the 
lens r egardless of changes caused in the position 
of th e obj ec t point by rotating the prism. Any 
lateral change in the position of th e obj ec t point 
is r elative to the fixed in terferometer and ther e
fore corresponds to a lateral change in the position 
of the image of the iuterierometer . Also, a change 
in the effec tive obj ect distance caused by rotat in g 
the prism produces a corresponding change in the 
axial or longitudinal position of Lhe image dis tance. 
Consequently, the lateral shifts and effective ob
ject dis tances of the obj ect point are a measure of 
the lateral and longitudinal shifts, rcsp ectively, 
of the image of the interferometer . Th e corre
spondence between image and object movem ents 
are so well known that this discussion will be 
limited to movements of the obj ec t point alon e. 
The problem then is to locate the position , (X, Y), 
of the axis of rotat ion that will r esult in. a mini
mum shift of the obj ect point as the wavelength 
of t he ligh t, fallin g normally on th e interferometer , 
changes from Al to h 
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FIG URE 1. Diagram showing the relative posi tion of optical 
parts. 

The colli mati ng lOllS, constant dev iation prism, and the interferometer 
plate arc schematically represented . T he coord in ates of t he points that arc 
ind icated by d ots are represented by the symbols in the adjacent paren thesis. 
The sum of the segments Vand (A · V ) is A, the length of the ent rance face 
of the prism, and is the un it of length un which all the computations are based . 
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III. Symbols and Abbreviations 

The solution of this problem requires a con id
crable number of symbol . Th e definition of tho e 
that have not already b een given or that arc not 
obviou from th e figures are listed b elow. 

AI, A2, and A3 arc wavelengths of light correspond
ing to known indices of refraction of the prism . 
Usually these correspond to the C, · D , and F 
Fraunhofer lines. OJ , O2 , and 03 are angles of inci
dence (or angles of em ergence) corresponding to 
wavelengths AI , A2, and A3, respectively. (Jm is the 
valu e of (J when oX5 /o(J= O. A is the length of 
entrance face of prism. L is th e path length of 
principal ray in prism. 

L 2= value of L for A= A2 
p = effective obj ect distance fot' the sa

gittal rays 
P,, = valu e of P for A= Ay (v= l , 2 , or 3) 

LlP = absolute magnitud e of differ en ce 
b etween largest and smallest 
valu es of P in th e ran ge from 
01 to Oa 

Q= effective obj ect di s tance for th e 
m eridian rays 

R = distance from v ertex of angle w to 
the axis of rotation 

V = distance from (X a, Y3) to en trance 
point of axial or principaJ ray 

V 2= 1/2A and is the value of V for A= A2 
W = distance from (X 3, Y 3) to exit point 

of principal ray 
l-V2= v alu e of W for A= A2, d efined in 

eq 14' 
(Xc, Y c) = coorclinates of the" critical point," 

d efined in the t ext 
(X i, Y i) = coordinates of the " intersection 

point," d efined in the text 
X 5y = value of X 5 for A= Ay (v= l , 2, or 3) 
LlX5= absolute magnitude of differ ence 

b etween larges t and smallest 
v alues of X 5 in th e range from 
(JI to (Ja. 

IV. Derivations 

The following relationships are obtained from 
figure 1: 

X j-Xa= V cos((J - w) cscw, 

Ya- Y I = V cos(J cscw, 

X 2- X a= W cosO cSCw 

(1) 

(2) 

(3) 
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Y3- Y2= W cos(O+w)cscw, (4) 

X-X3=R sin(w-et»cscw, (5) 

Y - Y 3= R sinet> cscw, (6) 

X 2= X5, (7) 

Y5=H-Xs cosw, (8) 

The principal ray coincides with the x-axis, 
therefore, 

(9) 

and since the prism must rotate as a rigid body, 
about the axis of rotation, 

(10) 

(02 and et>2 being the values for 0 and et> for the 
initial conditions mentioned above) . 

The object distance for the sagittal rays is the 
sum of the equivalent air path of the principal 
ray [6] in glass, and the path in air, or 

P = X 1+ Y 5-Y2- L cos(o+~fw) cscO (11) 

The corresponding distance for the m eridian rays 
is [6] 

Q= X1 + YS- Y2-L cos20 cscO 
cos(cr + Xw) csc2 (cr + ;fw) (12) 

The values for L and (V + W) , both of which are 
derived from figure 2 by applying the law of sines 
to the several triangles formed in the figure, are 
found to be 

L = 2V cos(a+~w)-

2A sln(cr)cos(a+ w)csc(a+ ~w). (13) 

and 

. 1 ( 1) V + W = 2A sina cos2w csc a+2w . ... (14) 

The application of Shell's law to this particular 
problem gives the equation 

sinO = - n cos( a+~w ). (15) 

from which the values of 01, O2 , and 03 , correspond
ing to "I, "2, and "3, respectively, are obtained. 

The above equations, 1 to 15, are sufficient to 
derive the abscissa; Xs, of the object point; the 
object distance, P, for the sagittal rays ; and the 
object distance, Q, for the meridian rays, in terms 
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of known constants and the parameters 0, X, and 
Y. 

The interferograph uses a slit-like source of 
light that is parallel to the refracting edge of the 
prism; consequently, the effect of the m eridian 
rays is negligible in comparison to that of the 
sagittal rays. The equation for evaluating Q is 
therefore dropped from further consideration in 
this discussion. Should it be desirable to study 
Q, its treatment would be quite similar to that 
which will be followed here for P. · 

I 
I 

I 
/ 

I 

;::> ): 

FIGURE 2. Geom etrical correspondence between equivalent 
isosceles and constant deviation prisms. 

The constant deviation prism is represented by the heavy line en closure. 
with its reflecting face opposite the internal angle w. The mirror image of this 
prism , as reflected in its reflecting face, is completed with t he heavy broken 
linos . The image of the ex it face coincides with the ex it face of the correspond
ing isosceles prism, which is completed with light lines. Consequentl y, the 
path in glass for any given ray of light is the same for either prism and depends 
upon the dimensions and shape of the prism, the position of t he entrance 
point, and the angle of incidence . 

v. Illustrative Application 

To illustrate the solution of this problem for an 
important particular case, a constant deviation 
prism of the Pellin and Broca [7] type is selected 
that has r efractive indices such that 01 , O2 , and 03 

are 54 0 , 55°, and 56°, r espectively. The values 
of wand (J" are 90° and 75°, respectively. By sub
stituting the angles of this prism into the general 
equations and eliminating Y1 and X 2 by means of 
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eq 7 and 9, they redu ce to the corresponding prime 
numbered equations given below. 

Xa= X\- V sinO, (1' ) 

Ya = V cosO, (2') 

X 2= X 5= X 3+ W cosO, (3' ) 

Y2 = Y 3+ W sinO, (4') 

R coS4>= X-X3' (5 ' ) 

R sin4> = Y - Ya, (6') 

Y 5= H, (8') 

cJ> = 0+ 4>2-02, (10') 

P= X\+ Y5- Y2+~L cscO, (ll') 

. L + V = A( 1+ J3)=L2+~ A, (13') 

( 1 ) . 1 W + V = A 1+ .J3 = W 2 + i A, (14' ) 

n = 2 sinO. (15' ) 

On eliminating X 3, Ya, and W by ubstitution 
from oq 1' ,2',3',4', and 14' , the following equa- . 
tions were obtained: 

X 5= X\ - V sino+ ( Wz+~ A - V)COSO, (16) 

Y z= V(cosO-sinO) + ( Wz+~ A )sino. (17) 

Similarly, by eliminating X 3 , Y3 , and 4> from eq 1' , 
2' , 5',6', and 10' , it follows that 

X t = V sinO+ X-R cos(0 + 4>2-02), (18) 

V cosO=Y- R sin (0+ 4>z- 02)' (19) 

On substituting the value of V from eq 19 into 
eq 13' and 18, they become 

L=L2+~ A + [R sin(0 + 4>2- 02) - Yj secO, (20) 

Xt = X + Y tanO-R coS(4)Z-02) secO (2 1) 

The value of V in eq 19 and Xl in eq 21 are 
ubstituted into 16 and 17 to give th e following: 

X 5= X - Y + R [sin (0+ 4>2-02)-
1 

cos (0+ 4>2-0Z) ]+ (W2+ "2 A ) cos 0, (22) 

Constant-Deviation Prism 

Yz=(l - tan O)[Y- R sin (0 + cJ>2-02) ]+ 

(W2+~ A) sin O. (23) 

By replacing Y5 , L , Xl , and Yz in eq 11' by their 
equivalents in eq 8', 20, 21 , and 23 , r espectively, 
the equation for P becomes 

P = X + Y(2 tan 0- 1-csc 20)+H + 

(Wz+~ A ) sin O+~ (Lz+~ A ) esc 0+ 

R[ (1-2 tan O+ csc 20) sin (O + cJ>2- 02)-
cos (0+ cJ>2- 0Z) ]' (24 ) 

According to the above-described initial posi
tion of the prism for wavelength A2, it follows 

that for this position 0= 02, X l= G, and V=~ A. 

By applying these initial conditions to eq I' , 2', 
5', and 6', and by eliminating X 3 and Y3 , solu
tions arc obtained for the initial values of Rand 
4> (i. e., R z and cJ> 2) in terms of known constants 
and the coordinates, (X, Y), of the axis of rota-

tion. They are 
. 2Y - A cos 02 , (25) 
tan 4>2= 2X- 2G+ A sin Oz 

R 2= (X-G+~A sin O2)2+ (Y -~ A cos Oz)z. (26 ) 

By substitu tin o- these values of Rand 4>2 into eq 
22 and 24 , and after choosing values for X and 
Y, the changes in X 5 and P , for any rotation of 
the prism, arc obtained. 

Equation 22 may be wTitten in the form 

(22 ' ) 

where a=X-Y, a nd {3 and a are related by the 
expressions (3 coso = R [sin (cJ>2-02) + COS(4)2-02)], 

and {3 sino = R [sin (cJ>2 - 02) -COS (4)2- 02) ] + W2+~ A . 

By eliminating a from the e equations, an 
expression r elating {3 and R is obtained . A 
study of this relationship will show that when {3 = 0, 
the value of R is imaginary, except for the particu-

lar case when 4>2= 02-~ 7r. Also, for this particu-

1 1 
lar value of 4>2) R = -/2 (Wz+2 A ). When these 

values for 4>2 and R (= R 2) are substituted into eq 
25 and 26, the r esultant values for X and Yare 
found to coincide with the coordinates of the point 
(Xc, Yc), fOllnd by Bloch [4] and Uhler [2], for 
which there is no variation in X 5 as the prism is 
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rotated . This point, designated here as the 
" critical point" (see fig. 3, B), is the intersection 
of the r eflecting face of the prism with the bisector 
of the opposite angle, w, when the prism is in the 
position of initial conditions. For values of {3 
other than zero, the conditions for smallest change 
in X 5 r equire that a maximum or a minimum of 
X 5 must fall at 8= 82 , which is midway between 
81 and 83• This condition is r ealized by equ ating 
the value for X 51 to that for X 53 , which yields the 
straight line, X + Y = X c+ Y c, and which is repre
sented by E-E in figure 3, B . If the axis of 
rotation is located at the critical point, then 
X 51 = X 5Z = X53= constant for all values of 8. The 
critical point, therefore, lies on line E- E . 

While eq 24 does not exactly represent a simple 
sine curve, it does so to a close approximation 
over the limited range of ro tations involved in 
this problem. Consequen tly, the above discus
sion r elating to the variation in X 5, as shown by 
eq 22 , applies equally well to the variation of P 
as shown by eq 24. The straigh t line D-D in 
figure 3 bears the same relation to P that line 
E-E does to X 5 . The point on D-D that corre
sponds to the critical point is indicated by the 
dot above line E-E . The change in P over the 
range 81 to 83 and for this point as axis of ro tation 
is not zero but amounts to only a few microns if 
A is less than 10 cm . The intersection of E-E 
and D-D (Xi, Y i) is designated as the " inter
section point ." 

VI. Results 

The variation in X5 with e, in the range from 
54° to 56°, is shown in figure 4, A, for several 
points selected along the line E-E as posit ions for 
the axis of rota tion. Similarly , in fi gure 4, B, 
the same variation is shown for several points 
selected along the line D-D . The curves are 
labeled with the abscissas of the corresponding 
selected points. If the maxima and minima of a 
curve fall outside this range, as for curves labeled 
X = 0. 525 , 0.531, and 0.560, the value of X 5 

FIG U RE 3. Relation of i mage shifts to posi tion of al-is. 

A, Variation of image shifts, as the coordinates of the axis of rotation of the 
prism are changed ; n, initial position of the prism and the relative position 
of the axis of rotation for min imum image sh ifts. The abscissa scale is com
mon to both parts of this figure. All scale values are based on the length of 
the entrance face as the n nit. The loci of the axis of rotation for minimum 
image shifts with respect to the angle of rotat ion are: for the lateral shift, 
E- E, for the axial shift corresponding to the sagittal rays, D - D, and for the 
ax ial shift correspond ing to the meridian rays, F- P. 
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T he change in the lateral [,osition, X , of the image, with respect to 0, as 
the axis of rotation is moved along line EE of figure 3, B, is given in fi gure 
4, A . The sam e change in image pOSition, X s, as the axis of rotation is moved 
along lioe lJD of fi gure 3, B, is shown in fi gure 4, B. 

increases or decreases throughout this range as 
the prism is rotated and the total absolute shift, 
.c:.X5, equals IX S1 - X 53 1. If a maximum or a 
minimum (indicated by circles on some of the 
curves) falls within this range, say at O= Om, the 
variation in X 5 is opposite for the two ranges, 
01 to Om and Om to 03 , If Om differs from O2, the 
total absolu te shif t is the greater of the two values, 
IX sm - X 5d a,nd IX 5m-X531. If Om= 02 (as for all 
curves in fi O' . 4, A) the shift is .c:.X5= IX 5m - X 51 1= 
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IX s m - X 53 1, since, in this case, X 51= X 53 as was 
the requirement for the determination of line E-E. 

The value of .c:.X 5 corresponding to all points 
a:long E-E of figure 3, B , is represented by the 
broken curve E'-E' of figure 3, A ; the values for 
points along the perpendicular (not drawn) to 
E-E at t.he in.terscc.tion point m'e represen ted by 
E" -E" ; and those for points along the pCl'pen
dicular to E-E at the critical point are represented 
by E"'-E"' . 

The value of .c:.P corresponding to all points 
along D-D of figure 3, B, is represented by the 
solid line D' -D' of figure 3, A; the valu es for pOUlts 
along E-E are represen ted by D" -D" ; and those 
for points along the perpendicular to E-E at the 
critical point are represented by D'" -D"'. 

All lines in figure 3, .A, are composed of one or 
more straight sections except D" -D" and E" -E" . 
These have curvature only where their abscissas 
are in the neighborhood of the abscissa of the 
intersection point, (X/, Y t ) . The nature of this 
curvature is shown more clearly in figure 5 by a 
sufficient enlargement of the scales . The cor
responding curves are id en tified by their designa
tions. The curvature is caused by th e change in 
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FI GURE 5. Enlargement of a small part of figu re 3, A . 
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the range covered by ~X5 as Om moves through the 
range from 01 to 03• 

As there is usually some error in placing the 
prism relative to the chosen axis of rotation, a 
study of figure 3, A, will show that locating the 
axis of rotation at any point along line E-E of 
figure 3, B, and over the range shown by this 
figure should be about equally good insofar as 
~X5 is concern ed. If the critical point should be 
chosen for the axis and an error of only 0.01 XA 
were made in its placement, the resultvnt value 
for ~X5 could be three times as large as it could be 
if the axis were accurately placed at the inter
secting point. Also, an error in placement at the 
intersecting point that exceeds 0.02A cannot pro
duce a ~X5 in excess of the largest ~X5 that can be 
caused by an equal error of placement at the criti
cal point . In the immediate neighborhood of the 
intersecting point the values for both ~P and 
~X5 are small ; values for ~P (curve D"-D" ) in
creasing rapidly as the axis moves along E-E from 
this point and remaining almost constant (curve 
D'-D' ) as the axis moves along D-D ; values for 
~X5 (curve E"_E") increasing rapidly as the axis 
moves from this point along D-D and remaining 
almost constant (curve E'-E') as the axis moves 
along E-E; and both increasing more or less 
rapidly for intermediate directions . Consequen tly, 
the point of intersection of D-D and E-E is 
chosen for the axis of rotation. 

In case th e meridivn focus is dominant, the 
recommended point for the axis of rotation of the 
prism would be at the intersection of lines E-E 
and F-F (fig. 3, B), since F-F bears the same rela
tion to the meridian rays that D-D does to the 
sagittal rays . 

This enables a designer to produce a mono
chromator consisting of a prism and a single 
achromatic lens for which the image distance is 
equal for three selected wavelengths of light. 
The treatment described here was used in the 
design of an instrument for the automatic record
ing of changes in interference phenomena [5]. 

A single simple lens may be used with a con
stant deviation prism to obtain a monochromator 
having a common focus for two selected wave
lengths of ligh t . By equating the right side of 
eq 22, for X5b to that for X 53 and the right side of 
eq 24, for PI , to that for P3 , two linear equations 
in X and Yare obtained. The simultaneous solu-
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t ion of X and Y for these equations give the 
position of the axis of rotation desired. If the 
lateral shift is unimportant, the focus may be 
made common to light of three wavelengths. 

VII. Conclusions 

The above treatment shows that when a con
stant deviation prism is use'd with a single lens to 
form an image of a fixed source or object, the image 
moves when the prism is rotated to change the 
color of the light. The magnitude of this image 
shift is found to depend upon the position of the 
axis about which the prism is rotated, the optical 
and geometrical properties of the prism, and the 
dimensions of the system. A survey of the litera
ture shows that the lateral componen t of this image 
shift may be completely eliminated by choosing 
the axis at a certain point relative to the prism and 
the optical axis of the lens. In this paper it is 
shown that the lateral component of the shift will 
be negligible if the axis is chosen in the neighbor
hood of the above-mentioned point and on a 
certain straigh t line that passes through it. Simi
larly, it is found that the longitudinal (or axial) 
component of the shift will also be negligible if 
the axis is chosen in the neighborhood of another 
point and on a straight line that passes through it. 
These two straight lines intersect at a point tha t is 
conveniently located for the axis of rotation of the 
prism. 

A fixed focus mono chroma tor for ultraviolet 
work may be made by using a suitabJ eisotropic 
crystal for the prism and collimator. This can be 
accompli shed by placing the axis of rotation so 
that the change in effective object (or image) 
distance, produced by rotating the prism, is just 
suffi cien t to cancel the chromatic aberration of the 
lens. 

V~II. References 

[II H. S. Uhler, Ph ys. Rev. 29,37 (1909). 
[2] H. S. Uhler, Astrophys. J. 47, 65 (1918). 
[3] W. E. Forsythe, Astrophys. J. 45,278 (1917). 
[4] E. Bloch, J . phys. 7 [5], 145 (1917) . 
[5] J. B. Saunders, J . Research NBS 35,157 (1945) RPI668. 
[6] Southall's principles an d methods of geometrical 

optics, p. 92 ftue! 93 (The Macmillan Co., New York, 
N. Y., 1910). 

[7] P. Pellin and A. Broca, J . phys. 8 [3], 314 (1899). 

WASHIN GTON, February 13, 1948. 

Journal of Research 


	jresv41n4p_287
	jresv41n4p_288
	jresv41n4p_289
	jresv41n4p_290
	jresv41n4p_291
	jresv41n4p_292
	jresv41n4p_293
	jresv41n4p_294

