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Viscoelastic Properties of Polymer Solutions 1 

By John D. Ferry 2 

In a cOllcentrated polymer solution, the entanglement of long-chain molecules results in 
a transient network structure, to which may be attributed certain aspects of the viscoelastic 
behavior of such a system. A sui table mechanical model for rcpresenting this network as a 
first approximat ion is a retarded Maxwell element with one spring and two dashpots.Ex­
perimental measurements of mechanical properties of polymer solut ions may be made eit h er 
by periodic deformat ion under conditions where inertia forces can be neglected or by propa­
gation of transverse waves. The data are expressed in terms of frequency-dependent 
parameters from which can be derived the constants of t he correspo!1ding m echanical model. 
A solution of polystyrene in xylene is cited as an exampl e. In this case, analysis in term s of a 

. recent theory of Kuhn suggests that elastic energy may be stored in the network strands by 
twist a gains t t he potential hindering free rotation about bonds in t he chains. 

I. Entanglement in Concentrated 
Solutions 

The polymer solutions discussed in this paper 
lie in the concent ration range from 5 to 50 per­
cent- more concentrated than the very dilute 
solutions commonly used for measurements of 
viscosity and osmotic pressure and other properties 
from which the behavior of single molecules is 
deduced, but more dilute than the usual commercial 
plastic, which may contain from 50 to 100 percen t 
of polymer mixed with a plasticizer. Solutions in 
this range are used in plastics technology- in 
spinning, extrusion , and coating processes. Aside 
from their technical importance, they are of 
interest because of their remarkable mechanical, 
optical, and dielectric properties. Their mechan­
ical properties are intermediate between those of 
solids and liquids; these solutions are both viscous 
and elastic. 

Examples may be cited to illustrate three very 
different types. Lightly vulcanized rubber swol­
len in cyclohexane to a concentration of 20 percent 
is a quivery, elastic gel. A variety of evidence 
shows that the long-chain molecules are bound 
together at widely spaced points by primary 
chemical bonds, forming a network: that can be 
broken only by ch emical deeomposition; but there 

I Thi~as presented as part of tbe 1946--47 series of lectures on tbe 
P ropert ies of High Polymers given at the Kational Bureau of Stand ards. 

, Department of Chemistry, University of Wisconsin . 
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is· very little hindrance to motion of the chains 
except for these occasional cross-links. Polyvinyl 
chloride dissolved in cyclohcxanone at the same 
concentration is a sluggish gel. There are no 
primary bonds, as shown by the fact that the gel 
can be dissolved by adding more solven t. N cver­
theless, the tendency of polyvinyl chloride mole­
cules to associate, segmentwise, with dipole inter­
action (as shown by the ready formation of crys­
tallinc regions in the solid state [1] 3 and association 
in dilute solution [2]) , makes plausible the con­
ccpt that there is a network here, also, held to­
gether by secondary bonds caused by association 
of the long chains here and there along part of 
their length. The expectation that associat~on 
can occur anywhere along a molecule would ex­
plain why the gel is sluggish and viscous, in 
contrast to swollcn rubber where the chains are 
tied only at a few points. It also would explain 
why a broken gel can " heal" upon standing, 
especially if warmed; the associations simply 
form again , the rearrangements being facilitated 
by heating and cooling the system. Finally, 111 

polystyrene dissol yed in xylene at the same eon­
centration of 20 percent, a viscous liquid, there 
are evidently not even any secondary bonds be­
tween ehains, sinee the liquid flows with no yield 
value. Nevertheless, for very sudden stress, or 

3 Figures ill b rackets indicate:the literature references at t he end of th is 
paper. 

53 



alternating stress, the system behaves as a solid . 
Such behavior may be at least partly ascribed 
to entanglement of the long molecules with each 
other at this concentration. Consideration of the 
average volume pervaded by a single molecule 
[3] leads to the conclusion that, for a molecular 
weight of 100,000 to 200,000, entanglement, or 
overlapping of the regions that different molecules 
on the average pervade, ocem's at concentrations 
as low as 2 to 5 percent. Thus the entanglement 
at a concentration of 20 percent must be consider­
able. The resulting structure probably behaves 
as a network, providing it is deformed quickly 
enough , before the molecules can move out of the 
way of each other. A schematic picture contrast­
ing the structures of these three solutions is shown 
in figure 1. 

'Ve are concerned here with attempts to obtain 
information from measurements of viscoelasticity 
about this entanglement, which is common to all 
three types of polymer solutions, and we seek it 
primarily in solutions like that illustrated in the 
third part of figure 1, where primary and secondary 
bonds are absent. 

II. Choice of a Mechanical Model 
It has been customary to represent viscoelastic 

behavior by models of elastic elements (springs) 
combined with viscous elements (dashpots, or 
pistons moving in a viscous medium). It is usually 
assumed that the viscous elements are N ew­
tonian- the rate of displacement being propor­
tional to the force applied- and that the elastic 
elements follow Hooke's Law- the displacement 

Primary Bonds Secondo ry Bonds Entanglement 

FIGURE 1. Schematic illustration of types of netw01'ks in concentrated polymer solutions, involving primm'y bonds, 
secondary bonds, and entanglement. 

Of course, entanglement must exist to some 
extent in the first two types of solutions as well as 
the third [4]. Under certain conditions, such as 
su bj ection to stress over comparatively long time 
periods, which allow opportunity for disentangle­
ment, the effects of transitory overlapping of 
chains can no doubt be disregarded in comparison 
with those of the more permanent links repre­
sented by primary and secondary bonds. How­
ever, for a complete descrip tion , en tanglement 
must be taken into account in all three systems. 
It should be of most significance in experiments 
where a solution is subj ected to very brief, small 
stresses that do not perceptibly distort the net­
work. 
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being proportional to the force applied. Eyring 
and his collaborators [5] have shown that in solids, 
especially fibers, nonlinear elements are necessary 
to describe mechanical behavior; but in rather 
fluid solu tions, when the applied stresses are small, 
linear springs and dashpots may be expected to 
suffice. 

If we can imitate the mechanical properties of 
a certain polymer solu tion by one particular 
mechanical model, we can also imitate it by many 
other mechanical models. This fact was illustrated 
by Simha a few years ago [5] and was also empha­
sized in a recent paper by Alfrey and Doty [7] . 
For example, to represent the behavior of a poly­
mer solution, a Maxwell model may be employed. 
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The Maxwell element is a spring and a dashpot 
in series, and the model employs a number of 
such elements in parallel. But if such a Maxwell 
model works, then so also will a Voigt model. 
The Voigt element is a spring and dashpot in 
parallel, and the model employs a number of such 
elements in series. By propel' choice of the spring 
and dashpot constants, these two models will 
behave exactly the same under all manner of 
conditions- steady stress, abrupt stress, and oscil­
lating stress. 

Since we shall have a choice of mechanical 
models to represent the viscoelastic behavior of a 
high polymer solution, it will be advantageous to 
select one that can be interpreted, as far as possible, 
in terms of the polymer molecules and the motions 
that they undergo when the solution is deformed, 
and in which the ela tic and viscous elements may 
perhaps be identified with molecular processes. 
The simplest possible model for the third network 
of figure 1 is a spring in parallel with a viscosity 
that delays its response to stre s and in series wi th 
another viscosity that allows relaxation; this may 
be called th e re tarded Maxwell elemen t (fig. 2). 

lip 
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FIGURE 2. Retarded Maxwell element. 

The mechanical properties of some polymer solu­
tions as r evealed in certain types of experimen tal 
measurements can be represented by this model as 
a fIrst approximation. It is certain that a more 
complicated model will be required to r epresent all 
mechanical properties. Nevertheless, most of this 
discussion will be based on the behavior of the 
simple retarded Ma)"'Well element. 

It is natural to identify the spring of this 
mechanical representation with the average strand 
of the network between t vm temporary points of 
entanglement. There are three possible ways in 
which such a molecular strand might store elastic 
energy. (a) Energy is stored by bond deformation 
(stretching and bending); Kuhn [8) has calculated 
that the contributions of stretching and bending 
to elongation of a fully extendcd paraffin chain 
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hould bc roughly equal and that the force constant 
should be proportional to l /Z, where Z is the 
number of atoms in the chain. For Z = 100 it 
should be about 2,000 dyne/cm. (b) Energy is 
stored by twist around the bonds against the 
hindering potential, which interferes with free 
rotation; Kuhn [9) has calculated that the force 
constant should be proportional to 1/Z2. For the 
above chain in randomly kinked configuration it 
should be about 0.5 dyne/cm . (c) Energy is stored 
by decrease in entropy when extension restricts the 
chain to less probable configurations; the force 
constant is proportional to l /Z [8), and for the 
above chain it is about 0.6 dyne/cm. 

Mechanisms (b) and (c) are mutually exclusive; 
if the interval of an experiment is too short to 
allow rotation over po tent ial barriers into new 
positions of minimum potential energy, there can 
be no statistical restoring force or "rubberlike" 
elasticity; if the interval is long cnough to allow 
many rotational rearrangements, there can be no 
torage of elastic energy against the hindering 

potential. The critical time interval is, according 
to Kuhn, proportional to Z. The extension caused 
by mechanism (a) is probably so small in solution 
that it can be neglected altogether. This mech­
anism is analogous to a very stiff spring in eries 
wi th our mechanical model, which is never per'cep­
tibly stretched by the forces applied. 

The two viscous components in the model can 
also be interpreted roughly. The parallel viscosity 
is the frictional resistance to rearrangements of 
chain segments involved in extending the spring, 
due to both the viscosity of the solvent and the 
interference of neighboring chains. The series 
viscosity permits relaxation of tress, due to three 
possible processes: (a) rotation around bonds into 
new positions of minimum potential energy, (b ) 
slippage of strand ends by disentanglement, (e) 
chemical decomposition resulting in breaking of 
strands. The last of these is ordinarily a very slow 
process, which may of course be ignored in en­
tanglement networks; the times involved are of 
the order of days or months. In the case of 
rubbers, the chemical chain scission has been care­
fully studied by 'l'obolsky [10) . 

If a poIymer olution is subj ected to stresses 
that are large enough or prolonged enough in time 
to produce a substantial distortion of the network 
from its normal configuration, it may be expected 
that the mechanical properties will appear quite 
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-different f,rom those measured under conditions 
where only slight rearrangements of chain seg­
ments are involved. This discussion is concerned 
'Only with the latter case- the response of a solu­
tion to small, brief stresses. Although such re­
-sponse can be obtained by transient methods, in 
which a momentary stress is suddenly applied and 
the resulting deformation is subsequently followed, 
it is ordinarily more convenient to study the effects 
'Of periodically varying stresses [7, 11]. 

Experimental measurements of the response of 
a polymer solution (01" other viscoelastic material) 
to sinusoidally varying stress can be expressed in 
terms of cE'rtain parameters that will be presently 
·defined. By comparing the frequency dependence 
·of these parameters with the calculated behavior 
'Of models it is possible to select one- that of fig. 2 

'01' one more complicated if necessary- which will 
Tepresent the data, and to obtain numerical values 
'Of the spring constants and dashpot viscosities, 
which may be related to the nature of the network 
-structure and the properties of the individual net­
work strands. 

The methods available for measurements of this 
sort fall generally into two classes: those in which 
the inertia of the material can be neglected in the 
-equations of motion, and those in which it can~ot 
:[11]. In the former, the size of the sample is con­
siderably less than the wave-length of elastic vibra­
tions, or else the damping characteristics of the 
material are so marked that no vibrations are prop­
~gated. In the latter, the size of the sample is of 
the same order of magnitude as, or greater than, 
the wavelength of elastic vibrations, so that 
vibrations of one kind or another can be set up and 
measured. The applicability of each method thus 
depends on the size and consistency of the sample 
and the frequency range within which measure­
ments are to be made. One example of each class 
will be given here : the electrodynamic method of 
Philipp off [12], in 'which the inertia is neglected, 
and the method of propagation of transverse waves 
in extended media [13], in which it is not. 

III. Experimental 
ertial Effects 
Neglected 

Methods in Which In­
in the Medium Are 

When a sample of material is subjected to 
sinusoidally varying shear stress, it responds with 
a sinusoidally varying strain, which may be out 
of phase with the stress (fig. 3). At a single 
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FIGURE 3. Sinusoidally varying strain in response to 
sinusoidally varying stress. 

frequency, the mechanical characteristics are 
fully described [11] by two parameters, which 
may be chosen as [GJ, the absolute rigidity, or 
ratio of peak stress to peak strain, and 1/;, the 
phase angle between them; or, alternatively, as 
G' , the real part of the complex modulus of 
rigidity, and 1/' , the real part of the complex 
viscosity. The relations between these quantities 
are as follows, 

IGI = -VG'2 + G"2= -VG'2+ w27J '2 

(1) 

tan >f = G" /G' = 7J' l r," . 

Here G is the complex modulus of rigidity [14] 
and n is the complex viscosity [15]. 'l'he real 
part of the rigidity, G', is the component of stress 
in phase with the strain divided by the strain. 
The real part of ·the viscosity, 1/', is the component 
of stress in phase with the rate of strain divided by 
the rate of strain. 

In describing the behavior of a mechanical 
model, it is customary to assign each spring a 
rigidity G and each dashpot a viscosity 1/, although 
dimensions of these constants (dyne/cm2 and 
dyne-sec/cm2) are not the same as those of the 
force constant of a real spring (dyne/cm) and the ' 
viscous resistance of a real dashpot (dyne-sec/cm), 
A given model will show characteristic frequency 
dependence of the quantities G', 1/' , and [G[, 
which may be compared with experimental data. 
For the retarded Maxwell element (fig. 2), the 
frequency dependence of G', 1/' , and [G[ is given 
by the following equations [15, 11]: 

G' = Guhs2j[1 -1- w2(Ts+ Tp)2] (2a) 

1/' = 1/s[1 -1- W2Tp( TS -1- Tp) ]/[ 1 + w2( TS + Tp )2] (2b) 

[G[ = GWTs(1 + w2Tp2)1/2/[1 +w2( TS+ Tp)2Jl /2 (2c) 
where W is 271 times the frequency, and the charac-
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teristic t ime constants TS and Tp are defined as 
T}s/O and T}p/O, r espectively, T}s and T}p being the 
series and parallel viscosities. Plots are shown in 
figures 4 and 5; the abscissa is log WTs, and curves 
are drawn for different values of the ratio Tp/TS. 
At low frequencies T}' = T}s and 10 1= 0'= 0; the 
model behaves like a single viscosity. At high 
frequencies, Tf' and 0' approach constant values , 
and 101, a measure of the actual "stiffness," 
increase without limit. 

The ollly extensive data 'with which these model 
curves can be compared at present are those of 
Philippoff for the r eal part of the viscosity, T}' , in 
solutions of cellulose acetate in dioxane [12]. In 
his appara t us, a olution is subj ected to oscillating 
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FIG U RE 4. D ependence oj 0' and 'I ' on f requency Jor the 
retarded Maxwell element. 

Figures opposite the curves denote values of T,JT s· 
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FIGU HE 5. DelJendence of IGI un frequency Jor the retarded 
lVl axwell element 
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shear stress by a needle moving up and down along 
its axis in a narrow tube. The needle i attached 
to a rather stiff steel band , whieh j displaced by 
electromagnets whose field coils are energized by 
an oscilla tor and interact in such a way as to pro­
vide an electromechanical feedbacl. R esonance i 
achieved at variou frequencie by adjusting the 
tension of the band and tuning the feedback cir­
cuit. At resonance, T}' = Ifl/aw lxl, where If I i the 
m!tximum force acting (determined by the current 
drawn, together with a diJ:ect-current force-current 
calibration ), a is a constant with dimensions of 
length involving the depth of immersion and the 
radii of tube and needle, and Ixl is the maximum 
excursion, determined by a micrometer screw. 

Values of T}' obtained by Philippoff for solution 
of cellulose acetate in dioxane are plotted against 
the frequency in figure 6, and the ratio of T}' to T} , 
the viscosity in steady flow, is plotted against the 
logarithm of the frequency in figUl'e 7. It appears 
to be approaching zero with increasing frequency, 
as in the case of the retarded Maxwell element 
with Tp = O (the ordinary Maxwell element); thus 
the r etarding viscosity appears to be negligible, at 
least at the higher frequencies. Ho,vever, Lbe 
decrease in T}' is more gradual than for the model, 
so that the latter mu t be modified omewhat to 
describe the results. Philippoff obtained an excel­
lent fit with the relation Tf' = B I[l + (WT) 3/4], \;vhere 
Band Tare empiricl11 constants of uncertain sig­
nificance; B was not equal to T} , although of the 
same order of magnitude. .Al ternatively, a fa ir ly 
good fit for T}' IT} a a fun ction of WTm , where T", is 
the r eciprocal of the value of W at which T}' ITf = 1/2, 
is achieved by the Wiechert-Wagner di tl'ibution 
of r elaxation times [16], with b, the distribution 
parameter , chosen as 0.5 . Choice of the best 
modification of the model of figure 2 for describ­
ing these results should be facilitated by further 
experimental work on this and other systems. 

A possible method for measuring T}' , and under 
some conditions 0' as well , for polymer solutions 
is based on the use of an electromechanical 
transducer [17, 18] . When a needle is oscillated 
along its length , as in Philippoff 's apparatus, by a 
moving-coil loudspeaker, the elastic and viscous 
characteristics of the mechanical part of the 
system C9,n be calculated from measurements of 
changes in resistance and reactance of the coil. 
Thi teclmique has the advantage that a very low 
energy input suffices for measuring the electrical 
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FIGURE 7. Values of 1)'1) f or solutions of cellulose acetate 
in dioxane, plotted against the loga1"ithm of the jJ-equency 
(data from Philippoff [1 2]). 

quantities by an impedance bridge, and the 
amplitude of motion is therefore extremely small 
(undetectable by ordinary methods), so that the 
possibility of any non-Newtonian effects IS 

minimized. 
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IV. Experimental Methods in which In­
ertial Effects in the Medium Are Not 
Neglected: Propagation of Waves 

The simplest case of a mechanical disturbance 
that involves the inertia as well as the rigidity and 
viscosity of the material concerned is the propaga­
tion of a plane wave of shear in a medium of 
infinite extent. If the wave is sinusoidal and 
exponentially damped, it is described by the 
equation 

(3) 

where u is the displacement, t the time, x the 
distance from the source of vibration, A the 
wavelength, and Xo the critical damping distance 
(within which the amplitude falls off to l /e of its 
initial value) (fig. 8). For a perfect elastic solid ~ 
(in which Xo is infinite) the modulus of rigidity, G, I 

is given by W 2A2p/47r2 , where p is the · density. 
It is convenient to define for a polymer solution, 
or other viscoelastic medium, an analogous 
quantity G=W2A2p/47r2 . The behavior of the 
system at any given frequency can then be 
characterized by G, and the ratio A/xo (which is a 
measure of the severity of the damping). 

The two frequency-dependent parameters G 
and A/XO determined from wave propagation can 
be used interchangeably with the two parameters 
G' and rl' determined from experiments that do 
not involve the inertia of the material. They are 
related by the following equations: 

t 
'E ., 
E ., 
u 
o 
~ uo/e 
is 

, G 167r3A/xo 
11 ,--=; [47r2+ (A/xo)2J2 

I 
I 
I 
I 
1 

1 

A~ 

( 4a) 

( 4b) 

Distance ->-

FIGURE 8. Exponentially damped sinusoidal wave. 
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It is useful to calculate the frequency depend­
ence of G and 'A/xo for mechanical models, for 
direct comparison with experimental data . For 
the retarded Maxwell element (fig. 2), the behavior 
is as follows [ll]: 

(5a) 

271-[l + W2Tp(Tp + TS)] . (5b) 
WTS+ "/w2Ts2+ [1 + w2TP(Tp + Ts )J2 

Plots are shown in figures 9 and 10. Damping is 
severe at low frequencies because of the series 
viscosity and at high frequencies because of the 
parallel viscosity. Only at intermediate fre­
quencies is the damping small enough to permit 
measurement of wave propagation (for practical 
purposes, when 'A/xo i less than 3 or 4 ). The 
larger the ratio Tp/TS, the smaller is the frequency 
range within which waves can be observed. 

Shear waves may be set up in a solution con­
tained in a rectangular cell by driving a thin plate 
up and down in its own plane with a loudspeaker 
[13]. If the cell is long enough in the direction 
of wave propagation so that the wave is damped 
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2.0 

'.0 1-----------~75~;;;;~~=====-------1 
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FIGURE 9. Dependence of G on frequency f or the retarded 
lYI cucwell element. 

Figures opposite (he curves denote values of T p i TS. 
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FIGURE 10. Dependence of 'A (xo on fr equency for the 
retarded 1\1£ ax well element. 

Figures opposi te (be curves denote values of T p i TS . 

out before it reaches the end, no reilection occurs, 
and the m edium may be considered of infiJlite 
extent in this direction. As for the sides of the 
cell, through which the wave is ob erved, a recent 
investigation [19] shows that their influ ence on Gis 
negligible but that they do affect the damping 
somewhat. 

If the solution exhibits strain double refraction, 
the wav can be observed by stroboscopic polar­
ized light flashing at the frequency of vibration. 
By introducing a double quartz wedge inclined at 
a small angle to the direction of wave propaga­
tion, a pattern is obtained that is closely related 
to the wave itself (fig. 11 ), and from which values 
of 'A and Xo can be calculated. The corresponding 
values of G and 'A/xo (the latter subject to a mall 
correction for the effect of the sides of the cell [19]) 
are then plotted against the logarithm of the fre­
quency and compared with the curves of figures 
9 and 10, or, if necessary, similar curves for more 
complicated models. 

Wave propagation data for one system,4 cellu­
lose xanthate in aqueous sodium hydroxide solu­
tions, follows almost quantitatively the behavior 
of a retarded Maxwell element. Results on con­
centrated solutions of polystyrene in xylene [20] 

• 'l'be author is indebted to the Laboratory of E . 1. duPont de Nemours 
and Co. at R ichmond , V irginia, for permission to refer to these results. 

59 



FIGURF. 11. Pattern faT transverse waves propagated in 
41.5-percent po/ystY1'ene in xylene, 15° C, 1,250 c/s. 

are in qualitative agreement with the behavior of 
a retarded :Maxwell element with a very small 
ratio of Tp/ TS, and within a small frequency range 
a semiquantitative fit can be obtained (fig. 12). 
Studies over a wider frequency range are in prog­
ress . The rigidity G is found to be proportional 
to the third power of the concentration. 

V. Interpretation of Model Constants 

From model constants experimentally deter­
mined in this way, it should be possible to distin­
guish among the various molecular mechanisms 
of elasticity and relation mentioned in section II. 
The first step is to relate the rigidity of the entangle­

-ment network with the elasticity of a single strand. 
We define a strand as a segment of a molecule 

between two points of entanglement, and for a 
rough calculation assume that, although the strands 
are randomly kinked, the vector joining the ends 
of each strand is of uniform length, l , and that 
one-third of these vectors are parallel to each of 
the x, y , and z axes. (Random orientation should 
affect the result only by a small numerical factor. ) 
If a yz-plane cuts v strands per square centimeter 
running in the x direction, then the modulus of 
elasticity is E =VKl, where K is the spring constant 
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(force per unit extension) of a single strand. Fur­
ther, v= N sl/3, where Ns is the number of strands 
per cubic centimeter, one-third of which run in the 
x direction [10], and G= E /3 (Poisson's ratio being 
negligibly different from 1/2), so G= KNsl2/9. 

We define a point of entanglement as occurring 
when two monomer units occupy neighboring 
pseudolattice cells (in the sense used in the 
theory of thermodynamic properties of polymer 
solutions [21]), and the four chain segments 
attached to these two units are suitably oriented 
to support stress (fig. 13). Each monomer unit 
has z neighboring cells, where z is the' cOOI·dina­
tion number of the pseudolattice; of these, two 
are always occupied by adjacent monomer units I 

in the same chain, the molecular length being 
considered so great that the chain ends can be 
neglected. Assuming that the concentration of 
monomer units in the remaining cells is the same 
as in the solution as a whole, the number of points 
of entanglement per cubic centimeter is Nc=Pe­
(z- 2)v(NZ) 2, where N is the number of polymer 
molecules per cubic centimeter, Z the degree of 
polymerization, and v the volume of a monomer 
unit, and Pe expresses the probability of orienta­
tion for entanglement. The value of Pe may be I 

2.0 r-----------------------------------~ 

o o 

o 
o 

~ 1.0 I--------=::==~~O'::~r_==:::::::::::::=-~ 

O~ ____ ~ ____ ~ ____ L_ ____ ~ ______ J 

o 0.2 0 .4 0. 6 0.8 1.0 I 

FIGURE 12. Dependence of G (open circles) and X/To (filled 
circles) on frequency for a solution of polystyrene in xylene, ! 

concentration 0.39 g/c1n3; temperature 21.6° C. 

Curves are drawn from eQuations 5, with G= 1.64X10' dyne/cm', TS= 
4.0XlO-' sec, and T p/Ts=O.016. -_. 
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FIGURE 13. Illustration of a point of entanglement. 

expected to be smaller than 1/4, and it may be 
considerably malleI'. 

If the number of entanglement points per chain 
is large, N 8= 2Nc. Thus G= 2pe(z - 2)v(NZ)2-
Kl2/9. Now K dep ends on the trand length, in 
a manner determined by the elasticity mecha­
nism. Although a previous discussion [20] cited 
bond bending a a possible mechani m here, it 
now seems likely that this deformation would be 
too small to be detectable, and that the choice 
is between the other two mechanism listed 
above. If . the strand ela ticity is due to twist 
against the potential hindering free rotation, 
K should be proportional to 1/Z ,2, according to 
Kuhn [9], while if it i a rubberlike elasticity, 
K should be proportional to l iZ" where Z8 is the 
number of monomer unit per strand. The 
value of l2 is . a function of Z8; for a randomly 
kinked chain , l2=A mbZs, where A m and b ~re 
lengths r elated to the dimensions of the monomer 
unit and the chain flexibility [9]. The product 
Kl2 should then be independent of Z8 in the case 
of rubberlike elasticity and inversely propor­
tional in the case of hindered rotation elasticity. 
Since Z s= NZIN 8= 1/2pe(z-2)vNZ, and NZ is 
a measure of the weight concentration, it follows 
that for rubberlike elasticity the rigidity should ' 
be proportional to the square of the concentration 
and for hindered rotation elasticity it should be 
proportional to the third power. The observed 
coneentration dependence in polystyrene-xylene 
solutions corresponds to the latter mechanism. 

If the spring represents hindered rotation elas­
ticity, the series dashpot may represen t relaxation 
by rotation over the energy barrier, also treated 
by Kuhn [9]. The relaxation time for this 
process is proportional to Z s and hence inversely 
proportional to concentration. The value of 
T S derived from damping measurements [201 
doe deerease with inereasing concent.ration in the 
poly tyrene-xylene case, although the data avail-
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able at presen t do not permit a test of inverse 
proportionality. 

It is of interest to make a more detailed calcu­
lation based on the equation of Kuhn. Kuhn 's. 
expression for K is 192q/'P1'2jI'AmbZ!, where q is the 
potential barrier, 'PI' the angle between successive 
positions of minimum energy (here 27r/3) , and jl'­
the number of chain bonds per monomer unit 
(here 2). Substituting this into the above expres­
sion for 0, and noting that v= M o/N oP2= c/pzNZ, 
where lifo i the molecular weiO"ht of a monomer 
unit (here 104), No Avogadro ' number, P2 the 
density of the polymer (here 1.05), and C the con­
centration in grams per cubic centimeter , we obtain. 

For Noq we choose a value estimated by Kuhn. 
from viscosity and flow double refraction of dilute­
solutions of polystyrene in cyclohexanone, 11 ,400' 
cal, and set z= 6. Then substitution of the ex­
perimental value of 0 for the polystyrene solution 
described in the preceding ection determines the 
unknown probability pe as 0.0020. According to 
thi rather remarkably small value, only one pair 
of monomers in five hundred that occupy neigh­
boring cells in the pseudolattice become entangled. 
The average number of monomer units in a net­
work trand (Z8) at the concentration of thi 
solution, 0.39 g/cm3, is then about 160. 

Further work will be neces ary to di. tinguish 
the possible roles of intramolecular rotation and 
slippage at the points of entanglement in stre 
relaxation. In any case, it appears that the very 
loy? value of the probability factor P. may repre­
sent the necessity of rather tight looking at each 
point of entanglement to permit support of stre . 
over the time intervals involved in these experi­
ments. 

VI. Summary 

Dynamic studies of the mechanical propertie 
of concentrated polymer solutions may be applied 
to gain information concerning molecular entangle­
ment, especially in cases where linear molecules 
are intertwined with no junctions by primary 
or econdary bonds among them. Frequency­
dependent parameters obtained from direct meas­
urements of r esponse to sinusoidal stress, or 
from the propagation of transverse wave, are 
compared with the calculated behavior of mechan-
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ical models. In an example cited, a solution of 
polystyrene in xylene, data within a limited 
frequency range are fitted by a retarded Maxwell . 
element, characterized by one rigidity and two 
viscosities. The dependence of the former on 
concentration suggests that the elastic response 
involves the hindering potential opposing free 
rotation about bonds in the molecular chains. 
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