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Viscoelastic Properties of Polymer Solutions'
' By John D. Ferry?®

In a concentrated polymer solution, the entanglement of long-chain molesulog reaults in
a trangient network structure, to which may be sttributed certain aspeots of the visocoelsatia
behavior of such s system. A suitable mechanical model for representing this network as A
first approximation ia a vetarded Maxweall ¢lement with one spring and two dashpots, Ex-
perimental measuramaents of mechanical propeorties of polrmer solutions may be made vithor
by pericdic deformation under conditions whers inertia foraes can be veglected or by propa-
gaticn of frensverse waves. The data are expresged ln terms of Mrequency-dependent
parameters from which ean be derived the conztants of the correaponding mechanical naodel,

A solution of polystyrene in xylene is cited 28 B0 example.

Io thia ease, aoelyeia io terms of &

- reoent theory of Kuhn suggests that eisstio energy may he stored in the network strands by
twiah against the potential hinderiog free rotation about bondes ino the chaina.

I. Entanglement in Concentrated
Solutions

The polymer solutions discussed in this paper
lic in the concentration range from 5 to 50 per-
cent—more concentrated than the wvery dilute
soluticns commonly vsed for messurements of
viscosity and osmotic pressvre und other properties
from which the behavior of single molecules is
deduced, but more dilute than the uwausl commercial
plastie, which may contain from 50 to 100 percent
of polymer mixed with a plasticizer. Soclutions in
this range are used in plastics techhologyr—in
gpinning, extrugion, and coating processes, Aside
from their technical importance, they are of
interest becgnse of their remarkable mechanical,
optical, and dielectric properties. Their mechan-
ical properties are intermediate between those of
solide and liquids; these solutions are both viscous
and elastic.

Examples may be cited to illustrate three very
different types. Lightly vuleanized rubber swol-
leo in cyclohezane to a concentration of 20 percent
is & quivery, clastic gol. A variety of evidence
showsa that the long-chain molecules are hound
together at widely apsced peoints by primary
chemical bonda, forming a network that can be
broken enly by chemical decomposition; but there
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ia very little hindranee to motion of the chains
except for these occasionsl cross-links.  Polyvinyl
chloridea dissolved in cyelohexanone at the same
concentration is & sluggish gel. There are ho
primary bonds, as shown by the fact that the gel
can be disstlved by adding more solvent. Never-
theless, the tendency of polyvinyl chloride mole-
cules to associate, segmentwise, with dipole inter-
action (s shown by the ready formation of crys-
talline regions in the solid state [1]° and association
in dilute solution [2]), makes plausible the con-
capt that there iz & network here, also, held te-
gether by secondary bonds caused by association
of the long chains here nnd: thers along pert of
their length. The expectation that “asscciation
can oceur anywhere along a molecule would ex-
plain why the gel is sluggish end viseous, in
contrast to swollen rubber where the chains are
tied only at e few pointa. It also would explain
why a broken gel can “heal” upon standing,
especially if warmed; the associations simply
form again, the rearrangements being facilitated
by heating and cooling the system. Finally, in
polystyrena dissolved in xylene at the same con-
centration of 20 percent, a viscous liquid, there
are evidently not oven ohy secondary bonds be-
tween chaing, gince the liquid flows with no yield
value. Ncevertheless, for very sudden stress, or

! Figuree o brackets Indisaie]the Iltarstore meferansey ot (he and of this
paper.
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elternating stress, the system behsves as a solid. .

Such behavior may be at least partly ascribed
to entanglement of the long molecules with cach
other at this eoncentration. Consideration of the
‘average volume pervaded by a gitgle molecule
[3] leads to the comclusion that, for & molecular
wejght of 100,000 to 200,000, entanglement, or
oreriapping of the regions that different moleculea
on the average pervada, ¢ocurs sl cohcendrations
as low az 2 to 5 percent. Thus the entanglement
at & eoncentration of 20 percent must be consider-
able. The resulting structure probably behaves
a8 & network, providing it is deformed quickly
encugh, before the molecules can move out of the
way of each other. A schematic picture contrast-
ing the structures of these three solutions is shown
in figure 1.

Primary Bondx

Secondory Bunds

We are concerned here with atiempts to obiain

" information from measuremenis of viscoelasticity

about this entanglement, which is common to all
thres types of polymer solufions, and we seek it
primarily in solutions like that illustrated in the
third part of figura 1, where primary and secondary
bonds are absent.

II. Choice of a Mechanical Model

It has been enstomary to represent viscoeizatic
hehavior by models of alastic elements (zprings)
combined with viscons elemeniz (Jashpots, or
pistong moving in a viscous medium). It is usually
asgumed that the wiscous eloments are New-
tonian—the rate of displacement being propor-
tional to the forece appliad—and that the slastic
elements follow Hocke's Law—the displacement

Entanglamant

Ficore 1.

Schematie llustralion of lypex of nelworks in concentrgied polymer aolulfions, involeing primary bowrde,

seconadary bonds, and enionglemend,

Of course, entenglement must exist to some
extent in the first two types of aolutions as well as
the third [4]. Under certain conditions, such as
aubjection 1o siress ¢ver comparatively long time
pericds, which allow opportunity for disentangle-
ment, the effects of transitory overlapping of
chains can no doubt be disregarded in comparison
with those of the more permsanent links repre-
sented by primary aod secondary bonds. How-
over, for a complete description, entanglement
must be taken inte account in all three systems.
It should be of most significance in experiments
where a solution is subjected to very hrief, small
stresaes that do not perceptibly distort the net-
work.
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being proportional to the force applied. Eyring
and his colleborators [5] have shown that in solids,
sspecinlly fibers, nonlinear elements are neccasary
to describe mechanical behavior; but in rather
fluid solutions, when the applied stresses are small,
linear springs and doshpote may be expected to
suffice.

If we can imitate the mechanical properties of
a cerfain polymer solution by ome packcular
mechanical model, we can also imitafe it by many
other mechanical models. This fact was illustrated
by Simha a few years ago [6] and wasz also empha-
sized in w recont paper by Alfrey and Doty [7].
For example, to represent the behavior of a poly-
mer solution, a Mazwell model may be amployed.

Jowwned of Begecrch




The Maxwell element is & spring and a dashpot
in series, and the model employs 8 number of
such elementa in parallel.  But if such 2 Maxwell
model works, then so also will a Voigt model.
The Voigt element is & apring and dashpot in
parallel, and the model employs a number of such
elements in seriee. By proper choice of the spring
amnd dashpot constants, these two models will
hehave exactly the sanme under all manner of
conditions—=steady stress, abrupt streas, and oaeil-
lating stress, :

Since we shall have a choice ¢f mechanical
models to represent the viscoelastic behavior of a
high polymer solution, it will be advantageous to
select one that can be interpreted, as far as possible,
in terms of the polymer molecules and the motions
that they undergo when the solution is deformed,
and in which the clastic and viscous slements may
perhapa be identified with molecular processes.
The simplest possible model for the third network
of figure 1 is a spring in parallel with a viscosity
that delays its response to stress and in series with
ancthor viscogity that allows relaxation; this may
be called the retarded Maxwell element (fig. 2).

g
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Fiovre 2. Relarded Mazwell element.

The mechanicsl properties of some polymear solu-
tione as revealed in certain types of experimental
megsurements can be repregented by this model as
a first approximation. It is certain that s more
complicated model will be required to represent all
mechanical propertiea. Nevertheless, most of this
dizcussion will be based on the behavior of tha
simple retarded Maxwell element.

It iz natural to identify the spring of this
mechanical representation with the average atrand
of the network between two temporary points of
entanglement. There are thres pomible ways in
which auch a molecular strand might store elastic
energy. {a) Energy is stored by bond deformation
(stretehing and bending) ; Euhn [3] has caleulated
that the contributions of stretching snd bending
to elongation of a fully extended paraffin chain

Viscoslastic Proporties

should be roughly equal and that the force constant
should be proportionel to 1/Z, where Z is the
number of ytoms in the chain. For Z=100 it
should be about 2,000 dynefem. (b) Energy is
stored by twist around the honds agwinst the
hindering potential, which interferes with free
rotation; Kuhn [#] has caleulated that the force
constant should he proportional to 1/2% For the
abova chain in randomly Lkinked confipuration it
should be sbout 0.5 dynajem. () Energy is stored
by decrease in entropy when extension restricts the
chain to less probable configurations; the force
constant iz proportional to 1/Z [8], and for the
above chain it ia about 0.6 dynefem.

Mechanisms {b) and (¢) are mutnally exclusive;
if the interval of an experiment ir too short to
allow rotation over potential barriers into hew
positions of minimum potential energy, there can
be no statistical restoring foree or *rubberlike”
elasticity; if the interval is long enough to allow
many rotational rearrangaments, there can be no
storage of elastic energy against the hindering
potential. The eritical time interval iz, according
to KEuhn, proportional t¢ 7. The extension cansed
by mechani=sm (a) 15 probably go small in solutions
that it can be neplected sltogether. This mach-
aniem is analogous to a very stiff epring in series
with our mechsuoicul model, which is never percep-
tibly stretehed by the forces applied.

The two viscous components in the model can
also be interpreted reughly. The parallel viscosity
iz the frictional resistance to rearrsngemcnts of
chain segments involved in extending the spring,
dus to both the viscosity of the solvent and the
interference of neighboring chains. The series
viscogity permits relaxation of stress, due to three
possible processes: (a) rotation around honds into
new pozitions of minimum potential energy, (b)
slippage of sirand ends by disentanglement, {c)
chemical decomposition resulting in breaking of
atrands. The lact of thesa is ordinarily & very dlow
procees, which may of course be ignored in en-
tanglement networks; the times involved are of
the order of days or months. In the c¢ase of
rubbers, the chemical chain scission has been care-
fully studied by Tobolsky [10].

It a polymer solution is subjected to stresses
that are large encogh or prolonged enough in time
to produce s eubatential diatortion of the network
from ite normal configuration, it may be expected
that the mechanical properties will appear quite
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different from those mewsured under conditions
where only slight rearrangements of chain seg-
ments are involved. This discussion is concerned
only with the latter case—the responso of 2 solu-
tion to small, brief siresses. Although such re-
sponse can be obialned by transient methods, in
which a momentary stress is suddenly applicd and
the resulting deformation is subsequently followed,
it 13 ordinsrily more convenient to study the effacts
of periodically varyving stresses [7, 11).

Experimantal measurements of the response of
# polymer solution {or other viscoelastic material)
to einusoidally varying stress can be cxpressed in
terms of eertain parsmeters that will be presently
defined. By compariag the fraquency dependetice
of these parameters with the caleulated behavior
of models it is poasible to select one—that of fig. 2
or one more complicated if necessary—which will
represent, the data, and to obtain numerical values
of the spring constanta and dashpot viscosities,
which may ba related to the nature of the network
structura and the properties of the individual net-
‘work strands.

The methode available for measurements of this
sort fall generally into two classes: those in which
the inertia of the material can be neglected in the
equations of motion, and those in which it canpot
{11]. In the former, the size of the sample is con-
siderakly Iesz than the wave-length of elastic vibra-
tione, or else the damping characteristics of the
material are 80 marked that no vibrations are prop-
agated. In the latter, the size of the sample is of
the same order of magnitude as, or greater than,
the wavelength of elastic vibrations, so that
vibrations of one kind or another can he set up and
measured. Tha applicability of ench method thus
depends on the size and consistency of the sample
shd the frequency range within which measure-
menta are to be made, One example of each class
will be given here: the electrodynamic method of
Fhilippoit [12], in which the inertia is naglacted,
and the method of propagation of transverse waves
in axtended media [13], in which it iz not.

II. Experimental Methods in Which In-
ertial Effects in the Medium Are
Neglocted - _

When a sample of material iz subjected to
sinueoidaliy varying shear stress, it responds with
a sinusoidally varying strain, which may be ont
of phase with the atress (fiz. 3}). At a single
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Figore 3. Sinusoidally sorying efrgin in responss lo
sinuscidatly rarying stiress.

frequency, the mechanical characteristice ara
fully described [11] by two parameters, which
may ba chosen as [, the absolute rigidity, or
ratio of peak etress to peak strain, and , the
phase angle between them; or, alternatively, as
&, the real part of the complax modulus of
rigidity, and ¢, the resl part of the complex
viscosity. The relations between these quantities
are as follows,

G=@ +if'’; nmy’ —ig";
G =’ v =G fu;
6] =BT G =/ L iy
tan ¢ =G0 =9y’

Hera & is the complex modulus of rigidity [14)
and i is the complex wiscosity [15]. The real
part of the rigidity, &, is the component of strees
in phase with the strain divided by the sirain.
Tha real part-of the vmcesity; 4, e the component
of stress in phase with the rate of strain divided by
tha rate of strain.

In desceribing the behavior of a mechanical
maodel, it ja eustomary to aesign each apring &
rigidity @ and each dashpot a viscosity », although
dimensions of these constants {dynefem® and
dyne-sec/om?) are not the same ss those of the
force constant of a real spring {dynefem) and the
viscous resistance of a real dashpot (dyne-sec/cm).
A given model will show characteristic frequency
dependenca of the quantities &', »’, and |4,
which may be compared with experimental data.
For the reterded Maxwell element (fig. 2), the
frequency dependence of G, 9°, and |@] is given
by the following equationa [15, 11]:

& =Gt 1+ rs + 75)7] (28)
v =nsll+otra{rg+ )11 Fut{ra e (2h)

|&| = Garg{1+wr V21 +wP(rs+ 7ol F (22}
where w i3 2r times the frequency, and the charac-

{1}
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teristic time constants ry 8nd ve are defined as
ns/F and #p/@, respectively, 5s and 4» being the
periea and parallel viscosities. Plots are shown in
figures 4 and 5; the abscizsa is log wry, and curves
are drawn for different valuea of the ratio rp/rs.
. At Jow {requencies 4'=n»y; and |G|=6"'=0; the
model behaves like a single viscosity. At high
frequencies, ¢° and &” approach constant valnes,
and {&|, & measure of the actual “stiffness,
incresses without limit.

The only extensive data with which these model
curves ¢an be corapared at present are those of
Fhilippoff for the real part of the viscosity, », in
splutions of cellulose mestate in dioxgne [12]. In
his apparatus, a solution is subjected to oscillating

10
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Fiqure 4. Dependence of & and v on freguancy for the
retarded Mazwell element,

Figurea oppostin the ourves denots valmes of rte,.
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shear atress by a needls moving up and down along
its axis inn & narrow tube. The needle is attached
to a rather stiff steel hand, which is displaced by
electromagnets whose field coils are energized by
an oscillator and interact in such a way a8 to pro-
vide an efectromechanical feedback. Resonance is
achieved st various frequenciez by adjusting the
tension of the band and tuning the feedback cir-
cuit, At resonance, v =|f|/aw|z|, where | 7] is the
maximum force acting {determined by the current
drawn, together with a direct~-current foree-current
calibration), @ iz a constant with dimensions of
length involving the depth of immergion and the
radii of tube and neadie, and [x| ia the maximum
exgursicn, determined by o mitrometer screw.

Values of 4" obtained by Philippaff for scluticns
of cellulose acetate in dioxsne gre plotted againat
the frequency in figure 6, and the ratic of 4" to 5,
the viscosity in steady flow, is plotied against the
logarithm of the frequency in figure 7. Tt appears
to ba approaching zere with increasing frequency,
a3 in the case of the retardad Maxwell aslement
with 7,=0 (the ordinary Maxwell eloment); thus
the retarding viscosity appears to be negligible, at
least at the higher frequencies. However, the
dacreasa in %' is more gradual than for the model,
so that the latter must be modified somewhat to
desoriba the ragulte. Philippoff obtained an excel-
lant fit with the relation »'=28/[1+ (wr)*4], where
B and 7 are empirical constants of uncertain sig-
nificance; B wae not equal to 4, although of the
same order of magnitude. Aiternatively, a fairly
good fit for 2'f7 as & function of wry,, where r, is
the reciprocal of the value of @ at which »'fp=1/2,
is achieved by the Wiechort-Wagner distribution
of relaxation times [18], with b, the distribution
paramater, chogen as 0.5. Cholce of the best
medification of the model of fizure 2 for deacrib-
g these resulta should be facilitated by further
experimental work on this and other aystems,

A possihle method for measuring 5', and under
some conditions &7 as wall, for polymer solutions
is based on the use of an electromechanical
trensducer [17, 18]. When & nesdle i oscillated
along ite length, 43 in Philippoft’s apparatus, by a
moving-coil loudspeaker, the clastic and viscous
characteristics of the mechanical part of the
systetn can be caleulated from measurements of
changes in resistance and reactance of the eoil. -
This technique has the advantage that a very low
energy input suffices for measuring the electrical
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in diorane, plotied apatasl the logarilhm of the frequency
{datc from Phkilippoff [12]).

fquantities by an impedance bridge, and the
amplitude of motion is therefore extremealy small
{undetectable by ordinary methosds), so that the
poasibility of ooy pon-Newtonian effects is
minimizad. .
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IV. Experimental Methods in which In-
ertial Effects in the Medium Are Not
Neglected: Propagation of Waves

The simplest case of & mechanical disturbance
that involves the inertiz as well as the rigidity and
vizcoalty of the material concerned is the propaga-
tion of o plane wave of shear in a medium of
infinite axtent. If the weve is sinuscidal and
exponentially damped, it is deseribed by the
equeation

Y= Ygeiiwi—ra\]~aiey (3)

where # is the displacement, { the time, & the
distance from the aource of vibration, h the
wavelength, and =z, the entical damping distanee
{within which the amplitude falls off to 1/e of its
nitial value} {fig. 8). For a perfect elastic solid
{(in which z, 12 infinite) the modulus of rigidity, &,
iz given by w'A’sfda?, where p is the density.
It is convenient 1o define for a polymer solution,
or other viscoelastic medium, an  analogous
quantity G—«""pfazrt. The behavior of the
gystemn at any given frequency can then be
characterized by &, and the ratic Az {(which is a
measure of the severity of the damping).

The two frequency-dependent parameters &
and A, determined from wave propagation can
ke uged interchangeably with the two parameters
& and ¢ determined from experiments that do
not: involve the mertia of the material. They are
related by the following cquntions:

4r4xT— (O f2o)]

i e (42)
. @ 1677
T B O (4}
T
|
&
& woielf— 3=
e |
: e
: I Dislance —=
|
— Yo —s] |
+—1~—h—i

Fiaure 8. Erporentially damped sswvavidnd wgve,
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It is useful to calculate the frequency depend-
ence of & and A/, for mechanical models, for
direct comparison with experimental data. For
the retarded Maxwell element ( ﬁg 2), the behavior
is aa follows [11):

. Brg
1 +W={TP+ 'Ts}!

wirg'+[1 +@27P{TP+ fs]']’ (58)
wrs+ Vorrg L[l +oPrplret 15))°
N Sa[1+ wirairat7s)] (5b)

wrs+ vw'rs + [L+wirp(ra+rs))?

Plots ara shown in figures & and 10. Damping is
severe at low frequencies because of the series
viscosity and at high frequencies because of the
. parallal ¥iseosity. Only at intermediata fre-
guencies is the damping emall enough to permit
megsurement of wave propagation (for praetical
_ purposes, when Afrg i less than 3 or 4). The
lurger the ratio rzfrg, the emaller ia the frequency
range within which wavea can be chserved.

Shear waves may be set up in a eolution con-
tained in a reqtangular cell by driving a thin plate
up and down in ite own plane with & loudspeaker
[18]. If the cell iz long enoupgh in the direction
of wave propagation so that the wave i3 demped

Rl
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Fravee % Dependence of & on Jrequency for the relarded
Maxwall elamend.
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Fratee 10. Dependence of ifxy on frequency for (he
redarded Marwell slement,

Figures apposice the ourres denow valies of 15/e4,

out before it reaches the end, no reflection occurs,
and the medium may be considered of infinite
extent in this direction. Az for the sides of the
cell, through which the weve is observed, a recent
investigation [18] shows that their influence on & is
negligibtle but that they do affect the damping
somewhat,

Ii the solution exhibits strain double refraction,
the wave. can be abserved by stroboseopic polar-
ized light flashing at the frequency of vibration.
By introducing a double quartz wedge inclined at
a srmall angle to the direction of wave propaga-
tion, & pattern is obtained that is clozely related
to the wave itself (fiz. 11), and from which values
of A and %, ¢an be calculated. The corresponding
values of & and Mz, (the latter subject to s small
correction for the effect of the sides of the cell [19])
arc then plotted eagainst the logarithm of the fre-
gquency and compared with the curves of figures
0 and 10, or, if necessary, similar curves for more
comnplicated modcls,

Wave propagation data for one system,! cellu-
lose zanthate in aquecus sedium hydroxde sclu-
tions, follows almost quantitatively the behavior
of a retarded Maxwell element. Results on con-
centrated solutions of polystyrene in xylens [20]

4 ‘The aathor [3 indebied ta the Laborstory of E. I doFont de Nemwoora
and Ca. at Rlshmond, Virgiole, for permislon to rder o tese reults.
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Fravex  11.

Patlern for franeverse wotes gpropogated @n
g1 S=pareant polyslyrene an sglene, 16% O, 18560 e/n,

are in qualitative pgrecment with the belayvioe of
w retarded Maxwell element with o very small
Futio of rplre and within o small [requency range
a semigquantitative il can be abtamed (hg, 12),
Stk
ress.  The mgidity 0 15 found to be proportional
to the third power of the concentration.

H OVEH” R 'r'l."ll:lt'[' rl'l"”lli'ﬂr'_\' ['Illl.:.!l' nre I||l ]'Il'l!:._‘:-

V. Interpretation of Model Constants

From madel constanis experimentally  deter-
minied in this way, it should be possible to distin-
eripigh nmonge the varioe  moleculur mechani=sms
of elasticity and relation mentioned in seetion 11
The first step is to relate the rigidity of the entangle-
ment network with the elasticity of ustngle strand,

We define a strand as o segment of o molecule
between two points of entanglement, and lor a
rough ealeulation assume that, although the strands
are randomly kinked, the veetor joining the ends
of each strand s of uniform longth, ) ond that
one-third of these vectors are parallel to each of
the 2, %, and 2 axes,  (Random ornentation should
alfeet the result only by o small numerical factor.)
If o ye-plane cuts » strands per square contimetoer
running in the @ direction, then the modolus of
elasticity is E=wl, where & is the spring constant

60

(Toree per unit extension) of 4 single strand,  Fur-
ther, p=N 1%, where N, i the pumber of atrands
per cubie centimeter, one-third of which run in the
# direction [10, and G=E
neeligibly different from 1723, so =N A*/9.

We define a point of entanglement as occurring
when two monomer units opcupy  neighboring
pseudolattice cells (in the sonse used in the
theory of thermodsynomic properties of polymer
solutions [21]), and the four chain segmonts

(3 (Poigson's ratio being

altached to these two units are suitably oriented
Ench monomer unit
haz = neighboring cellz, where =z is the coordina-
tion number of the psevdolattios; of these, Lwe
nre always ocoupied by adjacent monomer units
m the same chain, the moleontar length being
considersd so great that the chain ends can be
Assuming that the coneentration of
monomer units mthe rempning eells 15 the same
as in the solution a8 & whole, the number of points
of entanglement per cubie centimoter is N,=p-
(z—2Yp(NZ), where N is the number of polymer
molvenlea per cubiec centimotor, Z the degroe of
polymerization, and @ the volume of a monomoer
unit, and p, expresses the probability of orienta-
tiont for entanglement.  The value of p, may be

in support stress (g, 13)

TH*|_']1'1'[|1ri.

s

Botin

leg Caf,

Frovus 12, Dependenee of F (open cfrolen) and &y (flled
efrelen) on frogueney for o selufion of palystyrene in aylene,
eomgentraiion G40 glem’; temporature 21.6° L,

Carves urn dbmwn fem epontions & owith @=T105100 dynefem?, -
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Fiaure 13. Niusdratfon of a point of entanplesment.

expected to be smaller then 174, and it may be
eonsiderably smaller.

If the number of enfanglement poinis per chain
iz large, N,=2N,. Thus &=2p,(z2—2){NZ)y-
«l#/3. Now x depends on the strand length, in
s manner determined by the elasticity mechn-
nism, Although a previous discussion [20] eited
bond hending as a possible mechanism here, it
now seetits likely that this deformation would be
too emall to be detectable, and that the choice
18 between the other iwo mechaniams listed
above. If the strand elasticity is due to twist
againgt the potential hindering free rotation,
¢ should be proportionsl to 1/£.% according to
Euhn [9], while il it is a rubberlike elaaticity,
¢ should be proportionsal to 1/7, where £, iy the
number of monomer uhits per strand. The
value of P ie a function of Z,; for a randomly
kinked chain, F=ALkZ,, where A, and b are
lengths related to the ditnensicos of the monomer
unit and the chain flexibility [9]. The product
«f* should then be independent of Z, in the case
of rubberlike clasticity and inversely propor-
tional in the ease of hindered rotation elnsticity.
Since Z,=NZiN,=1{2p,(z—21wNZ, and NZ is
& moasure 0f the woight concentration, it follows

that for rubberike elasticity the rigidity shouwld

bhe proportionsl to the square of the concentration
and for hindered rotation elasticity it should be
proportional to the third power. The observed
concentration dependence in polysiyrene-xylene
solutions corresponds to the latter mechanism.

If the spring represents hindered rotation elas-
ticity, the series dashpot may represent relaxation
by rotation over the anergy barrier, also treated
by Kuhn [8). The relaxation time for this
process is proportional to Z, and hence inversaly
proportional t¢ concentration. The value of
ry derived from damping measurementz [20]
dows decrease with increasing concentration in the
polystyrene-xylene case, although the data avail-
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able at present do not parmit a test of invarse
proportionality.

It is of interest to make a more detailed calen-
lation hased on the equation of Kuhn, Kuhn's
expreasion for « 18 192q/p . AabZ?, where g is the
potentisl barrier, ¢, the angle between sucoessive
positions of minimum enerpy (here 2x/3), and j,
the number of chain bonds per monomer unit
(here 21. Substituting this inio the above expres-
sion, for &, and noting that v=M/Nyps=e/mNZ,
whera A} is the molecular weight of a monomer
unit (herc 104), Ny Avogadre’s number, g the
density of the polymer (here 1.05), and ¢ the con-
centration in prams per cubic centimeter, we obtain

F=[(256/3)p}(2—2) NogloiMyp, e, (B}

For Ny we chooze a valug estiineted by EKuhn
from viscosity and flow double refraction of dilute
golutions of polystyrene in eyclohexanone, 11,400
cal, and set z=6. Then substitution of the ex-
perimental valya of @ for tha polystyrena solution
deacribed in the preceding section determinss the
unknown probability p, es 0.0020. According to
this rather remarkably emal! value, only one pair
of monomers in five hundred that occupy neigh-
boring cells in the pseudolattice become antangled.
The average number of monomer units in a net-
work strand (Z,) at the concentration of this
solution, (.39 g/em?, 16 then about 160,

Fuarther work will be necessary to distinguish
tha possible roles of intramolecular retetion and
glippage at the poinis of entanglement in strees
relaxation. Io any cese, it appears that the vory
low walue of the probability factor p, may repre-
sent the necessity of rather tight kinking at each
point of entenglement to permit support of stress
over the time intervals involved in these experi- -
ments.

V1. Summary

Dynamic studies of the mechanical properties
of concentrated polymer solutions may be applied
to gain information concerning molecular antangle—
ment, éspecially in caszes where linear tnolecules
are intertwined with ne junetions by primary
or sgecondery honds among them. Frequency-
dependent parameters cltained from direet meas-
urements of respomse to sinusoidal stress, or
from the propagation of iransverse wavaes, ars
compared with the caleulated behavior of mechan-
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