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Introduction 

Iris Exchange (IREX) IX is an evaluation of automated iris recognition algorithms. The frst part of the evaluation is a 
performance test of both verifcation (one-to-one) and identifcation (one-to-many) recognition algorithms over operational 
test data. The results are summarized in this report. Thirteen developers submitted recognition algorithms for testing, more 
than any previous IREX evaluation. Performance was measured for 46 matching algorithms over a set of approximately 
700K feld-collected iris images. This report is very similar to IREX IV: Part 1, Evaluation of Iris Identifcation Algorithms [1] 
in both format and scope. 

Key Results 

The key results of this part of the IREX IX evaluation are described below. 

• Core Accuracy: Accuracy is reported for two-eye matching since most iris cameras acquire samples of both irides 
simultaneously. The most accurate one-to-many matcher yields an FNIR (False Negative Identifcation Rate) of 0.0067 
(about 1 in 150) at an FPIR (False Positive Identifcation Rate) of 10−3 (1 in 1000) when searching against an enrolled 
population of 160 thousand people. An equally performing identifcation (i.e. one-to-many) system with the same 
number of enrolled people operating in access control mode would reject access for 1 in 150 valid (i.e. enrolled) users 
while granting access for 1 in 1000 invalid (i.e. unenrolled) users. Matchers from two other participants follow closely 
behind with FNIRs of 0.0081 (1 in 123) and 0.0083 (1 in 120) respectively at the same FPIR. More than half of the 
matchers yield an FNIR less than 0.02 at FPIR = 10−3 . 

The most accurate one-to-one matcher yields an FNMR (False Non-Match Rate) of 0.0057 (about 1 in 175) at an FMR 
of 10−5 (1 in 100 000). Submissions from four other participants follow closely behind with FNMRs between 0.0066 
(1 in 152) and 0.0070 (1 in 143). The differences in accuracy between these matchers are unlikely to be statistically 
signifcant. 

• Error Rates: The error rates in this evaluation are much lower than in previous IREX evaluations. There are many rea-
sons for this. More aggressive steps were taken to mitigate ground truth errors in the current evaluation. Recognition 
technology has also advanced in the four years since the last IREX evaluation. Finally, the test dataset was collected 
with more modern two eye cameras under more cooperative conditions, yielding generally better quality samples. The 
accuracy of iris recognition is dominated by the small fraction of samples that suffer from signifcant quality-related 
problems (e.g. motion blur, eyelid occlusion). Such problems appear to be much less common in the current test 
dataset. NIST authored IREX V: Guidance for Iris Image Collection [2] to address the problem of poor sample quality. 
The document provides guidance on the proper collection, storage, and handling of iris data. 

• Matching Speed: The fastest matcher was able to search against an enrolled population of 160 thousand with a 
median search duration of 11 milliseconds using just one processing core. This is faster than any matcher from IREX 
IV and almost 50 times faster than any other matcher in IREX IX. Search duration varies widely across matchers, 
with a roughly one thousand factor difference between the fastest and slowest matchers. Search duration can dictate 
computational hardware requirements for applications that have high search volumes. 

Search time scales approximately linearly with the size of the enrolled population for nearly every matcher. That 
is, a doubling of the enrolled population size approximately doubles the search time. There is one exception where 
the relationship is sub-linear. For this matcher, every doubling of the enrolled population size seems to increase the 
median search time by about 2.2 milliseconds. 

Comparison time for one-to-one comparisons also varied widely across matchers. The fastest properly functioning 
matcher compares two-eye templates with a median time of 0.006 milliseconds, or about 167000 comparisons per 
second on one processing core. The slowest matcher is almost 10 thousand times slower with a median comparison 
time of 54.11 milliseconds. Most of the matchers compare templates with a median time under a millisecond. 

Timing statistics were collected on a Dual Intel Xeon E5-2695 v3 3.3 GHz CPU equipped with AVX instructions using 
just one processing core. Operationally, multiple cores (and multiple machines) could be employed to reduce these 
times. 

• Speed-accuracy Tradeoff: IREX III found that a speed-accuracy tradeoff exists for some iris recognition algorithms, 
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where improved accuracy can be achieved through slower, but more involved, comparison strategies. For one-to-one 
comparisons, the fastest matchers tend not to be the most accurate. The correlation coeffcient for the log of the 
median search time and the log of FNMR is −0.30, indicating a weak but apparent speed-accuracy tradeoff. 

For one-to-many matching, a speed-accuracy tradeoff is less apparent. Nevertheless, one participant submitted a 
very fast matcher along with more accurate (but slower) matchers. For this participant, a roughly one-hundred-fold 
improvement in search time is realized but at the expense of a 37% increase in FNIR (at FPIR=10−3) against an 
enrolled population of 160 thousand. 

• Template Creation Time: The time it takes to create a comparable template from an iris sample (or pair of samples) 
can affect throughput rates (i.e. the number of transactions a system can handle per unit time). Very long template 
creation times can lead to backlogs at, for example, access control gates. Template creation time is particularly 
important for one-to-one comparisons since the time it takes to compare two templates is nearly instantaneous by 
comparison. The median time to create a template from a pair of iris samples (one of each eye) is 1007.8 milliseconds 
for the most accurate matcher. The shortest median creation time for any submission is 37.9 milliseconds. Most 
submissions have a median creation time under 200 milliseconds, but a few have times between 1 and 3 seconds. All 
times were computed using a single processing core. Dedicating more computational resources to template creation 
would reduce these times. 

• Demographic Effects: Ideally, a biometric system will not perform substantially better or worse for members of any 
particular demographic group. Sex has a signifcant impact on accuracy for some matchers, but the effect is not 
consistent. Some matchers perform better on males while others perform better on females. For one participant’s 
matchers, FNMR is double for females compared to males, but typically the magnitude of the difference is less. With 
respect to race, the matchers tend to perform best on Whites and poorest on Asians. This is not true in all cases 
and sometimes the differences are negligible. When a race effect is noticeable, comparisons between Whites tend 
to be less likely to false non-match but more likely to false match compared to Asians. Eye colour is discretized into 
the binary categories light (blue, green, and grey) and dark (brown and black). The most accurate matchers tend to 
perform slightly better on lighter eyes, but eye colour covaries with many other factors and demographic traits which 
could be responsible for the true effect. 

Because the test dataset consists of samples collected in various environments over a period of years, we cannot 
discount the possibility that any apparent demographic effects are due to confounding factors. Further investigation in 
necessary before drawing any solid conclusions. 

Caution is advised when attempting to extrapolate numerical results from this evaluation to other scenarios. This evalua-
tion assesses performance over a particular set of images collected under certain environmental conditions using specifc 
hardware. It is diffcult to predict how changing any of these parameters might affect performance. 

Future Work 

The next IREX IX report will document recognition of irides illuminated at different wavelengths. ISO/IEC 19794-6: Iris Image 
Data recommends illuminating the iris using near-infrared wavelengths "between approximately 700 and 900 nanometres 
(nm)". The next report will investigate how well iris recognition algorithms can segment and compare iris samples captured 
at illumination wavelengths ranging from the visible (405 nm - 700 nm) to the infrared. 
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1 Introduction

1.1. Purpose

The aim of this study is to evaluate the performance of iris recognition over operational test data. As a technology evaluation,
it is very similar to IREX IV Part 1: Evaluation of Iris Identification Algorithms [1]. However, unlike IREX IV it assesses both
verification (one-to-one) and identification (one-to-many) performance. Thirteen research institutions submitted recognition
algorithms for evaluation, more than any other IREX evaluation.

The main goals of this evaluation are to:

• Assess the current state of the art: Biometric evaluations promote industrial competitiveness by providing a fair plat-
form for comparison. This evaluation aims to impartially assess the current state of the art of automated iris recogni-
tion. Rather than concentrating on any specific application, performance is assessed for the common tasks of person
identification and verification to ensure relevance to a wide range of applications.

• Facilitate research and development: The current evaluation seeks to identify areas for future research and develop-
ment with an eye on the needs of our sponsors. IREX IX also offers algorithm developers, including participants from
previous IREX evaluations, an opportunity to further improve and test their recognition algorithms.

• Assess the impact of demographics: IREX IX aims to identify possible disparities in performance for certain demo-
graphic groups. If comparison accuracy is markedly poorer for any particular group, it can disproportionately impact
members of that group. Three demographic factors are considered: sex, race, and eye colour.

As a technology evaluation IREX IX focuses predominantly on algorithm performance rather than other factors relevant to
the operation of a biometric system. It does not address the costs associated with operating a biometric system, or the
system’s usability, or possible security issues such as algorithm vulnerabilities. As an off-line evaluation, it does not include
a live image acquisition component or any interaction with real users.

1.2. The IREX Program

IREX I
Compact Storage Formats

ANSI / NIST Type 17

IREX II
Sample Quality Metrics 

ISO / IEC 29794-6

IREX III
Large-scale 1:N

Performance Test

IREX IV
Compression Profiles
for Compact Storage

IREX V
Guidance Materials
for Image Collection

IREX VI
Temporal Stability

/ Ageing

IREX IX
Performance Test /

Multispectral Evaluation

2009         2010        2011         2012        2013 2014        2015        2016        2017        2018

IREX Ongoing
Performance Testing

Figure 1.1: Timeline of the IREX program, including a planned future installment.

The IREX Program was initiated by National Institute of Standards and Technology (NIST) to support an expanded market-
place of iris-based applications. IREX provides quantitative support for iris recognition standardization, development, and
deployment. To date, 6 activities have been completed and two more are tentatively planned. Each is summarized below.

• IREX I [3] was a large-scale, independently administered, evaluation of one-to-many iris recognition. It was conducted
in cooperation with the iris recognition industry to develop and test standard formats for storing iris images. Standard
formats are important for maintaining interoperability and preventing vendor lock-in. The evaluation was conducted in
support of the ISO/IEC 19794-6 and ANSI/NIST-ITL 1-2011 standards.

• IREX II [4] supported industry by establishing a standard set of quality metrics for iris samples. Although iris recognition
has the potential to be extremely accurate, it is highly dependent on the quality of the samples. The evaluation tested
the efficacy of 14 automated quality assessment algorithms in support of the ISO/IEC 29794-6 standard [5].

• IREX III was a performance test of the latest iris recognition algorithms over operational data. Despite growing
interest in iris-based technology, at the time there was a paucity of experimental data to support published theoretical

http:deployment.To
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considerations and accuracy claims. IREX III constituted the frst public presentation of large-scale performance 
results using operational data. 

• IREX IV built upon IREX III as a performance test of one-to-many iris recognition. In addition to providing partici-
pants from previous evaluations an opportunity to further develop and test their recognition algorithms, this evaluation 
explores the potential for using a cost equation model for optimizing algorithms for specifc applications. 

• IREX V is an ongoing effort that provides best practice recommendations and guidelines for the proper collection and 
handling of iris images. 

• IREX VI explored a possible aging effect for iris recognition. The intrinsic features of the iris may naturally change over 
time in a way that affects recognition accuracy. Factors such as subject habituation and aging of the camera may also 
introduce a time dependency. 

• IREX VII is planned to develop a framework for communication and interaction between components in an iris recog-
nition system. By introducing layers of abstraction that isolate underlying vendor-specifc implementation details, a 
system can become more fexible, extensible, and modifable. That framework is currently in use internally at NIST. 

• IREX VIII was never conducted. 

• IREX IX is the topic of the current report - a performance test of iris recognition over operational test data. The second 
report will be a multispectral evaluation of iris recognition. 

• IREX Ongoing is tentatively planned a successor to IREX IX. It will be an ongoing, largely automated, evaluation 
similar to Ongoing MINEX and FRVT Ongoing. 

The latest information on the IREX Program can be found on the IREX website [6]. 

1.3. Industry Growth 

Iris recognition has experienced rapid growth in the last 20 years. Government-sponsored evaluations such as the IREX pro-
gram have facilitated this growth through 1) the development of standards and 2) by affrming the potential for iris recognition 
to meet the demands of large-scale deployments. IREX IV found that some matching algorithms are capable of searching 
a single iris image against an enrolled population of millions in under a second (using just one processing core). The eval-
uation also found that for the most accurate matchers, identifcation failures were almost always the result of poor sample 
quality, where the eye is closed, off-axis, highly rotated, etc. Many of these errors can be avoided through the use of more 
advanced cameras or improved image collection and data handling practices. 

In recent years, several government agencies have deployed (or are in the process of deploying) iris recognition systems that 
operate on a national scale. The largest is India’s Unique Identity Authority of India (UIDAI) program [7] which contains iris 
images of hundreds of millions of Indian residents. The program was initiated to better manage the allocation of government 
resources and to provide improved services to citizens. The United Arab Emirates (UAE) also employs iris recognition as 
part of its border-crossing control system [8, 9]. At ports of entry, visitors are searched against a watch list of several 
hundred thousand people previously expelled from the country for various violations. The Federal Bureau of Investigation 
(FBI) includes iris recognition technology on its technical roadmap. Since 2006, the Department of Defense (DOD) has 
been using handheld devices to collect iris images of people in various theaters of operation. The images are consolidated 
into a central repository known as the Automated Biometric Identifcation System (ABIS) to support a variety of missions 
from tactical operations to detention management. More locally, iris recognition is being used at correctional facilities for 
employee access authentication [10]. 
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2 Methodology 

The current technology evaluation focuses on matcher performance as opposed to other factors that might be relevant to the 
deployment and operation of a biometric system (e.g. societal, economic, legal factors). Performance metrics are selected 
to objectively compare different matcher implementations, primarily in terms of accuracy and speed. While recognition 
accuracy is always an important performance factor, the importance of speed depends much more on the application. For 
example, biometric systems that perform identifcation in real-time require rapid response times. Off-line tasks (e.g. database 
de-duplication), on the other hand, tend to have more relaxed time constraints. 

2.1. Test Environment 

The evaluation was conducted offine at a NIST facility. Offine evaluations are attractive because they allow uniform, fair, 
repeatable, and large-scale statistically robust testing. However, they do not capture all aspects of an operational system. 
While this evaluation is designed to mimic operational reality as much as possible, it does not include a live image acquisition 
component or any interaction with real users. 

Testing was performed on high-end PC-class blades running the Linux operating system (CentOS 7.2), which is typical of 
central server applications. Most of the blades had Dual Intel Xeon E5-2695 v3 3.3 GHz CPUs (56 total cores) with 192 GB 
of main memory. The test harness used concurrent processing to distribute workload across multiple blades. 

2.2. Matching Algorithms 

Thirteen commercial organizations and academic institutions submitted 46 iris recognition software libraries for evaluation. 
The participation window opened on October 7th, 2016 and closed on September 7th, 2017. Participation was open world-
wide to anyone with the ability to implement a large-scale one-to-many iris identifcation algorithm. There was no charge to 
participate. 

Participants provided their submissions to NIST as static or dynamic libraries compiled on a recent Linux kernel. The libraries 
were then linked against NIST’s test driver code to produce executables. A further validation step was performed to ensure 
that the algorithms produce identical output on both the participants’ and NIST’s test machines. The full process is described 
in the IREX IX Application Programming Interface (API) and Concept of Operations (CONOPS) document [11]. 

Participants submitted their implementations in three rounds referred to as "phases". After the frst two phases, participants 
were provided with rudimentary feedback on the performance of their submissions in the hope that it would assist with 
algorithm development for the next phase. Although only two phases were planned, a third phase was introduced and the 
frst was designated a test phase (the results of which will not be made public). Table 2.1 lists the IREX IX participants along 
with the phases in which they participated. The deadline to submit to the second phase was January 21st, 2017 and the 
deadline for the third phase was September 1st, 2017. Each participant was required to submit at least one one-to-one 
implementation and one one-to-many implementation for each phase, although participants were allowed to submit up to 
two of each per phase. Some of the participants are new to the IREX program and some (Iris ID, Neurotechnology, Delta ID, 
NEC, FotoNation) have participated in previous IREX evaluations. 

Participant Phase 2 D 

Phase 3 DAware Inc. D DDecatur D DDeltaID D DDermalog D DFotoNation D DIrisID D DNEC D DNeuroTechnology D DQualcomm DSOAR Advanced Technologies D DTafrt D DTiger IT DUnique Biometrics 

Table 2.1: Participants of IREX IX along with the submission phases in which they participated. 
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2.3. Image Dataset 

All testing was performed over a single dataset of 673 662 iris samples from 260 809 subjects (both left and right eyes), 
henceforth referred to as the OPS-III dataset. The samples were feld collected from various locations between September 
2007 and October 2015. A visual inspection of the samples seems to indicate that they are better quality, at least on average, 
than the OPS-II samples used for performance testing in previous IREX evaluations. That said, feld collected samples tend 
to suffer more from quality related problems (e.g. motion and focus blur) than samples collected in more controlled laboratory 
settings. In comparison to OPS-II the samples also appear to have been collected by more contemporary iris cameras. 

Considerable effort was taken to flter out errors in the ground truth. Ground truth errors are cases where iris samples are 
assigned incorrect person identifers. Failing to remove these mistakes can infate estimates of error rates. The process of 
identifying and excluding ground truth errors is detailed in Appendix C. 

The dataset is sequestered (i.e. not publicly available). The participants were not allowed to view any of the iris samples 
and were not provided with a representative set of iris samples, although their basic characteristics were described in the 
IREX IX CONOPS document [11]. 

2.4. Performance Metrics 

Performance is evaluated for both one-to-one and one-to-many comparison modes (sometimes referred to, respectively, as 
verifcation and identifcation modes). In one-to-one mode, a specifc claim to identity is made and two biometric templates 
are compared to determine whether the claim is true. In one-to-many mode, an authentication template is searched against 
a database of enrolled templates for a match. Although no specifc identity claim is made, an implicit claim of enrollment (or 
lack of enrollment) is made. For example, anyone presenting their biometric features to an access control system is implicitly 
claiming they are in the enrolled population. 

The following sections provide a high-level description of the performance metrics used in this report. Full mathematical 
defnitions of all error metrics are presented in Appendix A. 

2.4.1 One-to-one Matching 

The degree of dissimilarity between two biometric templates is quantifed by a dissimilarity score. In the case of John 
Daugman’s IrisCode algorithm [12], the dissimilarity score is also known as a Hamming Distance. A dissimilarity score 
is referred to as mated if it is the result of comparing two templates representing the same iris (in the case of single-eye 
comparisons) or pair of irides (in the case of two-eye comparisons). It is known as a nonmated score if it is the result of 
comparing templates representing different irides. An identity claim is accepted if the dissimilarity score is below (or equal 
to) a preset decision threshold. Otherwise, the identity claim is rejected. As with any binary classifcation problem, two types 
of decision errors are possible. The frst occurs when a nonmated comparison is misclassifed as mated. This is known as 
a false match. The second type of decision error occurs when a mated comparison is misclassifed as nonmated. This is 
known as a false nonmatch. 

Adjusting the decision threshold reduces the rate of one type of error but at the expense of the other. This relationship 
is characterized by a DET curve [13], which plots the tradeoff between the two error rates. DET curves have become a 
standard in biometric testing, superseding the analogous ROC curve. Compared to ROC curves, the logarithmic axes of 
DET curves provide a superior view of the differences between matchers in the critical high performance region. 

Timing statistics are presented as the actual physical time that elapsed for the operations of template creation and template 
comparison. Timing statistics are collected for single-threaded operations on otherwise unloaded machines. For ease of 
testing and fair comparison, submissions were required to operate in single-threaded mode. Operationally, software can be 
designed to exploit multiple cores when available to expedite template creation and comparison. 

2.4.2 One-to-many Matching 

Open-set biometric systems are tasked with searching a biometric sample against an enrollment database and returning 
zero or more candidates. A candidate is returned if the matcher determines that its dissimilarity to the searched image is at 
or below a preset decision threshold. A false positive occurs when a search returns a candidate for an individual that is not 
enrolled in the database. A false negative occurs when a search does not return the correct candidate for an individual that 
is enrolled in the database. Brief defnitions of the two opposing error rates are provided in Table 2.2. Raising the decision 
threshold increases the false negative identifcation rate (FNIR) but decreases the false positive identifcation rate (FPIR). 
Although the metrics do not strictly represent error rates in a binary classifcation system, core accuracy is still presented in 
the form of Detection Error Tradeoff (DET) plots, this time showing the tradeoff between FPIR and FNIR. 
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Metric Defnition 

False Negative Identifcation Rate (FNIR) Fraction of mated searches that do not return the correct 
mate. 

False Positive Identifcation Rate (FPIR) Fraction of nonmated searches that return at least one 
(incorrect) candidate. 

Table 2.2: Informal defnitions of the error metrics for a one-to-many iris recognition system. 

For the purposes of testing, the IREX IX API required submissions to return a fxed number of candidates for each search, but 
only candidates with dissimilarity scores at or below threshold are considered. Candidates with corresponding dissimilarity 
scores above threshold are effectively discarded. 

False positives are computed exclusively from non-mated searches (i.e. searches for which the searched individual is not 
enrolled in the database). This is more refective of operation than if false positives had been computed from mated searches 
with the correct candidates removed from the list. Similarly, false negatives are computed exclusively from mated searches. 

Timing statistics are presented as the physical time that elapsed for the operations of template creation and searches. 
Search time is expected to be proportional to the size of the enrolled population. 

2.4.3 Feature Extraction Failures 

Participants were instructed to provide submissions that always create comparable templates, even when no useful feature 
information could be extracted. These "blank templates" are expected to produce high measures of dissimilarity (effectively 
infnity) when compared. This was done for ease of testing but does not refect operational reality since, for example, a blank 
template would never be saved onto a smartcard and used for access control. If the template is being acquired in real-time 
from a cooperative user, the user could be prompted to provide a new sample or different accommodations could be made 
(e.g. using fngerprints instead). This inability to handle template creation errors in real time highlights a weakness of off-line 
testing. 

2.4.4 Confdence Intervals 

OPS-III was sampled from a larger dataset of feld-collected iris samples used by a government agency. We refer to this 
parent dataset as the population. The confdence intervals presented in this report show how well the accuracy statistics 
calculated over our test data estimate the true population values. All of our confdence intervals are computed at the 90% 
confdence level. This does not mean that there is a 90% probability that the true population value falls within the interval. 
Rather, it means that if the population is repeatedly sampled and an interval estimate is computed on each occasion, the 
interval estimates would contain the true population value 90% of the time. 

The iris images in OPS-III are paired in various ways to form comparison sets. These pairings introduce a correlation 
structure. For example, samples of a person’s left and right eye captured during the same session are expected to be highly 
correlated in terms of sample quality. Wayman [14] found that failing to account for these dependencies can lead to overly 
optimistic estimates of confdence intervals. Thus, we took steps to factor the correlation structure into our estimates of 
uncertainty. The full procedure is detailed in Appendix B. 

Unfortunately, we do not know how OPS-III was sampled from the larger parent population. In particular, we do not know 
if there was any sampling bias that might introduce systematic over- or under-estimation of the accuracy metrics as well 
as their confdence interval estimates. In the absence of any information on how OPS-III was sampled, we are forced to 
assume simple random sampling even though this is far from ideal. 



3 Results ______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.IR
.8207

3.1. Accuracy 

Accuracy is presented for two-eye comparisons since most iris scanning devices acquire images of both eyes, whether 
they’re captured concurrently with a two-eye camera or successively with a single-eye camera. The costs associated with 
decision errors are highly dependent on the application and often diffcult to quantify. A false positive could result in free 
access to a theme park [15] or unauthorized access to classifed information. Hence the reason accuracy is presented in the 
form of DET curves, which show classifcation accuracy over a range of operating thresholds without making assumptions 
about the costs of errors. 

3.1.1 One to One Matching 

Although iris recognition is being increasingly deployed for large-scale one-to-many applications, many systems still operate 
in a verifcation mode. The Pentagon Force Protection Agency uses iris and fngerprint scanners to control access to the 
Pentagon Building and Mark Center [16, 17]. Several state and local law enforcement agencies have also expressed interest 
in using iris recognition for identity management at their prison and jail facilities [18]. 

Figure 3.1 shows two-eye DET accuracy. For clarity of presentation only the most accurate matcher from each participant is 
shown (specifcally, the submission that yields the lowest FNMR at FMR = 10−5). Figure 3.2 shows 90% confdence intervals 
for all matchers at FMR = 10−5. Comprehensive DET plots and tables for both single-eye and two-eye comparisons can be 
found in Appendix D. 

Notable Observations 

• Accuracy: The most accurate one-to-one matcher (NEC 5) yields an FNMR of 0.0057 at FMR = 10−5 . Four sub-
missions follow (NeuroTechnology 5, DeltaID 6, Tiger IT 5, and Decatur 6) with FNMRs between 0.0066 and 0.0070 
(the differences are unlikely to be statistically signifcant). Thirty of the 46 submissions yield an FNMR less than 0.02 
at FMR = 10−5 . In general, if two confdence intervals do not overlap, then the difference is statistically signifcant. 
However, the opposite is not necessarily true: if two confdence intervals overlap, the difference may or may not be 
statistically signifcant. 

• Flatness: The DET curves have lightly sloping DET curves such that FNMR increases only slightly as FMR decreases. 
For NEC 5, FNMR increases from 0.0043 to 0.0067, an increase of 55% as FMR decreases from 10−1 to 10−7. Some 
matchers have steeper slopes than others. Tafrt 4 and Dermalog 6 and FotoNation 5 perform comparatively better at 
higher FPIRs. 

• Improvements with Later Submissions: Nearly all of the most accurate matchers were submitted during the fnal 
submission phase of IREX IX. Curves translated downward in relation to previous submissions may indicate im-
provements in the feature extraction process. Changes in slope or shape may indicate alterations to the comparison 
strategy. 
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Figure 3.2: Ninety percent confdence intervals for FNMR (at FMR=10−5) for two-eye coparisons. Plots were generated from ≈ 83K 
mated and ≈ 500 million nonmated comparisons. 
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3.1.2 One to Many Matching 

The identifcation task differs from verifcation in that it does not require the user to provide a claim of identity. Thus, the 
user is not required to enter a user-specifc pin number or present a smart card to use the system. The self-service iris 
kiosks used by UK IRIS [19] operated in this way, as does the current NEXUS program which offers expedited processing 
for travelers between the United States and Canada. These are both access control systems, a specifc type of positive 
identifcation system that grants special privileges to enrolled users. Positive identifcation systems verify the implicit claim 
that the user is enrolled in the system. They contrast with negative identifcation systems which verify the implicit claim 
that the user is not enrolled in the system. The most common example of a negative identifcation system is a watchlist 
system, which typically denies special privileges to enrolled users. For example, the United Arab Emirates (UAE) maintains 
a border-crossing system that prevents those previously expelled from the country from reentering. 

Iris identifcation is particularly robust to increases in the enrolled population size because of 1) its ability to rapidly perform 
searches against the entire enrolled population, and 2) the fact that false negatives are often the result of poor quality 
captures that would occur at any enrolled population size. This is evidenced by the nearly-fat (i.e. low-slope) appearance 
of iris DET curves that has been noted in previous reports and evaluations [20, 21]. IREX IV [1] also showed that large 
increases in the enrolled population size translate into only minor decreases in accuracy. 

This report presents two-eye accuracy for enrollment populations ranging from 10 to 160 thousand people. Figure 3.3 shows 
DET accuracy when the enrolled population is 10 thousand. For clarity of presentation only the most accurate submission 
from each participant is shown (specifcally, the submission that yields the lowest FNIR at FPIR = 10−3). Figure 3.4 shows 
90% confdence intervals for all submissions at FPIR = 10−3. Figures 3.5 and 3.6 present the same information when the 
enrolled population is 160 thousand. Comprehensive DET plots for both single-eye and two-eye comparisons can be found 
in Appendix D. 

Threshold calibration tends to be easier for iris recognition compared to other biometric modalities due to the relative stability 
and predictability of the nonmated distribution. Daugman [22] asserts that when the comparison scores are Hamming 
Distances, the nonmated distribution can be derived by applying extreme value theory to the binomial distribution. Figures 
3.8 and 3.7 plot FPIR and FNIR as a function of the enrolled population size when the decision threshold is fxed. 

Notable Observations 

• Accuracy: The most accurate one-to-many matcher (NEC 6) yields an FNIR of 0.0067 at FPIR = 10−3 with an 
enrolled population of 160 thousand. NeuroTechnology 5 and DeltaID 5 follow with FNIRs of 0.0081 and 0.0083 
respectively. Twenty four of the 46 submissions yield an FNIR less than 0.02 at FPIR = 10−3 with the 160 thousand 
enrolled population size. 

• Flatness: The DET curves have lightly sloping DET curves such that FNIR increases only slightly as FPIR decreases. 
For NEC 6, FNIR increases from 0.00572 to 0.0074, an increase of 29% as FPIR decreases from 10−1 to 10−4. Some 
matchers have steeper slopes than others. Tafrt 4 and Dermalog 6 and FotoNation 5 perform comparatively better at 
higher FPIRs. 

• Improvements with Later Submissions: Nearly all of the most accuracy matchers were submitted during the fnal 
submission phase of IREX IX. Curves translated downward in relation to previous submissions may indicate im-
provements in the feature extraction process. Changes in slope or shape may indicate alterations to the comparison 
strategy. 

• Threshold Calibration Figure 3.7 reveals that at a fxed operating threshold, FNIR remains relatively fxed despite 
large variations in the enrolled population size. The only exceptions are Unique Biometrics 2 and the submissions from 
Aware, where FNIR increases with the enrolled population size. Figure 3.8 shows that at a fxed operating threshold, 
FPIR increases as the size of the enrolled population grows for nearly every matcher. Most matchers experience a 
5 to 20 fold increase in FPIR as the enrollment population size goes from 10 thousand to 160 thousand (a factor of 
16 increase in population size). The exceptions are the matchers submitted by Aware, where FPIR actually trends 
downward. It is possible that Aware is adjusting its comparison scores to accommodate changes in the size of the 
enrolled population. 
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Figure 3.4: Ninety percent confdence intervals for FNIR (at FPIR = 10−3) for two-eye comparisons against an enrolled population of 10 
thousand. Plots were generated from ≈ 83K mated and ≈ 86K nonmated searches. 
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Figure 3.6: Ninety percent confdence intervals for FNIR (at FPIR = 10−3) for two-eye comparisons against an enrolled population of 
160 thousand. Plots were generated from ≈ 83K mated and ≈ 86K nonmated searches. 
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Figure 3.7: FNIR as a function of enrollment database size when the decision threshold is fxed. The threshold is fxed to elicit an FPIR 
of 10−3 at an enrollment database size of 10k. 
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3.2. Speed 

3.2.1 One to One Matching 

3.2.1.1 Template Creation Time 

Template creation time refers to the amount of time that elapses while a comparable template is created from a raw iris 
image (or images). The relevant factor is turnaround time (i.e. the speed at which a response can be returned after an 
iris sample is acquired). Short turnaround times are critical for maintaining high throughput at, for example, access control 
gates. Longer template creation times mean more time waiting to verify an identity claim. Since comparisons are relatively 
fast, template creation time is the more important speed metric for most verifcation systems. A transaction in a centralized 
system involves several steps (presentation of the iris, image acquisition, network transfer, etc.) which together are likely to 
take longer than the comparison step alone. 

Figure 3.9 shows the distribution of template creation times for each submission when provided with both left and right iris 
samples (i.e. two iris samples per template). The times do not include any pre-processing steps performed by the testing 
harness such as loading the iris samples from disk. The timing machine was a Dual Intel Xeon E5-2695 running at 3.3 GHz. 
Further details on the testing environment can be found in Section 2.1. 

Notable Observations 

Unique Biometrics 2 creates their templates in the least amount of time with a median creation time of 37.9 milliseconds. 
Thirteen submissions have median creation times under 100 milliseconds and 23 have median creation times under 200 
milliseconds. Eight submissions have median creation times over one second (i.e. 1000 milliseconds). The fastest submis-
sion (Unique Biometrics 2) creates templates about 33 times faster than the slowest submission (Tiger IT 5). Multiple cores 
could be used to reduce these times. 
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Figure 3.9: Boxplots summarizing the distribution of template creation times for each one-to-one submission. Each template is created 
from a pair of iris samples (one of the left eye and one of the right). For reference, FNMR at an FMR of 10−5 is reported on the right. 
Boxplots were generated from 1000 created templates. 
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3.2.1.2 Comparison Time 

Comparison time refers to the amount of real-world time it takes to compare two templates and return a dissimilarity score. 
Timing statistics were collected for 10000 mated comparisons using a single processing core. Figure 3.10 shows the 
distribution of comparison times for each matcher. For reference, FNMR at an FMR of 10−5 for each matcher is reported 
along the right-hand side of the fgure. 

Notable Observations 

The fastest functioning matcher compares two-eye templates with a median time of 0.06 milliseconds. The fastest functioning 
matcher is almost 10000 times faster than the slowest matcher. Thirty-six of the 46 matchers compare templates with a 
median time of under a millisecond. Comparison times tend to vary noticeably even for different matchers from the same 
participant, suggesting a variety of comparison strategies are being attempted. 
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Figure 3.10: Boxplots summarizing the distribution of comparison times for each submission. Each template is created from a pair of 
iris samples (one of the left eye and one of the right). For reference, FNMR at an FMR of 10−5 is reported on the right. Boxplots were 
generated from 10 000 comparisons. 
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IREX III found that sometimes a speed-accuracy tradeoff exists for iris recognition, where improved accuracy can be achieved 
through slower, but more involved, comparison strategies. Figure 3.11 plots accuracy (FNMR at an FMR of 10−5) vs. 
comparison time for mated comparisons. SOAR Advanced Technologies and FotoNation submitted the fastest matchers, 
but their accuracy lags compared to other submissions. The correlation coeffcient for the log of the median search time and 
the log of FNMR is −0.30, indicating a weak but apparent speed-accuracy trade off. 
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The time it takes to create a template and search it against the enrolled population can affect throughput rates at physical 
access control points, biometric scanning stations, service kiosks, etc. Iris recognition matchers are capable of rapidly 
identifying users against large databases, which has led several countries to adopt iris-based methods of authenticating 
travelers at airports and border crossings [23]. Even when comparisons are performed offine, search speed can dictate 
computational hardware requirements. 

In a typical centralized live-capture system, a biometric sample is acquired and then transferred over a network to a central 
facility. Once at the facility, a template is created from the sample and searched against the enrolled population. The results 
of the search are then used to send a response back over the network. Turnaround time is affected by the time it takes 
to both create a template and search it against the enrolled population. However, throughput rates may not be affected if 
the steps can be performed concurrently with other tasks. For example, a CBP offcer could manually inspect a visitor’s 
credentials while waiting for a response. 

3.2.2.1 Search Time 

Search time refers to the amount of time that elapses when a template is searched against an enrollment database. Timing 
statistics were collected for 1000 nonmated searches using a single processing core. Machines that have multiple cores 
can perform concurrent processing to speedup searches. IREX III found that using 16 cores simultaneously results in an 
8 to 16 fold improvement in search time (for one matching algorithm that could operate in both single-threaded and multi-
threaded mode). IREX IV found that the fastest matchers can search against an enrolled database of 1.6 million in under a 
second (although for single-eye matching). Figure 3.12 shows search times for each matcher when the enrolled population 
is 160000. Figure 3.13 plots search time as a function of the size of the enrolled population. 

Notable Observations 

The fastest matcher (NeuroTechnology 6) was able to search against an enrolled population of 160000 with a median search 
time under 11 milliseconds, faster than any matcher from IREX 4 and almost 50 times faster than any other matcher sub-
mitted to IREX IX. The other matchers submitted by NeuroTechnology achieve lower error rates, suggesting the participant 
may have deliberately traded some accuracy for speed. In terms of FNMR, the difference is 0.008 for NeuroTechnology 5 
compared to 0.011 for NeuroTechnology 6 with roughly a hundred-fold difference in speed. 

Figure 3.13 reveals that search time scales linearly with the size of the enrolled population for nearly all matchers (i.e. a 
doubling of the enrolled population size results in a doubling of search time). An exception might be FotoNation 5, which 
seems to begin with a sublinear relationship but quickly becomes linear by the time the enrolled population size reaches 
about 40000. Another exception is NeuroTechnology 6. The slopes of its line segments suggest a sublinear relationship. 
When the enrolled population increases from 10000 to 160000 (a factor increase of 16), median search time increases from 
3.3 milliseconds to 12.5 milliseconds (a factor increase of 3.8). Every doubling of the enrolled population size seems to 
increase median search time by a factor of 1.24. 
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Figure 3.12: Boxplots summarizing the distribution of search times for two-eye comparisons against an enrollment database of 160000. 
For reference, FNIR at an FPIR of 10−3 is reported on the right. Each boxplot shows the distribution for 1000 searches. 
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Figure 3.13: Median search time as a function of the enrolled population size for each submission. Both axes are on log scales. Most 
curves have a slope of one, indicating that a doubling of the enrolled population size doubles the search time. An exception is the bottom 
cyan curve representing Neurotechnology 5. 
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3.2.2.2 Speed-Accuracy Tradeoff 

Although there is no pronounced speed-accuracy tradeoff, the most accurate matchers tend not to be the fastest. As 
was noted earlier, NeuroTechnology 6 has, by far, the shortest median search time but it is not as accurate as the other 
submissions from NeuroTechnology. It is roughly a hundred-fold faster than NeuroTechnology 5 but has an FNIR that is 35% 
greater (at FPIR=10−3). Other participants that appear to exhibit a speed-accuracy trade off are NEC, Decatur, and Tiger IT. 

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

 Aware 3

 Aware 4

 Aware 5
 Aware 6

 DeltaID 3

 DeltaID 4

 DeltaID 5
 DeltaID 6

 NeuroTechnology 3
 NeuroTechnology 4

 NeuroTechnology 5

 NeuroTechnology 6

 FotoNation 5

 Tiger IT 3
 Tiger IT 4

 Tiger IT 5

 Tiger IT 6

 IrisID 3
 IrisID 4

 IrisID 5

 IrisID 6

 Dermalog 3

 Dermalog 4

 Dermalog 5

 Dermalog 6

 NEC 3
 NEC 4  NEC 5

 NEC 6

 Qualcomm 4

 Qualcomm 5
 Qualcomm 6

 Decatur 3

 Decatur 4

 Decatur 5

 Decatur 6

 SOAR Adv Tech 1

 SOAR Adv Tech 2

 Tafirt 3

 Tafirt 4

 Tafirt 5

 Tafirt 6

 Unique Biometrics 2

0.01

0.02

0.05

0.1

0.2

0.5

10 20 50 100 200 500 1000 2000 5000 10000 20000 50000
Median Search Time (ms)

F
N

IR

Figure 3.14: Median search time vs accuracy for each submission. The vertical axis is FNIR at an FPIR of 10−3 for two-eye 
comparisons against an enrolled population of 160000 people. Timing statistics are for mated searches only. 
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3.3. Template Size 

An iris template is a proprietary representation of the features from an iris sample (or samples). Although these templates are 
often smaller than the original iris samples, storage and exchange of iris data should be performed using the standard image 
formats defned in ANSI/NIST-ITL 1-2011 Update 15 and ISO/IEC 19794-6 to maintain interoperability and prevent vendor 
lock-in. Nevertheless, the size of proprietary templates can still dictate machine requirements. For example, in centralized 
systems the enrollment templates are often permanently loaded in memory to facilitate rapid searches against the database. 
The size of search templates is less important since they are typically only loaded into memory for the duration of the search. 
Table 3.1 shows summarary statistics on template sizes for one-to-many submissions. Zero-sized "blank" templates were 
excluded prior to computing mean template sizes. 

Notable Observations 

• Range of Template Sizes: The mean single-eye enrollment template size varies from 579 bytes (FotoNation 4) to 
18 229 bytes (Decature 5, Decature 6, TigerIT 5, TigerIT 6). For search templates the mean size varies from 752 
bytes (Unique Biometrics 2) to 17 914 bytes (Decatur 4 and TigerIT 4). 

• Asymmetrical Template Sizes: Search and enrollment templates often have different mean sizes. FotoNation’s 
enrollment templates are less than a tenth the size of their search templates. IrisID’s enrollment templates are about 
half the size of their search templates. Tafrt’s enrollment templates are also smaller than their search templates. 
Occasionally the search templates are slightly larger (e.g. all submissions from Qualcomm). 

• Variable Template Sizes: Many submissions do not produce fxed-size templates. Templates created by Tiger IT and 
Decatur vary in size from one template to the other. As one would expect, two-eye templates tend to be about twice 
the size of single-eye templates. The exceptions are SOAR Adv Tech 1 and SOAR Adv Tech 2 where single-eye and 
two-eye templates are the same size. These submissions may not be performing effective two-eye comparisons (see 
Section 3.5). Some submissions create two-eye templates that take one of two sizes (e.g. DeltaID 3, Tafrt 4). Most 
likely, the two sizes correspond to whether features could be extracted from one or both iris samples. 
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One-eye Two-eye 
Search Templates Enrollment Templates Search Templates Enrollment Templates 

Aware 3 1806 ± 0 1806 ± 0 3612 ± 0 3612 ± 0 
Aware 4 1806 ± 0 1806 ± 0 3612 ± 0 3612 ± 0 
Aware 5 1062 ± 0 1062 ± 0 2124 ± 0 2124 ± 0 
Aware 6 1062 ± 0 1062 ± 0 2124 ± 0 2124 ± 0 

DeltaID 3 2048 ± 0 2048 ± 0 4084 ± 157 4082 ± 171 
DeltaID 4 6144 ± 0 6144 ± 0 12267 ± 359 12263 ± 393 
DeltaID 5 2048 ± 0 2048 ± 0 4096 ± 0 4096 ± 0 
DeltaID 6 6144 ± 0 6144 ± 0 12288 ± 0 12288 ± 0 

NeuroTechnology 3 2348 ± 0 2348 ± 0 4676 ± 0 4676 ± 0 
NeuroTechnology 4 4676 ± 0 4676 ± 0 9332 ± 0 9332 ± 0 
NeuroTechnology 5 2348 ± 0 2348 ± 0 4676 ± 0 4676 ± 0 
NeuroTechnology 6 2348 ± 0 2348 ± 0 4676 ± 0 4676 ± 0 

FotoNation 3 7481 ± 0 581 ± 0 1153 ± 73 
FotoNation 4 7479 ± 0 579 ± 0 1155 ± 42 
FotoNation 5 7481 ± 0 581 ± 0 14886 ± 752 1157 ± 53 

Tiger IT 3 17403 ± 2889 17709 ± 3000 34830 ± 5427 35370 ± 5585 
Tiger IT 4 17914 ± 2895 18219 ± 3010 35852 ± 5438 36391 ± 5602 
Tiger IT 5 17817 ± 3156 18229 ± 3222 35673 ± 5994 36412 ± 6132 
Tiger IT 6 17817 ± 3156 18229 ± 3222 35673 ± 5994 36412 ± 6132 

IrisID 3 3080 ± 0 1544 ± 0 6160 ± 0 3088 ± 0 
IrisID 4 4104 ± 0 2056 ± 0 8208 ± 0 4112 ± 0 
IrisID 5 3080 ± 0 1544 ± 0 6160 ± 0 3088 ± 0 
IrisID 6 4104 ± 0 2056 ± 0 8208 ± 0 4112 ± 0 

Dermalog 3 1899 ± 1 1887 ± 149 3765 ± 247 3773 ± 227 
Dermalog 4 1899 ± 1 1887 ± 149 3765 ± 247 3773 ± 227 
Dermalog 5 1899 ± 1 1897 ± 62 3792 ± 105 3793 ± 91 
Dermalog 6 1899 ± 1 1897 ± 62 3792 ± 105 3793 ± 91 

NEC 3 4632 ± 0 4632 ± 0 9248 ± 0 9248 ± 0 
NEC 4 4632 ± 0 4632 ± 0 9248 ± 0 9248 ± 0 
NEC 5 6178 ± 0 6178 ± 0 12330 ± 0 12330 ± 0 
NEC 6 6178 ± 0 6178 ± 0 12330 ± 0 12330 ± 0 

Qualcomm 3 2104 ± 0 2128 ± 0 4208 ± 0 4256 ± 0 
Qualcomm 4 2104 ± 0 2128 ± 0 4208 ± 0 4256 ± 0 
Qualcomm 5 3256 ± 0 3280 ± 0 6512 ± 0 6560 ± 0 
Qualcomm 6 3256 ± 0 3280 ± 0 6512 ± 0 6560 ± 0 

Decatur 3 17403 ± 2889 17709 ± 3000 34830 ± 5427 35370 ± 5585 
Decatur 4 17914 ± 2895 18219 ± 3010 35852 ± 5438 36391 ± 5602 
Decatur 5 17817 ± 3156 18229 ± 3222 35673 ± 5994 36412 ± 6132 
Decatur 6 17817 ± 3156 18229 ± 3222 35673 ± 5994 36412 ± 6132 

SOAR Adv Tech 1 965 ± 0 965 ± 0 965 ± 0 965 ± 0 
SOAR Adv Tech 2 1925 ± 0 1925 ± 0 1925 ± 0 1925 ± 0 

Tafrt 3 3850 ± 0 2464 ± 0 7692 ± 177 4923 ± 107 
Tafrt 4 6946 ± 0 5560 ± 0 13884 ± 235 11111 ± 222 
Tafrt 5 3850 ± 0 2464 ± 0 7650 ± 437 4902 ± 251 
Tafrt 6 6946 ± 0 5560 ± 0 13878 ± 307 11108 ± 261 

Unique Biometrics 2 752 ± 0 752 ± 0 1471 ± 155 1473 ± 150 

Table 3.1: Mean template size in bytes along with standard deviations. 
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3.4. Impact of Demographics 

Biometric systems may perform better or worse for certain demographic groups. When such a system is deployed for 
common activities (e.g. access control, border crossing) poor matching accuracy for a particular group can disproportionately 
impact members of that group. This section breaks out accuracy for three demographic factors: age, sex, and eye colour. 
Because the dataset consists of samples collected under various circumstances from several locations over a period of 
years, we cannot discount the possibility that any apparent demographic effects are actually due to some form of selection 
bias. 

Figure 3.15 shows single-eye DET accuracy for each matcher broken out by sex. Figure 3.17 shows DET accuracy for each 
matcher broken out by race. It should be noted that ’Asian’ can refer to anyone from the Asian continent, including East Asia 
and most of the Middle East. Race is problematic as a method of categorization because it is subjective and based at least 
partially on social and cultural traits. The Face Recognition Vendor Test (FRVT) Ongoing [24] uses the less ambiguous term 
’geographic region’. However, we are limited by the format in which the OPS-III meta data was collected and stored. Figure 
3.16 shows DET accuracy for each matcher broken out by eye colour. 

Notable Observations 

• Sex: Sex appears to have a signifcant impact on accuracy for some matchers, but the effect is not consistent. Some 
matchers perform better on males (e.g. SOAR Adv. Tech 1, Iris ID 3, Dermalog 4) while others perform better on 
females (e.g. NEC 6, Tafrt 6, DeltaID 4). This inconsistent behavior sometimes holds even for different matchers from 
the same participant. For example, Aware’s earlier submissions (Aware 3 and Aware 4) perform better on males while 
their later submissions (Aware 5 and Aware 6) perform better on females. The gray lines of equal threshold reveal 
that, in most cases, the accuracy differences have more to do with changes in FNMR rather than FMR. That is, the 
matcher has an easier time recognizing that two samples represent the same iris when they come from one sex over 
the other. The cause of this behavior is unknown and may have to do with ease of localizing the iris boundaries across 
sexes. Sometimes females wear mascara which can make localization of the iris boundaries more diffcult. 

• Eye Colour: Eye colour was consolidated into the binary categories light (blue, green, and grey) and dark (brown 
and black). Eye colour was not recorded for all subjects. The mated comparison sets contain 32 thousand dark-eye 
comparisons and 8 thousand light-eye comparisons. The nonmated comparison sets contain 71 million dark-eye 
comparisons and 2 million light-eye comparisons. 

Thirteen matchers perform noticeably better on dark eyes while 27 appear to perform better on light eyes, although 
the difference is often small. Tiger IT’s earlier submissions (TigerIT 3 and Tiger IT 4) yield much lower error rates on 
dark eyes while their later submissions (Tiger IT 5 and Tiger IT 6) yield lower error rates on light eyes. The same holds 
true for Decatur’s matchers. The lines of equal threshold reveal that lighter eyes are more likely to false match for 
most matchers. The most accurate matchers (e.g. NEC 5, NeuroTechnology 5, Decatur 5) appear to perform better 
on lighter eyes. There are several possible explanations for these behaviors: 

– Different behaviors from those with lighter coloured eyes. Eye colour covaries with race and other demographic 
factors that might be responsible for the true effect. 

– Differences in the ease of localization of the iris boundaries for different eye colours. 

– Difference in statistical richness of the iris "texture" between lighter and darker coloured irides. 

• Race: The three races considered are White, Black, and Asian. The mated comparison sets contain 30 thousand 
comparisons between eyes from Whites, 6 216 comparisons between eyes from Blacks, and 2 858 comparisons 
between eyes from Asians. The nonmated comparison sets contain 65 million comparisons between eyes from 
Whites, 3.5 million comparisons between eyes from Blacks, and 2.2 million comparisons between eyes from Asians. 

The matchers tend to perform best on Whites and poorest on Asians. This is not true in all cases and sometimes the 
differences are negligible. Race effects could be due to biases in training data. Companies based in Europe and the 
United States may have easier access to iris samples from Whites. That said, NEC is based in Japan but performs 
better on Whites. The effect could be because East Asians have smaller palperbal fssures on average [25]. It is also 
possible that apparent race effects are simply the result of random variation that could be resolved with more test 
data. The lines of equal threshold show that for most matchers, comparisons between Whites are less likely to false 
non-match but more likely to false match in relation to Asians. Further investigation in necessary before drawing any 
solid conclusions. 
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Figure 3.15: Impact of sex on accuracy for each submission. Grey lines connect points of equal threshold. 
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Most contemporary iris recognition systems use both eyes for verifcation where samples of both eyes are captured con-
currently. As a result, the image quality characteristics for the left and right eyes are highly correlated. Examples of highly 
correlated effects include: (1) blinks, (2) squints, (3) excessive pupil dilation caused by the consumption of certain drugs and 
(4) bilateral congenital defects such as non-circular pupils (as shown in the IREX III Supplement [26]), although there are 
certainly individual cases where these dependencies do not occur. Even when a single-eye camera is used to capture the 
images in succession, many of these correlations will remain because of subject and/or operator habits or environmental 
factors. We note the advantages of dual-eye recognition over single-eye recognition in most scenarios, but point out that it 
does not provide the overall level of performance improvement that would be expected if the left and right eye captures were 
statistically independent events 1. In one important respect, the correlation in a dual-eye capture is benefcial – the “roll” 
of the subject’s head is the same for both eyes and that enables the roll to be compensated for in software, which in turn 
leads to a reduction in the range of roll that needs to be searched. To frst order, cutting the range of roll by 2X reduces the 
computational complexity of the match calculation by 2X – an important effect in system optimization. 

Though specifc scenarios might beneft from single-eye capture, in most deployments dual-eye capture is likely the better 
choice. This issue will be discussed in depth in a separate paper on iris camera properties that is under development at 
NIST. 

Notable Observations 

Figure 3.18 compares one-eye and two-eye DET accuracy. The IREX III [28] and IREX IV [1] reports state that switching 
from one-eye to two-eye comparisons appears to result in a downward translation (on a log scale) of the DET curve. The 
number reported in the upper right-hand corner of each pane is the mean factor increase in FNMR at fxed FMR when 
switching from two-eye to single-eye comparisons. So, for example, r = 2 would correspond to a factor of two increase in 
FNMR. Mean factor reductions vary from a low of 0.75 to a high of 3.93. Values less than one indicate worse performance 
for two-eye comparisons, obviously indicating a problem. 

An iris recognition system could be designed to support both one-eye and two-eye comparisons. This would certainly be 
reasonable if images of both eyes were only available some of the time. At a fxed decision threshold, most matchers are 
more likely to return false non-matches for single-eye comparisons. Behavior for false matches is less consistent, with some 
matchers more likely to return false matches for single eye comparisons (e.g. Dermalog 5) and others less likely to return 
false matches for single-eye comparisons (e.g. DeltaID 3). Some participants may be normalizing their comparison scores 
to keep the false match rate consistent (e.g. Aware 3 and Aware 4). 

1similar effects have been observed for fngerprints [27] 

http:searched.To
http:factors.We
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Figure 3.18: Comparison of one-eye and two-eye accuracy for one-to-one comparisons. Gray line segments connect points of equal 
threshold, showing how error rates for single-eye comparisons relate to two-eye comparisons at the same decision threshold. The 
number reported in the upper right corner is the mean factor increase in FNMR at fxed FMR when switching from two-eye to single-eye 
comparisons. 
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This appendix formally defnes the statistics that characterize the performance of iris recognition algorithms. As an offine 
evaluation, IREX IX cannot test all aspects of an operation system. It does not include a live image acquisition component or 
any interaction with real users. The core accuracy statistics are defned in A.1 and A.2 while timing statistics are described 
in A.3. 

A.1. One to One Matching 

One-to-one iris comparisons produce measures of dissimilarity between biometric templates. If the dissimilarity score is at 
or below a preset decision threshold, the comparison is classifed as "mated", meaning the templates represent the same 
biometric characteristic. If the dissimilarity score is above the decision threshold, the comparison is classifed as "nonmated", 
meaning the two samples represent different biometric characteristics. Two types of decision error are possible. The frst is 
a false match, where a nonmated comparison is erroneously classifed as mated. The second is a false nonmatch, where a 
mated comparison is erroneously classifed as nonmated. The False Match Rate (FMR) is the rate at which false matches 
occur for nonmated comparisons. Formally, if ui are nonmated dissimilarity scores (with i = 1, ...,N), then FMR is estimated 
as 

N1
∑FMR(t) = H(ui − t) (A.1)

N i=0 

where t is the decision threshold and H(.) is the Heaviside step function, (
0, if x < 0,

H(x) = (A.2)
1, otherwise. 

The FNMR is similarly estimated for mated comparisons υi (with i = 1, ...,M): 

M1
∑FNMR(t) = H(t − υi). (A.3)

M i=0 

Adjusting the decision threshold, t, reduces the rate of one type of error, but at the expense of the other. This relationship 
is characterized by a DET curve, which plots the tradeoff between the two error rates. DET curves has become a standard 
in biometric testing, superseding the analogous ROC curve. Compared to ROC curves, the logarithmic axes of DET curves 
provide a superior view of the differences between matchers in the critical high performance region [13]. 

As estimates of the true population parameters, Equations A.1 and A.3 are both complete and suffcient, making them 
Uniform Minimum Variance Unbiased Estimates (UMVUEs) [29]. Given no other information about the comparisons other 
than the dissimilarity scores, they provide the best (i.e. lowest variance) estimates of FMR and FNMR among all unbiased 
estimates. 

A Failure to Enroll (FTE) occurs when a reference template could not be created, usually because no useful feature in-
formation could be extracted from the image(s). The analogous case for biometric probes is a Failure to Acquire (FTA). 
Participants were instructed to submit matchers that always create comparable templates, even when no feature information 
could be extracted. These "blank templates" are expected to produce high measures of dissimilarity (effectively infnity) when 
compared. This was done for ease of testing but does not accurately refect operational reality since, for example, a blank 
template would never be saved onto a smartcard and used for access control. This inability to handle template creation 
errors in realtime highlights a weakness of offine testing. 

Biometric comparisons test whether biometric characteristics match, which is slightly different than testing whether the 
individuals themselves match. It is possible to falsely match a sample of a person’s left eye to a sample of his right eye. 
Operationally, this might lead to the correct decision being made for the wrong reason (sometimes referred to as a "Type 
III error"). Left and right irides from the same person are never directly compared in this evaluation. But even if they were, 
credit would not be given for erroneously classifying such comparisons as mated. 

This report uses the terms FMR and FNMR rather than the analogous but less general terms "false accept rate" (FAR) and 
"false reject rate" (FRR). The latter terms only apply when an authoritative claim is made about the origin of the biometric 
sample [30]. Many biometric applications involve making a negative identity claim - i.e. that a biometric sample is not 
represented by the reference sample. For example, if fngerprints are lifted from a crime scene, they may be used to exclude 
certain suspects. In this scenario, a "false accept" would describe the event where the negative identity claim is falsely 
rejected. 
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A.2. One to Many Matching 

Open-set biometric systems are tasked with searching a biometric characteristic against an enrollment database and return-
ing zero or more candidates. A candidate is returned if the matcher determines that its dissimilarity to the searched image 
is below a pre-determined decision threshold. A false positive occurs when a search returns a candidate for an individual 
that is not enrolled in the database. A false negative occurs when a search does not return the correct candidate for an 
individual that is enrolled in the database. Raising the decision threshold increases the rate of false positives but decreases 
the rate of false negatives. 

False positives are computed exclusively from non-mated searches (i.e. searches for which the searched biometric charac-
teristic is not enrolled in the database). This is more refective of operation than if false positives had been computed from 
mated searches with the correct candidates removed from the list. 

Formally, let si be the dissimilarity score between the ith searched sample and its enrolled mate (with i = 1, ...,M). Addition-
ally, let ri be the rank of the enrolled mate in the candidate list. Then the estimate of FNIR is 

M1
∑FNIR(t, H(ri − ̀ ) ∧ H(si − t). (A.4)`) = 

M i=1 

where t is the decision threshold and ` is the rank requirement. The frst call to the Heaviside step function ensures the mate 
fulflls the rank requirement. The second ensures it fulflls the score requirement. A biometric system may only return this 
information if the enrolled mate does, in fact, fulfll both of these requirements. The FPIR depends only on the dissimilarity 
score for the top ranked candidates for each search. Let qi be the dissimilarity score for the top ranked candidate for the ith 
nonmated search (with i = 1, ...,Q ). Then the FPIR is estimated by 

Q1
∑FPIR(t) = H(t − qi). (A.5)

Q i=1 

Although the above metrics do not represent error rates in a binary classifcation system, core accuracy is still presented 
in the form of Detection Error Tradeoff (DET) plots, this time showing the tradeoff between the FPIR and the FNIR as the 
decision threshold is adjusted. When evaluating iris matchers, we did not look for the correct mate past the 10th most 
similar candidate (thus, ` = 10). For iris recognition the rank requirement has little effect on the estimate of FNIR since, at 
any reasonably selective threshold, the correct mate rarely fulflls the threshold requirement without also fulflling the rank 
requirement. 

Equation A.5 defnes FPIR as the fraction of non-mated searches for which at least one candidate has a dissimilarity score at 
or below threshold. Selectivity-Reliability curves [31] compute selectivity as the average number of false positives returned 
for a non-mated search. This differs from our metric in that it takes into account the actual number of false positives returned 
for a particular search beyond just the frst. Selectivity is a better metric for investigational mode applications where each 
candidate must be inspected by a human examiner (and thus workload scales with the number of returned candidates). 
That said, our defnition of FPIR is grounded on the assumption that most operational uses of iris recognition result in similar 
outcomes regardless of whether the search returns one or several false positives. For example, one-to-many access control 
systems grant access to users as long as they match at least one enrolled individual. 

Some DETs in this report include line segments between curves that connect points of equal threshold. The two curves 
might differ by enrolled population size or the number of iris samples used, and a connecting line segment shows how error 
rates for one curve compare to the other at the same decision threshold. 

A.3. Computation Timing 

Timing statistics are presented for primary operations (e.g. searching, template generation) as the actual physical time 
that elapsed. The C++ chrono library is used, which has nanosecond resolution on the test machines. Timing statistics 
are collected for single-threaded operations on otherwise unloaded machines. For ease of testing and fair comparison, 
algorithms were required to operate in single-threaded mode. Operationally, an algorithm can be designed to exploit multiple 
cores when available to expedite searching and enrollment. 
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This appendix describes how estimates of variability are computed in this report. Estimates of variability do not directly 
describe the population. Rather, they convey information about the primary statistics that are used to make inferences about 
the population. The primary statistics in this report are the core accuracy metrics defned in Appendix A. Variability refers to 
how tightly these statistics represent the true population parameters. 

The core accuracy metrics are computed over a sample of data subjects 1 selected from a larger population. In our case, the 
population is a set of feld-collected iris samples used by a government agency. We do not know the sampling methodology 
used to procure our test data so we are forced to assume simple-random-sampling of the data subjects. The iris images 
collected from the data subjects are paired in various ways to form comparison sets. These pairings introduce a correlation 
structure that must be incorporated into the estimates of variability. 

B.1. One-to-one Matching 

The correlation structure for one-to-one comparisons is characterized by the positive correlations between comparisons. 
For example, two comparisons are expected to be positively correlated if they share an enrollment template in common. 
Table B.1 defnes three distinct types of dependency for single-eye mated comparison. The fnal column shows the strength 
of each type of dependency as the mean Pearson Correlation Coeffcient (PCC) across all submissions over OPS-III. The 
correlations are measured with respect to the decisions made at an FMR of 10−4 . Although the correlation values are 
threshold dependent, they tend to change little for varying FMR due to the relative "fatness" of iris DET curves. 

Correlation Type Same Person Same Eye 
Same Verifcation 

Session 
Same Enrollment 

Session 
Correlation 

at FMR = 10−4 

1 Yes Yes No Yes 0.50 ± 0.04 
2 Yes No Yes Yes 0.36 ± 0.06 
3 Yes No No Yes 0.18 ± 0.02 

Table B.1: A basic correlation structure for single-eye mated comparisons. The rows describe different types of dependency that 
can exist between comparisons. The values in the fnal column are mean correlation coeffcients across all submissions (along with the 
standard deviations across submissions). 

The frst type of dependency is the strongest and refers to comparisons that share a reference sample in common. The 
second refers to comparisons that share both capture sessions in common but compare different eyes. Finally, the third 
and weakest type of dependency refers to comparisons that share only the enrollment session in common but also compare 
different eyes. Despite sharing no actual iris samples in common, the comparisons are correlated because the sample 
quality of left and right iris images captured during the same session tend to be highly correlated. 

The mated comparison sets for OPS-III were constructed by assigning the frst chronological capture instance for each 
person as the reference sample, and all subsequent capture instances as probe samples. Thus, all mated comparisons for 
a particular person share the same enrollment session in common. This greatly simplifes the correlation structure to the 
point that Table B.1 fully captures the signifcant sources of dependency for mated comparisons. Different approaches to 
comparison set construction can lead to much more complicated correlation structures. For two-eye mated comparisons, 
the only source of dependency is when both comparisons involve the same person. 

General equations are presented for estimating the variability of the core accuracy metrics given arbitrary correlation struc-
tures. Formally, let p̂(t) be the estimate of either FMR or FNMR as computed in Appendix A. Let di(t) be the decision at 
threshold t for the ith comparison (i = 1, ...,N). If the comparison is mated, then di(t) = H(υi − t). Furthermore, let Sk be 
the set of comparison pairs fulflling the criteria for dependency type k (k = 1, ...,K). The elements of Sk are pairs of indices 
where a given element (i, j) refers to comparisons i and j respectively. An unbiased estimate of the covariance for the kth 
dependency type is � �� � 

σ̂k 
2(t) = 

N 1 
∑ (di(t) − p̂(t))(d j(t) − p̂(t)). (B.1) 

N − 1 |Sk| (i, j) ∈ Sk 

The frst term is Bessel’s Correction. The rest of the equation is just the standard computation for covariance. The estimate 

1Terminology such as "data subject" is now used by NIST to conform with ISO/IEC 2382-3: Vocabulary, Part 37: Biometrics [30] 
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of variance is 

p̂(t)(1− p̂(t)) 
σ̂

2(t) = + ĉ(t) (B.2) 
N 

where 
K1 

σ
2 

i=1
ĉ(t) = 

N2 ∑ |Sk| ˆk (t). (B.3) 

Equation B.3 consolidates the contribution of all of the covariances to the overall estimate of the variance. 

Confdence intervals can be constructed using estimates of both p and the σ2 . The simplest and most straightforward 
approach is to invoke the Central Limit Theorem (CLT) and defne the interval as q

p̂(t) ± zα/2 σ̂2(t) (B.4) 

where zα/2 is the α/2th quantile of the standard normal distribution. However, Brown et. al [32] identify several problems 
with this approach. First, they note that always defning p̂(t) as the center of the interval can introduce a systematic negative 
bias to the coverage probability. Second, the actual distribution of p̂(t) is signifcantly nonnormal when p is close to 0 or 1, 
even for large N. Finally, due to the fact that p̂(t) is a discretized estimator, Equation B.4 severely underestimates the true 
coverage probability for certain "unlucky pairs" of p and N. For these reasons, we adopt their recommendation to use the 
Wilson Score method. However, the method must be modifed to account for the correlation structure. 

The Wilson Score interval is formed by inverting the normal approximation to the equal-tailed hypothesis test of H0 : p = p0. 
At signifcance level α , the hypothesis is accepted if p̂(t) falls within the interval 

|p̂(t) − p0|q ≤± zα/2. (B.5) 

N 
1 p0(1− p0)+ ĉ(t) 

The denominator is the standard deviation of the test statistic. Unlike Equation B.4, it does not require a full estimate of the 
variance. The additional ĉ(t) term incorporates the contribution of the correlation structure to the estimate. Since knowing 
p0 does not reveal the true value of c(t), the latter must be approximated using Equation B.3. The Wilson Interval is derived 
by regarding p0 as the unknown parameter. Using the quadratic equation to solve Equation B.5 for p0 yields the interval: q

1 1 1 1p̂(t)+ 2N z2 
α/2± zα/2 N p̂(t)(1− p̂(t)) + 4N2 z

α

2 
/2 +(1+ N z2 

α/2)ĉ(t) 
CIW = 1 . (B.6) 

1+ N z2 
α/2 

The Wilson Score interval still loses accuracy (though not as severely as Equation B.4) when np or n(p − 1) is small. For 
this reason, we conservatively opt not to apply the Wilson Score Interval to cases where np < 103 . 

B.2. One-to-Many Matching 

The correlation structure for one-to-many comparisons is characterized by the positive correlations between searches. Each 
identifcation template is searched against a database of enrolled templates. The correlation structure has the potential to be 
much more complex compared to one-to-one comparisons. Dependences can exist across different enrollment databases 
as well as between templates enrolled within any one database. Worse, it is unclear how to measure and incorporate these 
dependencies into any estimates of variability. The simplest solution is to construct the enrollment databases such that 
these dependencies are never introduced. This is primarily accomplished by ensuring each database consists of an entirely 
disparate set of individuals. Additionally, no person should be represented by more than one entry in any database. So, for 
example, left and right eyes from the same person should not be enrolled as separate entries. 

Correlation Type Same Person Same Eye 
Same Verifcation 

Session 
Same Enrollment 

Database 
Correlation 

at FMR = 10−3 

1 Yes Yes No Yes 0.458 ± 0.008 
2 Yes No Yes Yes 0.35 ± 0.03 
3 Yes No No Yes 0.23 ± 0.02 
4 No Yes No Yes 0.0 ± 0.1 
5 No No No Yes 0.0 ± 0.1 

Table B.2: A basic correlation structure for single-eye mated searches against an enrolled population of 10000. The rows describe 
different types of dependency that can exist between comparisons. The values in the fnal column are mean correlation coeffcients across 
all submissions. 
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Table B.2 describes fve remaining sources of dependency for single-eye mated searches. All involve searches against the 
same enrollment database. The frst refers to identifcation templates created from separate captures of the same eye. The 
second refers to identifcation templates created from opposite eyes captured during the same session. The third refers to 
identifcation templates created from opposite eyes from the same person acquired during different capture sessions. The 
fourth and ffth forms of dependency involve identifcation templates that are not expected to be correlated with each other 
but are both searched against the same database. Generally speaking, any two identifcation templates searched against 
the same enrollment database are expected to be correlated. Equations B.3 and B.6 are used along with the aforementioned 
dependency types to construct confdence intervals for FNIR (as well as FNMR). 

For the case of two-eye comparisons, we consider two types of dependency when estimating confdence intervals. The 
frst involves identifcation templates representing the same person searched against the same enrollment database. The 
second involves identifcation templates representing different people that are both searched against the same database. 

B.3. Discussion and Further Considerations 

Previous NIST evaluations [1, 33] used the Wilson Score Method under the assumption that all comparisons are inde-
pendent. Failing to account for the dependencies probably led to overly optimistic estimates of variability. In the current 
evaluation, we found that the independence assumption leads to signifcant underestimates of variance, sometimes by a 
factor of 2 or 3. Many academic iris datasets (e.g. CASIA [34], Notre Dame 0405 [35]) consist of iris samples collected 
from comparatively small numbers of subjects, typically a few hundred at most. Thus, the dependencies are expected to 
contribute even more toward the variability of accuracy statistics computed over these datasets. 

Mansfeld et. al [36] provide estimates of variability for the false match rate given a particular sampling strategy. Schuckers 
[37] expands upon their work by defning a general correlation structure for fngerprint recognition. Although his proposed 
method of estimating confdence intervals is common and asymptotically valid, it still suffers from the same weaknesses 
identifed by Brown et. al. in relation to Equation B.4. Bootstrapping also fails to offer a viable alternative because it cannot 
be generalized to work for arbitrary correlation structures. Altering the resampling strategy can perhaps compensate for 
one or two types of dependency [36]. Beyond that, the problem becomes too complex. Wayman [14] tests the accuracy 
of uncertainty bounds calculated using equations defned by Bickel [38] and fnds them to be accurate when full cross 
comparisons are available. 

Sometimes we report estimates of variability for FNMR at fxed FMR when in fact the decision threshold is fxed. Uncertainty 
with respect to what decision threshold corresponds to the targeted FMR results in increased uncertainty about the true value 
of FNMR. That said, our estimates of FMR are expected to be very tight given the large number of nonmated comparisons 
performed (often in excess of a billion). Additionally, even at very low FMRs, the lightly sloping nature of iris DET curves 
means that small discrepancies in FMR are not expected to signifcantly impact FNMR. Similar logic holds for estimating 
FNIR at fxed FPIR. 



______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.IR
.8207

C Removing Ground Truth Errors from OPS-III 

In an ideal world, every iris sample would be assigned the correct person identifer. In reality, we fnd this is rarely ever the 
case (possibly due to clerical / human error or some mistake in data handling). If not addressed, these ground truth errors 
will infate estimates of FNMR and FMR. If two samples of the same iris are falsely labeled as different irides, then correctly 
matching them will be counted as a false match. To address this, probe samples were horizontally fipped prior to template 
creation when the comparison was nonmated. The fipping converts the probe sample into a mirror image itself, so even 
comparisons against the same iris are less likely to produce low measures of dissimilarity. This strategy was used in both 
IREX III and IREX IV (see IREX III Section 6.4 for a detailed explanation and analysis). Some have noted that Purkinje 
images (i.e. refections of objects on the eye) might introduce false similarities between iris samples if the refections are 
similar, and that horizontally fipping would cancel out this effect. Although horizontal fipping may not be a perfect solution, 
we believe it is preferable to ignoring this type of ground truth error. 

Another type of ground truth error is when two samples of different irides are assigned the same person identifer. This can 
infate estimates of FNMR (or FNIR in the one-to-many case). We attempted to identify these labeling errors and flter them 
out of the comparison sets. We began by identifying all two-eye mated comparisons that were ’missed’ by all 46 matchers at 
an FMR of 10−4. Figure C.1 plots how frequently mated comparisons were missed by a specifc number of matchers. So, for 
example, the fgure shows that 6100 comparisons were missed by exactly 3 matchers. Two-hundred ffty seven comparisons 
were missed by all 46 matchers. We then manually inspected the face images that were captured concurrently with the iris 
samples to verify whether the comparison is truly mated. Two-hundred twenty one of the comparisons were determined 
to be nonmated and were removed from the comparison sets. A comparison was only removed if it was obvious that the 
comparison is not mated. The remaining 36 comparisons that were not removed generally involve extremely poor quality 
iris samples (closed eyes, patterned contact lenses, etc.). Our reason for considering only those comparisons missed by all 
matchers was to avoid matcher-specifc bias. 
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Figure C.1: Histogram showing how frequently comparisons were missed by a specifc number of matchers. Note the short bar on the 
far right representing the 257 comparisons missed by all 46 matchers. 
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D Additional Figures and Tables 

Appendix A contains supplementary DET plots and additional summary statistics for all recognition algorithms. 

D.1. One-to-One 
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Submission FMR=10−2 FMR=10−4 FMR=10−6 

NEC 6 0.0141 ± 0.0009 0.016 ± 0.001 0.019 ± 0.001 
NEC 5 0.0144 ± 0.0009 0.016 ± 0.001 0.019 ± 0.001 
NEC 4 0.0148 ± 0.0007 0.0168 ± 0.0007 0.0196 ± 0.0008 
NEC 3 0.0157 ± 0.0006 0.0176 ± 0.0007 0.0209 ± 0.0007 
NeuroTechnology 5 0.0158 ± 0.0006 0.0184 ± 0.0007 0.0218 ± 0.0007 
Decatur 5 0.0146 ± 0.0006 0.0186 ± 0.0007 0.0227 ± 0.0007 
Tiger IT 5 0.015 ± 0.001 0.019 ± 0.001 0.023 ± 0.001 
Decatur 6 0.0147 ± 0.0008 0.0190 ± 0.0009 0.023 ± 0.001 
Tiger IT 6 0.0155 ± 0.0006 0.0194 ± 0.0007 0.0234 ± 0.0008 
DeltaID 4 0.0184 ± 0.0006 0.0221 ± 0.0007 0.0265 ± 0.0008 
DeltaID 6 0.0185 ± 0.0007 0.0223 ± 0.0009 0.027 ± 0.001 
NeuroTechnology 4 0.0177 ± 0.0007 0.0228 ± 0.0009 0.028 ± 0.001 
NeuroTechnology 6 0.0199 ± 0.0009 0.024 ± 0.001 0.028 ± 0.001 
NeuroTechnology 3 0.0198 ± 0.0009 0.024 ± 0.001 0.028 ± 0.001 
Decatur 4 0.0213 ± 0.0006 0.0271 ± 0.0006 0.0325 ± 0.0006 
Tiger IT 4 0.0218 ± 0.0006 0.0272 ± 0.0006 0.0326 ± 0.0006 
DeltaID 5 0.023 ± 0.001 0.028 ± 0.001 0.033 ± 0.001 
Decatur 3 0.022 ± 0.002 0.028 ± 0.002 0.034 ± 0.002 
Tiger IT 3 0.0214 ± 0.0006 0.0278 ± 0.0007 0.0339 ± 0.0008 
DeltaID 3 0.0239 ± 0.0006 0.0284 ± 0.0007 0.0339 ± 0.0008 
Tafrt 4 0.0219 ± 0.0004 0.0259 ± 0.0007 0.0352 ± 0.0008 
Tafrt 3 0.0222 ± 0.0004 0.0279 ± 0.0007 0.0368 ± 0.0008 
Tafrt 6 0.032 ± 0.001 0.034 ± 0.001 0.039 ± 0.002 
Dermalog 5 0.0226 ± 0.0008 0.0315 ± 0.0009 0.046 ± 0.001 
Dermalog 6 0.0244 ± 0.0007 0.0333 ± 0.0008 0.048 ± 0.001 
Qualcomm 5 0.0372 ± 0.0007 0.0425 ± 0.0007 0.0502 ± 0.0008 
Qualcomm 6 0.0370 ± 0.0006 0.0424 ± 0.0007 0.0503 ± 0.0007 
Tafrt 5 0.0350 ± 0.0006 0.0422 ± 0.0006 0.0515 ± 0.0007 
Aware 6 0.0286 ± 0.0006 0.0391 ± 0.0007 0.0544 ± 0.0007 
Aware 3 0.039 ± 0.001 0.049 ± 0.001 0.059 ± 0.001 
IrisID 4 0.0250 ± 0.0006 0.0406 ± 0.0006 0.0596 ± 0.0007 
IrisID 6 0.0288 ± 0.0006 0.0435 ± 0.0006 0.0623 ± 0.0007 
Aware 5 0.0342 ± 0.0008 0.046 ± 0.001 0.066 ± 0.001 
FotoNation 4 0.0355 ± 0.0008 0.0485 ± 0.0009 0.066 ± 0.001 
IrisID 3 0.0291 ± 0.0007 0.0458 ± 0.0008 0.0664 ± 0.0009 
Aware 4 0.0447 ± 0.0007 0.0547 ± 0.0008 0.0667 ± 0.0009 
SOAR Adv Tech 1 0.0327 ± 0.0006 0.0477 ± 0.0006 0.0684 ± 0.0006 
SOAR Adv Tech 2 0.0327 ± 0.0006 0.0486 ± 0.0006 0.0706 ± 0.0006 
IrisID 5 0.0330 ± 0.0009 0.0506 ± 0.0009 0.071 ± 0.001 
Dermalog 3 0.0388 ± 0.0009 0.0524 ± 0.0009 0.074 ± 0.001 
Dermalog 4 0.0452 ± 0.0006 0.0596 ± 0.0006 0.0814 ± 0.0007 
Qualcomm 3 0.0701 ± 0.0006 0.0768 ± 0.0006 0.0887 ± 0.0007 
FotoNation 5 0.0524 ± 0.0008 0.0692 ± 0.0009 0.100 ± 0.001 
FotoNation 3 0.0614 ± 0.0008 0.0778 ± 0.0009 0.108 ± 0.001 
Unique Biometrics 2 0.0886 ± 0.0006 0.1124 ± 0.0009 0.143 ± 0.001 
Qualcomm 4 0.4607 ± 0.0005 0.5022 ± 0.0008 0.5311 ± 0.0009 
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Table D.1: Accuracy table for (one-to-one) single-eye matching. Standard deviations are presented after the plus/minus. 
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Submission FMR=10−2 FMR=10−4 FMR=10−6 

NEC 5 0.0048 ± 0.0008 0.0054 ± 0.0009 0.006 ± 0.001 
NEC 4 0.0051 ± 0.0009 0.006 ± 0.001 0.006 ± 0.001 
NEC 6 0.0049 ± 0.0007 0.0055 ± 0.0008 0.0062 ± 0.0008 
NEC 3 0.0055 ± 0.0006 0.0061 ± 0.0007 0.0069 ± 0.0007 
NeuroTechnology 5 0.0051 ± 0.0006 0.0062 ± 0.0006 0.0072 ± 0.0007 
Tiger IT 5 0.0052 ± 0.0006 0.0063 ± 0.0006 0.0074 ± 0.0007 
DeltaID 6 0.0054 ± 0.0008 0.0063 ± 0.0009 0.008 ± 0.001 
Decatur 5 0.0052 ± 0.0009 0.006 ± 0.001 0.008 ± 0.001 
Decatur 6 0.0052 ± 0.0006 0.0063 ± 0.0007 0.0075 ± 0.0007 
Tiger IT 6 0.0053 ± 0.0006 0.0063 ± 0.0007 0.0076 ± 0.0007 
NeuroTechnology 6 0.0061 ± 0.0008 0.008 ± 0.001 0.009 ± 0.001 
DeltaID 5 0.0062 ± 0.0007 0.007 ± 0.001 0.009 ± 0.001 
NeuroTechnology 3 0.0062 ± 0.0008 0.008 ± 0.001 0.009 ± 0.001 
NeuroTechnology 4 0.0059 ± 0.0008 0.008 ± 0.001 0.009 ± 0.001 
Tiger IT 4 0.0073 ± 0.0005 0.0093 ± 0.0006 0.0113 ± 0.0006 
Decatur 3 0.0071 ± 0.0005 0.0092 ± 0.0006 0.0113 ± 0.0006 
Tafrt 6 0.008 ± 0.001 0.009 ± 0.001 0.011 ± 0.001 
Tafrt 4 0.006 ± 0.003 0.008 ± 0.003 0.012 ± 0.003 
Decatur 4 0.0071 ± 0.0006 0.0091 ± 0.0007 0.0116 ± 0.0007 
Tiger IT 3 0.0071 ± 0.0006 0.0093 ± 0.0007 0.0117 ± 0.0007 
Tafrt 3 0.0064 ± 0.0005 0.0083 ± 0.0007 0.0117 ± 0.0008 
DeltaID 4 0.0095 ± 0.0005 0.0107 ± 0.0007 0.0124 ± 0.0008 
Dermalog 5 0.006 ± 0.001 0.009 ± 0.001 0.015 ± 0.002 
Tafrt 5 0.0090 ± 0.0007 0.0117 ± 0.0008 0.015 ± 0.001 
Dermalog 6 0.0070 ± 0.0007 0.0100 ± 0.0008 0.0155 ± 0.0009 
DeltaID 3 0.0129 ± 0.0006 0.0142 ± 0.0007 0.0162 ± 0.0007 
Qualcomm 5 0.0130 ± 0.0006 0.0147 ± 0.0006 0.0180 ± 0.0007 
Qualcomm 6 0.0129 ± 0.0005 0.0146 ± 0.0006 0.0180 ± 0.0006 
Aware 6 0.0081 ± 0.0006 0.0120 ± 0.0006 0.0187 ± 0.0007 
Aware 3 0.0123 ± 0.0009 0.016 ± 0.001 0.020 ± 0.002 
Aware 5 0.0097 ± 0.0005 0.0145 ± 0.0006 0.0230 ± 0.0006 
Aware 4 0.0143 ± 0.0005 0.0181 ± 0.0006 0.0231 ± 0.0006 
IrisID 6 0.0114 ± 0.0007 0.0170 ± 0.0009 0.026 ± 0.001 
IrisID 5 0.0125 ± 0.0007 0.0193 ± 0.0009 0.029 ± 0.001 
Dermalog 3 0.0102 ± 0.0006 0.0159 ± 0.0007 0.0302 ± 0.0009 
Dermalog 4 0.0118 ± 0.0006 0.0185 ± 0.0008 0.0341 ± 0.0009 
Qualcomm 3 0.0290 ± 0.0005 0.0328 ± 0.0005 0.0416 ± 0.0006 
IrisID 4 0.0219 ± 0.0005 0.0361 ± 0.0005 0.0533 ± 0.0006 
IrisID 3 0.0283 ± 0.0008 0.0427 ± 0.0008 0.0604 ± 0.0009 
FotoNation 4 0.0326 ± 0.0008 0.0454 ± 0.0008 0.0622 ± 0.0009 
SOAR Adv Tech 1 0.0335 ± 0.0005 0.0476 ± 0.0006 0.0665 ± 0.0006 
SOAR Adv Tech 2 0.0335 ± 0.0005 0.0486 ± 0.0006 0.0688 ± 0.0006 
FotoNation 5 0.018 ± 0.001 0.034 ± 0.001 0.077 ± 0.001 
Unique Biometrics 2 0.132 ± 0.001 0.149 ± 0.001 0.171 ± 0.001 
Qualcomm 4 0.2965 ± 0.0007 0.3363 ± 0.0008 0.3709 ± 0.0009 
FotoNation 3 0.9983 ± 0.0006 0.9985 ± 0.0007 0.9988 ± 0.0008 

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.IR
.8207

Table D.2: Accuracy table for (one-to-one) two-eye matching. Standard deviations are presented after the plus/minus. 
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D.2. One-to-Many 

D.3. 10K Enrollment Size 
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Submission FPIR=10−2 FPIR=10−3 FPIR=10−4 

NEC 6 0.016 ± 0.001 0.019 ± 0.001 0.022 ± 0.002 
NEC 5 0.016 ± 0.001 0.019 ± 0.001 0.022 ± 0.002 
NEC 4 0.018 ± 0.001 0.020 ± 0.001 0.022 ± 0.001 
NeuroTechnology 5 0.0194 ± 0.0009 0.0214 ± 0.0009 0.0235 ± 0.0009 
NEC 3 0.0183 ± 0.0009 0.0207 ± 0.0009 0.024 ± 0.001 
DeltaID 4 0.0240 ± 0.0009 0.026 ± 0.001 0.029 ± 0.001 
NeuroTechnology 3 0.026 ± 0.002 0.028 ± 0.002 0.030 ± 0.002 
NeuroTechnology 4 0.026 ± 0.001 0.029 ± 0.002 0.032 ± 0.002 
NeuroTechnology 6 0.031 ± 0.001 0.033 ± 0.001 0.035 ± 0.001 
Tiger IT 5 0.033 ± 0.001 0.034 ± 0.001 0.035 ± 0.001 
Decatur 6 0.034 ± 0.001 0.035 ± 0.002 0.037 ± 0.002 
DeltaID 5 0.031 ± 0.001 0.034 ± 0.001 0.038 ± 0.002 
DeltaID 6 0.034 ± 0.001 0.036 ± 0.002 0.038 ± 0.002 
DeltaID 3 0.032 ± 0.001 0.035 ± 0.002 0.038 ± 0.002 
Decatur 5 0.0364 ± 0.0008 0.0372 ± 0.0008 0.0385 ± 0.0009 
Tafrt 4 0.0275 ± 0.0008 0.0332 ± 0.0008 0.0405 ± 0.0009 
Tiger IT 6 0.039 ± 0.002 0.040 ± 0.002 0.041 ± 0.002 
Tafrt 3 0.033 ± 0.003 0.038 ± 0.003 0.045 ± 0.003 
Tafrt 6 0.036 ± 0.001 0.040 ± 0.001 0.045 ± 0.001 
Decatur 4 0.042 ± 0.001 0.044 ± 0.001 0.047 ± 0.001 
Tiger IT 4 0.044 ± 0.001 0.046 ± 0.001 0.049 ± 0.001 
Tiger IT 3 0.0451 ± 0.0009 0.047 ± 0.001 0.050 ± 0.001 
Decatur 3 0.047 ± 0.001 0.049 ± 0.001 0.052 ± 0.001 
Dermalog 6 0.041 ± 0.003 0.048 ± 0.003 0.057 ± 0.003 
Qualcomm 5 0.047 ± 0.003 0.052 ± 0.003 0.058 ± 0.003 
Qualcomm 6 0.0473 ± 0.0009 0.052 ± 0.001 0.059 ± 0.001 
Tafrt 5 0.048 ± 0.001 0.054 ± 0.001 0.060 ± 0.001 
Dermalog 5 0.0444 ± 0.0008 0.0569 ± 0.0009 0.0697 ± 0.0009 
Aware 3 0.061 ± 0.001 0.067 ± 0.001 0.074 ± 0.001 
Aware 4 0.070 ± 0.002 0.076 ± 0.002 0.083 ± 0.002 
IrisID 4 0.0587 ± 0.0009 0.0708 ± 0.0009 0.086 ± 0.001 
IrisID 6 0.060 ± 0.001 0.073 ± 0.001 0.090 ± 0.001 
IrisID 3 0.065 ± 0.001 0.079 ± 0.002 0.095 ± 0.002 
IrisID 5 0.070 ± 0.001 0.084 ± 0.002 0.102 ± 0.002 
Dermalog 3 0.063 ± 0.001 0.078 ± 0.001 0.103 ± 0.001 
Qualcomm 3 0.083 ± 0.001 0.092 ± 0.001 0.104 ± 0.001 
FotoNation 4 0.0619 ± 0.0007 0.0809 ± 0.0008 0.1095 ± 0.0008 
Dermalog 4 0.0696 ± 0.0007 0.0872 ± 0.0008 0.1199 ± 0.0008 
FotoNation 3 0.096 ± 0.001 0.123 ± 0.001 0.161 ± 0.001 
FotoNation 5 0.088 ± 0.001 0.120 ± 0.001 0.183 ± 0.001 
SOAR Adv Tech 1 0.193 ± 0.001 0.193 ± 0.001 0.193 ± 0.001 
SOAR Adv Tech 2 0.1957 ± 0.0009 0.196 ± 0.001 0.196 ± 0.001 
Aware 5 0.213 ± 0.001 0.219 ± 0.001 0.226 ± 0.001 
Aware 6 0.216 ± 0.001 0.221 ± 0.001 0.228 ± 0.001 
Unique Biometrics 2 0.239 ± 0.001 0.239 ± 0.001 0.239 ± 0.001 
Qualcomm 4 0.524 ± 0.001 0.539 ± 0.001 0.559 ± 0.001 

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.IR
.8207

Table D.3: Accuracy table for single-eye matching against an enrolled population of 10 thousand. Standard deviations are 
presented after the plus/minus. 
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Submission FPIR=10−2 FPIR=10−3 FPIR=10−4 

NEC 4 0.006 ± 0.001 0.006 ± 0.001 0.007 ± 0.001 
NEC 5 0.006 ± 0.001 0.006 ± 0.001 0.007 ± 0.001 
NEC 6 0.0057 ± 0.0008 0.0061 ± 0.0008 0.0070 ± 0.0008 
NEC 3 0.0064 ± 0.0007 0.0069 ± 0.0007 0.0074 ± 0.0008 
NeuroTechnology 5 0.0065 ± 0.0007 0.0073 ± 0.0007 0.0080 ± 0.0007 
DeltaID 5 0.0065 ± 0.0007 0.0075 ± 0.0007 0.0080 ± 0.0007 
DeltaID 6 0.0068 ± 0.0008 0.0075 ± 0.0009 0.0083 ± 0.0009 
NeuroTechnology 4 0.0067 ± 0.0008 0.0078 ± 0.0009 0.0091 ± 0.0009 
Tiger IT 5 0.008 ± 0.001 0.008 ± 0.001 0.009 ± 0.001 
NeuroTechnology 3 0.008 ± 0.001 0.009 ± 0.001 0.010 ± 0.001 
Decatur 6 0.009 ± 0.001 0.009 ± 0.001 0.010 ± 0.002 
NeuroTechnology 6 0.010 ± 0.001 0.010 ± 0.001 0.011 ± 0.002 
Decatur 5 0.0105 ± 0.0006 0.0107 ± 0.0006 0.0114 ± 0.0006 
DeltaID 4 0.0096 ± 0.0006 0.0104 ± 0.0006 0.0118 ± 0.0006 
Tiger IT 6 0.012 ± 0.003 0.012 ± 0.003 0.012 ± 0.003 
Tafrt 4 0.0073 ± 0.0009 0.0097 ± 0.0009 0.0140 ± 0.0009 
Tafrt 6 0.0102 ± 0.0008 0.0118 ± 0.0008 0.0143 ± 0.0009 
Decatur 4 0.0129 ± 0.0007 0.0133 ± 0.0008 0.0146 ± 0.0009 
Tafrt 3 0.0085 ± 0.0007 0.0108 ± 0.0007 0.0148 ± 0.0008 
Tiger IT 3 0.014 ± 0.001 0.014 ± 0.001 0.015 ± 0.001 
DeltaID 3 0.014 ± 0.002 0.015 ± 0.002 0.015 ± 0.002 
Tiger IT 4 0.014 ± 0.002 0.014 ± 0.002 0.016 ± 0.002 
Decatur 3 0.0148 ± 0.0007 0.0151 ± 0.0007 0.0168 ± 0.0008 
Tafrt 5 0.0124 ± 0.0007 0.0148 ± 0.0008 0.0182 ± 0.0008 
Qualcomm 6 0.0149 ± 0.0006 0.0177 ± 0.0006 0.0233 ± 0.0006 
Qualcomm 5 0.0148 ± 0.0007 0.0173 ± 0.0007 0.0233 ± 0.0008 
Aware 5 0.016 ± 0.001 0.019 ± 0.001 0.023 ± 0.002 
Dermalog 5 0.0119 ± 0.0007 0.0170 ± 0.0007 0.0241 ± 0.0007 
Aware 6 0.0172 ± 0.0008 0.0204 ± 0.0008 0.0242 ± 0.0008 
Dermalog 6 0.012 ± 0.001 0.016 ± 0.001 0.024 ± 0.002 
Aware 3 0.019 ± 0.001 0.021 ± 0.002 0.024 ± 0.002 
Aware 4 0.0257 ± 0.0009 0.029 ± 0.001 0.032 ± 0.001 
IrisID 4 0.0209 ± 0.0008 0.0264 ± 0.0009 0.036 ± 0.001 
IrisID 3 0.0232 ± 0.0006 0.0297 ± 0.0006 0.0389 ± 0.0006 
Dermalog 3 0.0193 ± 0.0006 0.0294 ± 0.0006 0.0453 ± 0.0006 
Dermalog 4 0.0202 ± 0.0009 0.0318 ± 0.0009 0.054 ± 0.001 
IrisID 6 0.0578 ± 0.0009 0.0690 ± 0.0009 0.087 ± 0.001 
IrisID 5 0.0653 ± 0.0008 0.0789 ± 0.0008 0.0935 ± 0.0008 
FotoNation 5 0.0342 ± 0.0007 0.0596 ± 0.0008 0.0938 ± 0.0008 
SOAR Adv Tech 2 0.064 ± 0.001 0.076 ± 0.001 0.096 ± 0.001 
SOAR Adv Tech 1 0.061 ± 0.001 0.074 ± 0.001 0.099 ± 0.001 
Unique Biometrics 2 0.1102 ± 0.0009 0.1102 ± 0.0009 0.110 ± 0.001 
Qualcomm 4 0.3593 ± 0.0008 0.3790 ± 0.0008 0.3985 ± 0.0008 

Table D.4: Accuracy table for two-eye matching against an enrolled population of 10 thousand. Standard deviations are 
presented after the plus/minus. 
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Submission FPIR=10−2 FPIR=10−3 FPIR=10−4 

NEC 6 0.019 ± 0.001 0.021 ± 0.001 0.024 ± 0.001 
NEC 5 0.019 ± 0.001 0.022 ± 0.001 0.025 ± 0.001 
NeuroTechnology 5 0.0213 ± 0.0008 0.0235 ± 0.0009 0.0261 ± 0.0009 
NEC 4 0.0199 ± 0.0007 0.0230 ± 0.0008 0.0266 ± 0.0008 
NEC 3 0.0207 ± 0.0008 0.0236 ± 0.0008 0.0270 ± 0.0008 
DeltaID 4 0.0266 ± 0.0008 0.0296 ± 0.0008 0.0330 ± 0.0009 
NeuroTechnology 3 0.028 ± 0.001 0.031 ± 0.002 0.034 ± 0.002 
NeuroTechnology 4 0.029 ± 0.001 0.033 ± 0.001 0.037 ± 0.002 
NeuroTechnology 6 0.0325 ± 0.0009 0.0346 ± 0.0009 0.037 ± 0.001 
Tiger IT 5 0.0336 ± 0.0009 0.0354 ± 0.0009 0.038 ± 0.001 
Decatur 6 0.035 ± 0.001 0.037 ± 0.001 0.040 ± 0.002 
Decatur 5 0.037 ± 0.001 0.038 ± 0.001 0.040 ± 0.002 
DeltaID 5 0.034 ± 0.001 0.037 ± 0.001 0.041 ± 0.002 
DeltaID 3 0.035 ± 0.001 0.038 ± 0.001 0.041 ± 0.002 
DeltaID 6 0.0364 ± 0.0007 0.0388 ± 0.0007 0.0416 ± 0.0007 
Tiger IT 6 0.0394 ± 0.0007 0.0408 ± 0.0007 0.0427 ± 0.0007 
Decatur 4 0.043 ± 0.001 0.045 ± 0.001 0.049 ± 0.002 
Tiger IT 4 0.044 ± 0.002 0.047 ± 0.002 0.051 ± 0.002 
Tafrt 4 0.0322 ± 0.0009 0.0391 ± 0.0009 0.053 ± 0.001 
Tafrt 3 0.0384 ± 0.0009 0.0449 ± 0.0009 0.0532 ± 0.0009 
Tafrt 6 0.0407 ± 0.0009 0.0453 ± 0.0009 0.055 ± 0.001 
Tiger IT 3 0.0459 ± 0.0008 0.0483 ± 0.0009 0.056 ± 0.001 
Decatur 3 0.048 ± 0.001 0.050 ± 0.001 0.057 ± 0.001 
Tafrt 5 0.053 ± 0.001 0.060 ± 0.001 0.068 ± 0.001 
Qualcomm 5 0.051 ± 0.001 0.058 ± 0.001 0.070 ± 0.001 
Qualcomm 6 0.0517 ± 0.0008 0.0588 ± 0.0008 0.0697 ± 0.0009 
Dermalog 6 0.0490 ± 0.0008 0.0595 ± 0.0009 0.0737 ± 0.0009 
Aware 5 0.0642 ± 0.0007 0.0722 ± 0.0007 0.0815 ± 0.0008 
Aware 6 0.0675 ± 0.0008 0.0752 ± 0.0008 0.0848 ± 0.0009 
Aware 3 0.071 ± 0.001 0.078 ± 0.002 0.085 ± 0.002 
Dermalog 5 0.0561 ± 0.0008 0.0726 ± 0.0008 0.0918 ± 0.0008 
Aware 4 0.0807 ± 0.0008 0.0878 ± 0.0008 0.0960 ± 0.0009 
IrisID 4 0.071 ± 0.001 0.088 ± 0.001 0.113 ± 0.002 
IrisID 6 0.073 ± 0.001 0.093 ± 0.001 0.116 ± 0.002 
IrisID 3 0.079 ± 0.001 0.096 ± 0.001 0.124 ± 0.001 
Qualcomm 3 0.091 ± 0.001 0.104 ± 0.001 0.125 ± 0.001 
IrisID 5 0.0855 ± 0.0006 0.1057 ± 0.0007 0.1291 ± 0.0007 
SOAR Adv Tech 1 0.0757 ± 0.0006 0.0929 ± 0.0007 0.1370 ± 0.0007 
SOAR Adv Tech 2 0.080 ± 0.001 0.097 ± 0.001 0.148 ± 0.001 
Dermalog 3 0.077 ± 0.001 0.106 ± 0.001 0.158 ± 0.001 
Dermalog 4 0.0860 ± 0.0008 0.1131 ± 0.0008 0.1579 ± 0.0008 
FotoNation 4 0.0739 ± 0.0008 0.1080 ± 0.0008 0.1661 ± 0.0008 
FotoNation 5 0.105 ± 0.001 0.159 ± 0.001 0.229 ± 0.002 
FotoNation 3 0.114 ± 0.001 0.162 ± 0.001 0.232 ± 0.002 
Unique Biometrics 2 0.295 ± 0.001 0.295 ± 0.001 0.295 ± 0.001 
Qualcomm 4 0.5370 ± 0.0009 0.5539 ± 0.0009 0.573 ± 0.001 

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IS

T.IR
.8207

Table D.5: Accuracy table for single-eye matching against an enrolled population of 160 thousand. Standard deviations are 
presented after the plus/minus. 
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Submission FMR=10−2 FMR=10−3 FMR=10−4 

NEC 6 0.0062 ± 0.0009 0.007 ± 0.001 0.007 ± 0.001 
NEC 5 0.006 ± 0.001 0.007 ± 0.001 0.007 ± 0.001 
NEC 4 0.0066 ± 0.0006 0.0072 ± 0.0007 0.0080 ± 0.0007 
NEC 3 0.0070 ± 0.0006 0.0076 ± 0.0006 0.0083 ± 0.0006 
NeuroTechnology 5 0.0073 ± 0.0006 0.0081 ± 0.0006 0.0087 ± 0.0006 
DeltaID 5 0.0075 ± 0.0006 0.0083 ± 0.0006 0.0098 ± 0.0007 
DeltaID 6 0.0077 ± 0.0007 0.0084 ± 0.0007 0.0100 ± 0.0008 
Tiger IT 5 0.0084 ± 0.0007 0.0090 ± 0.0007 0.0107 ± 0.0008 
NeuroTechnology 3 0.009 ± 0.001 0.010 ± 0.001 0.011 ± 0.001 
Decatur 6 0.0092 ± 0.0009 0.010 ± 0.001 0.011 ± 0.001 
NeuroTechnology 6 0.010 ± 0.001 0.011 ± 0.001 0.012 ± 0.002 
Decatur 5 0.010 ± 0.001 0.011 ± 0.001 0.012 ± 0.002 
NeuroTechnology 4 0.0079 ± 0.0005 0.0093 ± 0.0005 0.0124 ± 0.0006 
Tiger IT 6 0.0115 ± 0.0005 0.0121 ± 0.0005 0.0129 ± 0.0006 
DeltaID 4 0.011 ± 0.002 0.012 ± 0.002 0.014 ± 0.002 
Decatur 4 0.0130 ± 0.0007 0.0140 ± 0.0008 0.0165 ± 0.0008 
Tiger IT 4 0.0137 ± 0.0007 0.0148 ± 0.0007 0.0171 ± 0.0008 
DeltaID 3 0.0148 ± 0.0007 0.0160 ± 0.0007 0.0180 ± 0.0008 
Tiger IT 3 0.0140 ± 0.0006 0.0151 ± 0.0007 0.0186 ± 0.0008 
Decatur 3 0.015 ± 0.002 0.016 ± 0.002 0.019 ± 0.002 
Tafrt 3 0.0107 ± 0.0009 0.0138 ± 0.0009 0.019 ± 0.001 
Tafrt 4 0.0088 ± 0.0009 0.0117 ± 0.0009 0.020 ± 0.001 
Tafrt 5 0.0148 ± 0.0007 0.0177 ± 0.0007 0.0224 ± 0.0007 
Tafrt 6 0.0110 ± 0.0007 0.0134 ± 0.0007 0.0226 ± 0.0007 
Qualcomm 5 0.0173 ± 0.0005 0.0209 ± 0.0005 0.0276 ± 0.0006 
Aware 5 0.0198 ± 0.0006 0.0234 ± 0.0006 0.0283 ± 0.0007 
Qualcomm 6 0.017 ± 0.001 0.021 ± 0.001 0.030 ± 0.002 
Dermalog 6 0.0155 ± 0.0006 0.0208 ± 0.0006 0.0302 ± 0.0007 
Aware 6 0.0212 ± 0.0007 0.0251 ± 0.0007 0.0306 ± 0.0007 
Aware 3 0.023 ± 0.001 0.027 ± 0.001 0.032 ± 0.001 
Dermalog 5 0.016 ± 0.001 0.023 ± 0.001 0.033 ± 0.001 
Aware 4 0.0298 ± 0.0009 0.034 ± 0.001 0.039 ± 0.001 
IrisID 4 0.0277 ± 0.0008 0.0371 ± 0.0009 0.060 ± 0.001 
IrisID 3 0.0306 ± 0.0005 0.0393 ± 0.0005 0.0655 ± 0.0006 
Dermalog 3 0.0275 ± 0.0005 0.0434 ± 0.0005 0.0757 ± 0.0006 
Dermalog 4 0.0307 ± 0.0008 0.0518 ± 0.0008 0.0992 ± 0.0009 
IrisID 6 0.0763 ± 0.0008 0.0935 ± 0.0008 0.1183 ± 0.0009 
IrisID 5 0.0869 ± 0.0007 0.1054 ± 0.0007 0.1307 ± 0.0007 
Unique Biometrics 2 0.1501 ± 0.0006 0.1501 ± 0.0007 0.1501 ± 0.0007 
FotoNation 5 0.049 ± 0.001 0.094 ± 0.001 0.158 ± 0.002 
SOAR Adv Tech 1 0.072 ± 0.001 0.088 ± 0.001 0.218 ± 0.002 
SOAR Adv Tech 2 0.0760 ± 0.0008 0.0939 ± 0.0008 0.2223 ± 0.0009 
Qualcomm 4 0.3780 ± 0.0007 0.4023 ± 0.0007 0.4355 ± 0.0008 

Table D.6: Accuracy table for two-eye matching against an enrolled population of 160 thousand. Standard deviations are 
presented after the plus/minus. 
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