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Abstract 

Static analyzers examine the source or executable 
code of programs to find problems. Many static ana
lyzers use heuristics or approximations to handle pro
grams up to millions of lines of code. We established 
the Ockham Sound Analysis Criteria to recognize 
static analyzers whose findings are always correct. In 
brief the criteria are (1) the analyzer’s findings are 
claimed to always be correct, (2) it produces findings 
for most of a program, and (3) even one incorrect 
finding disqualifies an analyzer. This document begins 
by explaining the background and requirements of the 
Ockham Criteria. 

In Static Analysis Tool Exposition (SATE) V, only 
one tool was submitted to be reviewed. Pascal Cuoq 
and Florent Kirchner ran the August 2013 devel
opment version of Frama-C on pertinent parts of 
the Juliet 1.2 test suite. We divided the warnings 
into eight classes, including improper buffer access, 
NULL pointer dereference, integer overflow, and use of 
uninitialized variable. This document details the many 
technical and theoretical challenges we addressed to 
classify and review the warnings against the Criteria. 
It also describes anomalies, our observations, and 
interpretations. Frama-C reports led us to discover 
three unintentional, systematic flaws in the Juliet test 
suite involving 416 test cases. Our conclusion is that 
Frama-C satisfied the SATE V Ockham Sound Analysis 
Criteria. 

Certain trade names and company products are men
tioned in the text or identified. In no case does such 
identification imply recommendation or endorsement 
by the National Institute of Standards and Technology 
(NIST), nor does it imply that the products are neces
sarily the best available for the purpose. 

1. Background 

1.1. SATE 

The Static Analysis Tool Exposition (SATE) is a 
recurring event at the National Institute of Standards 
and Technology (NIST) led by the Software Assur
ance Metrics And Tool Evaluation (SAMATE) team 
[1]. SATE aims to improve research and development 
of source code static analyzers, especially security-
relevant aspects. To begin each SATE, the SAMATE 
team and other organizers select a set of programs as 
test cases. Participating tool developers run their tool 
on the test cases and submit their results (tool reports). 
The organizers then analyze the reports. Results and 

experiences are reported at the SATE workshop, and 
the final analysis is made publicly available. 

The goals of SATE are to: 
•	 Enable empirical research based on large test sets, 
•	 Encourage improvement of tools, 
•	 Speed adoption of tools by objectively demon

strating their use on real software. 
In SATE V [2], the SAMATE team introduced the 

SATE V Ockham Sound Analysis Criteria, a track 
for static analyzers whose findings are always correct. 
Tools do not have to be “bug-finders,” that is, report 
flaws or bugs. The Ockham Criteria also applies to 
tools that report that sites are certainly bug-free. 

Section 2 explains the Criteria in detail. It also 
presents the general procedure to evaluate a tool 
against the criteria. Section 3 explains how the pro
cedure is instantiated for the only participant in SATE 
V Ockham, Frama-C, and details of the evaluation. 
Section 4 lists ideas to improve future Ockham Criteria 
exercises. Our conclusions are in Sec. 5. 

2. The Criteria 

The criteria is named for William of Ockham, best 
known for Occam’s Razor. Since the details of the cri
teria will likely change in the future, the criteria name 
always includes a time reference: SATE V Ockham 
Sound Analysis Criteria. 

The value of a sound analyzer is that every one of its 
findings can be assumed to be correct, even if it cannot 
handle enormous pieces of software or does not handle 
dozens of weakness classes. In brief the criteria are: 

1) There is a claim that the tool’s findings are 
always correct. 

2) The tool produces findings for most of the pro
gram. 

3) Even one incorrect finding disqualifies a tool. 
An implicit criterion is that the tool is useful, not 

merely a toy. 
We use the term warning to mean a single re

port produced by a tool. For instance, integer 
overflow at line 14 is a warning. A finding may 
be a warning or it may be a site with no warning. For 
instance, a tool may be implemented to be cautious 
and sometimes produce warnings about (possible) bugs 
at sites that are actually bug free. If it never misses 
a bug, then any site without a warning is sure to 
be correct. The tool makers could declare that sites 
without warnings are findings, and that all findings are 
correct. 

A tool might be sure of bugs at some sites and sure 
of absence of bugs at other sites. However it might not 
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be sure about some sites. For such a tool, a finding is 
only those things that it is sure about, both buggy sites 
and sites without bugs. 

2.1. Details 

This section has the details of the Criteria. First 
we give the three formal criteria, then we follow with 
definitions, informative statements, and discussion. 

We tried to set requirements that communicated our 
intent, ruled out trivial satisfaction, and were under
standable. We announced that we planned to be liberal 
in interpreting the rules: we hoped tools would satisfy 
the criteria, so we gave tools the benefit of a doubt. 

The formal criteria were: 
1) The tool is claimed to be sound. 
2) For at least one weakness class and one test 

case the tool produces findings for a minimum 
of 60 % of buggy sites OR of non-buggy sites. 

3) Even one incorrect finding disqualifies a tool for 
this SATE. 

No manual editing of the tool output was allowed. 
No automated filtering specialized to a test case or to 
SATE V was allowed, either. 

Criterion 1 stated, “The tool is claimed to be sound.” 
We used the term sound to mean that every finding 

was correct. The tool need not produce a finding 
for every site; that is completeness. See Sec. 2.3 for 
a discussion of our use of the terms “sound” and 
“complete.” 

A tool may have settings that allow unsound anal
ysis. The tool still qualified if it had clearly sound 
settings. For example, for fast analysis or for some 
classes of weaknesses, the user may be able to select 
unsound (approximate) function signatures. A more 
inclusive statement of Criterion 1 is, the tool is claimed 
to be sound or has a mode in which analysis is sound. 

Criterion 2 deals with the number of findings pro
duced: The tool produces findings for a minimum of 
60 % of sites. 

This criterion was included since it is impossible in 
theory for an algorithm to correctly report the presence 
of a property in all software (and not report it when 
the property is absent). [3] Rice’s Theorem states that 
either an algorithm fails to report the property in 
some cases when the property is present, or it may 
incorrectly report the property’s presence when it is 
absent. 

We chose the former: the Ockham Criteria empha
sized the approach in which findings need no further 
examination of their validity. Rice’s Theorem then says 
that we must accept that in some cases a sound tool 

may not be able to decide whether or not a site has a 
weakness. 

Without this criterion, a trivial tool could produce no 
findings, which is arguable not incorrect, and satisfy 
the Ockham Criteria. For a tool to be useful, it must 
produce findings for many sites in many pieces of 
software. 

After consultation with the SATE program commit
tee, we chose 60 % as a level that would be useful, yet 
readily achievable by current tools. In the future, we 
will likely set a higher limit. 

A site is a location in code where a weakness 
might occur. For instance, every buffer access in a C 
program is a site where buffer overflow might occur if 
the code is buggy. In other words, sites for a weakness 
are places that must be checked for that weakness. 
See Sec. 2.2 for further exposition of what constitutes 
a site. 

A buggy site is one that has an instance of the 
weakness. That is, there is some input that will cause 
a violation. A non-buggy site is one that does not have 
an instance of the weakness, in other words, is safe or 
not vulnerable. 

Data flow weaknesses, such as SQL injection, have a 
notion of connected source/sink pairs. A site is closely 
related to the notion of a sink. A program may accept 
input at several places, but access SQL in just one or 
two places. Other programs may have just a few inputs 
from which data flows to many SQL calls. Counting 
pairs may balance these styles. 

A tool is allowed to have a different definition of 
site, as long as it is expressed. 

A finding is a definitive report about a site. In other 
words, that the site has a specific weakness (is buggy) 
or that the site does not have a specific weakness (is 
not buggy). Tentative reports like “this site is likely 
to have that weakness,” “caution: this function does 
not check for a null,” or “this site is almost certainly 
safe” are at best ignored (not counted) and may be 
considered incorrect. 

A tool produces warnings about sites. A finding may 
be a warning or it may be the lack of a warning. If the 
tool uses conservative approximations, it may produce 
false alarms, that is, warnings about sites that are 
actually not buggy. However, for such a tool, the lack 
of a warning for a site is a finding that the site is 
definitely safe. 

We chose to use test cases from SATE V. SATE V 
offered large, production programs and the Juliet 1.2 
test suite. [4] Juliet cases are small, synthetic programs. 
Both production programs and Juliet have cases in C 
or in Java. 

To be useful, a tool must be able to handle one of 
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the large programs or many of the Juliet test cases. All 
the Juliet test cases in the appropriate language and 
weakness class(es) are considered one test case. For 
instance, a tool cannot achieve the criteria for running 
just a selection of buffer overflow cases; it must run on 
all Common Weakness Enumeration (CWE) 121, 122, 
123, 124, 126, 127, 129, and 131 cases. 

Processing different classes of weaknesses may 
take very different software machinery. The models, 
abstractions, data structures, and algorithms to look 
for one weakness may be of little help for another 
weakness. 

Instead of trying to determine some required set 
of weaknesses, we allowed those running tools to 
designate the weakness or weaknesses that the tool 
finds and to choose one or more test cases. 

Related to the minimum number of sites criterion 
above, to be significant, there had to be a minimum of 
10 sites and two findings in the test case. Reporting 
no possible buffer overflows for a Java program or no 
uncaught exceptions for a C program is not grounds 
for satisfying SATE V Ockham Criteria. 

We hoped that tools would be run on production 
test cases. To prepare for that, we considered how we 
might check a tool’s results. We decided to estimate the 
number of sites in a test case by simple programs if 
there was significant disagreement or uncertainty about 
the number. We anticipated accepting tools’ count of 
number of sites. If there were concerns, we would ad 
hoc “grep” or similar, simple methods. 

We would determine that findings were correct (or 
incorrect) by simple programs for Juliet test cases. For 
other test cases, we anticipated comparing tool findings 
by simple programs and manually reviewing differ
ences. We had planned to compare Ockham results 
with SATE V results for additional confidence. 

What if there were unexpected findings? All reason
ing is based on models, assumptions, definitions, etc. 
(collectively, “models”). Unexpected findings resulting 
from model differences need not disqualify a tool. In 
consultation with the tool maker, we would decide if 
an unexpected finding results from a reasonable model 
difference or whether it is incorrect. To satisfy the 
SATE V Ockham Criteria, any such differences must 
be publicly reported. 

For instance, one tool may assume that file system 
permissions are set as the test case requires, while 
another tool makes no assumptions about permissions 
(that is, assumes the worst case). In this case, the tools 
could have different findings, yet both are correct. 

However, if a tool modeled the “+” operator as 
subtraction, it was incorrect. 

We realized that models are hard to build and 

validate, but the value of a sound analyzer is its 
correctness. We had thought that a proof of correctness 
of analysis soundness at the mathematical specification 
level might excuse incorrect findings. 

We planned to have the Ockham Criteria many 
times. If a tool did not satisfy the SATE V Ockham 
Criteria, it might satisfy the Ockham Criteria in the 
future. Hence, Criterion 3 stated that even one incorrect 
finding disqualified a tool for this SATE, meaning 
SATE V. 

2.2. Definition of “site” 

As stated above, a site is a location in code where 
a weakness might occur. For instance, every buffer 
access in a C program is a site where buffer overflow 
might occur if the code is buggy. In other words, sites 
are places that must be checked. The determination of 
a site depends on local information. That is, global 
or flow-sensitive information should not be needed to 
determine where sites are in code. 

For example, the following code comes from Soft
ware Assurance Reference Dataset (SARD) [5] case 
62 804. It has one site of writing to a buffer, 
data[i] =, which needs to be checked for a write
outside-buffer bug. There is also one site of reading 
from a buffer, source[i], where the program might 
read outside the buffer if there is a bug. 

for (i = 0; i < 10; i++) 
{ 

data[i] = source[i]; 
} 

In addition, the code has sites of uninitialized variable, 
every place that i is used, and an integer overflow site, 
i++. Notice that the assignment statement in the body 
of the loop has several sites: a write buffer site, a read 
buffer site, and sites where variables are used. 

The concept of “site” is similar to the concept of 
“foothold” used by Nikolai Mansourov in the descrip
tion of Software Fault Patterns [6]. 

One exception to locality is dead code. For some 
purposes, code that is unreachable or can never be 
executed should not be considered. For other purposes, 
all code should be considered, since a piece of code’s 
possible execution might easily change with a minor 
alteration to the source. 

Locations in code are often excluded as sites be
cause of local information. For example, consider the 
weakness class CWE-369: Divide By Zero. A simple 
definition of site for this class is just every occurrence 
of a division operator (/). Consider the division op
erator in the code fragment mid = height/2, which 
is division by a constant. Since division by a constant 
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other than zero is clearly never a divide by zero and 
this situation can be detected easily, we may exclude 
division by a non-zero constant as a site for divide by 
zero. 

Another way to think of it is that a site is the 
last place in code that the programmer may make 
necessary checks or modify state. For instance, the 
C standard library function strcpy() receives two 
pointers to locations, presumably arrays. It does not 
get enough information to determine if the destination 
array is big enough to hold the source string. Thus 
after a call to strcpy(), the programmer can no 
longer influence whether or not a violation occurs; 
necessary information is not available. Therefore the 
call to strcpy() is considered the site of a buffer 
overflow even though the violation occurs in the library 
routine. Similarly when the programmer’s code invokes 
a primitive operator, such as [ ]. The data state needs 
to satisfy the preconditions of the library function or 
operator. 

2.3. About “Sound” and “Complete” Analysis 

The term sound and the term complete are used 
differently by different communities. In this section, 
we explain that two different pairs of meanings both 
have valid reasons. 

Most of the theorem proving, formal methods, and 
static analysis communities use “sound” to mean that 
all bugs are reported and “complete” to mean that every 
bug report is a correct report. We explain this usage 
below. For the Ockham Criteria, we used “sound” 
to mean that every finding1 was correct. We used 
“complete” to convey the meaning of a finding for 
every site. 

2.3.1. Ockham Criteria Use of the Term Sound. 
The terms “sound” and “complete” come from logic. 
A deductive system consists of axioms and inference 
rules. Axioms and statements are expressed in a spe
cific language. A deductive system is sound if and only 
if every statement that can be deduced is true. On the 
other hand, if every true statement can be deduced, the 
deductive system is complete [7]. 

The differences in use between us arise in applying 
those terms to software. 

For the purposes of the Ockham Criteria, logical 
statements corresponded to declarations of properties 

1. A “bug report” or warning is not necessarily the same thing as 
a “finding.” A finding may be a bug report. In addition or instead, 
a finding may be a site that does not have a bug report, that is, the 
tool is sure is not buggy. 

at a location in software or properties in a specific piece 
of software. For example, here are two statements: 

•	 For all executions that reach location q, the vari
able x has the value 7. 

•	 There exists an input value such that the access to 
buffer buf at location r writes outside the buffer. 
(We usually express this as, buf has a buffer 
overflow at r.) 

The software is understood to be included in the state
ment of a property. For instance, a complete statement 
of the first property is: “For all executions of software 
S that reach location q, the variable x has the value 7.” 

Axioms and rules of inference include the semantics 
of the software’s language.2 Axioms and inference 
rules are written into static analyzers. In addition, some 
static analyzers have a general language of properties. 
That is, users can write rules, and the static analyzer’s 
engine checks software against those rules. Some static 
analyzers have a fixed set of properties, which are 
embedded in the software as well. 

With these meanings, a sound deductive system 
corresponds to a static analyzer that only reports (de
rives or proves) properties that are true. A complete 
deductive system corresponds to a static analyzer that 
reports, or could report, all true properties that are 
within the analyzer’s domain. 

2.3.2. Other Meaning of “Sound” and “Complete”. 
The other meaning of “sound” and “complete” is 
best understood by considering how static analyzers 
employ abstract interpretation. For this purpose, ab
stract interpretation deduces properties of software by 
symbolically executing (interpreting) the software. For 
efficiency, the software is only interpreted once (or just 
a few times). The challenge for analysis is to maintain 
all the possible states that the software might have 
during the single interpretive run. Unfortunately no 
analysis program can efficiently embody the exact set 
of values even one variable might have in all cases, let 
alone all states. As an extreme instance, a variable may 
be a large prime number in cryptographic software. 
Another example is that the value of a variable may 
indicate the form or content of a data structure. Any 
abstract interpretation will only handle a few ways of 
embodying possible values. Some ways are as a small 
set of discrete values, as a range of possible values, or 
as a linear relation between the values of two variables. 

Abstract interpretation approximates concrete or ac
tual states of software by lists of embodiments of 

2. One should be clear as to whether the semantics correspond to 
a language standard, the behavior of code produced by a particular 
compiler, or something else. 
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values of variables. These approximations are a part 
of abstract states that represent concrete states of the 
software being analyzed. 

In deterministic software, one concrete state transi
tions to another concrete state. Similarly, each abstract 
state makes an abstract transition to another abstract 
state. 

The other meaning of sound analysis has two moti
vations, both of which lead to the same effect. The first 
motivation is that analysis never misses any weakness 
or vulnerability. The second motivation is that the 
abstract states in a trace represent all the concrete states 
that may be reached. More specifically, if a (start) 
concrete state transitions to an (end) concrete state, 
the abstract state that represents the start concrete state 
makes a corresponding abstract transition to an abstract 
state that represents the end concrete state. 

For either motivation, the effect is that abstract states 
and transitions must overapproximate concrete states 
and transitions, given the practical limits of embodying 
variable values. The effect of overapproximation is that 
abstract interpretation often leads to abstract states that 
include vulnerable concrete states, even though the 
vulnerable concrete states never can occur. 

For instance, consider checking for a divide-by-zero 
failure in the following code fragment: 

int x = readInput(); 
if (x != 0) { 

x	 = 1776/x; 
} 

Suppose that analysis only embodies possible values 
of a variable in two ways: as a single value or as 
a range of values from a minimum to a maximum. 
After the first line, x can have any int value. This 
can be embodied exactly as a range from the min
imum int to the maximum int. Immediately after 
the conditional, the possible values of x, all values 
omitting zero, cannot be embodied exactly. The only 
practical solution is to continue to embody the possible 
values as the entire range. When analysis checks the 
next line, zero is found to be a possible value. Analysis 
reports a (possible) divide-by-zero, even though it 
cannot actually occur. 

Of course, for any particular situation, an embod
iment can be devised to handle it correctly. However 
the situations occurring in actual pieces of software are 
essentially limitless. 

Hence sound analysis in this second sense will 
typically produce false alarms (false positives), but 
never miss a possible problem (no false negatives). 

By analogous argument, complete analysis never has 
false alarms, but may miss some problems. 

Although related, the two pairs of meanings are 
exactly reversed only in a specific situation of the 
Ockham Criteria: when findings are the tool’s report 
of bugs and sites are the buggy sites. In this situation, 
sound in the Ockham Criteria means all tool reports are 
of buggy sites, that is, no false alarms. Ockham Criteria 
complete means that every buggy site is reported by 
the tool, that is, no false negatives. 

2.4. General procedures 

This section describes the general procedure that we 
established to confirm that a participating tool satisfied 
the Criteria. 

1) Decide what constitutes a site.
 
2) Determine the list of sites
 

U = the set of all sites 

3) Determine the list of findings 

F = the set of all findings 

Recall that findings may be buggy sites or good 
(non-buggy) sites or both. Hence the use of both 
B and G later. 

4) Check that all findings are at sites 

F ⊆ U 

which they should be, by definition. 
•	 If that is not true, reconcile the definitions 

of “site” and “finding.” 
5) Determine which sites are buggy (or non-buggy) 

B = the set of all buggy (bad) sites 

G = the set of all non-buggy (good) sites 

•	 A site is either buggy or good, but not both. 
By definition: 

U = B ∪ G 

B ∩ G = ∅ 

•	 To achieve higher assurance, we can review 
SATE V reports against U , B, and G.
 

6) Check that
 

|F | ≥ 0.6 × |B| (or |G| as appropriate) 

where |F | is the number of items in set F , |B|
is the number of items in set B, etc. 

• If that is true, Criterion 2 is satisfied.
 
7) Check that
 

F ∩ G (or B) = ∅ 

•	 If that is true, Criterion 3 is satisfied. 
•	 If that is not true, it may be differences in 

definitions. 
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3. SATE V Evaluation 

There was only one participant in SATE V Ockham 
Sound Analysis Criteria: Frama-C. Pascal Cuoq and 
Florent Kirchner ran the August 2013 development 
version. (Changes were released to the open-source 
engine in version 20140301 “Neon.”) 

3.1. Frama-C Evaluation 

Frama-C is a suite of tools to analyze software 
written in C [8]. It is free software licensed under 
the GNU Lesser General Public License (LGPL) v2 
license3. 

By its own definition, Frama-C claimed to be sound: 
“it aims at being correct, that is, never to remain silent 
for a location in the source code where an error can 
happen at run-time” [8]. 

This satisfies Criterion 1. 

3.1.1. Frama-C specific procedures. This section ex
plains the specific adaptions of the general procedures 
for Frama-C. 

Some situations in the C language, such as an integer 
overflow or left shift more than data type size have 
“undefined behavior,” which is more drastic than “the 
result may be any number”: no further analysis is 
reasonable. See Sec. A.3 for further explanation. 

Frama-C issues a warning and terminates analysis 
when it detects that the resulting state may be un
defined. Consequently sites following a terminating 
failure (T ) have no judgments made at all, neither 
buggy nor non-buggy. The universe of sites is therefore 
syntactic sites (S) Until (U) a terminating failure. 

U = S U T 

Pascal Cuoq and Florent Kirchner sent two files 
of warnings each from a different sets of runs of 
Frama-C. One set of runs modeled that every allocation 
failed, and the other runs modeled that every allocation 
succeeded. Frama-C must assume allocation failure in 
order to catch a possible NULL pointer dereference, 
for example in the following code, which comes from 
SARD [5] case 74 328: 

char * dataBuffer = malloc(100); 
memset(dataBuffer, ’A’, 100-1); 

Frama-C could not model both allocation failure and 
allocation success in one run. Warnings are the union 
of warnings from both files. 

Frama-C always warns about a bug at a site when 
there is a bug, that is, there are no false negatives. Note 

3. http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html 

that because of the limitations of Frama-C’s models, it 
may warn of a bug when there is no bug, that is, there 
may be false alarms; see the discussion about divide by 
zero in Sec. 2.3.2 as one example. The reader may ask, 
do these false alarms disqualify Frama-C? No, because 
for Frama-C a finding is that a site is not buggy. If 
Frama-c does not produce a warning for a site, then 
that site is definitely not buggy. In other words, given 
that W is the set of all warnings, 

F = U − W 

By definition, the consistency check in step 4, F ⊆ U , 
was trivially satisfied. However, we gained confidence 
by checking that all warnings are sites. Therefore we 
substituted the consistency check 

4) Check that 
W ⊆ U 

If that was not true, reconcile definition of site 
and finding. 

To determine buggy sites, we developed a “master 
list” from the comments and repeated structures in 
Juliet code. When we found inconsistencies, we inves
tigated and resolved them as needed. We improved the 
code to scan Juliet for sites and determine which one 
were buggy, the Juliet master list, and other converters 
and extractors. Since findings were good sites for 
Frama-C, the criteria checks were 

6) Check that 
|F | ≥ 0.6 × |G| 

7) Check that 
F ∩ B = ∅ 

If that was not true, investigate the reason includ
ing definition of site and assignment of warning. 

Since G = U − B (and B ⊆ U )4, we can rewrite 
step 6 so we only used buggy (B) sites: 

6) Check that 

|F | ≥ 0.6 × (|U | − |B|) 

3.2. Implementation 

We performed the bulk of the analysis with auto
mated scripts and custom programs. The general flow 
was to (1) extract appropriate sites from the Juliet tests, 
(2) extract and interpret appropriate warnings from the 
Frama-C report, and (3) match and process the two 
extracts in various ways. 

4. We need to know that B ⊆ U because in general, 

|U − B| = |U | − |B| + |B − U | 

Since B ⊆ U , |B − U | = 0, therefore |U − B| = |U | − |B|. 
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Automated scripts allowed us to rerun with relative 
ease when we needed to. 

Some exclusions and special handling were built into 
the code. These are mentioned where we discuss the 
exclusions or special handling, such as Sections 3.4.1, 
3.4.5, and 3.4.7. 

All the scripts and files are available in a tar 
file with xz compression [9] at DOI http:// 
dx.doi.org/10.18434/T4WC7V or https://s3. 
amazonaws.com/nist-ockham-criteria-sate

v-data/ockhamCriteriaSATEVdata.tar.xz 
The README is available at https://s3. 
amazonaws.com/nist-ockham-criteria-sate-

v-data/README 

3.3. Common considerations 

We divided the Frama-C warnings into classes and 
examined them generally class by class. This section 
explains some considerations that applied to all the 
classes. 

3.3.1. Analysis termination after RAND32() macro. 
The Juliet 1.2 test suite uses a macro, RAND32(), 
defined as follows: 

#define RAND32() \ 
((rand()<<30) ˆ (rand()<<15) ˆ rand()) 

The International Organization for Standardization 
and the International Electrotechnical Commission 
(ISO/IEC) C 2011 standard Sec. 6.5.7 Bitwise shift 
operators says, “If the value of the right operand is 
negative or is greater than or equal to the width in 
bits of the promoted left operand, the behavior is 
undefined.” [10] 

Frama-C models rand() as returning a type that is 
less than 30 bits. According to the standard, the result 
of executing a statement with RAND32() is undefined. 
As explained in Sec. 3.1.1, Frama-C does no further 
analysis. 

Our site extraction is largely syntactic or local, so it 
was difficult to exclude sites that followed undefined 
behavior. Given the limitation of our analysis, we com
pletely excluded the 76 test cases that use RAND32(). 
See Sec. A.3 for details. 

3.3.2. Cases Under CWE191 Not Processed. During 
evaluation, we observed that there were no warnings 
at all for test cases under CWE191. Upon inquiry, 
we learned that because of a simple human mistake, 
Frama-C was not run on any cases under CWE191. 
See Sec. A.1 in the appendix for more detail. 

We decided to exclude all sites under the CWE191 
subdirectory from the analysis to avoid misinterpreta
tions in the final results. 

The developers later submitted files with the warn
ings. We decided not to evaluate those since they were 
obtained with a later version of Frama-C. 

3.4. Evaluation by weakness classes 

We sent a set of Juliet 1.2 test cases containing the 
following CWEs to those running Frama-C: 

• CWE-121 Stack-based Buffer Overflow 
• CWE-122 Heap-based Buffer Overflow 
• CWE-123 Write-what-where Condition 
• CWE-124 Buffer Underwrite 
• CWE-126 Buffer Over-read 
• CWE-127 Buffer Under-read 
• CWE-190 Integer Overflow 
• CWE-191 Integer Underflow 
• CWE-369 Divide by Zero 
• CWE-457 Use of Uninitialized Variable 
• CWE-476 NULL Pointer Dereference 
• CWE-562 Return of Stack Variable Address 
The result we received from them had the following 

nine warnings: 
• division by zero 
• floating-point NaN or infinity 
• invalid arguments to library function 
• invalid memory access 
• making use of address of object past its lifetime 
• overflow in conversion 
• passing INT MIN to standard function abs() 
• reading from uninitialized lvalue 
• undefined arithmetic overflow 

The warnings did not match simply to CWE classes. 
We came up with nine classes of weaknesses. By 
examining verbose information that Frama-C supplied 
with each warning, we matched most warnings to one 
of the weakness classes. Some warnings did not fit 
into those classes or were not readily handled by our 
automatic processing. We explain those in Sec. 3.5. 

Following is one subsection for each weakness class 
with some details about the evaluation of the class. 

3.4.1. Write Outside Buffer. This includes CWE-121 
Stack-based Buffer Overflow, CWE-122 Heap-based 
Buffer Overflow, and CWE-124 Buffer Underwrite 
(’Buffer Underflow’). Frama-C does not distinguish 
between stack-based and heap-based buffers. For the 
Ockham Criteria, the distinction between stack-based 
and heap-based or between underflow and overflow 
is not important. Either the buffer is always accessed 
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properly or there is a bug, which should be fixed or 
mitigated. 

Site definition: 
•	 Write to an array (buffer), either by [] or unary *. 

Specifically array access on the left hand side of 
an assignment or use as a destination in a standard 
library function. The exception is that memcpy() 
or memmove() into a structure is not a site. 

Programmers often use memcpy() and memmove() 
to fill or move entire structures. The Frama-C model 
allows them to copy or move anything to anywhere. 

Anomalies, Observations, and Interpretations: 
The version of Frama-C that was used for the Ock

ham Criteria, the August 2013 development version, 
did not support wide string literals, e.g. L"Good", nor 
the format specifier for wide string (%ls). For this 
reason, we did not include sites with wide string literals 
or the wide string format specifier in the Universe. 
Neither did we include sites with wide character arrays 
that are passed to printWLine(), which uses the wide 
string format specifier. These exclusions are coded in 
extractor.py. For more details, see Sec. A.2 in the 
appendix. 

Results: 
97 678 sites (|U |). 18 767 warnings (|W |). 78 911 

findings (|F |). 7400 buggy sites (|B|). 
We confirmed the following. 
Warnings and sites were consistent: W ⊆ U 
There were many findings: |F | ≥ 0.6 × (|U | − |B|) 
All findings were correct: F ∩ B = ∅ 
For Write Outside Buffer, which includes CWE

121, CWE-122 and CWE-124, Frama-C satisfied the 
criteria. 

3.4.2. CWE-123 Write-what-where Condition. 
Site definition: 
• Use of *, ->, or [] operators. 

A more generally complete definition of site for this 
weakness should include calls to some library func
tions. However the above definition was sufficient for 
Juliet test cases. 

Results: 
72 084 sites (|U |). 791 warnings (|W |). 71 293 find

ings (|F |). 228 buggy sites (|B|). 
We confirmed the following. 
Warnings and sites were consistent: W ⊆ U 
There were many findings: |F | ≥ 0.6 × (|U | − |B|) 
All findings were correct: F ∩ B = ∅ 
For CWE-123 Write-What-Where, Frama-C satis

fied the criteria. 

3.4.3. Read Outside Buffer. This includes CWE-126 
Buffer Over-read and CWE-127 Buffer Under-read. 
Frama-C did not distinguish between read before the 
beginning of buffer and read after the end of buffer. For 
the Ockham criteria, the difference is not important. 

Site definition: 
•	 Read from an array (buffer), either by [] or unary 
*. 

The access could be in an expression or it could be 
embedded in the left hand side of an assignment. For 
example a[b[i]] = ... reads buffer b. 

Anomalies, Observations, and Interpretations: 
Some warnings deal with invalid argument to 
printf(): invalid arguments to library 
function for printf. We deemed these to be 
Read Outside Buffer warnings since they would only 
happen to strings that are not null terminated that 
could lead printf() to an overread. 

72 files in Juliet had an unintentional bug, see 
Sec. A.5 in the appendix. The source string passed to 
memcpy() or memmove() was shorter than the size to 
be copied or moved. In this cases, Frama-C correctly 
pointed out a minimal read after end of buffer for the 
function call. Since these flaws were unintentional, we 
excluded them as sites for the Ockham Criteria. 

Results: 
66 665 sites (|U |). 3396 warnings (|W |). 63 269 

findings (|F |). 2168 buggy sites (|B|). 
We confirmed the following. 
Warnings and sites were consistent: W ⊆ U 
There were many findings: |F | ≥ 0.6 × (|U | − |B|) 
All findings were correct: F ∩ B = ∅ 
For Read Outside Buffer, which includes CWE-126 

and CWE-127, Frama-C satisfied the criteria. 

3.4.4. CWE-476 NULL Pointer Dereference. 
Site definition: 
• Use of *, ->, or [] operators. 

A more generally complete definition of site for this 
weakness should include calls to some library func
tions. However the above is enough for Juliet. 

Anomalies, Observations, and Interpretations: It 
was very difficult to distinguish the Frama-C warnings 
for this class from those for array access out-of
bounds. Therefore, we only included “invalid memory 
access” warnings for test cases in the CWE476 subdi
rectory. 

Results: 
72 084 sites (|U |). 303 warnings (|W |). 71 781 find

ings (|F |). 271 buggy sites (|B|). 
We confirmed the following. 
Warnings and sites were consistent: W ⊆ U 
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There were many findings: |F | ≥ 0.6 × (|U | − |B|) 
All findings were correct: F ∩ B = ∅ 
For CWE-476 NULL Pointer Dereference, Frama-C 

satisfied the criteria. 

3.4.5. CWE-190 Integer Overflow or Wraparound. 
Site definition: 

•	 Use of +, ++, * (multiplication), +=, and *=. This 
includes array indexing (and array index scaling), 
hence: [], too. 

We did not consider divisions as sites for integer 
overflow. Integer division overflows only when divid
ing by zero. Since that is divide by zero, which is 
more specific, we excluded division as a site for integer 
overflow. By the same reasoning, we excluded uses of 
the modulo (%) operator. 

Frama-C only identified signed arithmetic overflows 
involving types of width int or greater. To sim
plify site identification, we excluded sites from files 
with _char_, _short_, or _unsigned_ in the file 
name. This exclusion is coded in get_integer_inc_ 
sites.py. This excluded 7113 files (6105 char, 504 
short, and 504 unsigned) in 4876 test cases (4192 
char, 342 short, and 342 unsigned). 

Anomalies, Observations, and Interpretations: 
As in previous classes, we did not include bugs 

depending on use of the RAND32() macro in the 
findings, since it would generate mismatches during 
our analysis due to analysis termination, as mentioned 
before. 

Results: 
29 907 sites (|U |). 1356 warnings (|W |). 28 551 

findings (|F |). 1026 buggy sites (|B|). 
We confirmed the following. 
Warnings and sites were consistent: W ⊆ U 
There were many findings: |F | ≥ 0.6 × (|U | − |B|) 
All findings were correct: F ∩ B = ∅ 
For CWE-190 Integer Overflow, Frama-C satisfied 

the criteria. 

3.4.6. CWE-369 Divide by Zero. 
Site definition: 
•	 Use of /, %, /=, and %=5. This includes all 

arithmetic types, including float and double com
putations. 

•	 This does not include cases in which the right 
hand side is a constant, e.g. height/2. 

Anomalies, Observations, and Interpretations: 
CWE-369 Juliet cases are built with only three 

variants: (1) a variable, data, which is later used as 
the divisor, is set to a non-zero constant, (2) data is 

5. Juliet includes modulo (%) operator in divide by zero. 

set to zero or to the return value of the function that 
may be 0, for instance rand() or scanf(), or (3) the 
division operation is guarded by comparison with 0 or 
with 0.000001 for floats. Frama-C’s implementation 
of abstract interpretation cannot handle a range with 
an “omitted middle.” This leads to a divide by zero 
warning even when the operation is properly guarded, 
as explained in Sec. 2.3.2. Most or all of the incorrect 
warnings, and therefore the relatively low number of 
findings, are attributed to this implementation choice. 

Results: 
3018 sites (|U |). 1399 warnings (|W |). 1619 findings 

(|F |). 684 buggy sites (|B|). 
We confirmed the following. 
Warnings and sites were consistent: W ⊆ U 
There were many findings: |F | ≥ 0.6 × (|U | − |B|) 
All findings were correct: F ∩ B = ∅ 
For CWE-369 Divide by Zero, Frama-C satisfied the 

criteria. 

3.4.7. CWE-457 Use of Uninitialized Variable. 
Site definition: 
• When the value of a variable is used. 
In some instances after an uninitialized variable is 

reported, Frama-C did not produce any further warn
ings. We did not determine whether this is due to an 
undefined program state, as explained in Sec. 3.3.1, a 
clean-up to avoid repeated warnings about essentially 
the same problem, or something else. 

We handled this by only including the first buggy 
site in a file. That is, the first buggy site is included, and 
any subsequent buggy site in the same file is excluded. 
This exclusion is coded in get_variable_ref_ 
sites.py. 

Results: 
263 520 sites (|U |). 770 warnings (|W |). 262 750 

findings (|F |). 560 buggy sites (|B|). 
We confirmed the following. 
Warnings and sites were consistent: W ⊆ U 
There were many findings: |F | ≥ 0.6 × (|U | − |B|) 
All findings were correct: F ∩ B = ∅ 
For CWE-457 Uninitialized Variable, Frama-C sat

isfied the criteria. 

3.4.8. CWE-562 Return of Stack Variable Address. 
Site definition: 

•	 Return statements that return an expression. This 
does not include return of constant values. 

Anomalies, Observations, and Interpretations: 
There was significant mismatch between our 

site definition and Frama-C’s warning. Our site 
definition, which was based on the CWE, was in 
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the statement where a stack address is returned. 
Frama-C reports the statement where an expired 
address is used. Consider the following code from 
CWE562_Return_of_Stack_Variable_Address__ 
return_buf_01.c, SARD [5] case 105 491: 

static char *helperBad() { 
char charString[] = "helperBad string"; 
return charString; 

} 

{ 
. . . 
printLine(helperBad()); 
. . . 

} 

Our extractor reported a site in the return statement, 
while Frama-C reported the printLine(), where the 
invalid address is used. Both make sense. Since our 
definition of site was local, in order to automatically 
handle Frama-C warnings, the sites for this class has 
to be use of returned value. Only two test cases 
had examples of this condition, so we checked them 
manually. 

Results: 
1838 sites (|U |). 2 warnings (|W |). 1836 findings 

(|F |). 2 buggy sites (|B|). 
We confirmed the following. 
Warnings and sites were consistent: W ⊆ U 
There were many findings: |F | ≥ 0.6 × (|U | − |B|) 
All findings were correct: F ∩ B = ∅ 
For CWE-562, Frama-C satisfied the criteria. 

3.5. Warnings Handled As Exceptions 

In many instances, Frama-C produced warnings that 
did not fit into the classes above or were not readily 
handled by our automated processing. We handled 
these warnings as exceptions. 

Frama-C correctly warned about read after end of 
buffer flaws in 72 files. See Sec. A.5 in the appendix 
for more detail. Since these were unintentional, we 
decided not to take the time to change code to process 
these automatically. 

We excluded 76 test cases, consisting of a total 
of 112 files, because they use RAND32(). Frama-C’s 
model results in any execution after that use to be 
undefined. See Sec. 3.3.1 for more explanation. Since 
we could not easily determine what occurs in the 
control flow before RAND32() is used, we excluded 
these test cases altogether. 

Frama-C warned about integer overflow for many 
uses of left shift (<<) in RAND32() and RAND64(). 
These are legitimate warnings, in that their behavior is 

undefined according to the C11 standard. Since they do 
not correspond to any of the above weakness classes, 
we excluded these 2101 warnings from automated 
processing. 

Frama-C produced 152 “invalid memory access” 
warnings, specifically invalid write, for calloc() 
when the allocation fails. We doubt that actual library 
code tries to zero memory if allocation fails, so we 
considered these warnings to be model artifacts. 

3.6. Errors in Juliet that Frama-C Found 

This section explains the three previously-unknown 
systematic errors in Juliet 1.2 that Frama-C’s warnings 
uncovered. 

In addition to the three systematic errors, Frama-
C warned about constructs that occurred in four test 
cases. In those four cases, the program stored a value 
in one member of a union, then read from the other 
member, a process sometimes called “type punning.” 
This is allowed by the ISO/IEC C 2011 standard. There 
are more details in Sec. A.4 in the appendix. 

3.6.1. Minimal Read After End of Buffer. 72 files 
in Juliet had an unintentional bug, see Sec. A.5 in the 
appendix. The source string passed to memcpy() or 
memmove() was shorter than the size to be copied or 
moved. In this cases, Frama-C correctly pointed out 
a minimal read after end of buffer for the function 
call. Since these flaws were unintentional, we excluded 
them as sites in Ockham Criteria. 

3.6.2. Use of Object Past Its Lifetime. In the 
set of warnings for “making use of address 
of object past its lifetime,” Frama-C warned 
of a previously unnoticed systematic problem 
in the Juliet set. It is use of memory after its 
lifetime, which produced 152 warnings in 140 
test cases. Here is an example of the code from 
CWE476_NULL_Pointer_Dereference__int_34.c, 
SARD case 104 717: 

int * data; 
{ 

int tmpData = 5; 
data = &tmpData; 

} 
printIntLine(*data); 

The address of tmpData is passed to 
printIntLine() after its life time. There are 
more details in the Appendix, Sec. A.7. 
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Class (Related CWEs) 
Sites Warnings Findings Buggy Sites 

(|U |) (|W |) (|F |) (|B|) 
Write Outside Buffer (121, 122, 124) 

Write-what-where (123) 
Read Outside Buffer (126, 127) 

NULL Pointer Dereference (476) 
Integer Overflow (190) 

Divide by Zero (369) 
Uninitialized Variable (457) 
Return Stack Variable (562) 

97 678 18 767 78 911 7400 
72 084 791 71 293 228 
66 665 3396 63 269 2168 
72 084 303 71 781 271 
29 907 1356 28 551 1026 

3 018 1399 1 619 684 
263 520 770 262 750 560 

1 838 2 1 836 2 
Table 1. Number of Sites, Warnings, Findings, and Buggy Sites For Each Weakness Class 

3.6.3. Uninitialized Struct Member. In 204 test cases 
a mistake failed to initialize the second member of 
a structure. Here is a version of the pertinent code 
from CWE121_Stack_Based_Buffer_Overflow__ 
CWE805_struct_declare_loop_01.c, SARD case 
64 912. The typedef comes from std_testcase.h. 

typedef struct _twoIntsStruct 
{ 

int intOne; 
int intTwo; 

} twoIntsStruct; 

twoIntsStruct source[100]; 

for (i = 0; i < 100; i++) 
{ 

source[i].intOne = 0; 
source[i].intOne = 0; 

} 

for (i = 0; i < 100; i++)
 
{
 

data[i] = source[i];
 
}
 

In other examples of this pattern, intTwo is initialized 
also instead of intOne being initialized twice. Frama-
C warned of “reading from uninitialized lvalue” noting 
that intTwo should be initialized. 

All the test cases are in the subdirectory CWE121_ 
Stack_Based_Buffer_Overflow. There are more 
details in Sec. A.6 in the appendix. 

3.7. Summary of Evaluation 

This section summarizes the evaluation of Frama-
C on the SATE V Ockham Sound Analysis Criteria. 
First, we summarize all the considerations involved in 
the evaluation. Next, we summarize the number of sites 
and the final result of the evaluation. 

3.7.1. Summary of Considerations. The August 2013 
development version of Frama-C, which was used 
for the Ockham Criteria, did not support wide string 

literals, e.g. L"Good", nor the format specifier for wide 
string (%ls). 

Frama-C terminates analysis when it detects certain 
failures. Therefore there are no sites for Ockham 
purposes after a terminating failure. Section 3.1.1 

Warnings are the union of two sets of runs: one 
that assumed that every allocation failed, and one that 
assumed that every allocation succeeded. Section 3.1.1 

Frama-C always warns about buggy sites, but may 
warn about sites without bugs. Therefore a finding 
is a good site, that is, a site without a warning. 
Section 3.1.1 

We determined which sites are buggy from the 
structure of Juliet code, by manual inspections, and by 
reconciliation with Frama-C warnings. Section 3.1.1 

Warnings in test cases that use on the RAND32() 
macro were not included, as explained in Sec. 3.3.1. 

Because Frama-C was not run on CWE191 test 
cases, we excluded all sites under the CWE191 subdi
rectory from the universe. Section 3.3.2 

If memcpy() or memmove() write into a structure, 
it is not a site of a buffer write. Section 3.4.1 

We grouped warnings for CWE-121, CWE-122, and 
CWE-124 into the same class, which we named Buffer 
Write. Section 3.4.1 Similarly, we grouped warnings 
for CWE-126 and CWE-127 into the Buffer Read 
class. Section 3.4.3 

We only checked warnings in the CWE476 subdi
rectory for NULL pointer dereference. Section 3.4.4 

Frama-C only reports integer overflow in data types 
larger than int. Section 3.4.5 

Warnings for invalid arguments to library 
function were not mapped to any CWEs at the 
beginning of the analysis. We only included them 
when Frama-C did not produce any other warning for 
a buffer overread. These warnings were reported as 
occurring in input/output utility functions in io.c. We 
extracted the name of the file where the utility function 
was called from additional information in the warning. 
It means that for some of the files cited are not found 
in Frama-C xml output “location” tag. 
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3.7.2. Summary of Results. The number of sites, 
warnings, findings, and buggy sites for each class is 
given in Table 1. In the test cases selected from the 
Juliet 1.2 test suite, we considered a total of 606 794 
sites in eight classes of weaknesses. There were a total 
of 12 339 buggy sites. Counting the excluded and the 
unclassified warnings, which are not listed above, we 
processed a total of 31 955 unique Frama-C warnings. 

Frama-C satisfied the SATE V Ockham Sound Anal
ysis Criteria. 

4. Future Changes 

This section suggests changes for future Ockham 
Criteria. 

4.1. Weakness Classes 

Although the SATE V Ockham Sound Analysis Cri
teria used the term “weakness classes,” the classes are 
not specified. We had CWE classes in mind. In most 
cases Frama-C used classes of warnings that did not 
correspond well to CWEs. For instance, Frama-C did 
not distinguish between CWE-121 Stack-based Buffer 
Overflow, CWE-122 Heap-based Buffer Overflow, and 
CWE-124 Buffer Underwrite. As we proceeded in the 
analysis, we did not see much benefit in holding rigidly 
to CWE distinctions. 

In general, weakness classes that tools use only 
approximately match CWE classes, see Sec. 2.4 in 
[11]. 

We spent a lot of time mapping tool warnings to our 
pre-conceived classes. Within classes of tool warnings, 
we matched some of the warnings in a tool class to 
one CWE-based class and other warnings in the same 
tool class to other classes derived from CWEs. It may 
have been easier to just evaluate the warnings as given. 
In either case, we had to try different matches and 
communicate with the tool developers to understand 
what class of weaknesses the tool was reporting. 

Without understanding what class of weakness the 
tool was considering, we could not decide whether 
a buggy site corresponded to a tool warning. (This 
happened many times during analysis.) If the tool was 
designed to cover that class, then a mismatch indicated 
a missed buggy site and an error. If the tool in actuality 
is not considering a particular class of warning, such 
as integer overflow of types smaller than int, then a 
buggy site should be ignored. In all our analysis, we 
concluded that our notion of a class, and hence sites 
for the class, needed to correspond with the class that 
the tool actually checked. 

In the future, we plan to use the weakness classes 
that the tools use. 

For ease of information sharing, we are researching 
a more universal approach to characterizing weakness 
classes. 

4.2. Definition of Site 

As mentioned in Sec. 2.2, it is not always clear what 
location in a flow of execution should be considered to 
be a site. For instance, a function may have a few lines 
of code to copy a string, which have sites of read buffer 
and write buffer. If the code instead calls the standard 
library function strcpy(), the situation changes. If 
the only sites are considered to be within the body of 
strcpy(), then thousands of invocations throughout 
the code base appear to condense into a few places. In 
addition, the source code is probably not available. 

A better definition may be that a site is the final 
place that the programmer can make any checks that 
are necessary or arrange the state properly. When the 
programmer invokes a standard function or uses a 
built-in operator, the programmer must satisfy their 
preconditions. This may justify declaring that sites are 
in the main line code. 

The question is still open as to what should be 
declared to be the site of missing code, such as failure 
to check user input. 

4.3. Number of Findings 

Criteria 2 stated that the tool produces findings for a 
minimum of 60 % of applicable sites. The limit, 60 %, 
was somewhat arbitrary. The minimum percentage of 
findings per good (non-buggy) site was 69 % for CWE
369 Divide by Zero cases. We attribute this relatively 
low percentage of findings to Frama-C’s implementa
tion choices for abstract interpretation, as explained in 
Sec. 2.3.2. 

The next lowest percentage of findings was 87 % for 
Write Outside Buffer. For all other weakness classes, 
Frama-C produced findings for nearly 100 % of the 
good sites. We note that the Juliet test cases are 
synthetic cases and do not have the complexity found 
in typical production code. 

A minimum of 75 % may be a reasonable limit for 
the next Ockham. 

4.4. No Errors 

Criteria 3 stated that even one incorrect finding 
disqualifies a tool. For a production piece of code, 
this may be overly demanding. A tool built with a 
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known architectural shortcoming or an inference en
gine with theoretical limitations could never achieve a 
flawless evaluation, regardless of the care or amount of 
debugging that is done. However, there are many, many 
details to specify the semantics of a programming 
language and libraries and to encode policies and 
definitions. Tools can still be very useful if there is 
one minor mistake that is easily fixed, as opposed to a 
systematic difficulty that requires major reengineering 
to overcome. 

Perhaps the next Ockham should require no pattern 
of incorrect findings or incorrect findings resulting 
from structural or theoretical reasons. 

4.5. Use of the Term “Sound” 

As explained in Sec. 2.3, the SATE V Ockham 
Criteria used the term “sound” and “complete” in 
almost the reverse sense of that used by a large, 
well-established formal methods community and their 
considerable body of published work. Although Ock
ham’s use may have been reasonable, it would cause 
unnecessary and unproductive confusion for the terms 
to be used very differently in similar contexts. Trying 
to change the community’s use would require a huge 
effort for a relatively small gain. 

Future Ockham Criteria should adopt a term other 
than “sound.” Some possibilities are “correct,” “flaw
less,” “reliable,” “faithful,” “faultless,” or “exact.” 

5. Conclusions 

Pascal Cuoq and Florent Kirchner ran the August 
2013 development version of Frama-C on 13 706 test 
cases from the Juliet 1.2 test suite. This produced a 
total of 31 955 unique warnings covering over half a 
million sites. 

The reports from Frama-C led to the discovery of 
three kinds of unintentional, systematic flaws in the 
Juliet test suite. These flaws involve 416 test cases. 
For flaws with straightforward fixes, we will replace 
the flawed test cases by fixed versions in the SARD [5]. 

The version of Frama-C that was used, the August 
2013 development version, did not support wide string 
literals, e.g. L"Good", nor the format specifier for wide 
string (%ls). 

Frama-C satisfied the SATE V Ockham Sound Anal
ysis Criteria. 
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Appendix A. Details of SATE V Evaluation 

This appendix includes details about specifics of 
the evaluation of SATE V Ockham Sound Analysis 
Criteria. Details include the names of specific test 
cases and names from Juliet 1.2, C code, extended 
explanations, and warnings. 

The following description of the Juliet 1.2 test suite 
draws heavily from and quotes Boland and Black [4]. 
The Juliet 1.2 test suite is a collection of C/C++ and 
Java programs with known flaws. “Each program or 
test case consists of one or two pages of code . . . The 
test cases are synthetic, that is, they were created as 
examples with well-characterized weaknesses.” Each 
case is intended to exhibit only one flaw. 

Test cases are organized by the most similar 
CWE weakness class. Thus the subdirectory CWE121_ 
Stack_Based_Buffer_Overflow only has cases 
that test write after end of buffer in the stack. The 
subdirectories that have thousands of test cases have 
up to nine subdirectories named s01, s02, s03, etc. 

Each C test case comprises one or more files with 
names such as CWE134_Uncontrolled_Format_ 
String__char_file_printf_22a.c. The file 
name has the following components: a CWE 
number and short name, a functional variant 
(char_file_printf, in this case), a two-digit 
structure number (22), an optional subfile indicator 
(a), and the extension .c. 

Functional variants name data types, library func
tions, or structures. Flow structure numbers indicate 
the type of data or control flow used, for example, loop, 
data flow, local control flow, constant in conditional, 
passing data by a function call, data type, container, 
etc. 

In addition to files with shared declarations and 
common utilities, a test case can consist of one source 
code file or of multiple files. For example, test case 
CWE476_NULL_Pointer_Dereference__char_01 
is contained in one source code file (in addition to 
shared files). In contrast CWE23_Relative_Path_ 
Traversal__wchar_t_connect_socket_ 
w32CreateFile_54 has five files–54a.c, 54b.c, 
through 54e.c–that constitute one test case. 

A.1. Frama-C Not Run on CWE191 Cases 

Because of a simple human mistake, Frama-C was 
not run on the CWE191 test cases. The beginning 
of the main script used to generate run Frama-C 
on the test cases is shown in Fig. 1. The script 
processes all the test cases that were in the di
rectory testcases/CWE191_Integer_Underflow. 

Unfortunately, there were no test cases right in that di
rectory; all the test cases were in the s0* subdirectories 
testcases/CWE191_Integer_Underflow/s0*. 

For consistency, we excluded all sites under the 
CWE191 subdirectory from the universe. 

The developers later submitted files with the warn
ings. We decided not to evaluate those files since they 
came from a later version of Frama-C. 

A.2. Frama-C Does Not Handle Some Wide 
Characters in printWLine() 

Frama-C did not handle wide characters passed 
to the utility function printWLine() in 36 test 
cases. The test cases are named CWE126_Buffer_ 
Overread__CWE170_wchar_t_strncpy_01.c 
through 18.c and _memcpy_ 01.c through 18.c. 

Briefly, the wide string format specifier, %ls, was 
not modeled properly. Here is an example of code from 
Juliet. 

wchar_t data[150], dest[100];
 
wmemset(data, L’A’, 149);
 
data[149] = L’\0’;
 
memcpy(dest, data, 99*sizeof(wchar_t));
 
printWLine(dest);
 

As written, the string that is placed in dest is not null 
terminated because only 99 wide characters are copied. 

The problem was that wmemset() fills the array 
with alternate bytes containing character A and a null. 
In Frama-C the wide string format specifier was mod
eled as taking one byte at a time. Frama-C’s analysis 
found that taking a byte at a time, a null character was 
encountered. Therefore no warning was reported. 

We excluded sites in these cases. This exclusion 
code is in extractor.py. Search for the string 
printWLine() sites to find it. 

A.3. Mismatched Buggy Sites Excluded Be
cause of Undefined Behavior 

As explained in Sec. 3.3.1, the Juliet 1.2 test suite 
uses a macro that Frama-C determines to yield unde
fined behavior. The macro is as follows: 

#define RAND32() \ 
((rand()<<30) ˆ (rand()<<15) ˆ rand()) 

The International Organization for Standardization 
and the International Electrotechnical Commission 
(ISO/IEC) C 2011 standard Sec. 6.5.7 Bitwise shift 
operators, paragraph 3 says, “If the value of the right 
operand is negative or is greater than or equal to the 
width in bits of the promoted left operand, the behavior 
is undefined.” [10] 
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for	 DIR in \ 
testcases/CWE190_Integer_Overflow/s* \ 
testcases/CWE191_Integer_Underflow \ 
testcases/CWE457_Use_of_Uninitialized_Variable/s* \ 
testcases/CWE123_Write_What_Where_Condition \ 
... 

Figure 1. Beginning of Main Script to Run Frama-C Showing Error in Accessing CWE191 Cases 

Frama-C models rand() as returning a type that 
is less than 30 bits. According to the standard, the 
result of the expression is undefined. Note that in C, 
“undefined” is more drastic than “the result may be any 
number.” The term “undefined” means that following 
execution of a statement with RAND32(), the program 
can whistle “Happy Birthday” in all the colors of the 
rainbow and still be considered to conform to the 
standard. 

Frama-C handles undefined behavior in an execution 
by not doing any further analysis. Hence the refinement 
about terminating failures in Sec. 3.1.1. 

Our site extraction is largely syntactic or local. We 
do not track the more than a few statements of the 
flow of execution. Hence our automated extraction 
would otherwise include some buggy sites that fol
low undefined behavior. The most difficult cases use 
RAND32() in one file then call a function in another 
file, where the weakness is. Here is the essence of 
the code, from Software Assurance Reference Dataset 
(SARD) [5] case 74 230. The file CWE124_Buffer_ 
Underwrite__CWE839_rand_68a.c has 

void CWE124_...rand_68_bad() 
{ 

data = RAND32(); 
CWE124_...rand_68b_badSink(); 

} 

while the file CWE124_Buffer_Underwrite__ 
CWE839_rand_68b.c has 

void CWE124_...rand_68b_badSink() 
{ 
buffer[data] = 1;// POSSIBLE UNDERWRITE 

} 

The variable data is a global variable. 
The thorough approach would be to carefully follow 

extraction flow and exclude all sites following the use 
of RAND32(). 

We adopted the most principled approach given our 
basic checking analysis. This approach was to com
pletely exclude the 76 test cases that use RAND32(). 

For Write Outside Buffer, we excluded the 
38 test cases with the prefix CWE124_Buffer_ 
Underwrite__CWE839_rand_. These 38 test cases 

comprise a total of 56 files. Some test cases exercise 
inter-file calls, so have name suffixes like 52a.c, 
52b.c, and 52c.c. The 38 test cases are suffixes 01 
through 18, 21, 22, 31, 32, 34, 41, 42, 44, 45, 51 
through 54, 61, and 63 through 68. 

For Read Outside Buffer, we excluded the 
38 test cases with the prefix CWE127_Buffer_ 
Underread__CWE839_rand_. The pattern of test 
cases and files exactly follows that of Write Outside 
Buffer. 

Frama-C also warned about integer overflow for 
the macro RAND64(). There are 114 cases that 
use RAND64(). They start with CWE190_Integer_ 
Overflow__int64_t_rand_, which is followed by 
add, multiply, or square. The specific cases are 01 
through 18, 21, 22, 31, 32, 34, 41, 42, 44, 45, 51 
through 54, 61, and 63 through 68. We did not find 
that these warnings caused any problem with analysis. 

A.4. Incompatible Access Types Warnings 

Frama-C reported that four of the cases with pre
viously unknown errors of use of memory after life
time, as noted in Sec. A.7, had an additional error. 
These cases, ending in “34,” store to one member 
of a union, then read from a different member, a 
process sometimes called “type punning.” Here is an 
example of the code, from CWE476_NULL_Pointer_ 
Dereference__int_34.c, SARD case 104 717: 

typedef union 
{ 

int	 * unionFirst; 
int * unionSecond; 

} CWE476_...int_34_unionType; 

CWE476_...int_34_unionType myUnion; 
{ 

int	 tmpData = 5; 
data = &tmpData; 

} 
myUnion.unionFirst = data; 
{ 

int	 *data = myUnion.unionSecond; 
printIntLine(*data); 

} 
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The ISO/IEC C 2011 standard 6.5.2.3 Structure and 
union members, footnote 95 says, “If the member used 
to read the contents of a union object is not the same 
as the member last used to store a value in the object, 
the appropriate part of the object representation of 
the value is reinterpreted as an object representation 
in the new type . . . (a process sometimes called “type 
punning”).” [10] 

This construct is well defined in the C 2011 stan
dard. However, since other versions of the standard are 
not clear about how it should be treated, we believe that 
Frama-C was reasonable to model this as incompatible 
access type. 

A.5. Previously Unknown Error: Unintended 
Minimal Read After End of Buffer Bug 

72 Juliet test cases have an unintentional bug that is 
minimal read after end of buffer. The pertinent code is 

#define SRC_STR "0123456789abcde0123" 

typedef struct _charVoid 
{ 

char charFirst[16]; 
void * voidSecond; 
void * voidThird; 

} charVoid; 

charVoid structCharVoid; 

followed by one of the following two lines 

memcpy(structCharVoid.charFirst, 
SRC_STR, sizeof(structCharVoid)); 

memmove(structCharVoid.charFirst, 
SRC_STR, sizeof(structCharVoid)); 

The problem is as follows. SRC_STR is 20 char
acters (bytes) long, including the null terminator. 
sizeof(structCharVoid) is at least 24 bytes long: 
16 characters (bytes) in charFirst and 4 bytes 
for each of the two pointers. The standard functions 
memcpy() and memmove() therefore read at least 24 
bytes from the constant string that is only 20 bytes. 

Both memcpy() and memmove() allow writing be
yond the end of a buffer. (They are often used to copy 
or initialize an entire structure when only the first field 
of the structure is passed.) Thus the intended bug, write 
outside buffer, is not present given standard semantics. 

The 72 files with these problems are SARD [5] 
test cases 63 036 to 63 071 and 67 448 to 67 483. 
All of the file names begin with CWE121_Stack_ 
Based_Buffer_Overflow__. Next in the name is the 
data type. (In the Juliet collection, the char_ type_ 
files are in subdirectory s01, and the wchar_t_ 

type_ files are in subdirectory s09.) The name 
next has the operation, which is overrun_memcpy_ 
or overrun_memmove_. There are 18 control flow 
variants, 01.c through 18.c, for each. As an 
example, here is the complete name of one file, which 
is in subdirectory s09: CWE121_Stack_Based_ 
Buffer_Overflow__wchar_t_type_overrun_ 
memmove_13.c. 

A.6. Previously Unknown Error: Uninitialized 
Storage 

In 204 test cases a mistake failed to initialize the 
second member of a structure. Here is a basic version 
of the pertinent code from CWE121_Stack_Based_ 
Buffer_Overflow__CWE805_struct_declare_ 
loop_01.c, SARD [5] case 64 912. The typedef 
comes from std_testcase.h. 

typedef struct _twoIntsStruct 
{ 

int intOne; 
int intTwo; 

} twoIntsStruct; 

twoIntsStruct source[100]; 

for (i = 0; i < 100; i++) 
{ 

source[i].intOne = 0; 
source[i].intOne = 0; 

} 

for (i = 0; i < 100; i++)
 
{
 

data[i] = source[i];
 
}
 

In other examples of this pattern, intTwo is initialized 
also instead of intOne being initialized twice. Frama-
C warns of “reading from uninitialized lvalue” noting 
that intTwo should be initialized. (In the memcpy() 
and memmove() cases, source is read by the respec
tive function, not a primitive assignment.) 

All the test cases are in CWE121_Stack_Based_ 
Buffer_Overflow and begin with that string. The 
first 69 cases are in subdirectory s04; the rest are in 
subdirectory s05. 

The test cases came in 2 functional variants 
(CWE805_struct_alloca and declare) × 3 
subvariants (loop, memcpy, and memmove) × 34 
templates (01 through 18, 31, 32, 34, 41, 44, 45, 
51b, 52c, 53d, 54e, and 63b through 68b) = 204 test 
cases. For example, the first warning is in CWE121_ 
Stack_Based_Buffer_Overflow__CWE805_ 
struct_alloca_loop_01.c, SARD case 64 792, 
and the last warning is in CWE121_Stack_Based_ 
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Buffer_Overflow__CWE805_struct_declare_ 
memmove_68b.c, SARD case 65 026. (Some of the 
cases in that span do not have this bug.) 

A.7. Previously Unknown Error: Use of Mem
ory After Lifetime 

Frama-C warned of a previously unnoticed sys
tematic mistake in the Juliet set. In the supposedly 
good versions of NULL pointer dereference cases, 
the following type of code occurs in many vari
ations. This comes from CWE476_NULL_Pointer_ 
Dereference__int_01.c, SARD case 104 694: 

int * data; 
{ 

int tmpData = 5; 
data = &tmpData; 

} 
printIntLine(*data); 

The variable tmpData is declared in an inner scope. 
The lifetime of its memory ends at the closing bracket. 
Thus the dereference in printIntLine() is unde
fined behavior. However, most compilers do not release 
the memory until the end of the enclosing function, so 
the code usually works fine. The ISO/IEC C 2011 stan
dard Sec. 6.2.4 Storage duration of objects, paragraph 
6 says, “For such an object . . . its lifetime extends from 
entry into the block with which it is associated until 
execution of that block ends” [10] Frama-C’s warning 
is consistent with this. 

These mistakes in Juliet could be labeled as CWE
825 Expired Pointer Dereference. 

There are 152 warnings in 4 versions (int64_t_, 
int_, long_, and struct_) x 35 templates (01 
through 18, 21, 22a, 31, 32, 41, 44, 45, 51a through 
54a, 63b, 64b, 65a, 66b, 67a, and 68b) = 140 test cases. 
Each template ending in “12” had four warnings. 
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