

NISTIR 8113

SATE V Ockham Sound Analysis
Criteria

Paul E. Black
Athos Ribeiro

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.IR.8113

http://dx.doi.org/10.6028/NIST.IR.8113

NISTIR 8113

SATE V Ockham Sound Analysis
Criteria

Paul E. Black
Software and Systems Division

Information Technology Laborary

Athos Ribeiro
Department of Computer Science

University of São Paulo

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.IR.8113

March 2016

U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology
Willie May, Under Secretary of Commerce for Standards and Technology and Director

http://dx.doi.org/10.6028/NIST.IR.8113

Abstract

Static analyzers examine the source or executable
code of programs to find problems. Many static ana
lyzers use heuristics or approximations to handle pro
grams up to millions of lines of code. We established
the Ockham Sound Analysis Criteria to recognize
static analyzers whose findings are always correct. In
brief the criteria are (1) the analyzer’s findings are
claimed to always be correct, (2) it produces findings
for most of a program, and (3) even one incorrect
finding disqualifies an analyzer. This document begins
by explaining the background and requirements of the
Ockham Criteria.

In Static Analysis Tool Exposition (SATE) V, only
one tool was submitted to be reviewed. Pascal Cuoq
and Florent Kirchner ran the August 2013 devel
opment version of Frama-C on pertinent parts of
the Juliet 1.2 test suite. We divided the warnings
into eight classes, including improper buffer access,
NULL pointer dereference, integer overflow, and use of
uninitialized variable. This document details the many
technical and theoretical challenges we addressed to
classify and review the warnings against the Criteria.
It also describes anomalies, our observations, and
interpretations. Frama-C reports led us to discover
three unintentional, systematic flaws in the Juliet test
suite involving 416 test cases. Our conclusion is that
Frama-C satisfied the SATE V Ockham Sound Analysis
Criteria.

Certain trade names and company products are men
tioned in the text or identified. In no case does such
identification imply recommendation or endorsement
by the National Institute of Standards and Technology
(NIST), nor does it imply that the products are neces
sarily the best available for the purpose.

1. Background

1.1. SATE

The Static Analysis Tool Exposition (SATE) is a
recurring event at the National Institute of Standards
and Technology (NIST) led by the Software Assur
ance Metrics And Tool Evaluation (SAMATE) team
[1]. SATE aims to improve research and development
of source code static analyzers, especially security-
relevant aspects. To begin each SATE, the SAMATE
team and other organizers select a set of programs as
test cases. Participating tool developers run their tool
on the test cases and submit their results (tool reports).
The organizers then analyze the reports. Results and

experiences are reported at the SATE workshop, and
the final analysis is made publicly available.

The goals of SATE are to:
•	 Enable empirical research based on large test sets,
•	 Encourage improvement of tools,
•	 Speed adoption of tools by objectively demon

strating their use on real software.
In SATE V [2], the SAMATE team introduced the

SATE V Ockham Sound Analysis Criteria, a track
for static analyzers whose findings are always correct.
Tools do not have to be “bug-finders,” that is, report
flaws or bugs. The Ockham Criteria also applies to
tools that report that sites are certainly bug-free.

Section 2 explains the Criteria in detail. It also
presents the general procedure to evaluate a tool
against the criteria. Section 3 explains how the pro
cedure is instantiated for the only participant in SATE
V Ockham, Frama-C, and details of the evaluation.
Section 4 lists ideas to improve future Ockham Criteria
exercises. Our conclusions are in Sec. 5.

2. The Criteria

The criteria is named for William of Ockham, best
known for Occam’s Razor. Since the details of the cri
teria will likely change in the future, the criteria name
always includes a time reference: SATE V Ockham
Sound Analysis Criteria.

The value of a sound analyzer is that every one of its
findings can be assumed to be correct, even if it cannot
handle enormous pieces of software or does not handle
dozens of weakness classes. In brief the criteria are:

1) There is a claim that the tool’s findings are
always correct.

2) The tool produces findings for most of the pro
gram.

3) Even one incorrect finding disqualifies a tool.
An implicit criterion is that the tool is useful, not

merely a toy.
We use the term warning to mean a single re

port produced by a tool. For instance, integer
overflow at line 14 is a warning. A finding may
be a warning or it may be a site with no warning. For
instance, a tool may be implemented to be cautious
and sometimes produce warnings about (possible) bugs
at sites that are actually bug free. If it never misses
a bug, then any site without a warning is sure to
be correct. The tool makers could declare that sites
without warnings are findings, and that all findings are
correct.

A tool might be sure of bugs at some sites and sure
of absence of bugs at other sites. However it might not

1

be sure about some sites. For such a tool, a finding is
only those things that it is sure about, both buggy sites
and sites without bugs.

2.1. Details

This section has the details of the Criteria. First
we give the three formal criteria, then we follow with
definitions, informative statements, and discussion.

We tried to set requirements that communicated our
intent, ruled out trivial satisfaction, and were under
standable. We announced that we planned to be liberal
in interpreting the rules: we hoped tools would satisfy
the criteria, so we gave tools the benefit of a doubt.

The formal criteria were:
1) The tool is claimed to be sound.
2) For at least one weakness class and one test

case the tool produces findings for a minimum
of 60 % of buggy sites OR of non-buggy sites.

3) Even one incorrect finding disqualifies a tool for
this SATE.

No manual editing of the tool output was allowed.
No automated filtering specialized to a test case or to
SATE V was allowed, either.

Criterion 1 stated, “The tool is claimed to be sound.”
We used the term sound to mean that every finding

was correct. The tool need not produce a finding
for every site; that is completeness. See Sec. 2.3 for
a discussion of our use of the terms “sound” and
“complete.”

A tool may have settings that allow unsound anal
ysis. The tool still qualified if it had clearly sound
settings. For example, for fast analysis or for some
classes of weaknesses, the user may be able to select
unsound (approximate) function signatures. A more
inclusive statement of Criterion 1 is, the tool is claimed
to be sound or has a mode in which analysis is sound.

Criterion 2 deals with the number of findings pro
duced: The tool produces findings for a minimum of
60 % of sites.

This criterion was included since it is impossible in
theory for an algorithm to correctly report the presence
of a property in all software (and not report it when
the property is absent). [3] Rice’s Theorem states that
either an algorithm fails to report the property in
some cases when the property is present, or it may
incorrectly report the property’s presence when it is
absent.

We chose the former: the Ockham Criteria empha
sized the approach in which findings need no further
examination of their validity. Rice’s Theorem then says
that we must accept that in some cases a sound tool

may not be able to decide whether or not a site has a
weakness.

Without this criterion, a trivial tool could produce no
findings, which is arguable not incorrect, and satisfy
the Ockham Criteria. For a tool to be useful, it must
produce findings for many sites in many pieces of
software.

After consultation with the SATE program commit
tee, we chose 60 % as a level that would be useful, yet
readily achievable by current tools. In the future, we
will likely set a higher limit.

A site is a location in code where a weakness
might occur. For instance, every buffer access in a C
program is a site where buffer overflow might occur if
the code is buggy. In other words, sites for a weakness
are places that must be checked for that weakness.
See Sec. 2.2 for further exposition of what constitutes
a site.

A buggy site is one that has an instance of the
weakness. That is, there is some input that will cause
a violation. A non-buggy site is one that does not have
an instance of the weakness, in other words, is safe or
not vulnerable.

Data flow weaknesses, such as SQL injection, have a
notion of connected source/sink pairs. A site is closely
related to the notion of a sink. A program may accept
input at several places, but access SQL in just one or
two places. Other programs may have just a few inputs
from which data flows to many SQL calls. Counting
pairs may balance these styles.

A tool is allowed to have a different definition of
site, as long as it is expressed.

A finding is a definitive report about a site. In other
words, that the site has a specific weakness (is buggy)
or that the site does not have a specific weakness (is
not buggy). Tentative reports like “this site is likely
to have that weakness,” “caution: this function does
not check for a null,” or “this site is almost certainly
safe” are at best ignored (not counted) and may be
considered incorrect.

A tool produces warnings about sites. A finding may
be a warning or it may be the lack of a warning. If the
tool uses conservative approximations, it may produce
false alarms, that is, warnings about sites that are
actually not buggy. However, for such a tool, the lack
of a warning for a site is a finding that the site is
definitely safe.

We chose to use test cases from SATE V. SATE V
offered large, production programs and the Juliet 1.2
test suite. [4] Juliet cases are small, synthetic programs.
Both production programs and Juliet have cases in C
or in Java.

To be useful, a tool must be able to handle one of

2

the large programs or many of the Juliet test cases. All
the Juliet test cases in the appropriate language and
weakness class(es) are considered one test case. For
instance, a tool cannot achieve the criteria for running
just a selection of buffer overflow cases; it must run on
all Common Weakness Enumeration (CWE) 121, 122,
123, 124, 126, 127, 129, and 131 cases.

Processing different classes of weaknesses may
take very different software machinery. The models,
abstractions, data structures, and algorithms to look
for one weakness may be of little help for another
weakness.

Instead of trying to determine some required set
of weaknesses, we allowed those running tools to
designate the weakness or weaknesses that the tool
finds and to choose one or more test cases.

Related to the minimum number of sites criterion
above, to be significant, there had to be a minimum of
10 sites and two findings in the test case. Reporting
no possible buffer overflows for a Java program or no
uncaught exceptions for a C program is not grounds
for satisfying SATE V Ockham Criteria.

We hoped that tools would be run on production
test cases. To prepare for that, we considered how we
might check a tool’s results. We decided to estimate the
number of sites in a test case by simple programs if
there was significant disagreement or uncertainty about
the number. We anticipated accepting tools’ count of
number of sites. If there were concerns, we would ad
hoc “grep” or similar, simple methods.

We would determine that findings were correct (or
incorrect) by simple programs for Juliet test cases. For
other test cases, we anticipated comparing tool findings
by simple programs and manually reviewing differ
ences. We had planned to compare Ockham results
with SATE V results for additional confidence.

What if there were unexpected findings? All reason
ing is based on models, assumptions, definitions, etc.
(collectively, “models”). Unexpected findings resulting
from model differences need not disqualify a tool. In
consultation with the tool maker, we would decide if
an unexpected finding results from a reasonable model
difference or whether it is incorrect. To satisfy the
SATE V Ockham Criteria, any such differences must
be publicly reported.

For instance, one tool may assume that file system
permissions are set as the test case requires, while
another tool makes no assumptions about permissions
(that is, assumes the worst case). In this case, the tools
could have different findings, yet both are correct.

However, if a tool modeled the “+” operator as
subtraction, it was incorrect.

We realized that models are hard to build and

validate, but the value of a sound analyzer is its
correctness. We had thought that a proof of correctness
of analysis soundness at the mathematical specification
level might excuse incorrect findings.

We planned to have the Ockham Criteria many
times. If a tool did not satisfy the SATE V Ockham
Criteria, it might satisfy the Ockham Criteria in the
future. Hence, Criterion 3 stated that even one incorrect
finding disqualified a tool for this SATE, meaning
SATE V.

2.2. Definition of “site”

As stated above, a site is a location in code where
a weakness might occur. For instance, every buffer
access in a C program is a site where buffer overflow
might occur if the code is buggy. In other words, sites
are places that must be checked. The determination of
a site depends on local information. That is, global
or flow-sensitive information should not be needed to
determine where sites are in code.

For example, the following code comes from Soft
ware Assurance Reference Dataset (SARD) [5] case
62 804. It has one site of writing to a buffer,
data[i] =, which needs to be checked for a write
outside-buffer bug. There is also one site of reading
from a buffer, source[i], where the program might
read outside the buffer if there is a bug.

for (i = 0; i < 10; i++)
{

data[i] = source[i];
}

In addition, the code has sites of uninitialized variable,
every place that i is used, and an integer overflow site,
i++. Notice that the assignment statement in the body
of the loop has several sites: a write buffer site, a read
buffer site, and sites where variables are used.

The concept of “site” is similar to the concept of
“foothold” used by Nikolai Mansourov in the descrip
tion of Software Fault Patterns [6].

One exception to locality is dead code. For some
purposes, code that is unreachable or can never be
executed should not be considered. For other purposes,
all code should be considered, since a piece of code’s
possible execution might easily change with a minor
alteration to the source.

Locations in code are often excluded as sites be
cause of local information. For example, consider the
weakness class CWE-369: Divide By Zero. A simple
definition of site for this class is just every occurrence
of a division operator (/). Consider the division op
erator in the code fragment mid = height/2, which
is division by a constant. Since division by a constant

3

other than zero is clearly never a divide by zero and
this situation can be detected easily, we may exclude
division by a non-zero constant as a site for divide by
zero.

Another way to think of it is that a site is the
last place in code that the programmer may make
necessary checks or modify state. For instance, the
C standard library function strcpy() receives two
pointers to locations, presumably arrays. It does not
get enough information to determine if the destination
array is big enough to hold the source string. Thus
after a call to strcpy(), the programmer can no
longer influence whether or not a violation occurs;
necessary information is not available. Therefore the
call to strcpy() is considered the site of a buffer
overflow even though the violation occurs in the library
routine. Similarly when the programmer’s code invokes
a primitive operator, such as []. The data state needs
to satisfy the preconditions of the library function or
operator.

2.3. About “Sound” and “Complete” Analysis

The term sound and the term complete are used
differently by different communities. In this section,
we explain that two different pairs of meanings both
have valid reasons.

Most of the theorem proving, formal methods, and
static analysis communities use “sound” to mean that
all bugs are reported and “complete” to mean that every
bug report is a correct report. We explain this usage
below. For the Ockham Criteria, we used “sound”
to mean that every finding1 was correct. We used
“complete” to convey the meaning of a finding for
every site.

2.3.1. Ockham Criteria Use of the Term Sound.
The terms “sound” and “complete” come from logic.
A deductive system consists of axioms and inference
rules. Axioms and statements are expressed in a spe
cific language. A deductive system is sound if and only
if every statement that can be deduced is true. On the
other hand, if every true statement can be deduced, the
deductive system is complete [7].

The differences in use between us arise in applying
those terms to software.

For the purposes of the Ockham Criteria, logical
statements corresponded to declarations of properties

1. A “bug report” or warning is not necessarily the same thing as
a “finding.” A finding may be a bug report. In addition or instead,
a finding may be a site that does not have a bug report, that is, the
tool is sure is not buggy.

at a location in software or properties in a specific piece
of software. For example, here are two statements:

•	 For all executions that reach location q, the vari
able x has the value 7.

•	 There exists an input value such that the access to
buffer buf at location r writes outside the buffer.
(We usually express this as, buf has a buffer
overflow at r.)

The software is understood to be included in the state
ment of a property. For instance, a complete statement
of the first property is: “For all executions of software
S that reach location q, the variable x has the value 7.”

Axioms and rules of inference include the semantics
of the software’s language.2 Axioms and inference
rules are written into static analyzers. In addition, some
static analyzers have a general language of properties.
That is, users can write rules, and the static analyzer’s
engine checks software against those rules. Some static
analyzers have a fixed set of properties, which are
embedded in the software as well.

With these meanings, a sound deductive system
corresponds to a static analyzer that only reports (de
rives or proves) properties that are true. A complete
deductive system corresponds to a static analyzer that
reports, or could report, all true properties that are
within the analyzer’s domain.

2.3.2. Other Meaning of “Sound” and “Complete”.
The other meaning of “sound” and “complete” is
best understood by considering how static analyzers
employ abstract interpretation. For this purpose, ab
stract interpretation deduces properties of software by
symbolically executing (interpreting) the software. For
efficiency, the software is only interpreted once (or just
a few times). The challenge for analysis is to maintain
all the possible states that the software might have
during the single interpretive run. Unfortunately no
analysis program can efficiently embody the exact set
of values even one variable might have in all cases, let
alone all states. As an extreme instance, a variable may
be a large prime number in cryptographic software.
Another example is that the value of a variable may
indicate the form or content of a data structure. Any
abstract interpretation will only handle a few ways of
embodying possible values. Some ways are as a small
set of discrete values, as a range of possible values, or
as a linear relation between the values of two variables.

Abstract interpretation approximates concrete or ac
tual states of software by lists of embodiments of

2. One should be clear as to whether the semantics correspond to
a language standard, the behavior of code produced by a particular
compiler, or something else.

4

values of variables. These approximations are a part
of abstract states that represent concrete states of the
software being analyzed.

In deterministic software, one concrete state transi
tions to another concrete state. Similarly, each abstract
state makes an abstract transition to another abstract
state.

The other meaning of sound analysis has two moti
vations, both of which lead to the same effect. The first
motivation is that analysis never misses any weakness
or vulnerability. The second motivation is that the
abstract states in a trace represent all the concrete states
that may be reached. More specifically, if a (start)
concrete state transitions to an (end) concrete state,
the abstract state that represents the start concrete state
makes a corresponding abstract transition to an abstract
state that represents the end concrete state.

For either motivation, the effect is that abstract states
and transitions must overapproximate concrete states
and transitions, given the practical limits of embodying
variable values. The effect of overapproximation is that
abstract interpretation often leads to abstract states that
include vulnerable concrete states, even though the
vulnerable concrete states never can occur.

For instance, consider checking for a divide-by-zero
failure in the following code fragment:

int x = readInput();
if (x != 0) {

x	 = 1776/x;
}

Suppose that analysis only embodies possible values
of a variable in two ways: as a single value or as
a range of values from a minimum to a maximum.
After the first line, x can have any int value. This
can be embodied exactly as a range from the min
imum int to the maximum int. Immediately after
the conditional, the possible values of x, all values
omitting zero, cannot be embodied exactly. The only
practical solution is to continue to embody the possible
values as the entire range. When analysis checks the
next line, zero is found to be a possible value. Analysis
reports a (possible) divide-by-zero, even though it
cannot actually occur.

Of course, for any particular situation, an embod
iment can be devised to handle it correctly. However
the situations occurring in actual pieces of software are
essentially limitless.

Hence sound analysis in this second sense will
typically produce false alarms (false positives), but
never miss a possible problem (no false negatives).

By analogous argument, complete analysis never has
false alarms, but may miss some problems.

Although related, the two pairs of meanings are
exactly reversed only in a specific situation of the
Ockham Criteria: when findings are the tool’s report
of bugs and sites are the buggy sites. In this situation,
sound in the Ockham Criteria means all tool reports are
of buggy sites, that is, no false alarms. Ockham Criteria
complete means that every buggy site is reported by
the tool, that is, no false negatives.

2.4. General procedures

This section describes the general procedure that we
established to confirm that a participating tool satisfied
the Criteria.

1) Decide what constitutes a site.

2) Determine the list of sites

U = the set of all sites

3) Determine the list of findings

F = the set of all findings

Recall that findings may be buggy sites or good
(non-buggy) sites or both. Hence the use of both
B and G later.

4) Check that all findings are at sites

F ⊆ U

which they should be, by definition.
•	 If that is not true, reconcile the definitions

of “site” and “finding.”
5) Determine which sites are buggy (or non-buggy)

B = the set of all buggy (bad) sites

G = the set of all non-buggy (good) sites

•	 A site is either buggy or good, but not both.
By definition:

U = B ∪ G

B ∩ G = ∅

•	 To achieve higher assurance, we can review
SATE V reports against U , B, and G.

6) Check that

|F | ≥ 0.6 × |B| (or |G| as appropriate)

where |F | is the number of items in set F , |B|
is the number of items in set B, etc.

• If that is true, Criterion 2 is satisfied.

7) Check that

F ∩ G (or B) = ∅

•	 If that is true, Criterion 3 is satisfied.
•	 If that is not true, it may be differences in

definitions.

5

3. SATE V Evaluation

There was only one participant in SATE V Ockham
Sound Analysis Criteria: Frama-C. Pascal Cuoq and
Florent Kirchner ran the August 2013 development
version. (Changes were released to the open-source
engine in version 20140301 “Neon.”)

3.1. Frama-C Evaluation

Frama-C is a suite of tools to analyze software
written in C [8]. It is free software licensed under
the GNU Lesser General Public License (LGPL) v2
license3.

By its own definition, Frama-C claimed to be sound:
“it aims at being correct, that is, never to remain silent
for a location in the source code where an error can
happen at run-time” [8].

This satisfies Criterion 1.

3.1.1. Frama-C specific procedures. This section ex
plains the specific adaptions of the general procedures
for Frama-C.

Some situations in the C language, such as an integer
overflow or left shift more than data type size have
“undefined behavior,” which is more drastic than “the
result may be any number”: no further analysis is
reasonable. See Sec. A.3 for further explanation.

Frama-C issues a warning and terminates analysis
when it detects that the resulting state may be un
defined. Consequently sites following a terminating
failure (T) have no judgments made at all, neither
buggy nor non-buggy. The universe of sites is therefore
syntactic sites (S) Until (U) a terminating failure.

U = S U T

Pascal Cuoq and Florent Kirchner sent two files
of warnings each from a different sets of runs of
Frama-C. One set of runs modeled that every allocation
failed, and the other runs modeled that every allocation
succeeded. Frama-C must assume allocation failure in
order to catch a possible NULL pointer dereference,
for example in the following code, which comes from
SARD [5] case 74 328:

char * dataBuffer = malloc(100);
memset(dataBuffer, ’A’, 100-1);

Frama-C could not model both allocation failure and
allocation success in one run. Warnings are the union
of warnings from both files.

Frama-C always warns about a bug at a site when
there is a bug, that is, there are no false negatives. Note

3. http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

that because of the limitations of Frama-C’s models, it
may warn of a bug when there is no bug, that is, there
may be false alarms; see the discussion about divide by
zero in Sec. 2.3.2 as one example. The reader may ask,
do these false alarms disqualify Frama-C? No, because
for Frama-C a finding is that a site is not buggy. If
Frama-c does not produce a warning for a site, then
that site is definitely not buggy. In other words, given
that W is the set of all warnings,

F = U − W

By definition, the consistency check in step 4, F ⊆ U ,
was trivially satisfied. However, we gained confidence
by checking that all warnings are sites. Therefore we
substituted the consistency check

4) Check that
W ⊆ U

If that was not true, reconcile definition of site
and finding.

To determine buggy sites, we developed a “master
list” from the comments and repeated structures in
Juliet code. When we found inconsistencies, we inves
tigated and resolved them as needed. We improved the
code to scan Juliet for sites and determine which one
were buggy, the Juliet master list, and other converters
and extractors. Since findings were good sites for
Frama-C, the criteria checks were

6) Check that
|F | ≥ 0.6 × |G|

7) Check that
F ∩ B = ∅

If that was not true, investigate the reason includ
ing definition of site and assignment of warning.

Since G = U − B (and B ⊆ U)4, we can rewrite
step 6 so we only used buggy (B) sites:

6) Check that

|F | ≥ 0.6 × (|U | − |B|)

3.2. Implementation

We performed the bulk of the analysis with auto
mated scripts and custom programs. The general flow
was to (1) extract appropriate sites from the Juliet tests,
(2) extract and interpret appropriate warnings from the
Frama-C report, and (3) match and process the two
extracts in various ways.

4. We need to know that B ⊆ U because in general,

|U − B| = |U | − |B| + |B − U |

Since B ⊆ U , |B − U | = 0, therefore |U − B| = |U | − |B|.

6

http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

Automated scripts allowed us to rerun with relative
ease when we needed to.

Some exclusions and special handling were built into
the code. These are mentioned where we discuss the
exclusions or special handling, such as Sections 3.4.1,
3.4.5, and 3.4.7.

All the scripts and files are available in a tar
file with xz compression [9] at DOI http://
dx.doi.org/10.18434/T4WC7V or https://s3.
amazonaws.com/nist-ockham-criteria-sate

v-data/ockhamCriteriaSATEVdata.tar.xz
The README is available at https://s3.
amazonaws.com/nist-ockham-criteria-sate-

v-data/README

3.3. Common considerations

We divided the Frama-C warnings into classes and
examined them generally class by class. This section
explains some considerations that applied to all the
classes.

3.3.1. Analysis termination after RAND32() macro.
The Juliet 1.2 test suite uses a macro, RAND32(),
defined as follows:

#define RAND32() \
((rand()<<30) ˆ (rand()<<15) ˆ rand())

The International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC) C 2011 standard Sec. 6.5.7 Bitwise shift
operators says, “If the value of the right operand is
negative or is greater than or equal to the width in
bits of the promoted left operand, the behavior is
undefined.” [10]

Frama-C models rand() as returning a type that is
less than 30 bits. According to the standard, the result
of executing a statement with RAND32() is undefined.
As explained in Sec. 3.1.1, Frama-C does no further
analysis.

Our site extraction is largely syntactic or local, so it
was difficult to exclude sites that followed undefined
behavior. Given the limitation of our analysis, we com
pletely excluded the 76 test cases that use RAND32().
See Sec. A.3 for details.

3.3.2. Cases Under CWE191 Not Processed. During
evaluation, we observed that there were no warnings
at all for test cases under CWE191. Upon inquiry,
we learned that because of a simple human mistake,
Frama-C was not run on any cases under CWE191.
See Sec. A.1 in the appendix for more detail.

We decided to exclude all sites under the CWE191
subdirectory from the analysis to avoid misinterpreta
tions in the final results.

The developers later submitted files with the warn
ings. We decided not to evaluate those since they were
obtained with a later version of Frama-C.

3.4. Evaluation by weakness classes

We sent a set of Juliet 1.2 test cases containing the
following CWEs to those running Frama-C:

• CWE-121 Stack-based Buffer Overflow
• CWE-122 Heap-based Buffer Overflow
• CWE-123 Write-what-where Condition
• CWE-124 Buffer Underwrite
• CWE-126 Buffer Over-read
• CWE-127 Buffer Under-read
• CWE-190 Integer Overflow
• CWE-191 Integer Underflow
• CWE-369 Divide by Zero
• CWE-457 Use of Uninitialized Variable
• CWE-476 NULL Pointer Dereference
• CWE-562 Return of Stack Variable Address
The result we received from them had the following

nine warnings:
• division by zero
• floating-point NaN or infinity
• invalid arguments to library function
• invalid memory access
• making use of address of object past its lifetime
• overflow in conversion
• passing INT MIN to standard function abs()
• reading from uninitialized lvalue
• undefined arithmetic overflow

The warnings did not match simply to CWE classes.
We came up with nine classes of weaknesses. By
examining verbose information that Frama-C supplied
with each warning, we matched most warnings to one
of the weakness classes. Some warnings did not fit
into those classes or were not readily handled by our
automatic processing. We explain those in Sec. 3.5.

Following is one subsection for each weakness class
with some details about the evaluation of the class.

3.4.1. Write Outside Buffer. This includes CWE-121
Stack-based Buffer Overflow, CWE-122 Heap-based
Buffer Overflow, and CWE-124 Buffer Underwrite
(’Buffer Underflow’). Frama-C does not distinguish
between stack-based and heap-based buffers. For the
Ockham Criteria, the distinction between stack-based
and heap-based or between underflow and overflow
is not important. Either the buffer is always accessed

7

https://s3
http:v-data/ockhamCriteriaSATEVdata.tar.xz
https://s3

properly or there is a bug, which should be fixed or
mitigated.

Site definition:
•	 Write to an array (buffer), either by [] or unary *.

Specifically array access on the left hand side of
an assignment or use as a destination in a standard
library function. The exception is that memcpy()
or memmove() into a structure is not a site.

Programmers often use memcpy() and memmove()
to fill or move entire structures. The Frama-C model
allows them to copy or move anything to anywhere.

Anomalies, Observations, and Interpretations:
The version of Frama-C that was used for the Ock

ham Criteria, the August 2013 development version,
did not support wide string literals, e.g. L"Good", nor
the format specifier for wide string (%ls). For this
reason, we did not include sites with wide string literals
or the wide string format specifier in the Universe.
Neither did we include sites with wide character arrays
that are passed to printWLine(), which uses the wide
string format specifier. These exclusions are coded in
extractor.py. For more details, see Sec. A.2 in the
appendix.

Results:
97 678 sites (|U |). 18 767 warnings (|W |). 78 911

findings (|F |). 7400 buggy sites (|B|).
We confirmed the following.
Warnings and sites were consistent: W ⊆ U
There were many findings: |F | ≥ 0.6 × (|U | − |B|)
All findings were correct: F ∩ B = ∅
For Write Outside Buffer, which includes CWE

121, CWE-122 and CWE-124, Frama-C satisfied the
criteria.

3.4.2. CWE-123 Write-what-where Condition.
Site definition:
• Use of *, ->, or [] operators.

A more generally complete definition of site for this
weakness should include calls to some library func
tions. However the above definition was sufficient for
Juliet test cases.

Results:
72 084 sites (|U |). 791 warnings (|W |). 71 293 find

ings (|F |). 228 buggy sites (|B|).
We confirmed the following.
Warnings and sites were consistent: W ⊆ U
There were many findings: |F | ≥ 0.6 × (|U | − |B|)
All findings were correct: F ∩ B = ∅
For CWE-123 Write-What-Where, Frama-C satis

fied the criteria.

3.4.3. Read Outside Buffer. This includes CWE-126
Buffer Over-read and CWE-127 Buffer Under-read.
Frama-C did not distinguish between read before the
beginning of buffer and read after the end of buffer. For
the Ockham criteria, the difference is not important.

Site definition:
•	 Read from an array (buffer), either by [] or unary
*.

The access could be in an expression or it could be
embedded in the left hand side of an assignment. For
example a[b[i]] = ... reads buffer b.

Anomalies, Observations, and Interpretations:
Some warnings deal with invalid argument to
printf(): invalid arguments to library
function for printf. We deemed these to be
Read Outside Buffer warnings since they would only
happen to strings that are not null terminated that
could lead printf() to an overread.

72 files in Juliet had an unintentional bug, see
Sec. A.5 in the appendix. The source string passed to
memcpy() or memmove() was shorter than the size to
be copied or moved. In this cases, Frama-C correctly
pointed out a minimal read after end of buffer for the
function call. Since these flaws were unintentional, we
excluded them as sites for the Ockham Criteria.

Results:
66 665 sites (|U |). 3396 warnings (|W |). 63 269

findings (|F |). 2168 buggy sites (|B|).
We confirmed the following.
Warnings and sites were consistent: W ⊆ U
There were many findings: |F | ≥ 0.6 × (|U | − |B|)
All findings were correct: F ∩ B = ∅
For Read Outside Buffer, which includes CWE-126

and CWE-127, Frama-C satisfied the criteria.

3.4.4. CWE-476 NULL Pointer Dereference.
Site definition:
• Use of *, ->, or [] operators.

A more generally complete definition of site for this
weakness should include calls to some library func
tions. However the above is enough for Juliet.

Anomalies, Observations, and Interpretations: It
was very difficult to distinguish the Frama-C warnings
for this class from those for array access out-of
bounds. Therefore, we only included “invalid memory
access” warnings for test cases in the CWE476 subdi
rectory.

Results:
72 084 sites (|U |). 303 warnings (|W |). 71 781 find

ings (|F |). 271 buggy sites (|B|).
We confirmed the following.
Warnings and sites were consistent: W ⊆ U

8

http:extractor.py

There were many findings: |F | ≥ 0.6 × (|U | − |B|)
All findings were correct: F ∩ B = ∅
For CWE-476 NULL Pointer Dereference, Frama-C

satisfied the criteria.

3.4.5. CWE-190 Integer Overflow or Wraparound.
Site definition:

•	 Use of +, ++, * (multiplication), +=, and *=. This
includes array indexing (and array index scaling),
hence: [], too.

We did not consider divisions as sites for integer
overflow. Integer division overflows only when divid
ing by zero. Since that is divide by zero, which is
more specific, we excluded division as a site for integer
overflow. By the same reasoning, we excluded uses of
the modulo (%) operator.

Frama-C only identified signed arithmetic overflows
involving types of width int or greater. To sim
plify site identification, we excluded sites from files
with _char_, _short_, or _unsigned_ in the file
name. This exclusion is coded in get_integer_inc_
sites.py. This excluded 7113 files (6105 char, 504
short, and 504 unsigned) in 4876 test cases (4192
char, 342 short, and 342 unsigned).

Anomalies, Observations, and Interpretations:
As in previous classes, we did not include bugs

depending on use of the RAND32() macro in the
findings, since it would generate mismatches during
our analysis due to analysis termination, as mentioned
before.

Results:
29 907 sites (|U |). 1356 warnings (|W |). 28 551

findings (|F |). 1026 buggy sites (|B|).
We confirmed the following.
Warnings and sites were consistent: W ⊆ U
There were many findings: |F | ≥ 0.6 × (|U | − |B|)
All findings were correct: F ∩ B = ∅
For CWE-190 Integer Overflow, Frama-C satisfied

the criteria.

3.4.6. CWE-369 Divide by Zero.
Site definition:
•	 Use of /, %, /=, and %=5. This includes all

arithmetic types, including float and double com
putations.

•	 This does not include cases in which the right
hand side is a constant, e.g. height/2.

Anomalies, Observations, and Interpretations:
CWE-369 Juliet cases are built with only three

variants: (1) a variable, data, which is later used as
the divisor, is set to a non-zero constant, (2) data is

5. Juliet includes modulo (%) operator in divide by zero.

set to zero or to the return value of the function that
may be 0, for instance rand() or scanf(), or (3) the
division operation is guarded by comparison with 0 or
with 0.000001 for floats. Frama-C’s implementation
of abstract interpretation cannot handle a range with
an “omitted middle.” This leads to a divide by zero
warning even when the operation is properly guarded,
as explained in Sec. 2.3.2. Most or all of the incorrect
warnings, and therefore the relatively low number of
findings, are attributed to this implementation choice.

Results:
3018 sites (|U |). 1399 warnings (|W |). 1619 findings

(|F |). 684 buggy sites (|B|).
We confirmed the following.
Warnings and sites were consistent: W ⊆ U
There were many findings: |F | ≥ 0.6 × (|U | − |B|)
All findings were correct: F ∩ B = ∅
For CWE-369 Divide by Zero, Frama-C satisfied the

criteria.

3.4.7. CWE-457 Use of Uninitialized Variable.
Site definition:
• When the value of a variable is used.
In some instances after an uninitialized variable is

reported, Frama-C did not produce any further warn
ings. We did not determine whether this is due to an
undefined program state, as explained in Sec. 3.3.1, a
clean-up to avoid repeated warnings about essentially
the same problem, or something else.

We handled this by only including the first buggy
site in a file. That is, the first buggy site is included, and
any subsequent buggy site in the same file is excluded.
This exclusion is coded in get_variable_ref_
sites.py.

Results:
263 520 sites (|U |). 770 warnings (|W |). 262 750

findings (|F |). 560 buggy sites (|B|).
We confirmed the following.
Warnings and sites were consistent: W ⊆ U
There were many findings: |F | ≥ 0.6 × (|U | − |B|)
All findings were correct: F ∩ B = ∅
For CWE-457 Uninitialized Variable, Frama-C sat

isfied the criteria.

3.4.8. CWE-562 Return of Stack Variable Address.
Site definition:

•	 Return statements that return an expression. This
does not include return of constant values.

Anomalies, Observations, and Interpretations:
There was significant mismatch between our

site definition and Frama-C’s warning. Our site
definition, which was based on the CWE, was in

9

http:sites.py
http:sites.py

the statement where a stack address is returned.
Frama-C reports the statement where an expired
address is used. Consider the following code from
CWE562_Return_of_Stack_Variable_Address__
return_buf_01.c, SARD [5] case 105 491:

static char *helperBad() {
char charString[] = "helperBad string";
return charString;

}

{
. . .
printLine(helperBad());
. . .

}

Our extractor reported a site in the return statement,
while Frama-C reported the printLine(), where the
invalid address is used. Both make sense. Since our
definition of site was local, in order to automatically
handle Frama-C warnings, the sites for this class has
to be use of returned value. Only two test cases
had examples of this condition, so we checked them
manually.

Results:
1838 sites (|U |). 2 warnings (|W |). 1836 findings

(|F |). 2 buggy sites (|B|).
We confirmed the following.
Warnings and sites were consistent: W ⊆ U
There were many findings: |F | ≥ 0.6 × (|U | − |B|)
All findings were correct: F ∩ B = ∅
For CWE-562, Frama-C satisfied the criteria.

3.5. Warnings Handled As Exceptions

In many instances, Frama-C produced warnings that
did not fit into the classes above or were not readily
handled by our automated processing. We handled
these warnings as exceptions.

Frama-C correctly warned about read after end of
buffer flaws in 72 files. See Sec. A.5 in the appendix
for more detail. Since these were unintentional, we
decided not to take the time to change code to process
these automatically.

We excluded 76 test cases, consisting of a total
of 112 files, because they use RAND32(). Frama-C’s
model results in any execution after that use to be
undefined. See Sec. 3.3.1 for more explanation. Since
we could not easily determine what occurs in the
control flow before RAND32() is used, we excluded
these test cases altogether.

Frama-C warned about integer overflow for many
uses of left shift (<<) in RAND32() and RAND64().
These are legitimate warnings, in that their behavior is

undefined according to the C11 standard. Since they do
not correspond to any of the above weakness classes,
we excluded these 2101 warnings from automated
processing.

Frama-C produced 152 “invalid memory access”
warnings, specifically invalid write, for calloc()
when the allocation fails. We doubt that actual library
code tries to zero memory if allocation fails, so we
considered these warnings to be model artifacts.

3.6. Errors in Juliet that Frama-C Found

This section explains the three previously-unknown
systematic errors in Juliet 1.2 that Frama-C’s warnings
uncovered.

In addition to the three systematic errors, Frama-
C warned about constructs that occurred in four test
cases. In those four cases, the program stored a value
in one member of a union, then read from the other
member, a process sometimes called “type punning.”
This is allowed by the ISO/IEC C 2011 standard. There
are more details in Sec. A.4 in the appendix.

3.6.1. Minimal Read After End of Buffer. 72 files
in Juliet had an unintentional bug, see Sec. A.5 in the
appendix. The source string passed to memcpy() or
memmove() was shorter than the size to be copied or
moved. In this cases, Frama-C correctly pointed out
a minimal read after end of buffer for the function
call. Since these flaws were unintentional, we excluded
them as sites in Ockham Criteria.

3.6.2. Use of Object Past Its Lifetime. In the
set of warnings for “making use of address
of object past its lifetime,” Frama-C warned
of a previously unnoticed systematic problem
in the Juliet set. It is use of memory after its
lifetime, which produced 152 warnings in 140
test cases. Here is an example of the code from
CWE476_NULL_Pointer_Dereference__int_34.c,
SARD case 104 717:

int * data;
{

int tmpData = 5;
data = &tmpData;

}
printIntLine(*data);

The address of tmpData is passed to
printIntLine() after its life time. There are
more details in the Appendix, Sec. A.7.

10

Class (Related CWEs)
Sites Warnings Findings Buggy Sites

(|U |) (|W |) (|F |) (|B|)
Write Outside Buffer (121, 122, 124)

Write-what-where (123)
Read Outside Buffer (126, 127)

NULL Pointer Dereference (476)
Integer Overflow (190)

Divide by Zero (369)
Uninitialized Variable (457)
Return Stack Variable (562)

97 678 18 767 78 911 7400
72 084 791 71 293 228
66 665 3396 63 269 2168
72 084 303 71 781 271
29 907 1356 28 551 1026

3 018 1399 1 619 684
263 520 770 262 750 560

1 838 2 1 836 2
Table 1. Number of Sites, Warnings, Findings, and Buggy Sites For Each Weakness Class

3.6.3. Uninitialized Struct Member. In 204 test cases
a mistake failed to initialize the second member of
a structure. Here is a version of the pertinent code
from CWE121_Stack_Based_Buffer_Overflow__
CWE805_struct_declare_loop_01.c, SARD case
64 912. The typedef comes from std_testcase.h.

typedef struct _twoIntsStruct
{

int intOne;
int intTwo;

} twoIntsStruct;

twoIntsStruct source[100];

for (i = 0; i < 100; i++)
{

source[i].intOne = 0;
source[i].intOne = 0;

}

for (i = 0; i < 100; i++)

{

data[i] = source[i];

}

In other examples of this pattern, intTwo is initialized
also instead of intOne being initialized twice. Frama-
C warned of “reading from uninitialized lvalue” noting
that intTwo should be initialized.

All the test cases are in the subdirectory CWE121_
Stack_Based_Buffer_Overflow. There are more
details in Sec. A.6 in the appendix.

3.7. Summary of Evaluation

This section summarizes the evaluation of Frama-
C on the SATE V Ockham Sound Analysis Criteria.
First, we summarize all the considerations involved in
the evaluation. Next, we summarize the number of sites
and the final result of the evaluation.

3.7.1. Summary of Considerations. The August 2013
development version of Frama-C, which was used
for the Ockham Criteria, did not support wide string

literals, e.g. L"Good", nor the format specifier for wide
string (%ls).

Frama-C terminates analysis when it detects certain
failures. Therefore there are no sites for Ockham
purposes after a terminating failure. Section 3.1.1

Warnings are the union of two sets of runs: one
that assumed that every allocation failed, and one that
assumed that every allocation succeeded. Section 3.1.1

Frama-C always warns about buggy sites, but may
warn about sites without bugs. Therefore a finding
is a good site, that is, a site without a warning.
Section 3.1.1

We determined which sites are buggy from the
structure of Juliet code, by manual inspections, and by
reconciliation with Frama-C warnings. Section 3.1.1

Warnings in test cases that use on the RAND32()
macro were not included, as explained in Sec. 3.3.1.

Because Frama-C was not run on CWE191 test
cases, we excluded all sites under the CWE191 subdi
rectory from the universe. Section 3.3.2

If memcpy() or memmove() write into a structure,
it is not a site of a buffer write. Section 3.4.1

We grouped warnings for CWE-121, CWE-122, and
CWE-124 into the same class, which we named Buffer
Write. Section 3.4.1 Similarly, we grouped warnings
for CWE-126 and CWE-127 into the Buffer Read
class. Section 3.4.3

We only checked warnings in the CWE476 subdi
rectory for NULL pointer dereference. Section 3.4.4

Frama-C only reports integer overflow in data types
larger than int. Section 3.4.5

Warnings for invalid arguments to library
function were not mapped to any CWEs at the
beginning of the analysis. We only included them
when Frama-C did not produce any other warning for
a buffer overread. These warnings were reported as
occurring in input/output utility functions in io.c. We
extracted the name of the file where the utility function
was called from additional information in the warning.
It means that for some of the files cited are not found
in Frama-C xml output “location” tag.

11

3.7.2. Summary of Results. The number of sites,
warnings, findings, and buggy sites for each class is
given in Table 1. In the test cases selected from the
Juliet 1.2 test suite, we considered a total of 606 794
sites in eight classes of weaknesses. There were a total
of 12 339 buggy sites. Counting the excluded and the
unclassified warnings, which are not listed above, we
processed a total of 31 955 unique Frama-C warnings.

Frama-C satisfied the SATE V Ockham Sound Anal
ysis Criteria.

4. Future Changes

This section suggests changes for future Ockham
Criteria.

4.1. Weakness Classes

Although the SATE V Ockham Sound Analysis Cri
teria used the term “weakness classes,” the classes are
not specified. We had CWE classes in mind. In most
cases Frama-C used classes of warnings that did not
correspond well to CWEs. For instance, Frama-C did
not distinguish between CWE-121 Stack-based Buffer
Overflow, CWE-122 Heap-based Buffer Overflow, and
CWE-124 Buffer Underwrite. As we proceeded in the
analysis, we did not see much benefit in holding rigidly
to CWE distinctions.

In general, weakness classes that tools use only
approximately match CWE classes, see Sec. 2.4 in
[11].

We spent a lot of time mapping tool warnings to our
pre-conceived classes. Within classes of tool warnings,
we matched some of the warnings in a tool class to
one CWE-based class and other warnings in the same
tool class to other classes derived from CWEs. It may
have been easier to just evaluate the warnings as given.
In either case, we had to try different matches and
communicate with the tool developers to understand
what class of weaknesses the tool was reporting.

Without understanding what class of weakness the
tool was considering, we could not decide whether
a buggy site corresponded to a tool warning. (This
happened many times during analysis.) If the tool was
designed to cover that class, then a mismatch indicated
a missed buggy site and an error. If the tool in actuality
is not considering a particular class of warning, such
as integer overflow of types smaller than int, then a
buggy site should be ignored. In all our analysis, we
concluded that our notion of a class, and hence sites
for the class, needed to correspond with the class that
the tool actually checked.

In the future, we plan to use the weakness classes
that the tools use.

For ease of information sharing, we are researching
a more universal approach to characterizing weakness
classes.

4.2. Definition of Site

As mentioned in Sec. 2.2, it is not always clear what
location in a flow of execution should be considered to
be a site. For instance, a function may have a few lines
of code to copy a string, which have sites of read buffer
and write buffer. If the code instead calls the standard
library function strcpy(), the situation changes. If
the only sites are considered to be within the body of
strcpy(), then thousands of invocations throughout
the code base appear to condense into a few places. In
addition, the source code is probably not available.

A better definition may be that a site is the final
place that the programmer can make any checks that
are necessary or arrange the state properly. When the
programmer invokes a standard function or uses a
built-in operator, the programmer must satisfy their
preconditions. This may justify declaring that sites are
in the main line code.

The question is still open as to what should be
declared to be the site of missing code, such as failure
to check user input.

4.3. Number of Findings

Criteria 2 stated that the tool produces findings for a
minimum of 60 % of applicable sites. The limit, 60 %,
was somewhat arbitrary. The minimum percentage of
findings per good (non-buggy) site was 69 % for CWE
369 Divide by Zero cases. We attribute this relatively
low percentage of findings to Frama-C’s implementa
tion choices for abstract interpretation, as explained in
Sec. 2.3.2.

The next lowest percentage of findings was 87 % for
Write Outside Buffer. For all other weakness classes,
Frama-C produced findings for nearly 100 % of the
good sites. We note that the Juliet test cases are
synthetic cases and do not have the complexity found
in typical production code.

A minimum of 75 % may be a reasonable limit for
the next Ockham.

4.4. No Errors

Criteria 3 stated that even one incorrect finding
disqualifies a tool. For a production piece of code,
this may be overly demanding. A tool built with a

12

known architectural shortcoming or an inference en
gine with theoretical limitations could never achieve a
flawless evaluation, regardless of the care or amount of
debugging that is done. However, there are many, many
details to specify the semantics of a programming
language and libraries and to encode policies and
definitions. Tools can still be very useful if there is
one minor mistake that is easily fixed, as opposed to a
systematic difficulty that requires major reengineering
to overcome.

Perhaps the next Ockham should require no pattern
of incorrect findings or incorrect findings resulting
from structural or theoretical reasons.

4.5. Use of the Term “Sound”

As explained in Sec. 2.3, the SATE V Ockham
Criteria used the term “sound” and “complete” in
almost the reverse sense of that used by a large,
well-established formal methods community and their
considerable body of published work. Although Ock
ham’s use may have been reasonable, it would cause
unnecessary and unproductive confusion for the terms
to be used very differently in similar contexts. Trying
to change the community’s use would require a huge
effort for a relatively small gain.

Future Ockham Criteria should adopt a term other
than “sound.” Some possibilities are “correct,” “flaw
less,” “reliable,” “faithful,” “faultless,” or “exact.”

5. Conclusions

Pascal Cuoq and Florent Kirchner ran the August
2013 development version of Frama-C on 13 706 test
cases from the Juliet 1.2 test suite. This produced a
total of 31 955 unique warnings covering over half a
million sites.

The reports from Frama-C led to the discovery of
three kinds of unintentional, systematic flaws in the
Juliet test suite. These flaws involve 416 test cases.
For flaws with straightforward fixes, we will replace
the flawed test cases by fixed versions in the SARD [5].

The version of Frama-C that was used, the August
2013 development version, did not support wide string
literals, e.g. L"Good", nor the format specifier for wide
string (%ls).

Frama-C satisfied the SATE V Ockham Sound Anal
ysis Criteria.

Acknowledgments

We thank Yaacov Yesha and Irena Bojanova for their
extensive comments, which greatly improved the paper.

We also thank Charles de Oliveira and Christopher
Long for their work in analysis. We are particularly
indebted to Pascal Cuoq and Florent Kirchner, who
ran Frama-C and answered many questions about in
terpreting the result.

References

[1] (2016)	 Software Assurance Metrics And Tool
Evaluation. [Online]. Available: http://samate.nist.gov/

[2] (2014)	 Static Analysis Tool Exposition (SATE) V.
[Online]. Available: http://samate.nist.gov/SATE5.html

[3] (2015)	 Rice’s theorem. [Online]. Available: http:
//en.wikipedia.org/wiki/Rice’s theorem

[4] T. Boland and P. E. Black, “Juliet 1.1 C/C++ and Java
test suite,” IEEE Computer, vol. 45, no. 10, pp. 88–90,
Oct 2012.

[5] (2016) Static Assurance Reference Dataset (SARD).
[Online]. Available: http://samate.nist.gov/SARD/

[6] N. Mansourov	 and D. Campara, System Assurance:
Beyond Detecting Vulnerabilities. Morgan Kaufmann,
2010, pp. 177–178.

[7] P.	 A. Laplante, Ed., Dictionary of Computer Science,
Engineering, and Technology. CRC Press, 2001, pp.
90, 459.

[8] (2014)	 What is Frama-C. [Online]. Available:
http://frama-c.com/what is.html

[9] (2016)	 XZ Utils. [Online]. Available: http:
//tukaani.org/xz/

[10] “ISO/IEC	 9899:2011 programming languages - C,
Committee Draft — April 12, 2011 N1570,” The Inter
national Organization for Standardization and the Inter
national Electrotechnical Commission (ISO/IEC) Joint
Technical Committee JTC 1, Information technology,
Subcommittee SC 22, Programming languages, their
environments and system software interfaces, Working
Group WG 14 - C, Tech. Rep., 2011.

[11] V.	 Okun, A. Delaitre, and P. E. Black, “Re
port on the static analysis tool exposition (sate)
IV,” National Institute of Standards and Technol
ogy, Special Publication 500-297, January 2013,
http://dx.doi.org/10.6028/NIST.SP.500-297.

13

http://dx.doi.org/10.6028/NIST.SP.500-297
http://frama-c.com/what
http://samate.nist.gov/SARD
http://samate.nist.gov/SATE5.html
http:http://samate.nist.gov

Appendix A. Details of SATE V Evaluation

This appendix includes details about specifics of
the evaluation of SATE V Ockham Sound Analysis
Criteria. Details include the names of specific test
cases and names from Juliet 1.2, C code, extended
explanations, and warnings.

The following description of the Juliet 1.2 test suite
draws heavily from and quotes Boland and Black [4].
The Juliet 1.2 test suite is a collection of C/C++ and
Java programs with known flaws. “Each program or
test case consists of one or two pages of code . . . The
test cases are synthetic, that is, they were created as
examples with well-characterized weaknesses.” Each
case is intended to exhibit only one flaw.

Test cases are organized by the most similar
CWE weakness class. Thus the subdirectory CWE121_
Stack_Based_Buffer_Overflow only has cases
that test write after end of buffer in the stack. The
subdirectories that have thousands of test cases have
up to nine subdirectories named s01, s02, s03, etc.

Each C test case comprises one or more files with
names such as CWE134_Uncontrolled_Format_
String__char_file_printf_22a.c. The file
name has the following components: a CWE
number and short name, a functional variant
(char_file_printf, in this case), a two-digit
structure number (22), an optional subfile indicator
(a), and the extension .c.

Functional variants name data types, library func
tions, or structures. Flow structure numbers indicate
the type of data or control flow used, for example, loop,
data flow, local control flow, constant in conditional,
passing data by a function call, data type, container,
etc.

In addition to files with shared declarations and
common utilities, a test case can consist of one source
code file or of multiple files. For example, test case
CWE476_NULL_Pointer_Dereference__char_01
is contained in one source code file (in addition to
shared files). In contrast CWE23_Relative_Path_
Traversal__wchar_t_connect_socket_
w32CreateFile_54 has five files–54a.c, 54b.c,
through 54e.c–that constitute one test case.

A.1. Frama-C Not Run on CWE191 Cases

Because of a simple human mistake, Frama-C was
not run on the CWE191 test cases. The beginning
of the main script used to generate run Frama-C
on the test cases is shown in Fig. 1. The script
processes all the test cases that were in the di
rectory testcases/CWE191_Integer_Underflow.

Unfortunately, there were no test cases right in that di
rectory; all the test cases were in the s0* subdirectories
testcases/CWE191_Integer_Underflow/s0*.

For consistency, we excluded all sites under the
CWE191 subdirectory from the universe.

The developers later submitted files with the warn
ings. We decided not to evaluate those files since they
came from a later version of Frama-C.

A.2. Frama-C Does Not Handle Some Wide
Characters in printWLine()

Frama-C did not handle wide characters passed
to the utility function printWLine() in 36 test
cases. The test cases are named CWE126_Buffer_
Overread__CWE170_wchar_t_strncpy_01.c
through 18.c and _memcpy_ 01.c through 18.c.

Briefly, the wide string format specifier, %ls, was
not modeled properly. Here is an example of code from
Juliet.

wchar_t data[150], dest[100];

wmemset(data, L’A’, 149);

data[149] = L’\0’;

memcpy(dest, data, 99*sizeof(wchar_t));

printWLine(dest);

As written, the string that is placed in dest is not null
terminated because only 99 wide characters are copied.

The problem was that wmemset() fills the array
with alternate bytes containing character A and a null.
In Frama-C the wide string format specifier was mod
eled as taking one byte at a time. Frama-C’s analysis
found that taking a byte at a time, a null character was
encountered. Therefore no warning was reported.

We excluded sites in these cases. This exclusion
code is in extractor.py. Search for the string
printWLine() sites to find it.

A.3. Mismatched Buggy Sites Excluded Be
cause of Undefined Behavior

As explained in Sec. 3.3.1, the Juliet 1.2 test suite
uses a macro that Frama-C determines to yield unde
fined behavior. The macro is as follows:

#define RAND32() \
((rand()<<30) ˆ (rand()<<15) ˆ rand())

The International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC) C 2011 standard Sec. 6.5.7 Bitwise shift
operators, paragraph 3 says, “If the value of the right
operand is negative or is greater than or equal to the
width in bits of the promoted left operand, the behavior
is undefined.” [10]

14

http:extractor.py

for	 DIR in \
testcases/CWE190_Integer_Overflow/s* \
testcases/CWE191_Integer_Underflow \
testcases/CWE457_Use_of_Uninitialized_Variable/s* \
testcases/CWE123_Write_What_Where_Condition \
...

Figure 1. Beginning of Main Script to Run Frama-C Showing Error in Accessing CWE191 Cases

Frama-C models rand() as returning a type that
is less than 30 bits. According to the standard, the
result of the expression is undefined. Note that in C,
“undefined” is more drastic than “the result may be any
number.” The term “undefined” means that following
execution of a statement with RAND32(), the program
can whistle “Happy Birthday” in all the colors of the
rainbow and still be considered to conform to the
standard.

Frama-C handles undefined behavior in an execution
by not doing any further analysis. Hence the refinement
about terminating failures in Sec. 3.1.1.

Our site extraction is largely syntactic or local. We
do not track the more than a few statements of the
flow of execution. Hence our automated extraction
would otherwise include some buggy sites that fol
low undefined behavior. The most difficult cases use
RAND32() in one file then call a function in another
file, where the weakness is. Here is the essence of
the code, from Software Assurance Reference Dataset
(SARD) [5] case 74 230. The file CWE124_Buffer_
Underwrite__CWE839_rand_68a.c has

void CWE124_...rand_68_bad()
{

data = RAND32();
CWE124_...rand_68b_badSink();

}

while the file CWE124_Buffer_Underwrite__
CWE839_rand_68b.c has

void CWE124_...rand_68b_badSink()
{
buffer[data] = 1;// POSSIBLE UNDERWRITE

}

The variable data is a global variable.
The thorough approach would be to carefully follow

extraction flow and exclude all sites following the use
of RAND32().

We adopted the most principled approach given our
basic checking analysis. This approach was to com
pletely exclude the 76 test cases that use RAND32().

For Write Outside Buffer, we excluded the
38 test cases with the prefix CWE124_Buffer_
Underwrite__CWE839_rand_. These 38 test cases

comprise a total of 56 files. Some test cases exercise
inter-file calls, so have name suffixes like 52a.c,
52b.c, and 52c.c. The 38 test cases are suffixes 01
through 18, 21, 22, 31, 32, 34, 41, 42, 44, 45, 51
through 54, 61, and 63 through 68.

For Read Outside Buffer, we excluded the
38 test cases with the prefix CWE127_Buffer_
Underread__CWE839_rand_. The pattern of test
cases and files exactly follows that of Write Outside
Buffer.

Frama-C also warned about integer overflow for
the macro RAND64(). There are 114 cases that
use RAND64(). They start with CWE190_Integer_
Overflow__int64_t_rand_, which is followed by
add, multiply, or square. The specific cases are 01
through 18, 21, 22, 31, 32, 34, 41, 42, 44, 45, 51
through 54, 61, and 63 through 68. We did not find
that these warnings caused any problem with analysis.

A.4. Incompatible Access Types Warnings

Frama-C reported that four of the cases with pre
viously unknown errors of use of memory after life
time, as noted in Sec. A.7, had an additional error.
These cases, ending in “34,” store to one member
of a union, then read from a different member, a
process sometimes called “type punning.” Here is an
example of the code, from CWE476_NULL_Pointer_
Dereference__int_34.c, SARD case 104 717:

typedef union
{

int	 * unionFirst;
int * unionSecond;

} CWE476_...int_34_unionType;

CWE476_...int_34_unionType myUnion;
{

int	 tmpData = 5;
data = &tmpData;

}
myUnion.unionFirst = data;
{

int	 *data = myUnion.unionSecond;
printIntLine(*data);

}

15

The ISO/IEC C 2011 standard 6.5.2.3 Structure and
union members, footnote 95 says, “If the member used
to read the contents of a union object is not the same
as the member last used to store a value in the object,
the appropriate part of the object representation of
the value is reinterpreted as an object representation
in the new type . . . (a process sometimes called “type
punning”).” [10]

This construct is well defined in the C 2011 stan
dard. However, since other versions of the standard are
not clear about how it should be treated, we believe that
Frama-C was reasonable to model this as incompatible
access type.

A.5. Previously Unknown Error: Unintended
Minimal Read After End of Buffer Bug

72 Juliet test cases have an unintentional bug that is
minimal read after end of buffer. The pertinent code is

#define SRC_STR "0123456789abcde0123"

typedef struct _charVoid
{

char charFirst[16];
void * voidSecond;
void * voidThird;

} charVoid;

charVoid structCharVoid;

followed by one of the following two lines

memcpy(structCharVoid.charFirst,
SRC_STR, sizeof(structCharVoid));

memmove(structCharVoid.charFirst,
SRC_STR, sizeof(structCharVoid));

The problem is as follows. SRC_STR is 20 char
acters (bytes) long, including the null terminator.
sizeof(structCharVoid) is at least 24 bytes long:
16 characters (bytes) in charFirst and 4 bytes
for each of the two pointers. The standard functions
memcpy() and memmove() therefore read at least 24
bytes from the constant string that is only 20 bytes.

Both memcpy() and memmove() allow writing be
yond the end of a buffer. (They are often used to copy
or initialize an entire structure when only the first field
of the structure is passed.) Thus the intended bug, write
outside buffer, is not present given standard semantics.

The 72 files with these problems are SARD [5]
test cases 63 036 to 63 071 and 67 448 to 67 483.
All of the file names begin with CWE121_Stack_
Based_Buffer_Overflow__. Next in the name is the
data type. (In the Juliet collection, the char_ type_
files are in subdirectory s01, and the wchar_t_

type_ files are in subdirectory s09.) The name
next has the operation, which is overrun_memcpy_
or overrun_memmove_. There are 18 control flow
variants, 01.c through 18.c, for each. As an
example, here is the complete name of one file, which
is in subdirectory s09: CWE121_Stack_Based_
Buffer_Overflow__wchar_t_type_overrun_
memmove_13.c.

A.6. Previously Unknown Error: Uninitialized
Storage

In 204 test cases a mistake failed to initialize the
second member of a structure. Here is a basic version
of the pertinent code from CWE121_Stack_Based_
Buffer_Overflow__CWE805_struct_declare_
loop_01.c, SARD [5] case 64 912. The typedef
comes from std_testcase.h.

typedef struct _twoIntsStruct
{

int intOne;
int intTwo;

} twoIntsStruct;

twoIntsStruct source[100];

for (i = 0; i < 100; i++)
{

source[i].intOne = 0;
source[i].intOne = 0;

}

for (i = 0; i < 100; i++)

{

data[i] = source[i];

}

In other examples of this pattern, intTwo is initialized
also instead of intOne being initialized twice. Frama-
C warns of “reading from uninitialized lvalue” noting
that intTwo should be initialized. (In the memcpy()
and memmove() cases, source is read by the respec
tive function, not a primitive assignment.)

All the test cases are in CWE121_Stack_Based_
Buffer_Overflow and begin with that string. The
first 69 cases are in subdirectory s04; the rest are in
subdirectory s05.

The test cases came in 2 functional variants
(CWE805_struct_alloca and declare) × 3
subvariants (loop, memcpy, and memmove) × 34
templates (01 through 18, 31, 32, 34, 41, 44, 45,
51b, 52c, 53d, 54e, and 63b through 68b) = 204 test
cases. For example, the first warning is in CWE121_
Stack_Based_Buffer_Overflow__CWE805_
struct_alloca_loop_01.c, SARD case 64 792,
and the last warning is in CWE121_Stack_Based_

16

Buffer_Overflow__CWE805_struct_declare_
memmove_68b.c, SARD case 65 026. (Some of the
cases in that span do not have this bug.)

A.7. Previously Unknown Error: Use of Mem
ory After Lifetime

Frama-C warned of a previously unnoticed sys
tematic mistake in the Juliet set. In the supposedly
good versions of NULL pointer dereference cases,
the following type of code occurs in many vari
ations. This comes from CWE476_NULL_Pointer_
Dereference__int_01.c, SARD case 104 694:

int * data;
{

int tmpData = 5;
data = &tmpData;

}
printIntLine(*data);

The variable tmpData is declared in an inner scope.
The lifetime of its memory ends at the closing bracket.
Thus the dereference in printIntLine() is unde
fined behavior. However, most compilers do not release
the memory until the end of the enclosing function, so
the code usually works fine. The ISO/IEC C 2011 stan
dard Sec. 6.2.4 Storage duration of objects, paragraph
6 says, “For such an object . . . its lifetime extends from
entry into the block with which it is associated until
execution of that block ends” [10] Frama-C’s warning
is consistent with this.

These mistakes in Juliet could be labeled as CWE
825 Expired Pointer Dereference.

There are 152 warnings in 4 versions (int64_t_,
int_, long_, and struct_) x 35 templates (01
through 18, 21, 22a, 31, 32, 41, 44, 45, 51a through
54a, 63b, 64b, 65a, 66b, 67a, and 68b) = 140 test cases.
Each template ending in “12” had four warnings.

17

