
NISTIR 8066

Improving the Computational

Efficiency of the Blitzstein-Diaconis

Algorithm for Generating Random

Graphs of Prescribed Degree

Elizabeth Moseman

This publication is available free of charge from:

http://dx.doi.org/10.6028/NIST.IR.8066

NISTIR 8066

Improving the Computational

Efficiency of the Blitzstein-Diaconis

Algorithm for Generating Random

Graphs of Prescribed Degree

Elizabeth Moseman

Applied and Computational Mathematics Division

Information Technology Laboratory

This publication is available free of charge from:

http://dx.doi.org/10.6028/NIST.IR.8066

June 2015

U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology

Willie May, Under Secretary of Commerce for Standards and Technology and Director

Abstract

When generating a random graph, if more structure is desired than is given in the popular
Erdős–Renyi model, one method is to generate a degree sequence first then create a graph
with this degree sequence. Blitzstein and Diaconis[1] (among others) developed a sequential
algorithm to create a random graph from a degree sequence. This algorithm is assured to
always terminate in a graph with the desired degree sequence; unfortunately, it is slow. This
work focuses on the subroutine of the previous algorithm which determines the candidate
edges, improving the runtime of the overall algorithm from O(mn2) to O(mn).

Key words: random graphs; degree sequence; graph algorithms

ii

Contents
1 The Blitzstein–Diaconis Algorithm 1

2 Creating the Candidate List Efficiently 2

3 Impact 5

iii

For modeling purposes, one frequently wishes to generate a random graph. Many models for
random graph generation, including the frequently used Erdős–Renyi model, will generate a graph
on a specified number of vertices, but the degrees of the vertices in the resulting graph will be
concentrated among very few values. This makes such models of limited use in modeling real
world networks, which often exhibit degree distributions that are not concentrated in the same
manner. In an effort to generate random graphs which more closely resemble real world graphs,
effort has been made on creating random graphs with a specified degree sequence.

The simplest (and most computationally efficient) algorithm is that of Bayati, Kim and Saberi[2].
In this algorithm, each edge is added sequentially from among the allowable edges. In the analysis
of the algorithm, it is shown that this algorithm has running time O(mdmax) where m is the num­
ber of edges and dmax is the maximum degree of any vertex. One of the main drawbacks of this
algorithm is that it will not always generate a graph; sometimes, the order of the edge selection
results in no edges being allowable before all the necessary edges have been generated. The proba­
bility of this occurring is shown to be asymptotically small when the maximum degree is bounded
as a function of the total number of edges. However, from the standpoint of actually using such
an algorithm, asymptotics are unsatisfying. In addition, this result only holds for graphs where
dmax = O(m1/4−τ) with τ a positive constant, and does not hold for the degree sequences that
arise in many real world networks.

There are three algorithms that generate random graphs of prescribed degree that ensure suc­
cessful termination. Mihail and Vishnoi[3] created an algorithm that transforms the problem to
the well-studied problem of finding a maximum matching. This is done at the expense of making
the problem bigger: the matching problem is performed on graph with O(n2) vertices, where the
original graph had only n.

The most widely used algorithm is that of Gkantsidis, Mihail, and Zegura[4], which is based on
a Monte Carlo Markov chain. In it, a graph is created which realizes the degree sequence, and then
edge swaps are performed in order to randomize the graph. The main drawback of this method is
that there are no results on the mixing time (the number of swaps to perform) in general.

This technical report focuses on the algorithm of Blitzstein and Diaconis[1]. This algorithm
also adds edges to the graph sequentially, at each step only a few edges are allowed. More details
of the algorithm will be given in the following section. The contribution here is a more efficient
method of calculating the candidates in this algorithm, improving the runtime from O(n2m) to
O(nm).

1 The Blitzstein–Diaconis Algorithm
Beginning with a degree sequence, it is graphical if there is some graph which realizes the degree
sequence. As edges are added to a graph sequentially, each vertex has a desired degree (the degree
given by the degree sequence), a current degree (how many edges already contain that vertex) and a
residual degree (the difference between the desired degree and the current degree). The main idea
of the Blitzstein–Diaconis algorithm is that if edges are added to the vertex of smallest residual
degree, and the remaining residual degree sequence is graphical, then the graph can always be
completed with the desired degree sequence. This is codified as Algorithm 1.

In this algorithm and later sections, we use the notation 8i,j d to indicate the degree sequence
obtained from d by subtracting 1 from di and dj but leaving the other entries unchanged. The

1

Algorithm 1: Blitzstein–Diaconis algorithm for generating a random graph with a given
degree sequence

Input: a graphical degree sequence d = (d1, . . . , dn)
Output: the edge list E for a graph with degree sequence d

1 E ← ∅
2 while d = 0 do
3 Choose i with di a minimal nonzero entry.
4 while di > 0 do
5

6

Compute a candidate list J = {j = i | {i, j} /∈ E and 8i,j d is graphical}.
Pick j ∈ J with probability proportional to its degree in d.

7

8

E ← E ∪ {{i, j}}
d ← 8i,j d.

9 end
10 end

largest bottleneck in this algorithm comes from calculating the candidate list, J , before each edge
is added. Since this is also where the improvements come in, some time should be spent on this
step.

To test for graphicality, Blitzstein and Diaconis use the Erdős–Gallai conditions for graphical­
ity.

Definition 1.1. For a monotone decreasing sequence d =), the kth Erd˝(d1, . . . , dn os–Gallai
condition is

n kk k
k(k − 1) + min(k, di) − di ≥ 0. (1)

i=k+1 i=1

This definition differs from the standard in the ordering of the terms, but this usage will make
later definitions easier. In general, an integer sequence is graphical if it satisfies all of the Erdős–
Gallai conditions for k = 1, . . . n.

In their algorithm, Blitzstein and Diaconis utilize a Θ(n) subroutine to test all the Erdős–Gallai
conditions for each candidate, one at a time. Since there are n potential candidates, the running
time for generating the candidate list is O(n2) and since a candidate list is generated for every edge
this makes the total running time O(n2m). Anecdotally, Blitzstein and Diaconis note that it took
13 seconds to generate graphs for a specified 33 node degree sequence on a 1.33 GHz machine
when the algorithm was coded in R. Matlab1 code for the same procedure took 0.05 seconds on
the same 33 node degree sequence.

2 Creating the Candidate List Efficiently
To improve the running time of the candidate calculations, we need to observe that the values
obtained from calculations of the Erdős–Gallai conditions for d will be very similar to the values

1Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such
identification does not imply recommendation or endorsement by the National Institute of Standards and Technology,
nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

2

of the same condition for 8i,j d. We will see later that the values differ by at most two, and it is
easy to tell by exactly how much they differ. But first, we need to address the issue of order in the
degree sequence.

In testing the Erdős–Gallai conditions efficiently, we assume that the sequence fed into the
tester is ordered from greatest to least. This is important because there is a Θ(n log n) lower bound
on a sorting algorithms when nothing is known of the sequence. However, the sorted order of d
and the sorted order of 8i,j d may differ. Assume that d is in sorted order. Notice that trailing zeros
do not effect whether d is graphical or not, so we assume that n is the number of nonzero entries
and thus dn is a minimal nonzero entry.

Definition 2.1. Let d be a sorted, graphical degree sequence with no trailing zeros. We say that
j ≤ n − 1 is a candidate if 8j,nd is graphical.

We first address the case where 8j,nd is not in sorted order. Notice that since there are no entries
less than dn, decrementing to dn − 1 makes no difference to the sorting, so the only possibility is
dj − 1 < dj+1. Since dj ≥ dj+1, this forces dj = dj+1. If, however, j = n − 1, then even
dj = dj+1 = dn will not cause 8j,nd to be unsorted.

Lemma 2.2. If dj = dj+1 with j < n − 1, then j is a candidate if and only if j + 1 is a candidate.

Proof. This is a necessary consequence of the sorted order of 8j,nd. In particular, in sorted order
8j,nd and 8j+1,nd are the same sequence so if the common sequence is graphical then both are
candidates and otherwise both are not.

The following theorem addresses the candidacy of the remaining j values.

Theorem 2.3. Let d = (d1, . . . , dn) be a sorted, graphical degree sequence with dn > 0. Fix k
with 1 ≤ k < n and 1 ≤ j < n. Define d̃ = 8j,nd,

kn kk
ek = k(k − 1) + min(k, di) − di and (2)

i=k+1 i=1

n kk k
ẽk = k(k − 1) + min(k, d̃i) − d̃i. (3)

i=k+1 i=1

Suppose, without losing any generality via Lemma 2.2, dj > dj+1 or j = n − 1 so that d̃ is also
sorted. Then ⎧

1 j ≤ k and dn > k⎪⎪⎪⎪⎨ 0 j ≤ k and dn ≤ k
ẽk − ek = 0 j > k and dn > k (4)

−1 j > k and dj > k ≥ dn
⎪⎪⎪⎪⎩ −2 j > k and k ≥ dj

Proof. We observe that ẽk and ek are very similar. We consider two cases.
Case j ≤ k: Then

ẽk − ek = min(k, dn − 1) − min(k, dn) + 1 (5)

3

where the 1 is due to the change in dj to dj −1. If dn > k, we have min(k, dn−1) = min(k, dn) = k
so that ẽk − ek = 1. Otherwise, min(k, dn − 1) = dn − 1 and min(k, dn) = dn so that ẽk − ek = 0.

Case j > k: We see that

ẽk − ek = min(k, dn − 1) − min(k, dn) + min(k, dj − 1) − min(k, dj). (6)

When dn > k, the sorted nature of d ensures dj ≥ dn > k so that min(k, dn − 1) = min(k, dn) =
min(k, dj − 1) = min(k, dj) = k and ẽk − ek = 0. When dj > k ≥ dn, we have min(k, dn − 1) =
dn − 1, min(k, dn) = dn, and min(k, dj − 1) = min(k, dj) = k so that ẽk − ek = −1. Finally,
when k ≥ dj ≥ dn, we have min(k, dj − 1) = dj − 1 and min(k, dj) = dj so that ẽk − ek = −2.

Algorithm 2: Calculating the max candidate.

Input: a sorted, graphical degree sequence d = (d1, . . . , dn), with dn > 0
Output: a max candidate j' with 8j,nd graphical for any j ≤ j'

1 Calculate ek for k = 1, . . . n
2 for k = 1 to n do
3 if ek ≥ 2 then
4 jk ← n
5 else if ek = 1 then
6 jk ← max(k, min(j | dj ≤ k))
7 else if ek = 0 then
8 if dn ≤ k then
9 jk ← k

10 else
11 jk ← max(k, min(j | dj ≤ k))
12 end
13 end
14 end
15 j' ← mink(jk)
16 while dj' = dj'+1 do

j' ← j' − 117

18 end

Each condition will have a maximum index j so that 8j,nd passes that condition, and the
minimum of these indices will be the maximum candidate j'. Then the candidates are J = {j ≤
j' | {j, n} ∈/ E and dj = dj'+1}. This process is shown in Algorithm 2. This is then a Θ(n)
process for calculating the candidate list. If we use the theorem to adjust the ek once a candidate
has been selected, the constant may be improved but we cannot calculate ek in better than linear
time because all of them may need to be updated.

4

Figure 1: Running time for trials with the unaltered (green) and altered (blue) algorithms. Average
of 10 trials at each n. As a reference, a single trial with the unaltered algorithm with n = 10000
ran in 5300 s, or approximately 88 minutes.

3 Impact
To show the practicality of the algorithm, degree sequences were chosen to follow a power law,
so that the probability that a given vertex has degree k is proportional to k−β for some constant β.
We chose to work with β = 2.1 since many graphs found in practice seem to have this exponent.
Elementary calculations yield the results that the expected degree on these graphs is β−1 and the

2−β

expected maximum degree is at least n1/(β−1) and thus the Bayati, Kim and Saberi algorithm [2]
will converge for β > 5, but not in the range that we are interested in. Figure 1 shows the average of
10 running times for random degree sequences generated according to a power law with β = 2.1.2

2Code was generated in Matlab and run on a 2.4GHz AMD Athlon 64 processor.

5

References
[1] J. Blitzstein and P.	 Diaconis (2010). “A sequential importance sampling algorithm for

generating random graphs with prescribed degrees”. Internet Mathematics 6 (4), 489.
http://dx.doi.org/10.1080/15427951.2010.557277.

[2] M.	 Bayati, J. H. Kim, and A. Saberi (2010). “A sequential algo­
rithm for generating random graphs”. Algorithmica 58 (4), 860–910.
http://dx.doi.org/10.1007/s00453-009-9340-1.

[3] M. Mihail and N. Vishnoi (2002). “On generating graphs with prescribed vertex degrees for
complex network modelling”. In ARACNE.

[4] C. Gkantsidis, M. Mihail, and E. Zegura (2003). “The markov chain simulation method for
generating connected power law random graphs”. In ALENEX.

6

http://dx.doi.org/10.1007/s00453-009-9340-1
http://dx.doi.org/10.1080/15427951.2010.557277

